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Summary.  We consider simple random walk on Z d perturbed by a factor 
exp[/~T-PJr], where T is the length of the walk and JT = ~o<i<j_<r 6~o(i),~(j>. 
For p = 1 and dimensions d _> 2, we prove that this walk behaves diffusively for 
all - o e  < /3  </30, with/30 > 0. For d > 2 the diffusion constant is equal to 1, 
but for d = 2 it is renormalized. For d = 1 and p = 3/2, we prove diffusion for all 
real/3 (positive or negative). For d > 2 the scaling limit is Brownian motion, but 
for d < 2 it is the Edwards model (with the "wrong" sign of the coupling when 
/3 > 0) which governs the limiting behaviour; the latter arises since for p = 4@, 
T-PJT is the discrete self-intersection local time. This establishes existence of a 
diffusive phase for this model. Existence of a collapsed phase for a very closely 
related model has been proven in work of Bolthausen and Schmock. 
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1 Introduction 

1.1 The model 

We consider discrete-time homogeneous simple random walks on Z a taking 
nearest-neighbour steps with equal probabilities ~ .  Given a T-step simple ran- 
dom walk cv beginning at the origin, let 

J r  --- J r ( w ) =  E 6~(i>,wq). (1.1) 
O<_i<j<_T 

Define 

cr = E exp[/3T-PJr], (1.2) 
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where lhe expectation is with respect to simple random walk beginning at 0, and 
p > 0 and '3 C R are parameters. We define a new measure on T-step simple 
random walks, by assigning to a walk aJ the probability 

1 1 
cr (2d) r exp[/3T-PJr (a3)]. (1.3) 

For/3 = 0 this new measure is just the simple random walk. For /3 > 0 it 
defines a model of self-attracting walks, since self-intersections are encouraged 
by the exponential factor. Similarly, for/3 < 0, this is a model of self-repelling 
walks. The factor T -p diminishes the strength of the self-interaction for long 
walks, and for p fixed,/3 provides a measure of the strength of the interaction. 
For p = 0 and /3 < 0 this is the Domb-Joyce model of weakly self-avoiding 
walks, which in the limit fl --+ - o o  gives the usual strictly self-avoiding walk. 

We are interested in the phenomenon of a collapse transition, in which for 
fixed p and d there is a transition from diffusive behaviour to collapsed behaviour 
when/3 > 0 is increased. The order parameter for the transition is the diffusion 
constant D(/3), which is defined in terms of the mean-square displacement 

<loj(Z)12> ~ = E (l~(Z)l 2 exp[/3T-PJr]) (1.4) 
E (exp[/3T-PJr]) 

by 

D(/3)= lim l(Iw(T)lZ)~. (1.5) 
T--~oo 1 

The diffusive phase corresponds to 0 < D(/3) < cxD, while the collapsed phase 
is signalled by D(/3) = 0. For simple random walk we have D(0) = 1, and it is 
to be expected that for fixed p the diffusion constant should be a nonincreasing 
function of/3, since increasing the encouragement for self-intersections should 
not increase the typical distance travelled by the walk. 

In order to observe a transition at positive/3, it is necessary to include a factor 
T -p with p _> 1 in the interaction, since for 0 _< p < 1 the walk is collapsed for 
all d when/3 > 0 [24, 25]. For d _> 2, we shall see that the correct power for 
observing a transition is p = 1. Note that given a transition for p = 1 there can 
be no transition for other values of p, since p < 1 always yields collapse, while 
larger values of p essentially correspond to the diffusive behaviour observed for 
p = l  and /3=0 .  

The study of the large-T limit of the partition function cr is also related 
to the problem of taking the continuum limit of the discrete Edwards model 
(with the "wrong" sign of the coupling when/3 > 0). To see this, we recall that 
the partition function of the Edwards model is formally given by the following 
expression, in which traditionally one is interested in the repulsive case/3 < 0: 

Eexp[/3fo<_s<t<_l~(B(s)-B(t))dsdt]. (1.6) 
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Here E denotes expectation with respect to the Wiener measure on paths in R a, 
and ~5 is the Dirac delta function. For d _> 2 it is necessary to perform a renormal- 
ization of the interaction in order to make sense of this formal expression, and 
this is by now well understood for/3 < 0 and d _< 3 [3, 9, 20, 31, 33, 34, 35, 36]. 
For d = 4, understanding (1.6) is equivalent to understanding the long-time be- 
haviour of the Domb-Joyce model (see (1.7) below); this has not yet been fully 
treated [1, 12, 17]. It is perhaps less well appreciated that for dimensions d <_ 2 
the partition function (1.6) can also be given a meaning for positive /3, for all 
/3 > 0 when d = 1 and for small 13 > 0 for d = 2. We learned this fact from 
Le Gall [22], and will address some related issues in Sect. 2.2. Consequently the 
partition function (1.6) is an entire analytic function of/3 for d = 1, and is analytic 
in a neighbourhood of/3 = 0 for d = 2 (when conventionally renormalized). 

A discrete space-time version of (1.6) can be obtained by replacing the con- 
tinuous time interval [0, 1] by the discrete time interval {0, 1 , . . . ,  T}, replacing 
the Brownian expectation by the simple random walk expectation, replacing B(s) 
by T-1/2•([sT]), replacing the two time integrals by Riemann sums, and replac- 
ing the Dirac delta function by a suitably rescaled Kronecker delta. This leads 
to the discrete partition function 

E exp[/3T ~d-4)/2JT], ( 1.7) 

where now the expectation is with respect to simple random walk starting from 
the origin. This is just the partition function cT, with p = (4 - d)/2. Thus the 
T --+ ~ limit for this value of p corresponds to the continuum limit of the 
Edwards model. Note that this is the problem of studying the ultraviolet limit for 
the Edwards model, as the continuum time interval is the finite interval [0, 1]. The 
infrared problem for the Edwards model is connected with studying the behaviour 
when the interval [0, 1] is replaced by a long interval [0,L] with L ~ cx~, and is 
not addressed here. 

Before stating our results precisely, we remark that the model we analyze is 
not the standard model for the collapse of long chain polymers. The standard 
model of polymer collapse involves a self-repellence due to the excluded volume 
effect that no two monomers can occupy the same region of space, together with 
a nearest-neighbour attraction due to temperature or solvent effects. In other 
words, to each T-step simple random walk w there is associated a factor 

with A1 and A2 both positive. It has been argued that when A2 is increased 
with fixed A1, there is a collapse transition. Recent references include [I0, 11]. 
The combination of attraction and repulsion makes this model difficult to treat 
rigorously; our model avoids this difficulty. 

The results of this paper were announced in [13]. 
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1.2 The results 

In this section we formulate the main results proved in this paper. We will be 
interested in the scaling limit of  Xr( t )  = T-1/2~(LtT j) as T --+ co, where the 
probability of w is given by crX(2d) - r  exp[/3T-PJr(w)]. 

We introduce the renormalized partition function 

Let 

ren = E exp[/3T-P(Jr - E(Jr))]. CT (1.9) 

T=0 

where pr(x) denotes the transition probability for simple random walk to go from 
0 to x in T steps. The Green function is finite for d > 2 but diverges for d _< 2. 

Theorem 1.1 Let d > 2 and p = 1. Then/30 > O, and the following statements 
hold for -cxD </3 </30. The diffusion constant D(/3) is equal to 1, and the process 
Xr converges in distribution to Brownian motion. The partition function satisfies 

lim cr = exp[ /3 [G(0 ) -  1]], lim c~ en = 1. (1.12) 
T----+ oc  T----~ (x) 

The Green function occuring in the limiting partition function in the above 
theorem is divergent when d = 2, and this is a symptom of the need for renor- 
malization in two dimensions. For d = 2 we have the following result. Let 7 
denote the renormalized self-intersection local time for planar Brownian motion 
on the time interval [0, 1]. This gives rigorous meaning [33, 20] to the expression 

" = "  f 6(B(t) - B(s))ds dt 7_ 
Jo < s < t < l  

-E[ fo<s<t<lO(B( t ) -B( s ) )dsd t ] ,  (1.13) 

which is only formal since both terms on the right side are infinite. Writing dW 
for Wiener measure, let 

e#7_dW 
du2,O - f e~7_dW. (1.14) 

Varadhan [33] has proved that the denominator in the above is finite for/3 < 0, 
and Le Gall [22] has extended this to sufficiently small positive/3 (/3 < 4 l-I~l ( 1 -  

2 - i )  is small enough). We will show in Sect. 3.3.2 that it is finite i f /3  </30. 

fX3 

G(x) = Z p r ( x ) ,  (1.11) 

/3o = sup{/3 " sup c~- en < oo}; (1.10) 
T 

this depends on d and p. We shall see that /3o > 0 for d >_ 2, p = 1, while 
/ 3 o = + c c f o r d = l , p =  3. 

We define the simple random walk Green function 
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Theo rem 1.2 Let d = 2 and p = 1. Then/3o > O, and for -cxz < ]3 < /30, the 
following statements hold. The process XT(t) converges in distribution to u2,~, 
and as T -+ oo, 

CT ~ [Ee~Z]T ~/~, lim r = Eel2. (1.15) 
T----~ cx3 

The limit defining the diffusion constant exists and equals 

D(/3) = f B(1)2du2,~. (1.16) 

Moreover, D is a strictly decreasing function of~3 c [0,/30). 

Bolthausen and Schmock [5] have studied a closely related model, with p = 1 
but with a continuous-time random walk with exponential holding times. It is 
expected that the continuous-time model will behave in a qualitatively similar 
fashion to the discrete-time model considered here. Define 

/3c = inf{/3 : l imsupc~-/r > 1}. (1.17) 
T---# o o  

(The lira sup equals the limit for /3 >_ 0 by Lemma 1.5). It follows from the 
behaviour of EJT given in Lemma 1.4 below that/3o _</3c, so for d > 2 it is the 
case that/3c > 0. For the continuous-time model with d > 2/~nd/3 exceeding the 
continuous-time analogue of/3c, which is finite, Bolthausen and Schmock prove 
that the walk is in a collapsed phase (although [5] uses a criterion for collapse 
different from the vanishing of the diffusion constant). Together with our results, 
this suggests that for d > 2 there may be a jump discontinuity in the graph of D 
at some critical value of/3, whereas for d = 2 the transition may be continuous. 
The natural questions therefore arise as to whether or not/3o =/3c, and whether 
or not D(/3) goes continuously to 0. These questions remain open. 

For d = 1 and p = 1, Bolthausen and Schmock [5] have proved that the walk 
is in a collapsed phase for all positive /3 (again using a criterion for collapse 
different from the vanishing of the diffusion constant). This indicates that the 
power p = 1 is too small to observe a collapse transition, at positive /3, when 
d = 1. On the other hand the existence of the "wrong-sign" Edwards model for 
d = 1 suggests that for p = 3 /2  there should be diffusive behaviour for all/3 > 0. 
The next theorem shows that this is indeed the case. For its statement we define 

e ~'Y dW 
d u l , ~ -  f e ~ d W '  (1.18) 

where now dW denotes the one-dimensional Wiener measure, and 

= f 6(Bt - Bs)ds dt (1.19) .y 
Jo < s < t < l  

denotes the one-dimensional self-intersection local time. The denominator of  
(1.18) is finite for all/3 E R [22]. 
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3 For any -cxz < /3 < cx~, the process Xr(t)  Theorem 1.3 Let d = 1 and p = -~. 
converges in distribution to ul,O. The limit defining the diffusion constant exists 
and equals 

D(fl) = ] B(1)2dUl,~. (1.20) 

The diffusion constant is strictly decreasing for/3 E [0, ~ ) .  

Something can be learned about the asymptotic behaviour of  D(/3) as 
/3 ~ - c o  for d = 1,2, or for /3 ~ + ~  for d = 1, via scaling. For 

d = 1 and /3 < 0, let 7 [0 ,N]  = f fo<,<t<NdSdt~5(B(t)-  B(s)) and let 

dp~,N = Z(/3,N) - l  exp(/37[O,N])dWN, where dWN(B) is the Wiener measure 
on paths with time interval [0 ,N] and Z(/3,N) is a normalization constant. Let 
A = - /3  > 0. By Brownian scaling, with N = A 2/3, 

D(/3) = N -1 f B(N)2dp_l,N, (1.21) 

which converts the A ~ oo limit into the problem of the long-time behaviour 
of the Edwards model. For d = 1, it was shown in [36] that fB(N)2dp_l ,N  ,.~ 
const. N 2 as N --+ oo. Combined with (1.21), this gives D(/3) ,-~ C/32/3 as 
/3 ~ - o o .  A similar argument applied to d = 2 suggests that D(/3) ~ C/32rE-1 
as/3 ---* - o o ,  where uE = �88 is the conjectured critical exponent for the Edwards 
model. Thus the problem of proving that D(/3) --+ oo as /3 --* - o o  for d = 2 is 
equivalent to proving that uE > �89 a notorious unsolved problem. Nonrigorous 
scaling arguments lead us to conjecture that for d = 1, D(/3) ~ C/3 -2 as /3 --+ 
+043. 

Theorem 1.3 suggests that the transition for d = 1 is quite different than for 
d >_ 2, with the transition from diffusive to collapsed behaviour taking place more 
gradually, as p is varied rather than as/3 is varied. On the basis of  nonrigorous 
scaling arguments, we conjecture that for d = 1 the mean-square displacement 

obeys 
(Io4T)12)~,p ~ Const.(/3,p)T 2"(p) (1.22) 

3 w h e n / 3 < 0 a n d u ( p ) = p - I  for 1 < p  < 3 w i t h u ( p ) = l - ~  f o r 0 < p  < ~ 
when/3 > 0. These conjectured values interpolate linearly between the extremes 

1 (Theorem 1.3) for/3 < 0, and the extremes u(1) = 0 u(0) = 1 [16] and u(3) = 
[5] and v(3) = �89 (Theorem 1.3) for /3 > 0. Related issues for the model in 
which the energy function T-PJT is replaced by ~-~O<i<j<T ~ -- i J-P(~w(i),co(j) are 
discussed in [14, 18]. 

In Sect. 1.4, we briefly mention an alternate model for d = 1 which we expect 
undergoes a transition similar to that of the d = 2 model with p = 1. 

A different type of attractive walk model was studied in [37], in which the 
weight of  a T-step walk w is given by 

I ] exp /3~-~l[w(j)=a;(i)  for some i < j ]  . (1.23) 
j=0 
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For this model, T-l/3oj(T) converges to a continuous random variable as T --* 

o~. The interaction here is modified in an unimportant way if we subtract 1 from 
the indicator function, and this gives the weight 

exp [- /3#{sites visited by w}] .  (1.24) 

This model is a discrete version of the Wiener sausage problem and has been stud- 
ied in [4, 6], where it is partially proved that the relevant scaling is T-1/~d+2)w(T) 
in all dimensions, and for all /3 > 0. Related issues for Brownian motion are 
treated in [29, 32]. 

The remainder of the paper is organized as follows. In Sect. 1.3 we discuss 
the relation of our results to invariance principles for self-intersection local times. 
In Sect. 1.4 we describe a heuristic argument that for p = 1 there is a collapse 
transition at positive/3 for d > 2 but not for d < 2. In Sect. 2 we prove uniform 
bounds on the renormalized partition function. Sections 3.1 and 3.2 contain some 
preliminaries to the proofs of our main results. The proofs are then completed in 
Sect. 3.3, apart from the monotonicity of  the diffusion constant for d = 1 and 2, 
which is treated in Sect. 4. 

1.3 Self-intersection local times 

This section briefly discusses the relation between our results and invariance 
principles for self-intersection local times. For a random variable X, we use the 
notation 

s = x - EX. (1.25) 

Consider first d = 2, and let 

1 
7T = ~ Z 6w~s),~,~t). (1.26) 

O < s < t < T  

It was proven in [28] that 3'__L converges in distribution to 7, for random walks 
obeying a periodicity condition not satisfied by the simple random walk. We 
use ideas from [28] in this paper, and as a byproduct obtain a proof of  this 
convergence in distribution for the simple random walk (see Proposition 3.5). 
We will prove Theorem 1.2 by combining the convergence in distribution of  3'r 
to _7 with existence of  a uniform exponential moment for 7mr. 

For d = 1, the discrete self-intersection local time is given by 

1 
"lIT ~" T3/2 Z ~w(s),w(t). (1.27) 

O < s < t < T  

No renormalization is required for d = 1, and it is known that 7T converges in 
distribution to its continuum counterpart 7' [7, 8, 26]. Combined with existence of  
a uniform exponential moment for 3'T, this will lead to a proof of  Theorem 1.3. 
The proof we shall give of  convergence in distribution of  the renormalized self- 
intersection local time for d = 2 applies also to d = 1, and thereby provides an 
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alternate approach to some results of [7, 8, 26]. Note that use o f p  = 1 rather than 
p = 3 in the definition of '?'r would lead to a discrete random variable with an 
infinite limit, and this much stronger interaction leads to collapse for all positive 
# [5]. 

For dimensions d > 2 we define 

1 
7r = ~ Z 6~(s),~(t). (1.28) 

O<s<t<_T 

This use of p = 1 defines a random variable which is smaller than for the choice 
p = -4@ corresponding to the discrete self-intersection local time. With p = 1 no 
renormalization is required, and we will prove in Sect. 3.1 that 7r  converges in L 2 
to the constant G(0) - 1. By Lemma 1.4 below, this is the same as showing that 
"Tr converges in L2 to zero. Combined with the existence of  a uniform exponential 
moment for 7r  (see Sect. 2), this will allow for a proof of  Theorem 1.1. 

The following lemma shows that the effect of the renormalization of 7r  by 
the subtraction of ETT is a significant effect when d = 2, but not when d ~ 2. 
In particular, for d r 2 the value of/3o would be unchanged if the renormalized 
partition function c} en were replaced by cr  in (1.10), but this is not true for d = 2. 

L e m m a  1.4 As T -~ oo, 

G ( 0 ) - I + O ( T  -~) ( d > 2 )  

E'yr  = ~ log T + O(1) (d = 2) (1.29) 

+ o ( r  -1/21 (d = 1) 

for any e < min{ d ~ ,  1}. 

Proof Let a = max{l ,  4-d} By definition of "Tr and the Markov property, --T-- �9 

1 T T--s2 

ETr - Ta ~- '~-~ ~-~Psl(Y)ps2(O)pr-sl-s~(X-y) 
x,y s2=2 sl--0 

1 T T--s2 

- Z Z s (0) 
S2=2 Sl=0 

T 

_ 1 ~--'~(T - s2 + 1)ps2(0). (1.30) 
T a 

s2=2 

For d > 2 the right side is given by 

1 r 
G(O) - 1 - ~ psi(O) - -~ ~-'~.(s2 - 1)p,~(0), (1.31) 

s2=T+l s2=2 

and the desired result then follows from the fact that ps(O) = O(s-a/2). For d = 1 
or 2, the local central limit theorem states that p2n(0) = (ten) -d/2 + O(n -1-d/2) 
(see e.g. [19]). With (1.30), this gives the desired result. For example, when d = 1 

1 ] 2 - f l  1 the leading term is the Riemann sum for 2V -~ 3o ds, (1 - s)s-1/2; the factor 

arises because Ps2(0) = 0 unless S 2 is even. [] 
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1.4 A variational problem 

For p = 1, we can write the partition function (1.2) in terms of the local time 

T 
1 

Ly(T) -  T + 1 Z~SY'~~ (1.32) 
i=0 

which is the proportion of time spent by the walk co at the site y. We also define 

T 

ry(T) = (T + 1)g.(T)= ~ (~y,w(i) (1.33) 
i--O 

to be the number of  visits of the walk co to the site y, up to time T. In terms of 
Ly(T), 

r = ~ ,S~(i),,,o) - ( r  + l )  - T T  2 r  
k i j =o 

Hence we can rewrite the partition function as 

CT = e-3(T+l)/2TEexp [/3(T-2T1)2Zv L2(T)] 

= e-3(T+l)/iTEexp [2~7-~2(T)] . 

(1.34) 

( 1 . 3 5 )  

l imr-- ,~  C 1/T when/3 > 0. 

L e m m a  1.5 For p = 1 and 3 >_ O, and for any d, the limit b = l i m r ~  T -1 
x log cr exists and is finite and nonnegative. 

Proof Define yy[a, b] = Y'~-~=a 5y,~o(i). By definition, 

(Ty [0, T]) 2 < (ry[O,S]+'ry[S,T]) 2 

= (ry[O,S])i+(v-.r[S,T])i+2ry[O,S]'ry[S,T]. (1.36) 

Estimating the last term on the right side using 2ab <_ o t a  2 + (e-lb 2, with c~ = 
(T , -  S ) /S ,  gives 

T - l ( r y  [0, T]) 2 < s- l (7-y[0,  S])  2 + ( T -  S ) - l ( r y  [S, T]) 2. (1.37) 

Using (1.35) and the Markov property, it follows that log(eS(r+l)/2TCr) is 
subadditive. A standard lemma-about  subadditive sequences then implies that 
limT+~o T -1 logcT = infr_>l T -1 logcr ,  which gives the result of  the lemma. 
The limit is nonnegative for/3 _> 0, since Cr _> 1. [] 

The following subadditivity argument guarantees existence of the limit 
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Keeping p = 1 fixed and restricting /3 > 0, we now present a heuristic 
argument which predicts that there is a collapse transition for d _> 2 but not 
for d = 1, for this value of p.  In fact, this argument provides the basis for the 
proof by Bolthausen and Schmock that there is a collapsed phase. For simplicity 
we consider the continuous-time model, in which the walk takes a step after an 
exponentially distributed time with mean �89 In view of (1.35) we may as well 
consider the partition function 

cr = E exp[/3T Z L2(T)]' (1.38) 
Y 

where/77 denotes expectation with respect to the continuous-time simple random 
walk and L~.(T) is the proportion of time up to time T spent at y. 

The Donsker-Varadhan theory of large deviations suggests that 

1 2 l i r a  7 1 o g ? r  =sup{/3l lOt l4-  IIV051122 �9 II05LI2= 1} _=/~, (1.39) 

where the supremum is taken over all g5 : Z a --+ R with ~ x  05(x) 2 = 1, the 
1 gradient is the finite difference gradient associated to the lattice, and 711V05112 is 

the rate function for the continuous-time walk. In general the supremum may or 
may not be attained. Choosing g~(x) = ~50,x, it is clear that for/3 sufficiently large, 
and in any dimension, the solution b of the variational problem is strictly positive. 
In this case it can be shown that the supremum is attained by an exponentially 
decaying function. For d = 1, it is the case for all/3 > 0 that b > 0 (this can be 
motivated by a scaling argument), and here too the supremum is attained by an 
exponentially decaying function. On the other hand for d _> 2 there is a Sobolev 
inequality 

1105114 _< cII05112 IIV05112, (1.40) 

and hence b = 0 for sufficiently small/3. 
If q52 realizes the supremum, then so does any translate. In the collapsed phase 

it is expected that the law for the process is a mixture of ergodic components, 
i.e., the process breaks translation invariance by choosing where to collapse, 
and if we restrict to a component, then 052(y) = limr--.oo Ly(T) a.s.. Exponential 
decay of the optimal 052, and hence b > 0, thus corresponds to collapse. This 
type of result is proved by Bolthausen and Schmock. A difficulty in applying the 
Donsker-Varadhan theory is that the state space here is all of  Z a and is therefore 
not compact. This is overcome by making use of  the fact that in the collapsed 
phase the state space is nearly compact, since the walk spends the bulk of its 
time in a compact subset of Z ~. 

Thus, b > 0 corresponds to a localized local time, or a confined phase for the 
walk. On the other hand, b -- 0 is interpreted as corresponding to the supremum 
being approximated by a sequence of increasingly more constant (zero) 05's, and 
hence to the local time approaching a constant (zero) function. This is interpreted 
as extended behaviour for the walk. 
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The above discussion leads one to expect that there will be a collapse tran- 
sition, at positive/3, for d > 2 but not for d = 1, when p = 1. 

Extending the above relation between Lx 2 and r to Lx 3 and r and in view of 

the Sobolev inequality 11r _< Cllr 4 IIVr for d = 1, we expect that there 
should be a phase transition analogous to that occurring in the d = 2 model with 
p = 1 in the d = 1 model with interaction T Y]x L3x(T) �9 This bears some relation 
to the transition observed for the "wrong"-sign (b 6 m e a s u r e  for d = 1 constructed 
in [23]. 

2 Exponential moments 

In this section we begin by showing that 3'r (and hence 7 r )  has uniform expo- 
nential moments of  all orders for d = 1 and of small orders for d > 2. We then 
show that, for d = 2, 7r  has uniform exponential moments of  small orders. 

2.1 Dimensions d r 2 

Theorem 2.1 For d > 2, the value/30 defined in (1.10) obeys/30 = rio(d) > O. 
Thus for all - o e  </3 </30, 

sup Ee ~'Yr < o0. 
T 

For d = 1, the above inequality holds for all real fl, so/30 = +oc. 

Proof For fl <_ O, Ee ~'~r <_ 1, so assume /3 > 0. Let d # 2 and a = 
max{l ,  5_~} In view of (1.32)-(1.34), it suffices to obtain the uniform bound 
of the theorem with "/r replaced by T -~ y'~y ~-~2(T). By Jensen's inequality, since 

(T + 1) -1 ~ y  % = 1, we have 

exp'[/3T-a E r) 2] 
Y 

e2fl E T y  exp[Tl-a/3ry] 
-< T + I  

Y 

e2flE~-~/3n 1 ~+1 
-< T n i  T ( ~ - 1 ) ~ '  " 

y n=O 

(2.1) 

Therefore 

E e x p  fiT -a <- -T- n! T( a-l)" E ET)~'+I" 
Y d n=0 y 

(2.2) 

By definition, 
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T n+l 

il,... ,in+l =0 j=l 

T+I T+I n+l 

= / ". / d t l d t n + l H 6 ~ ( L t j J ) , y  
dO " JO j= l  

n + l  / .  

= (n + 1)! / dh . .  dtn+l H 6w(LtJJ),Y' (2.3) 
dO <tl<"'<tn+l T + I  j=l 

where we have replaced the sums over times by integrals to obtain the symmetry 
expressed in the last step. (The symmetry is absent for the sums due to the 
presence of  terms where not all ij are different; this replacement will also occur 
elsewhere). Letting pt(x) denote the probability that simple random walk goes 
from 0 to x in t steps, we obtain 

f T+I ftl n ET~n +1 = (n + 1)! dq dt2...dtn+l HPL0§ (2.4) 
J0 <t2<-' ' <t.+t <T+I j=l 

For d > 2, so that a = 1, we use the fact that PLtj+lj-[tjj(O) <- h(tj+l - tj) 
where h(t) = C(1 + t) -d/2 with C a constant depending only on the dimension. 
This gives 

(/0 ) E~-~ +1 < (n + 1)!(T + 1) h(t)dt  . (2.5) 

Since the integral on the right side is finite for d > 2, this shows that (2.2) is 
finite for sufficiently small/3 > 0. 

For d = 1, so that a = 7,3 there is a constant C such that PLtj§ < 
i version of  the C(tj+l - t)) -U2. Using this fact in (2.4), together with the r = 

inequality (2.7) of  Lemma 2.2 below, gives 

E~-~ +1 < (n + 1)!(T + 1) (C1T)n/2 (2.6) 
- 

Inserting this into (2.2) shows that (2.2) is finite for all real/3. [] 

L e m m a  2.2 Let T > O, to = 0 and -cx~ < r < 1. There is a constant c (depending 
on r) such that for  all integers p >_ 1, 

fI~] 1 [F(1 r)]P TeO-r) < dP t _ _ (cT)eO--r) 
<_t,<_...<_tp<T = ( t j - - t j _ ] ) "  F(p(1 - r) + 1) - (p ! ) l - r  

(2.7) 

Proof The inequality follows from the identity by Stirling's formula, so it 
suffices to prove the identity. Let Ie(T) denote the left side of (2.7). Then 
Ip(T) = Tp(1-r) Ip(1) and therefore 

~ dT lp(T)e - r  = F(p(1 - r )  + 1)lp(1). 
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On the other hand, by definition 

f o ~ d T l e ( T ) e - r = ( f o ~ d t e - - ~ t )  p 
t r ] 

Therefore 

= [/ '(1 - r)] p . 

[ F ( 1  - r)]  p 
Ip(1) = F(p(1 - r) + 1)' 

The identity then follows from lp(T) = TpO-r)lp(1). [] 

The above method can also be used to show that the partition function of 
the continuum Edwards model in d = 1 is an entire function of the coupling 
constant, and provides a slightly different approach to that of [22]. 

2.2 Dimension d = 2 

For d = 2 the situation is complicated by the need for renormalization: since 
the Edwards model requires renormalization for a finite partition function in two 
dimensions, it is to be expected that the discrete partition function must also 
be renormalized if it is to be uniformly bounded in T. The primary aim of 
this section is to prove a uniform bound on the renormalized partition function. 
However, part of the discussion applies also to dimensions 1 _< d < 4, and is 
not restricted to d = 2. 

For d < 3, the renormalized self-intersection local time of planar Brownian 
motion, B(s), s E [0, 1], can be defined using a dyadic decomposition introduced 
by Westwater [34]. The following discussion reviews some results of  Le Gall 
in this regard [22, 20, 21]. We will subsequently prove that his methods give 
analogous results for random walk, with uniformity in T. 

We begin by defining 

and 

so that the sets 

o ~ ' =  {(s , t )  c R 2 : 0  _<s < t < 1} (2.8) 

, ~ N  N 2 n - t n 
= Un= 1 Uk= 1 A k (2.10) 

increase with N and their union is ~ ' .  Let f~(x) = (47rQ - ' t /2 exp ( -xZ /4e )  (x E 
Ra). For A any finite union of the sets A~, let 

"/(A)=limo TL(A), 7y~(A)= / fadsd t f~ (B(s ) -B( t ) ) .  (2.11) 

The existence of this limit (in L 2) is well-known, and follows from the fact that 
the A~ are designed so that 

= , x , , (2.9) 
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2--n 2--n 

k 

where B1, B2 are independent Brownian motions starting at the origin. 
Given a random variable X, we write 

(2.12) 

X_ = X = EX. (2.13) 

Then t]ae renormalized self-intersection local time is defined I by 

oo 2 n -  1 

"7(,7) = Nlim "7(.~ N) = Z Z 2  (A~)" (2.14) 
n=l  k=l  

Existence of  the limit in L 2 follows easily, using independence of the 7(A~) for 
n fixed and Brownian motion scaling. Furthermore, Le Gall [22] has shown that 
there exists a/31 > 0 such that for all [3 </31 

Ee l2  (3") < oo. (2.15) 

This existence of an exponential moment for 7 ( ~ ' )  is more delicate than the 
corresponding results of Sect. 2.1. For negative/3, (2.15) was already proved by 
Varadhan [33]. 

Our goal now is to prove versions of (2.14) and (2.15) for random walk, 
uniformly in T. In Sect. 3.2, we will also prove a uniform random walk version 
of (2.11). First we introduce several definitions. Define 

= {( i , j )  E Z 2 " 0 _< i < j  _< T}, ~-~r = {(i , j )  E Z 2 " 1 _< i , j  <_ T} ,  

(2.16) 
and for A C , ~ r ,  let 

1 
OcT(A) = T(4-d)/2 Z ~Sw(i),w'q)' (2.17) 

(id)EA 

where w, co' are two independent T-step simple random walks which both begin 
at the origin. Given a function h on Z d, we also define 

1 
a T , h ( A )  - ~ h(co(i) - co'Q)). (2.18) T(4-d)/2 

(ij)Ea 

To adapt the proofs of (2.14) and (2.15) for Brownian motion to random 
walk, we will make use of the following moment estimate on aT, which for 
two-dimensional Gaussian processes is proven in (2.15) of  [27]. For Brownian 
motion in d = 2 and d = 3 it is proven in Lemma 2 of  [22] and in Lemma 2.2 
of [21], respectively. Our estimates will be limited to d < 4; this is a natural 
limitation since the Brownian motion intersection local time has an infinite first 

1 T h e  subt rac t ion  o f  the expec ta t ion  cannot  be  c o m m u t e d  wi th  the  l imi t  b e c a u s e  E 3 ' ( , ~ ' )  is d i v e r -  

gent; the use of the underline notation on the left side of (2.14) is thus a little misleading 
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moment for d _> 4. We will make use of the Fourier transform, defined for an 
absolutely summable function f on Z d by 

f(k) = Z f ( x ) e i k x  (k E [--Tr, Tr]d). (2.19) 
x 

L e m m a  2.3 Let 1 < d < 4. There is a constant C (depending on d) such that 
for all T and for all p = 1,2, 3 , . . . ,  

E[(ar(~,~r))p] < Cp(p!)a/2. (2.20) 

Proof Our proof is a variation on a technique of [27]. We first note that since 

1 1 
OZT(~T) -- T(4-d)/2 E ~5~o(i),w'(}) < - -  ZT-x(T)7- t (T) ,  (2.21) -- T(4_a)/2 

( i d ) E ~ r  x 

it suffices to show that 

E "rx(T T 
L \  x / / 

By the Plancherel theorem, 

~ (CT(4-d)/2)p (l 9 !)d/2 (2.22) 

e = 

Xl ... ,Xp 

= (2~)-ePfddPk [E[e~,-.-ekA[ 2, (2.23) 

where the integration is over [-Tr, lr] d for each of the variables kl, �9 �9 kp. 
The Fourier transform is given by 

T T+I 
~-k ~ Z eik'X Tx = E e ik'w(j) = / eikw([tJ)dt. 

x j=0 dO 

(2.24) 

Therefore 

E [ f k , - - - ~ ]  . . . .  d h . . . d t p E  e x p [ i Z k j . w ( L t j ] ) ]  . (2.25) 
JO dO j= l  

Given distinct values of t t , . . . ,  tp let rc be the unique permutation of { 1 , 2 , . . . ,  p } 
for which t,~o) < tTr(2) < . . .  < trF(p). We rewrite the exponent using 

P 

j=l 

p 

~(LtjJ) = ~--~ Kj �9 (w([t~a)J)- ~(Lt~o-_1)J)), 
j=l 

(2.26) 

where Kj = k~(p) + k~(p_t) + . . .  + k~r(j) and t~(0) = 0. Let 

D(k ) = Ee ik''~(1). (2.27) 
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Since the exponential of the sum (2.26) factors into independent random variables 
and 

E [exp[ik- w(m)]] = Din(k), (2.28) 

we obtain 

[ ' 1' E exp[i Z k j . c ~ ( L t j J ) ]  = [ I D s , ( K j ) ,  (2.29) 
j=l j=l 

where sj = It,m) j - Lt~(/-1)J. 

Therefore, abbreviating the notation by writing f d t  for the integral f0 r+l . . -  

f~+l dh . . .  dtp, we have 

)'] J s i J E rx(T)r~(T) = dt  d t ' ( 2n )  -@ daPk H b S J ( K j ) b s ; ( - ~  ') 
j=l 

< at (2~r) -@ d@k I-ID2'S(Kj) , (2.30) 
j = l  

by the Cauchy-Schwarz inequality. We can perform the kj-integrals in the order 
k i , . . . ,  kp by using translation invariance over the toms [-~r, 7r] d. For this, we 
observe that 

= (27r)-a J ddk ~)S(k) (2.31) p,(0) 

is the probability of return to the origin after s steps, and obtain 

E rx(T)r'x(T ) <_ d t  I -[  
j=l 

_ [ dtt dtp f i  ~/P2[tsJ_2[,s_ij(0) (2.32) < (/)!)2 .ul̂ <t~<...<tv<r+l . . . .  "'" 
j=l 

Using the fact that 0 _< P2LuJ-2[q(0) _< Clu - vl -d/2 for some constant C and 
applying Lemma 2.2 then gives (2.22) and completes the proof. It is at this last 
step that we use the hypothesis d < 4. [] 

Let d < 2. The p = 2 estimate of Lemma 2.3 allows us readily to obtain a 
uniform version of (2.14) for random walk, for future reference. We first define 

~rr,u = T . J  "u A Z 2, (2.33) 

7r(A) - 1 T(4_d)/2 ~ (~co(i),co(]), (2.34) 
(i ,j' )CA 

and 
"/(n,  k)  -- ~_f_T(TAnk ('1Z2). (2.35) 
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Lemma 2.4 For d <_ 2, 

lim sup g (3,_Lr(~r'r) - 'J .~T(~TT,N ) )  2 = 0. (2.36) 
N ---~ cx~ T 

Proof For simplicity, we assume first that T = 2 M for some integer M.  We 
write HAII2 -- ~ .  The random variables ;y(n,k)are independent for k = 

1 , 2 , . . . ,  2 n~l, and each has the d i s t r i b u t i o n  O(2-n(4--d)/ZO~z-nT(,~2-,T). Using 
Lemma 2.3, we have 

2 n - 1 

II ~--~_7(n,k)l12 = 2(n-1)/2[['Y(n, 1)112 
k = l  

= 2-1/22--nO-a)/21lC~2-,T(~2-,T)II2 < C2 -n(3-d)/2. (2.37) 

Hence the series is sumrnable for d < 3, and since its tail bounds the expectation 
in (2.36), this proves the lemma for the special case of dyadic T. 

The proof for the general case is almost identical. The difference is that a set 
TA~ A Z 2 need not be a square, but could also be a rectangle whose side lengths 
differ only by 1. This small change poses no essential difficulties. For example, a 
moment  of an asymmetric version of c~, in which ~ r  is replaced by a rectangle, 
can be bounded above by the moment of the symmetric c~ on the square obtained 
by enlarging one side of the rectangle by 1. [] 

Note that it was actually required that d < 3, rather than d _< 2, in the proof 
of Lemma 2.4. The fact that the lemma fails for d _> 3 is a symptom of the 
fact that, for d >_ 3 and p = -~-~, renormalization beyond subtraction of E'TT is 
required. 

By Lemma 2.3 and the fact that E[c~r(.~r)] = 0, for d < 2 there is a constant 
C2 and a Ao > 0, both independent of  T, such that 

E[exp[Acj_T_r(~T)]] < 1 + C2A 2 <_ e c2;~2, (0 < A < 2A0). (2.38) 

The fact that c~r(~-~T) has an exponential moment  will be the key fact in proving 
a uniform version of (2.15) for random walk, and hence that the value/30 defined 
in (1.10) is strictly positive for d = 2. We now prove such a bound on the 
renormalized partition function by adapting Le Gall 's  proof for the analogous 
continuum problem [22]. 

T heo rem 2.5 Let d = 2. There is a constant K such that for/3 > 0 sufficiently 
small and for all T, E[exp[/37_Z(.~)]] < K. 

Proof Assume that T = 2 M for some integer M ; the general case can be treated 
similarly. By (2.16), (2.33) and (2.35), 

CO 2 n - I  

n = l  k = l  

(2.39) 
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Note that TAnk AZ 2 = ~3 for n > M,  so the sum is finite for each T. Let A E (0, Ao) 
(with Ao given by (2.38)), and define 

N 
fiN ---- 2A I I ( 1  - 2 - j / 2 )  (N _> 2), flz = 2A. (2.40) 

j=2 

The sequence flu decreases to a limit f ~  = f ~ ( A )  > 0. Let 

~ - r ( N ) = E  exp f u Z Z ~ / ( n , k ) ] ] .  (2.41) 
n=l 

Separating the contribution due to n = N,  and applying H61der's inequality 
(with p = 2N/2/(2 u/2 -- 1) and q = 2N/2), we obtain 

~r(N) <_ ~r(N - 1) 1-2 N/2 E e x p  2U/Zfu Z ~_(N,k ) (2.42) 
k=l 

The random variables 7(N, k) are independent for k = 1 , 2 , . . . ,  2 N- l ,  and more- 
over each has the distribution of 2 - U c ~ r z - u ( ~ r 2 - ~ ) .  Hence, by (2.38) and the 
fact that fiN --< 2Ao, 

[ E exp 2U/2fu Z ~_(N,k) <_ exp[2CzA~2-N/2]. (2.43) 
k=l 

By induction, this gives 

[ N ] [ 2C2~2 ] (2.44) 
( r ( U )  < ~r(1)exp 2CzAZZz-J /2  <_ ( r (1 ) exp  [ 2 -  x/2J ' 

j=2 J 

where 
~r (1) = E [e fl~2(1' 1)] = E exp[2/~OlT/2(~T/2) ] (2.45) 

is uniformly bounded by (2.38). Applying Fatou's  Lemma to take the limit N 
c~ in (2.44), and using the fact that A E (0, Ao) was arbitrary, this gives a uniform 
bound on E exp[fq,_L(~)] for f E (0, foo(A0)). [] 

3 The scaling limit 

3.1 Preliminary for d > 2 

Throughout this section we fix p = 1 and the dimension d > 2, and as usual we 
set 

1 

O<iKj<T 
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and 

7r  = "/r - E"/r. (3.2) 

The combination of the following proposition with existence of an exponential 
moment will allow us to prove Theorem 1.1. 

Proposit ion 3.1 In any dimension d > 2, 

[(Tr) 2] = O(T -0) as T ~ o% (3.3) E 

for some 0 > O. 

Proof By Lemma 1.4, we have 

[(77) 2] : E [ @ ] -  ( G ( 0 ) -  1) 2 +O(T-') .  (3.4) E 

By definition, the first term on the right side is given by 

1 
E["/21 = ~ Z Z E~co(s,),W(tl)6W(s2),w(t2)" (3.5) 

0<_sl <q <T 0<s2 <t2 <_T 

To evaluate the limiting behaviour of the right side, we consider separately the 
contributions to the double sum arising from the following three cases. 
Case (a): the intersection of the two intervals [sl,q], [s2, t2] is nonempty but 
does not contain either of the intervals, 
Case (b): one of  these two intervals is a subset of the other, 
Case (c): the intervals [sl, q] and [$2, t2] do not intersect. 

We will see that the first two cases correspond to error terms, while the third 
term gives the main term and will cancel the subtracted term in (3.4). 
Case (a): Suppose that 0 < sl < s2 _< tl < t2 _< T, or that the inequality with 
subscripts 1 and 2 interchanged holds. Taking both possibilities into account, the 
contribution to (3.5) due to this case is 

2 T - 2  Z Z p j z  (x )p j2(y  - x )p j3 (y  - x )p j4 ( y  - x )  (3.6) 
0_<il <i2<i3<i4<T x,y 

where jl = il, j2 = i2 - il, j3 = i3 - i2, and j4 = i4 - i3. This is at most 

2T-2 Z Z p j , ( x ) p j 2 ( y  -- x ) p j s ( y  -- x )p j4 (y  -- X) .  (3.7) 
Jl ,J2 ,J3 ,J4 X ,y  

j l +j2 +j3 +j4 _< T 

By symmetry we rewrite this as less than 3! times the same sum but with the 
additional constraint j2 _< J3 _< j4. Then we use pj(x) < O(j -a/2) for j = j3,j4 
and ~vPj(V) = 1 f o r j  =jl,j2. In this way we find that the contribution of  this 
case is at most 

r -2 < o ( r - ~  (3.8) 
0<~1 <T; 0<J2<j3 ~4<T 
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with 0 > 0. 

Case (b): Suppose 0 _< Sl _< s2 < t2 _< h _< T, or that the inequality, with 
subscripts 1 and 2 interchanged holds. With the same definitions for ji, we wish 
to estimate 

~2T-2 Z ~ p i ,  (x)pj2(Y - x)pj,(O)pj,(y - x). (3.9) 
Jl 'J2 'J3 'J4 X IY 

jI+j2+j3+j4 <_T 

By symmetry we rewrite this as less than 2! times the same sum but with the 
additional constraint j2 < j4. Then we use pj(x) <<_ O(j -a/2) for j = j3,j4 and 
~ p j ( v )  = 1 for t = j l , j 2 .  Therefore the contribution of  this case is, for some 
0 > 0, at most 

T-2 Z O(j?d/~2d/2) <- O(T-O)" (3.10) 

0<_jr <T; 0<~2 <~4 <_ T; 0<~3_<T 

Case (c): Suppose now that 0 _< Sl < tl < s2 < t2 _< T, or that the inequality 
with subscripts 1 and 2 interchanged holds. The contribution due to this case is 

2T-2  Z Zpk(x)pj2(O)pj3(y -- x)pj4(O ). (3.11) 
JI >--O;J3>--l;J2,J4~--2 x , y  
O~I+j2+j3+j4 <T 

Performing the sum over x, y, and then the sum over jl and j3, and letting 

(T - j 2  - j 4 ) ( T  - j 2  - j 4  + 1) 
S (]2,j4, T) = , (3.12) 

2 

this is equal to 
T T-j2 

2T-2  Z Z PJ2(O)Pj4(O)S(j2'j4' T). (3.13) 
j2=2 j4=2 

Using the fact that pj(O) = O(j-a/2), it is not hard to see that the dominant 
contribution arises from the T2/2 term in S, and that the above is equal to 

pj(O) + O(T -~ = (G(0) - 1) 2 + O(T-~ (3.14) 

This gives a cancellation in (3.4), and completes the proof. [] 

3.2 Preliminary for d < 2 

We define an approximate Kronecker delta function by 

r - 1 f t -  dak exp [ik " x - &2] " 
. (27r)a ~,~1 ~ 

(3.15) 
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The following lemma proves a uniform version of (2.11) for random walk, and 
is closely related to Lemma 1 of [28]. Its proof is complicated in a minor way 
by the fact that the simple random walk does not satisfy the strong aperiodicity 
hypothesis of  [28], so that it is not the case that iD(k)] = 1 only when each com- 
ponent kj is an integer multiple of 27r (see [30], page 75, P8). Our results could 
be extended to more general symmetric random walks with second moments by 
an appropriate generalization of this lemma. 

L e m m a  3.2 Let 1 < d < 4 and h~r(x) = 6,;~ - 6x:O. Then 

l i m E  [ar,h~T(~,~r)] 2 = l i m E  [O~T,6.:oT(~r) -- a t ( .  "/~r)] 2 = 0, (3.16) 
e---~0 c--~0 

where the limit is uniform in T and ar.f is given by (2.18). 

Proof. In the following, kl, k2 are each d-component  vectors, dakl, dak2 are 
each Lebesgue measures on R a and I(kl, k2) is the indicator function of the set 
{kl, k2 E [ - ~ ,  7r]a}. Going over to the Fourier transform (see (2.19)), we have 

1 f d d k l f d d k ~  ^ ^ g [OtT,h,:r ( ,~T)]  2 < y 4 _ d  _ ~ [h~7(kl)h~r(k2)ll(kt, k2) 

9 

X 0<--slZ, s2 <_ T E e  ikl. ~ ( s  i )+ik 2 . ~  (s 2 ) - 

Let 

fT+I f T + l  
Fr(kl,k2) = Jo dsl ds2 Ee i~'~([s~j)+it2~(ls~-j) 

�9 i S  1 

Then, using h~r(k) = e -~rk~ - 1 = h~(v/Tk), we have 

l(kl,k2). (3.17) 

4 J d d k l  f ddk2 
E [c~7-,h,r(.~7-)] 2 _< T--TS-d_ a ~ (~-~)dlh~(v/-fk~)h~(v/-fkz)IF~(kl,k2). 

(3.18) 
Let rr denote the vector in R d whose components are all equal to 7r. As 

T ~ ~ ,  the integrand of (3.18) can become singular at the points (kl, k2) -- (0, 0), 
(0, rr), (Tr, 0), (Tr, 7r). We break the domain of integration into subsets which each 
contain one of these points, and a complementary set where the integrand remains 
bounded. By (2 .27) , / ) (k)  = d - ]  ~'~J=l c~ where k = (kO), . . .  ,k(d)). 

Beginning with the subset that contains (0, 0), we fix a small constant a > 0 
so that tP] < a (Euclidean distance) implies that 

d 
1 

0 < D(/?. ) = 1 - ~ ~ (1 - cosp  q)) < 1 - cp 2, 
j=l 

(3.19) 

for some fixed c > 0. Let Pl = kl +k2, P2 = k2 and let ll(kl,k2) be the indicator 
function of the set ]Pl] < a and IP2] < a. Note that for sl _< s2, 
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E [eik~~(kstJ)e ik2"~~ = OLslJ(pl)l)ls2J-lslJ(p2). 

Since/)(Pl) and/)(p2) are positive and bounded by 1, 

Fr(kl, k2)/1 (kl, k2) 

(3.20) 

T+I f T + l  
= dsl ds2 b Is, J (4~ [s2J - [stJ (392)1 l (kl ,  k2) 

dO as1 
T+l lSl+T+l 

< dSl ds2/7) Is, J (401)/7) [saJ - [sl J (/02)11 (kl,  k2) 
dO .ts I 

1 1 
_< min{T+ 1 , 1 _  /3(pl) }min{T+ 1' 1 -  ]~(p2) } 

<_ bT(Pl)bT(P2) ,  (3.21) 

where 

br(p) = 2rain{T, __~_l } (3.22) 
cp2 " 

Using this estimate and scaling k ~ k/x~7 we have 

1 f[_ ddkl f[_ ddk2]fze(v/--~kl)ft~(v/-fk2)lf2(kl,k2)ll(kl,k2)(3.23 ) 
T 4-d  7r,Tr]d 7r,Tr] d 

<_ [ ddk, f dak21hdk,)llh~(k2)lb2(p,)b2(p2). 
JR d JR a 

The right side approaches 0 as e ~ 0, by dominated convergence, if d < 4. 
Therefore the contribution from 11 (kl, k2) to the right hand side of (3.18) tends 
to zero uniformly in T. 

Next we consider the possible singularity at (0, rr). Let 12(kl, k2) be the in- 
dicator function of the set ]Pl] < a and ]P2 -- 7rl < a. This time, since O(pl) is 
positive and I ~bS(p2)l _< 1 because/)(P2) is negative and ID(p2)l _< 1, we use 

f0r+l f r+l 12(kl F T ( k l , k 2 ) 1 2 ( k l , k 2 )  = dsl ds2L) ks'J(pl)L)ks=J-ts'J(p2) ,k2) 
*/S 1 

i 
T+l 

<-- dSl O [Slj ( P l ) 1 2 ( k l ,  k2) 
do 

<_ br(pl)12(kl,k2). (3.24) 

Therefore 

1 f d~k ' f ddk2l[~dV,~kl),~dV,~k2)lF~(kl,k2)12(k 1 k2) T4_  d 

< ~ ddk,  ddk2 Ih~(v~k,)he(x/~k2)[b~(p,)Iz(kl, k2) 

1 fp ddp~ /Ip ddp2l'~(Pl--P')[TdP~)lb~((P') 

^ ~ (Const.'~ 2 
- < JR~ [ ddpl ,' ddp2 Ihe(P' -p2)he(p2)lb~(P') ~1 +p~_J 
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where in the last step we used the fact that T -1 _< Const.(1 + p2)-1 when 

IP2 - x/TTr] < a x/T. The limit, as e --+ 0, is zero uniformly in T for d < 4. 
A similar argument applies for (Tr, 0). Therefore these contributions to the right 
hand side of  (3.18) tend to zero uniformly in T. 

Now consider (Tr, 7r). Let I4(kl, k2) be the indicator function of the set IPx - 
7r I < a and IP2 - rr[ < a. Then, using I ~ b s ( p 2 ) l  _< 1 as in the previous case, 

Fr(kl , k2)14( kl , k2) i 
T+l 

<_ dSl IDLSlJ(Pllll4(kl,k2) 
,to 

<_ bT(Pl -- 7r)14(kl ,k2),  (3.25) 

because I/3 LSld(pl) I = b Ls'd(pl - 7r). Again for d < 4 this leads to an integral 
that tends to zero as e ---+ 0 uniformly in T. 

Finally we have the set complementary to all the potential singularities. Let 
15(&l,k2) be the indicator function of the set where IPil :> a and IPi - rrl >- a 
for i = 1,2. Then ]/)(Pi)I is bounded away from 1, and hence 

Fr(kl , k2)ls(kl , k2) Z Z 
0<sl <oo 0<s:<oo 

< Const. 

Ib s' (pt)bs2 (P2)lls(kl, k2) 

(3.26) 

As above, 

l /  / 
T4_ d ddkl ddk2 Ihe(v/-fkl)h~(v/Tk2)lF~(kl, k2)I5(k1, k2) 

Coast f[_ ddkl f[ - ddk2l~,(kl)~(k2),  
<- ~ v ~ , ~ F  v ~ , v ~ ] ~  

-< C~ Z a  dakl Za d% + 

Therefore, for d < 4, this contribution to the right hand side of (3.18) tends to 
zero as e ---+ 0, uniformly in T, by dominated convergence. [] 

3.3 Convergence 

Throughout this section, given a walk w(i) and t E [0, 1], we define a pxecewise 
constant function Xr(t )  = T-1/2w(LtTJ). We begin by considering the case of  
high dimensions. 

3.3.1 Dimensions d > 2. In this section, we complete the proof of  Theorem 1.1, 
making use of  Theorem 2.1 and Proposition 3.1. 

Proposition 3.3 Let d > 2 and - ~  < fl < zxD. For tm C [0, 1], n : O, 1 ,2 , . . . ,  
and km C R d, 
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lim E e ik"'Xr(tm) 
T ---,  o<~ ] fi e i/3"2L(~'~) = E e ik"'B(tm). 

m=l 

(3.27) 

Hence, the vector (XT(tl) , . . .  ,Xr(tn) ,Tr( ,~))  converges in distribution to the 
vector ( B ( h ) , . . . ,  B (tn), 0). 

Proof We set 

Q(XT) = H eikm'X~(tm) 

m=l 

and we write Q for Q(Xr) and q for Q(B). Then it suffices to show that 

(3.28) 

EQe i~'yr - Eq ~ 0 (3.29) 

as T --+ exp. The above difference can be written as 

EQ (ei~'y~ - I)  + EQ - Eq. (3.30) 

By Donsker 's  theorem, EQ - E q  ~ 0 as T --+ ~ .  Using the inequality ]Q(e i~'Y~- 
1)I <_ I/3~1, the first term is bounded above by I~IEI'Y~I _< I~I[EI'j_Z_r 12] 1/2, which 
approaches zero as T --+ ~ by Proposition 3.1. 

The last statement of the proposition then follows immediately from the fact 
that convergence of characteristic functions implies convergence in distribution 
o n  RN; see Theorem 7.6 of  [2]. [] 

The following corollary yields the results of Theorem 1.1. 

Corol lary  3.4 Le td  > 2 a n d - c x z  < 13 </30. Fortm E [0, 1], im E { 1 , . . . , d } ,  
and n = 0, 1 ,2 , . . . ,  

lim E x~im)(tm) e ~'y~C'~ = E BCi~(tm), 
T - ~  cx~  = 

(3.31) 

where the superscript (im) denotes a component of Xr or B. Moreover, the process 
XT converges in distribution to Brownian motion. 

Proof By Proposition 3.3, the expectation of any bounded continuous function 
of ( X r ( h ) , . . . ,  XT (tn), "Yr ( J r ) )  converges to the corresponding continuum expec- 
tation. The function appearing in the corollary is not bounded, but it is uniformly 
integrable. To see this, it is sufficient (see page 32 of [2]) to show that there is 
an e > 0 such that 

< ~ .  (3.32) 

But by H61der's inequality 
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-- m=l q e/3(l+e)Tr (~'~:r) E rn=Ull [X(Tim)(tm)] eI3"YT('~')[l+e ~ ~ [s(i'n'(tm)] t+e --  p, (3.33) 

and by Theorem 2.1 the right side is bounded uniformly in T provided p is chosen 
sufficiently close to 1 and e is chosen sufficiently small that fl(1 + e)p </30. It 
then follows from Proposition 3.3, together with Corollary 1 to Theorem 5.2 and 
Theorem 5.4 of [2], that (3.31) holds. 

It is then immediate that the renormalized partition function converges to 1 
and that the diffusion constant is equal to 1. The fact that cr  --~ exp[ /3(G(0)-  1)] 
as T ---+ w then follows from Lemma 1.4. 

To complete the proof, it remains to show that XT is tight. For this, it is 
sufficient to prove that for any 0 < tl < t2 < t3 _< 1 and for some a > 1/2 and 
constant K, 

c l E  [ I X r ( t 2 ) -  Xr(tl)12alXr(t3)- Xr(t2)l 2ae ~r] <_ Klt2-tl!alt3-t21 a (3.34) 

(see Theorem 15.6 of [2]). The normalizing partition function on the left side is 
asymptotically 1 and can be ignored. Applying H61der's inequality to separate 
the exponential interaction factor from the displacement factors, as above, gives 
(3.34) for any a _> 0. [] 

3.3.2 Dimensions d < 2. In this section, we complete the proofs of  Theorems 1.2 
and 2.3. 

Proposi t ion 3.5 Let d = 1 or 2andp = 42--A. For any - o c  < 13 < oo, tm c [0, 1], 
n = 0, 1 ,2 , . . . ,  andkm E R a, 

lim E e 'km xr(t~) e i~Tr(~r) E e ikm'B(tm) e i~'~(3r) (3.35) 
T ---+ c~ 

m=l 

Hence, the vector (Xr(t l) , . . .  ,XT(tn),TZ(,TT)) converges in distribution to the 
vector (B (tl), � 9  B (tn), 7 ( ~ ) ) .  

Proof We want to apply Donsker 's  theorem, which says that the expectation of 
any functional of Xr which is bounded and continuous in the Skohorod topology, 
converges to its natural continuum limit as T ---+ cx~. However,  unlike the simpler 
situation encountered in Sect. 3.3.1, we cannot apply it directly because the 
renormalized self-intersection local time is not a continuous functional. We will 
use the results of  Sects. 2.2 and 3.2 to introduce cutoffs and reduce the problem 
to one involving a bounded continuous functional. 

We set 

Q(Xz) = H [ eikm'Xr(tm)] (3.36) 
m=l 

and we write Q for Q(XT) and q for Q(B). Recalling the definitions o f , 7  N and 
~'r~,N from (2.10) and (2.33), we write 
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EQe i~yZ(~Jr) - Eqei~Z ('7) = EQ (e i~Tr(cTr) - e i~3~r(~rr,N)) + EQe i;~'r~(3;,N) 

-Eqe i~2(~'~u) + Eq (eiOZ (~N) - ei~2(~)). (3.37) 

The first term on the right side can be estimated using the inequality 

IQ}le  ia - ei81 <_ Ia - B] ,  (3.38) 

together with EIA - B  I <_ U A -Bile  and Lemma 2.4; its contribution can be 
made as small as desired by taking N large independent of T. By (2.14) the 
same assertion holds for the last term on the right side. Thus it suffices to show 
that for fixed (large) N, 

#m S = 

We define 7r#(,Tr,u) by replacing ~x in (2.34) by the approximate Kronecker 
delta 

1 ~_ dak exp [ik.x - eTka], (3.40) ~x;~r- (27r)a ~ , ~  

and define % ( g ' N ) =  7eo( j 'N)  as in (2.11), where 

~(x)  = (27r)---- 7 e dak exp [ik .x = &21 . (3.41) 

Adding and subtracting as in the previous paragraph, and using (2.11) and 
Lemma 3.2, we see that it is sufficient to prove that for fixed (large) N and 
(small) e, 

lim EQe i13"/r''('Wrr'N) = Eqe i13%(~'N). (3.42) 
T---+oo 

By definition, 

1 ~ 1 [ dak eik(w(i)-wq))e-eTk2 
"y T , e ( o~TT , N ) T 2-d/2 ~ (271") d d[-rc,rr]a 

(i d)C,~,lv 

1 ~-, 1 f dd k eik.(Xr(i/T)_Xrq/T))e_~k2 
T2 ~ (2rr) a aI-,/T~,vT~l~ 

(i,j)E,~:,N 

1 
- T2 ~ ~e(XT(i/T)- XT(j/T)) + O(e -c'r) 

(i j)E,~I-,N 

= [ [ ds dt 6,(XT(S) -- XT(t)) + O(T -1) + O(e -c'r) (3.43) 
J J ~  N 

for some C, > 0. The error terms arise from the difference in the ranges of the 
k integrals in ~,(x) and ~x;,, and boundary effects in replacing the sum by the 
integral (note that the integrand in the last line is constant on squares of side 
T - l ) ,  and are uniform in w. Let 

F(XT) = Q(XT)exp [i/3 f / j ~  ds dt (5,(XT(s)- X~(t))] . (3.44) 
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It suffices to show that E[F(Xr)] converges to E[F(B)], where B is Brownian 
motion. But this follows directly from Donsker 's  theorem [2] because XT H 
F(XT) is bounded and continuous in the Skorohod topology. [] 

The following corollary yields the results of  Theorems 1.2 and 1.3, apart 
from the monotonicity of the diffusion constant, which is deferred to Sect. 4. 

Corollary 3.6 L e t  d = 1 o r  2 a n d  p = --,42d and let flo be given by (1 .10 ) .  For 
any - ~  < fl < rio, tm E [O, 1], andn =O, 1 ,2 , . . . ,  

lim E X ")(tin = E B(i')(tm , 
T---* oo L km=l 1 Lm=l J 

(3.45) 

where the superscript (ira) denotes a component of  XT or B. In particular, for 
d = 2, Ee ~v-(J) < cxz for fl < rio. Moreover, XT converges in distribution to 
dud,• 

Proof We apply uniform integrability as in Corollary 3.4, using Theorems 2.1 
and 2.5 respectively for d = 1,2. [] 

As a consequence of the corollary for d = 2, since ET[VT(~-T)] "~ ~ log T by 
Lemma 1.4, for - ~  < fl < /3o the unrenormalized partition function satisfies 
the asymptotic relation 

(3.46) 

4 The diffusion constant 

For d > 2 and p = 1, the diffusion constant is equal to 1 for all -cx) < fl < rio, 
while for d _< 2 and p = 5_~, we have 

E[B(1)Ze~2] 
o( f l )  = Ee~Z (4.1) 

For the rest of  this section, we consider only d _< 2. 

The following elementary calculation shows that the diffusion constant is 
strictly decreasing for fl equal to zero, and hence, by continuity, for fl near zero. 
Consider first d = 1. Then 

Dr(0) = d ~  ~=o E[B(1)2e~2] Ee~2 - E[B(1)2-yl - [EB(1)2][E~[]. (4.2) 

The constant E 7  in E'7 dropped out in the right hand side of  (4.2). Writing now 

pt(x) = (27rt) -d/2 exp(--xZ/2t] for the Brownian motion transition function, this 
gives 
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o'(o) 

= - J0<s<t<l ds dt (t - s)pt-s(O).  (4.3) 

The last expression is clearly negative, so the diffusion constant is strictly de- 
creasing at/3 = 0. For d = 2, (4.3) is also correct; the (infinite) constant E'y drops 
out by the following argument: the right hand side of (4.2) holds with "3, instead 
of "~. Expand _7 using (2.14) and take the sums over n, k outside the expectations. 
Constant terms of the form ET(A~) drop out, the expectations may be evaluated 
as above and the sums over n, k recombine with integrals over s, t to reproduce 
(4.3). 

For /3 E [0,/3o), we will now prove that D(/3) is strictly decreasing. The 
following proposition shows that for /3 E (0,/3o), the inequality D'(/3) < 0 is 
a consequence of a correlation inequality of Fr6hlich and Park [15]. Combined 
with the analyticity of  D(/3) for /3 E (-00,/30), and the fact that D is strictly 
decreasing in a neighbourhood of/3 = 0, this implies that D is strictly decreasing 
for/3 E (0,/30). We believe, but have not proved, that D is strictly monotone for 
all - o o  </3 </30. 

Proposi t ion 4.1 Let d >_ 1, e > 0 and f ( x )  = (27re)-d/2e -x:/2e. For any 0 < 
/3< oo, tm E [0, I], n = 0, 1 ,2 , . . . ,  andkm E R d, 

tl 

(N eik"l~(t'))f,~3 = E [[1-[~=1 eik"/~(tm)] ef3"r'('~')] 
Ee~.Ys(~,. ) (4.4) 

m = l  

is monotone nondecreasing in/3. In addition, for  d = 1 or 2 and 0 < /3 < /30, 
D(/3) is nonincreasing in/3. 

Proof In dimensions d = 1 or 2 the expectation (4.4) has a limit as f ~ 
(that is, as e ~ 0), so the limiting expectations are also nondecreasing. For the 
diffusion constant, we use 

D(/3) = 2d l im  k - 2 ( 1  - (eik'B(l))6,O) (4 .5 )  
k--,0 

to conclude that D is nonincreasing. This is derived using Euclidean symmetry 
and (B(1)) = 0. 

Thus it suffices to obtain (4.4), for arbitrary dimensions. We will show that 
this is a consequence of the general Ginibre correlation inequalities proved by 
Fr6hlich and Park in [15] using duplicate variables. In particular, we will apply 
their Theorem 3.1(5). For this, we need to rewrite (4.4) in the formalism of 
[15]. Accordingly, we let ~ denote the Hilbert space obtained by completing 
R a | W[0, 1] with the inner product 
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'/0'/0' " C(9, h) = -d dsdt Z9(i)(s)min{s,t}h(i)(t), (4.6) 
i=1 

where the superscripts (i) denote components. Let 0 denote the Gaussian process 
with mean 0 and covariance C indexed by ~ ,  and let d#c denote the associated 
Gaussian measure on the space S f~ of  tempered distributions. By definition of  
f ,  f(q) = e-eq2/2. We define 

X = { x = - ( q , s , t ) : q E R a , O < _ s < t < l } ,  

1 dq ds dtf(q), dp(x) - (27r)a 

and a mapping 1 " X --* J ~  by 

l x = q ( 6 ( . - t ) - 6 ( . - s ) ) ,  x=(q , s , t )  EX. 

Then C(lx, lx)= d - lqZ l t ,  s[. (Frrhlich and Park's hypothesis that the integral 
fx dp(x)exP[�89 be finite is thus not satisfied for small e, but, in fact, this 
hypothesis is not necessary for part (5) of their Theorem 3.1.) 

By construction, the Gaussian random variable O(lx) has the same distribution 
as q �9 (B(t) - B(s)); in fact, 

: eiq'(S(t)-B(S))dW = e-q21t-sl/2a = e-�89 : ei4~G)d#c . ~4 ~ 7 ~ 
d dS~ # 

Using this fact, as well as the B ~ - B  symmetry, rewriting ?f in terms of  the 
Fourier transform gives 

1 / d q f ( q )  f fo<,<t<ldsdteiq(B(')-B(s)) ~,s(.y') - (2~) a 

- (2~) d l f d q f ( q ) f f o < , < , < t d s d t c o s ( q . ( B ( t ) - B ( s ) ) )  

(d=) fX dp cos(0(/x)). 

In (4.4), by the B ---+ - B  symmetry we can replace I'I~n=l eikm'B(t') by cos(y'~= l kj. 
B(tj)). Define m E ~ by m = y'~kjr(.-tj). Then the Gaussian random variable 
q$(m) has the same distribution as ~ kj .B(tj), and therefore 

n 

( I I  eikjB(ti))f;fl = ~(f  ' fl)- 1 f d#c(~) cos(0(m))e ~ fx a; cos(4G)), ( 4 . 8 )  

j = l  

where 

Let 

~(f, 13) = f d#c(�9 e n fx a; co~(e(l~)) 

(( F )):,~ = re(f,3) - 1 /  a#c(O) F e~ fx '~; co,(,~(Jx)) 

(4.9) 

(4.10) 
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T h e  d e r i v a t i v e  o f  ( ~ : 1  eikjB(tJ))J,3 wi t h  r e s p e c t  to 3 c a n  t h e n  be  w r i t t e n  as  

f x d p ( x )  ( ( ( c o s ( ~ ( l x ) )  c o s ( & ( m ) ) ) ) f -  ( ( c o s ( ~ ( / x ) ) ) ( ( c o s ( ~ b ( m  )j, ))) )s, 3 ) .  ,3 3 

( 4 . 11 )  

T h i s  is  n o n n e g a t i v e ,  b y  T h e o r e m  3 .1 (5)  o f  [15].  [] 
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