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Summary. Let G : (G(t), t > 0) be the process of  last passage times at some 
fixed point of  a Markov process. The Dynkin-Lamperti  theorem provides a 
necessary and sufficient condition for G(t)/t to converge in law as t --~ oc to 
some non-degenerate limit (which is then a generalized arcsine law). Under this 
condition, we give a simple integral test that characterizes the lower-functions 
of  G. We obtain a similar result for A + = (A+(t), t > 0), the time spent in 
[0, e~) by a real-valued diffusion process, in connection with Watanabe's recent 
extension of  L6vy's  second arcsine law. 
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1 Introduction 

The celebrated first and second arcsine laws of  P. L6vy [L] claim that the 
instant of  the last zero on the time interval [0, 1] of  a real-valued Brownian 
motion B started at 0, and the total time spent in [0, oc) by B during the 
time-interval [0, 1], are both distributed according to the arcsine law. That is 
their common distribution function is (2/~z) arcsin v/~ (0 _< x _< 1). We refer 
to Pitman-Yor [PY] for an elegant proof and to Bingham-Doney [BD] for 
further references. 

It is well-known that L6vy's  first arcsine law can be extended to a wide 
class o f  Markov processes. Specifically, let X = (Xt, t > 0) be a Borel right 
Markov process started from some recurrent point, say 0. When 0 is regular, 
we denote by L --- (L(t), t > 0) a local time at 0, that is a continuous additive 
functional which increases only on the zero set of  X. When 0 is irregular, we 
consider a sequence ~1 . . . . .  ~ . . . . .  of  independent exponential variables with pa- 
rameter 1, which are independent of  X. We then call local time at 0 the process 
L( .  ) = 41 + . . .  I N (  �9 ), where N ( .  ) is the number o f  zeros of  X on the time 
interval [0, �9 ] [This definition of  local time in the irregular case may look awk- 
ward, but it is the most convenient for our purpose. Actually, this little artifice 
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allows us to handle simultaneously the regular and irregular cases]. In both 
cases, the inverse local time T( .  ) -  inf{s: L(s) > �9 } is a subordinator, that 
is T is a right-continuous increasing process with independent homogeneous 
increments. Denote its Laplace exponent by ~b, 

IE(exp{ 2 T ( t ) } ) =  e x p { - t r  (Z,t > 0) .  

Next, consider the process of  last passage times at 0, 

G(t) = sup{s < t:Xs O} (t > 0 ) ,  

and recall that G(t) coincides with the inverse local time evaluated immediately 
before it exceeds t, i.e. G(t) T (L( t ) - ) .  Recall also that for every c~ ~ (0, 1), 
the so-called generalized arcsine law with parameter e is the probability mea- 
sure on the unit interval with density s~-l(1 - s) ~[F(c0F(1 - c0]-1(0 < s < 
1). Then the Dynkin-Lampert i  theorem ensures that G(t)/t converges in dis- 
tribution as t -+ oo to the generalized arcsine law with parameter c~ E (0, 1 ) if  
and only if 4~ is regularly varying at 0 +  with index ~, and this is also equiv- 
alent to l i m t _ ~  lE(G(t)/t) ~. Conversely, if lE(G(t)/t) diverges as t ---+ oc, 
then afor t ior i  G(t)/t does not converge in distribution and �9 is not regularly 
varying at 0+.  Finally, the case when IE(G(t)/t) converges to 0 (respectively, 
to 1) is somewhat degenerate, because then G(t)/t converges in probability to 
0 (respectively, to 1) and �9 is regularly varying at 0 §  with index 0 (respec- 
tively, with index 1 ). We refer to Sharpe [S] for material on Markov processes, 
local times . . . .  and to Bingham et al. [BGT] for a detailed account on regular 
variation and the Dynkin-Lampert i  theorem. 

Recently, S. Watanabe [W] extended L6vy 's  second arcsine law to one- 
dimensional diffusions. Specifically, suppose that X is a non-singular diffusion 
process on ( - o c ,  oc) and consider for every t > 0 

t t 

A+(t) f l{x ,~0} ds, A - ( t )  = t - A+(t) -- fl(x~.<0) ds. 
0 0 

As before, let L and T be, respectively, a local time at 0 and the inverse local 
time processes, and recall that the time-changed processes 

T+(t) A + o T(t), r (t) = A -  o T(t) (t > O) 

are two independent subordinators. Let 4 + and �9 stand for their respective 
Laplace exponents, and note that �9 qs+ § 4 -  is the Laplace exponent of  T. 
Next, for c~ E (0, 1) and p E (0, 1 ), consider the variable 

Yp,~ = pl/~S~(pt/~S~ + (1 p)l/~S~)-I,  

where S~ and Ss are two independent copies of  the nonnegative stable variable 
with index ~. Then A+(t)/t converges in distribution as t ~ oc to Yp,~ if and 
only if 

r is regularly varying at 0 +  with index ~ and 45+ ~ p4~ (at 0 + ) .  (1) 
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Conversely, if (1 fails, then either A+(t)/t does not converge in law as t -+ oo, 
or it converges to some degenerate distribution (the Dirac point mass at p, or 
a mixture of  the Dirac point masses at 0 and 1). Finally, when the diffusion 
is in natural scale (there is o f  course no loss of  generality in assuming this), 
(1) holds if and only if m + is regularly varying at eo with index 1/c~- 1 
and m - ( x ) ~  p l / ~ ( 1 -  p)l/~m+(x) as x---+ ec, where m+(x)= m([0,x]) and 
re- (x)  = m([ -x ,  0)). In that case, the asymptotic behaviours of  the Laplace 
exponents (/5 + and 4 -  are determined by that of  m + and m - ,  by an ap- 
plication of  a Tauberian theorem due to Kasahara [K] (Warning: there is a 
typographical error in the definition of  the constant D~ on p. 70 of  [K]), see 
also Kotani-Watanabe [KW]. The precise relation is 

4+(J0 ~ (~(1 - ~ ) ) ~ - -  
V(1 -c~)  

r (1  + ~) 
;~ (1 / ;~ )  (;~ -~ 0 + ) ,  

where E is a slowly varying function at co such that an asymptotic inverse of  
x ~ xm+(x) is x ~ x~/C(x), and a similar relation holds for 4 -  and m - .  

The purpose o f  this paper is to investigate the almost-sure asymptotic 
behaviour o f  the processes G = (G(t),t  > 0) and A + = (A+(t),t > 0) in the 
cases when non-degenerate extensions of  L6vy's  arcsine laws hold. Our inter- 
est in this problem arose from a recent paper of  Hobson [H] who treats the 
Brownian case. His result is that if X is a real-valued Brownian motion and 
h : (0, e<~) ~ (0, oc) a decreasing function, then a.s. for V = A + or G, 

according as the integral 

lira inf V(t)/th(t) = 0 or oo 
I~+OO 

~ v 'h ( t )  t 

diverges or converges. See also M e y r ~ W e m e r  [MW] for a multidimensional 
extension. We now state our results. 

Theorem 1. Suppose that X is a Borel right Markov process started from 
0 and let q) stand for the Laplace exponent of the inverse local time. 
Suppose that 4 is regularly varying at O+ with index ~ E (0, 1) and put 
(0(x) = 1/4(I/x) .  The asymptotic rate of growth of the last passage process G 
is determined as follows. I f  f : (0, co) ---+ (0, oo) is an increasing function, then 
a . s .  

liminf f (G( t ) ) / t  = 0 or co 
1 7 0 0  

according as the integral 

~ r  d~( t )  

diverges or converges. 

Theorem 2. Suppose that X is a non-singular diffusion on ( - o o ,  oo), denote 
by T the inverse local time at 0 and by 4 its Laplace exponent. Consider 
A +, the process of  the time spent by X in [0, oo), and let 4 + stand for the 
Laplace exponent of  T + =  A+ o T. Suppose that 4 is regularly varying at 
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O+ with index ~ E (0, 1) and that ~b + ~ pq) at  O+ f o r  some  p ~ (0, 1 ). P u t  
~o(x) = 1 /~(1 /x ) .  Then, i f  f �9 (O, oc)  ~ (O, oc )  is an increasing func t ion ,  we 
have a.s. 

lim inf f ( A + ( t ) ) / t  = 0 or oc 
t---+OO 

according as the integral  
o o  

f ,~(1/f(t))a,(t) 
diverges or converges. 

It should be clear that Theorem 1 is in fact a result about subordinators, in 
the sense that it involves the Markov process X only through the inverse local 
time. But any subordinator can be thought of  as the inverse local time of  
some Markov process, and the present formulation does not induce a loss of  
generality. 

It is interesting to observe that the integral test of  Theorem 2 is the same as 
that of  Theorem 1, and in particular, does not depend on the constant p E (0, 1) 
which represents the limiting proportion o f  long excursions which are positive. 
When the hypotheses of  Theorem 2 are fulfilled, the lower-functions of  G and 
ofA + thus coincide, but their upper-functions are different (plainly, G(t )  = t for 
infinitely many t 's  whereas A ( t )  < t for all t > 0). Note also that information 
on the upper-functions ofA + follows from Theorem 2 applied to the diffusion-X 
and the identity A+( t )  = t -  A - ( t ) .  

Of course, # ( Z ) =  , f ~  in the Brownian case, and it is immediate to check 
that Theorems 1-2 agree with the results o f  Hobson. Note also that when X 
is a so-called skew Bessel process of  dimension 2 - 2c~ (0 < c~ < 1), then the 
integral test in Theorem 1 and 2 reduces to 

o o  

f f ( t )  '~t~-Idt = oo or < oo.  

This was obtained also by Hobson in his Ph.D. dissertation. We refer to Barlow 
et al. [BPY] for the arcsine law for skew Bessel processes. 

Our approach relies on some sample path properties o f  subordinators, which 
are developed in Sect. 2. This material is used in Sect. 3 to establish Theorems 
1 and 2. Finally we discuss some extensions o f  these results in Sect. 3. 

2 Some sample path properties of subordinators 

Throughout this section, T----(T(t) , t  > 0) stands for a subordinator with 
Laplace exponent 05. Denote its potential measure by U, 

0<3 

U ( d x )  = f l P ( r ( t )  ~ d x ) d t ,  
o 

and recall that the Laplace transform of  U is 1/~b. We first establish an easy 
result on the convergence of  certain integrals o f  T. 
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Lemma 1. Le t  g " [0, oct) ~ {0, oo) be a decreasing function. The fol lowing 
assertions are equivalent: 

0<3 

(i) f g(x)V(dx) < 
0 

(ii) IP g ( T ( t ) ) d t  < oo = 1 

(iii) IP g ( T ( t ) ) d t  < ~ > 0 

P r o o f  The derivations ( i ) ~  ( i i ) ~ ( i i i )  are obvious. Suppose that (iii) holds 
and pick ~ > 0 and k > 0 such that 

IP g ( T ( t ) ) d t  < k > ~. 

Next, consider for every integer n > 0 the stopping time 

( '  } ~n = inf t �9 f o ( r ( s ) ) d s  > kn 
0 

By the Markov property, conditionally on rn < oo, the process T~(. ) =  
T(rn + �9 ) -  T(z~) is a subordinator distributed as T. Using the hypothesis 
that g decreases, we get 

lP(~n§ = ~ l ~  < ~ ) = I P  g ( T ' ( t ) + T ( z n ) ) d t < k l z .  < ~  

(0Y ) > 1P g ( U ( t ) ) d t  < k > ~. 

This shows that J0 ~ g ( T ( t ) ) d t  is bounded from above by kV,  where V is a 
geometric variable. This ensures that its expectation is finite and (i) follows. 

[] 

The next lemma provides a relation between on the one hand, the relative 
size of the subordinator and its jumps, and on the other hand, certain integrals 
of T. Denote the jump of T at time t > 0 by At = T ( t ) -  T ( t - ) ,  the L~vy 
measure by /7 ,  and the tail of the L~vy measure by /7 ,  that i s /7(x)  = / 7 ( x ,  oc). 

Lemma 2. For every Borel  funct ion b" [0, oo) --+ [1,oc), the events 

{A~ > b(T( t  )) infinitely often as t ~ oc} 

and 

coincide up to a null set. 
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Proof The process of  the jumps A is a Poisson point process with intensity 
/7, and hence the compensated sum 

t 

l { A s > b ( T ( s _ ) )  } - -  f H o b ( T ( s ) ) d s  (t > O) 
s < t  0 

is a martingale. The assertion follows from the theorem of  convergence of  
martingales by an argument similar to that of  Proposition 3.1 in Hobson [H]. 

[] 

An immediate combination of  Lemmas 1 and 2 yields the following. 

Lemma 3. Let f : [0, oc) ---+ [0, oc) be an increasing function. Then 

IP(At > f ( T ( t  )) infinitely often as t ~ oc) = 0 or 1 

accordin9 as the integral 

converyes or diverges. 

~ H  o f ( x )U(dx )  

Alternatively, Lemma 3 can be deduced from a recent result of  Erickson 
(Theorem l(ii) in [E]) and the compensation formula for Poisson point pro- 
cesses. 

Our final lemma concerns the rate of  growth of  T when its Laplace expo- 
nent is regularly varying. 

Lemma 4. Suppose that @ is regularly varyin9 at O+ with index c~ c (0, 1) 
and let f : (0, oo) ---+ (0, oc) be an increasin 9 function. Then 

lira T ( t ) / f ( t )  = 0 a.s.  (2) 
t ----+ OO 

if  and only i f  
OQ 

f ~b(1/f(x))dx < oo. 

Moreover, i f  the preceding assertions fail, then 

(3) 

lira sup T( t ) / f ( t )  = oo a.s. 
l - - ~  O 0  

Proof Assume first that (3) holds. We deduce from the obvious inequality 

IP(T(t) > a) < (1 1/e)-llE(1 = exp{-T( t ) /a})  

= (1 - l /e)  1(1 - exp{-tg)(1/a)}) 

applied for t -- 2 n+l and a = f ( 2  n) that 

IP(T(2 "+t) > f ( 2 " ) )  < 2(1 - 1/e)-12"4~(1/f(2n)). 
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Since t-+cb(1/f(t))  decreases, we deduce from (3) that the series 
~ 2 " ~ ( 1 / f ( 2 n ) )  converges, and by the Borel Cantelli lemma, 

T(2 n+l) < f ( 2  ") for all integers n large enough, a.s. 

An immediate argument of monotonicity shows that the latter implies that 
T(t) < f ( t )  for all real number t large enough, a.s., and since (3) still holds 
when one replaces f by e f  for some e C (0, 1) (because q~ is concave), this 
proves (2). 

Now assume that (3) fails. The L6vy-Khintchine formula gives 

o o  

�9 (2)/2 = ~ + fe - ;~H(t )d t ,  
0 

where c5 > 0 is the drift coefficient. An application of a Tauberian theorem 
and the monotone density theorem yields 

r(1 - cOn(x) ~ 4~(1/x) (x ~ ec) (4) 

and it follows that 
O(3 

f H o f ( x )dx  = cx~. (5) 

Recall that the Ldvy measure / /  is the intensity of  the Poisson point process 
of the jumps A, so (5) implies 

l imsupAt / f ( t )  > 1 a.s. 
t - - ~ O O  

Afortiori  limsupt-~oo T(t) / f ( t )  > 1 a.s., and since (3) fails as well when f 
is replaced by f /e  for some e C (0, 1) (because ~b is concave), we have 

lim sup T(t)/ f( t)  = oc a.s. [] 
t ----+ OO 

Remarks. 1. Under the additional condition that t---* f ( t ) / t  increases, Theo- 
rem 6.1 in Fristedt [Fr] provides an integral test to decide whether f is an 
upper-function of a general subordinator, which is equivalent to that of Lemma 
4. See also Feller [Fe]. On the other hand, Lemma 4 is well-known in the 
stable case, see e.g. Theorem 11.2 in [Fr]. 

2. We point out that Lemma 4 holds actually under the weaker condition 
that the integrated tail of the L6vy measure t ~ fo FI(x) dx has positive increase 
in the sense of de Haan and Resnick, see [BGT] on page 71 for a precise 
definition. Specifically, 4~ is concave and increasing, and hence it is O-regularly 
varying. By the Tauberian Theorem 2.10.2 in [BGT] and the LSvy-Khintchine 
formula, we see that 

t 

fH(x)dx~t~b(1/t) (t ~ cxD), 
o 

where the notation a~b means a = O(b) and b = O(a). The integrated tail has 

plainly bounded increase and so does // .  An application of the O-version of 
the monotone density theorem (Proposition 2.10.3 in [BGT]) then implies that 
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-H(x)~q~(1/x). This shows that (5) holds whenever (3) fails, and we conclude 
that in that case, lim s u p t ~  T( t ) / f ( t )  = oc a.s. The derivation ( 3 ) ~  (2) does 
not use any extra assumption on 45. We also recall that some condition on the 
growth of  the tail o f  the L6vy measure is indeed needed for the validity of  
the conclusions of  Lemma 4. For instance, if the subordinator has finite expecta- 
tion IE(T(1)) =/~  < oc, then the law of  large numbers gives l i m t ~  T(t)/t = 
/~ a.s. 

3. Proof of the theorems 

Theorems 1 and 2 now follow readily from Lemmas 3 and 4 and Tauberian 
theorems. In the sequel, T stands for the inverse of  the local time L, its Laplace 
exponent is ~. 

Proof o f  Theorem 1. Recall that the Laplace transform of  the potential measure 
U is 1/~, so by a Tauberian theorem, 

F(1 + ~)U(x) ~ 1/eP(1/x) = ~p(x) (x ---+ ~ ) .  

We then deduce from (4) and Lemma 3 that 

1P(At > f ( T ( t - ) )  infinitely often as t --+ c>o) = 0 or I . 

according as 
O<3 

f q~(1/f(x)) dq~(x) (6) 

converges or diverges. 
Next, recall that G ( t ) =  T ( L ( t ) - )  for all t > 0 a.s., so At > J'(T(t )) 

infinitely often as t ~ ~ if and only if t G(t) > f ( G ( t ) )  infinitely often. 
We deduce that a.s., 

l iminf  { f ( G ( t ) )  + G(t)}/t  > 1 or l iminf  f (G( t ) ) / t  < 1 
t-~-~ OO t - - -+  O O  

according as (6) converges or diverges. 
First, assume that (6) diverges. Then the same holds when f is replaced 

by f / e  for some e ~ (0,1) (because q~ is concave), and it follows that 
lim i n f t ~  f (G( t ) ) / t  = 0 a.s. Finally, assume that (6) converges. Then 

lira eb(1/f(x))cp(x) = lira q~(1/f(x))/~b(1/x) = O 
x ~ o < )  x - - -+  o o  

(since q~(1/f) decreases), and this forces 

lira f ( x ) / x  ~ ,  (7) 
x----+ o o  

because q5 is concave. As a consequence, we have 

l iminf  f (G( t ) ) / t  > 1 a.s. 
t -  +O<)  
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and since (6) converges as well when f is replaced by e f  for some e ~ (0, 1 ), 
we conclude that l i m t ~ f ( G ( t ) ) / t  = oc a.s. [] 

Proof  o f  Theorem 2. Recall that T + = A + o T and T -  = A -  o T are two in- 
dependent subordinators. Lemmas 1 and 4 yield 

l iminf  f ( T + ( t ) ) / T - ( t )  = oo or 0 a.s. 
1----~ O O  

according as the integral 

o o  

f q ) - (1 / f ( x ) )U+(dx)  (8) 

converges or diverges, where @- is the Laplace exponent of  T -  and U + the 
potential measure o f  T +. An argument based on a Tauberian theorem shows 
that one can replace (8) by (6). 

Assume first that (6) diverges, so liminft-~oo f ( A  + o T( t ) ) /A-  o T(t)  = 0 
a.s., and since A -  o T(t) < T(t), afort iori  l i m i n f t ~  f (A+( t ) ) / t  = 0 a.s. 

Then assume that (6) converges, so limt~oo f ( A  + o T( t ) ) /A-  o T(t) = co 
a.s. We deduce from (7) and the identity A+(t) + A - ( t )  = t that 

lira f ( A  + o T(t ) ) /T( t )  = oo a.s. (9) 
I---+ OO 

Next, take any sample path for which (9) holds, pick M arbitrarily large and 
choose tM such that 

f ( A + o  T(t))  > 2MT(t)  for all t > tM 

and [recall (7)] 
f ( t )  > 2Mr for all t > T(tM--).  

Then take any t > t~l. If  T(t) < 2 T ( t - ) ,  then f ( A  + o T(t - ) )  > MT(t )  and 
an immediate argument of  monotonicity shows that 

f (A+(s ) )  > Ms for all s E I T ( t - ) ,  T( t ) ] .  (10) 

I f  T(t) > 2 T ( t - )  and the excursion of  the diffusion on ( T ( t - ) , T ( t ) )  is neg- 
ative, then A+(s) = A  + o T(t) for all s C [T( t - ) ,T ( t ) ]  and (10) obviously 
holds. Finally, suppose that T(t) > 2T(t-) and the excursion of  the diffusion 
on ( T ( t - ) , T ( t ) )  is positive. Then, by monotonicity, f (A+(s ) )  > Ms for all 
s E [ T ( t - ) , 2 T ( t - ) ] ,  whereas for s E (2T( t - ) ,T ( t ) ] ,  A+(s) > s - T ( t - )  > 
T(tM--) and thus 

f (A+(s ) )  > f ( s -  T ( t - ) )  > 2M(s - T ( t - ) )  > Ms .  

Hence (10) holds in all cases, and since M can be chosen arbitrarily large, the 
proof is now complete. [] 

3. Some extensions 

A perusal o f  the proofs shows that Theorems 1 and 2 can be extended using 
the notion of  positive increase. The argument is similar to that in the second 
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remark after the proof o f  Lemma 4, so we omit the details. Specifically, assume 
that foH(x)dx has positive increase. Then, the conclusions of  Theorem l are 

valid. Next, let H+ a n d / /  be the tails of  the L6vy measures of  T + and T - ,  

respectively, and assume that fo H+(x)dx and fo II (x)dx both have positive 

increase. Suppose moreover that ~+ ~: - c~ @ in the neighbourhood of  0+.  Then 
the conclusions of  Theorem 2 are valid. We also point out that some growth 
condition on the tail(s) of  the L6vy measure(s) is needed in order to ensure 
the conclusions of  Theorems 1 (2). For instance, if T(1) has finite expecta- 
tion, that is if f~ < oc, then the law of  large numbers implies that 
limt~ooG(t)/t = 1 a.s. 

In the Brownian case, Hobson [H] also characterized the sample path be- 
haviour of  G(t) and A+(t) for as t -+ 0+.  The methods of  the present paper can 
be easily adapted to deal with small times, the precise statements and proofs 
corresponding to Theorems 1-2 are left to the interested reader. The methods 
also apply to give a discrete time analogue of  Theorem 2, which is connected 
to Watanabe's arcsine law for non-homogeneous birth and death processes [W]. 

Finally, we mention that there exists another extension of  L6vy's  second 
arcsine law, namely for real-valued L~vy processes that fulfill Spitzer's condi- 
tion, see Getoor-Sharpe [GS]. It does not seem that the method used in this 
work can be applied to investigate the almost-sure asymptotic behaviour of  the 
time spent in [0, oc) by a L6vy process (difficulties are related to the jumps 
of  the L6vy process across 0). Nonetheless, Shi-Werner [SW] solved very re- 
cently this problem for stable Ldvy processes, using an argument based on the 
scaling property and ergodic theory. 

Acknowledgement. My interest for the problems treated in this paper arose from discussions 
with Wendelin Werner, to whom I am very grateful. 
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