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Summary. We build on recent results of Durrett ,  Ding and Liggett to establish 
ergodicity in a class of reversible reaction-diffusion processes. 

This paper  concerns a class of reaction-diffusion processes. The reaction-diffusion 
process has state space X = {t/: Z e ~ Z § }. We think of t/(x) as representing the 
number  of particles at site x. The particles move as follows: 

Particles are born  at site x at rate fl(t/(x)). (Or alternatively, at rate fl(~/(x)), 
t / ~  t / +  ex, where ex(y) equals 1 if x = y and is 0 otherwise.) 
Particles at site x die at rate 3(~/(x)). (Or alternatively, at rate 6(tl(x)), 
t / ~  ~ - ex, where ex(y) = 6~(y)). Necessarily 6(0) = 0. 
At rate tl(x)p(x, y), a particle jumps  from x to y, where p(x, y) is the transit ion 
matrix of  an irreducible symmetric r andom walk on Z d with p(x, x ) =  O. 
(Alternatively, t / ~  ~ - ex + e r.) 

Under  suitable assumptions on p and 6 (see Chen (1985)), there exists a cont inuous 
time Markov  process on a subset of X as described above, which (formally) has 
generator  

O f(tl) = ~ fl(rl(x))[f(tl + ex) - f ( t / ) ]  + ~ 6(rl(x))[f(r 1 - e~) - f ( t / ) ]  
x x 

+ ~ Y" tl(x)p(x, y ) [ f ( ~  - e~ + e,) - f ( t / ) ] .  
x y 

In  a recent paper, Ding et al. (1990), hereafter referred to as D D L ,  dealt with 
reaction-diffusion processes where for some k, 

k 

f l ( x )  = 
j=o 

and 
k + l  

j = l  
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and bj = 2cj+1 > 0 for some 2 > 0. In the above, x(J)= x ( x - 1 ) ( x -  2 ) . . .  
( x - j  + 1) ,x(~ 1. 

One of the reasons for the interest in this class of processes is that simple 
invariant measures are known. Janssen (1974) shows that in the above case v, the 
measure on Z a where {q(x): x e Z a} are independent Poisson random variables 
with parameter  2, is stationary and reversible for the process. In fact, D D L  showed 
that if bo > 0 then v is the only stationary distribution and that it is the limit 
starting from any initial state. DDL's  result is trivially not true if bo = 0, since then 
the birth rate at t / =  0 is zero, so the point mass at t/(x) = 0 is also stationary. In 
this case D D L  conclude: 

Theorem one. In the case where bo = O, the only translation invariant, stationary 
distributions are convex combinations of v and the point mass at O, 50. 

However, for the class of reaction-diffusion processes under consideration, 
bo = 0 implies that cl -- 0, so a process starting from a non-identically zero r/0 
never dies out; that is, it never becomes identically zero. Of course this does not 
preclude the process tending to 60 in distribution. Shiga (1988) asked whether under 
these conditions the system beginning from qo 4:0  must tend to v in distribution. 
We prove the following theorems: 

Theorem two. Let a reversible reaction diffusion process satisfy 
1 bo = cl = 0 ,  
2 for each j, bj = 2cj+ t, 
3 Zlylp(O, y) < o0, 
then the process tends to v in distribution, starting from any non-identically zero 
starting point. 

Theorem three. For a reversible reaction diffusion process, under the above 
conditions, 
1 bo = cl = O, 
2 for each j, bj = 2cj+ 1, 
3 the probability distribution p(O, y) lies in the domain of attraction of a stable law of 
index less than one, 
then the process tends to v in distribution, starting from any non-identically zero 
starting point. 

The two results leave open the cases where the random variable corresponding to 
p(0, y) is irregular or in the domain of attraction of the Cauchy law. 

The two theorems have different proofs: Theorem two follows because of the 
"controllability" of random walks with first moment  while Theorem three uses the 
fact that the overall process may be compared with auxiliary random walks which 
are transient. Despite this, the proofs have common elements, which are presented 
in Sect. 1. The proof  of Theorem two is completed in Section Two while the proof  of 
Theorem three is finished in the last section. In the remainder of this introduction 
we recall some definitions, recall some important  facts and results from DDL,  and 
make some simple observations. 

Notation. Given a configuration t/ in X, the configuration t/x is given by 
~X(y) = ~(y + x). 

Given a subset A of X, the subset A x is given by q eA if and only if ~/XeA~. 
Given a measure # on X, the measure #~ is given by #X(A~) = #(A). 



The ergodicity of a class of reversible reaction-diffusion processes 261 

We denote the semi-group of the process by S( t )  t > O. For  a configuration t/, 
S( t ) t  1 is the measure on X defined by [S ( t ) t l ] (A )  -= P " [ r h e A ] .  For  a subset A of 
X,  S ( t ) A  denotes the function on X defined by t / ~  [S(t)r l](A) .  

Definitions. We use the standard partial ordering on X = ZZ+d: t / <  t/' if for every 
x in Z d, t/(x) < t/'(x). 
A function f on X is increasing if t / <  r/' implies that f( t / )  <f(~/ ' ) .  We use the 
partial ordering on measures on X given by: #1 < #2 if ~fdp~ < ~fd/22 for every 
increasing function f 
For  an element r /o f  X and a subset A of Z d, the element t/c~ A of X is given by 

t l c~ A ( x )  = t/(x) if x is in A and is zero otherwise. 

We say a site z e Z  d is occupied for a configuration t / if  r/(z) > 0. 

Some facts from D D L  

A Attractiveness: Suppose that t/0 < r/;. Then two reaction-diffusion processes 
{~h: t > 0} and {~',: t > 0} with ~0 < q;  may be coupled so that for all times t, 
~t < ~ ; .  

B We can start the process with t/o = t/~, that is the state where the number of 
particles at each site is infinite. In this case, for every m e Z + and every strictly 
positive t, E[(r /~(0))"]  < oo. 

It should be noted that Theorem One and facts A and B imply that S( t ) t  1 ~ tends to 
v in distribution as t tends to infinity. Fact A ensures that we may couple 
a reaction-diffusion process {th: t > 0} with the process { ~  " t > 0} so that for all 
t, t/t < t/2 ~ It  follows from the above observation that for any t/o and for any 
increasing function f 

limsup ~f(t l )d[S(t)~lo](t l )  <= ~f(t /)dv(t /) .  
t ---~ o~ 

Suppose now that we knew S(t)eo tends to v in distribution. It  immediately follows 
from the translation invariant nature of the process and the translation invariance 
of v that S( t ) e ,  tends to v as well. If t/o is non-zero, there is an x with ex = t/o. It  
follows from Fact A (again) that for increasing, continuous, and bounded f 

~f(q)dv(q)  = liminf ~f (q)d  [S( t )ex]  (t/) =< liminf ~f( t / )d [S(t)t/o ] 01). 
t ~ o o  

We could then conclude that for any non-zero 1/o and an increasing, continuous, 
and bounded f 

lira ~ f ( t l ) d [ S ( t ) t l o ] ( q ) =  ~f(t /)dv(t /) .  
t ~ o O  

Such functions constitute a convergence-determining class. Thus, the problem of 
showing that for any starting configuration q, S(t)tl  tends to v in distribution as 
t tends to infinity is reduced to showing that S( t )q  tends to v in distribution 
for t / =  eo. 

Consequently, in this paper every reaction-diffusion process {t/t: t > O} has 
t/o = eo unless stated to the contrary. All systems other than t/~ are finite systems in 
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the sense that  the initial configurat ion only has a finite number  of occupied sites 
and these sites are occupied by finitely m a n y  particles. 

The au thor  is pleased to thank  T o m  Liggett  for introducing and explaining the 
p rob lem and Tokuzo  Shiga for showing that  Theorem Two could be proved  in 
greater  generali ty than  the au thor  originally thought.  The au thor  is also grateful 
for their helpful comments  and encouragement .  

Sect ion  one 

In this section we show that  convergence to the upper  invariant  measure  follows if 
two related condit ions are satisfied: 

Proposlt ion 1.1 Suppose that 
i. For every ~ > 0 there exists a K so that 

! i ~-, o~ t o [S(t)rl~ [there exists Ixl < K with t/(x) > 0 ]d t  > 1 - 8 

and 
ii. For every site x in Z d, there exists P"~ a.s. a (random) integer n so that t/,,(x) > 0. 
Then the measures S(t)tlo converge to v in distribution. 

The propos i t ion  is p roved  via the following lemmas.  

L e m m a  1.2 Under conditions (i) and (ii) above, the measures 

I 

1 ! S (u )qodu  

converge to ~, as t tends to infinity. 

Proof. We first note that  while the space X is not  compact ,  we have for every t > 1 

that  S(t)tlo < S(1)t/~ so the collection of measures  S(u)~odu  is tight. There-  
= , t o  

fore, convergence to v will follow if every convergent  sequence of measures  
1 

S(u)tlo du with tn tending to infinity has v as its limit. 
tn 0 

Let us take t~ to be any sequence of times tending to infinity for which 
# = lira #,. exists. We first show that  # must  be t ranslat ion invariant.  

Note  that  since the process is t ranslat ion invariant,  we must  have 

lira - S(u)exdu  = # x .  
n ~  tn o 

The attractiveness of  the system ensures that  for any q. with q . (x)  > 0, we must  
have for t larger than  n 

S(t  - n)ex < S(t  - n)rl . .  

Thus  it follows tha t  if A. is the event {n = inf{m: t/re(x) > 0}}, then for t greater  
than N 
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Integrating this inequality, we obtain for large n 

S(t)rl~ > r=l~N P"~  - r)exdt  + 1 - 1 - r=a P"~ 6 , .  

N 

Assumption (ii) of Proposition 1.1 guarantees that as N becomes large, ~ p,o [At] 
r = l  

tends to 1. Thus we let n tend to infinity, then let N tend to infinity, and use 
assumption (ii) of Proposition 1.1 to obtain tt > tt x. But we may interchange the 
roles of 0 and x and obtain #x > # in a similar fashion. Thus tt = #~ and the 
measure is translation invariant. 

It follows from the main theorem in DDL, quoted in this paper as Theorem 
One, that # must be a convex combination of 6, and v. 

Let B K be the set {q:~}x] < K with t/(x) > 0}. Assumption (i) of Proposition 
1.1 can be rephrased as 

for each e > 0 there exists K s.t. liminf -1 i S(t)t lo[BK] dt > 1 - e .  
t - , ~  t o  

But for our given sequence tn, this must imply that ~(BK) > 1 -- e. Since ~ may be 
taken as small as desired and 6o(BK) = 0, we must have that # equals v. [] 

The above lemma shows that the Cesaro means of the measures S(t)r/o 
converge to the upper invariant measure v. It remains to show that S(t)tlo 
converges to v as t tends to infinity. This is a common problem in particle systems. 
The following is a simple general lemma. 

Lemma 1.3 Consider a measurable bounded function b( t) on t > O. 
t 

I f l imsup b(t)  = lim -1 S b(s )ds  = B, then for  each ~ > 0 we have 
t ~ o ~  t ~  t 0 

lim 1 i - I{b(s)<B-~ds = 0 .  
t ~ o o  t 

Proof  Given 6 > 0, there exists T so that b(t) < B + 6 for all t larger than T. 

B = lim -1 i b(s)ds  
t ~  t o  

( l  i -1 i ) __<liminf ~ (B -- e)I(b(~)<B-~ds + (B + 6)I~b(~)> B - ~ d s  . 
t ~  \ 0 t = 

This entails that 

limsup I~b(~)< B-~ds < . 
t - ~  t o  = 6 + ~  

Since 6 can be made arbitrarily small we are done. [] 

Let A be any increasing event (that is, the indicator function IA is an increasing 
function). Then S(t)tl~~ tends to v(A) and by attractiveness S(t) t l~(A)>= 
S(t) t lo(A).  Thus, applying Lemma 1.3 to the bounded function b(t)  = S( t ) t to(A ) 
with B = v(A),  we obtain 
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Corollary 1.4 Given an increasing event A and any e > O, 

lim 2 [ { u e [ 0 ,  t]" S(u)qo(A)  < v ( A ) -  e}] = 0 .  
t --+ O~ t 

Before completing the proof  of Proposition 1.1 we require one last lemma. This 
lemma is really just a reformulation of Theorem B on page 68 of Halmost  (1950). 

Lemma 1.5 Suppose B is a measurable subset o f  [0, T] with 2 ( B ) >  9/10T (2 
denotes Lebesgue measure). Then for every z in [T, 3 /2T] ,  there exist x and y in 
B with z = x + y. 

Proof. Suppose not. In that case, there exists a z in the interval [ T, 3/2 T]  which 
cannot be expressed in the desired form. This property of z is equivalent to the sets 
B and z - B being disjoint. However 2([0, T]  c~ z - B) must exceed 4/10 T and so 
2(B c~ z - B) > 9/10T + 4 / 1 0 T -  T > 3/10T. This contradiction establishes the 
lemma. [] 

Proo f  o f  Proposition 1.1 

To show that S(t)rlo converges in distribution to v it will suffice to show that 

S(t) t lo(A) tends to v(A)  in distribution 

for every cylinder set A. In turn, to show the above it will be sufficient to show this 
for every increasing cylinder set A. 

Recall that Bn is the subset of X consisting of configurations which have an 
occupied site within n of the origin. Fix e positive but otherwise arbitrarily small. 
We can find an n so big that v(Bn) > 1 - e/2. Corollary 1.4 implies that 

l iminf2[{u~[0 ,  t]:  S(u)t lo(B,)  > 1 - e}] = 1 .  ( * * )  

For this n let i l, iz, �9 �9 �9 iM be an (unimportant but fixed) ordering of the elements of 
the lattice within distance n of the origin. Using Corollary 1.4 once more we find 
that for a fixed increasing set A we must have 

liminf 2 [{u~[0 ,  t]:  S(u)t lo(A ~k) > v(A)  - e}] = 1 
t ~ o O  t 

for each k. 
Now let V be the set of times u for which 
(a) S(u)~o(B, )  > 1 - e 
(b) S(u)t lo(A ~) > v(A)  - ~ for all k. It follows from the preceding statements that 

there is a T such that for all t > T, 2(Vc~ [0, t ])  > 9/10t. It  follows from 
Lemma 1.5 that for all t > T we can find s and u in V with s + u = t. We fix 
such a triple. Now for k = 1, 2 . . . . .  M, let subsets of X be defined by 
Ck = {t/: k is the smallest j with t/(ij) > 0}. So UkCk = B, and by condition (a) 
in the definition of the time set B we have S(s)rlo(UM=ICk) > 1 -- e. Also by 
attractiveness of the system and the fact that A is an increasing event, we have 

for t l~Ck,  [ S ( u ) q ] ( A )  >= [ S ( u ) e J ( A ) =  [ S ( u ) e o ] ( A - i x )  . 
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Since u is a member of V, this last expression is greater than v(A) - e. Thus on 
the set B, we have 

[S(u)tlJ(A) > v(A) -- 5 . 

Therefore, using the semigroup property and the fact that s ~ V, we have 

[S(t)tlo](A ) = [S(s)tlo](S(u)A ) > [S(s)rlo](IB S(u)A ) 

>= ( v ( A )  - ~ ) [S (S)~o] ( IBo)  >= (1 - ~ ) [ v ( A )  - e ]  

Since A is an arbitrary increasing set and e is arbitrarily small, the proof is 
complete. [] 

Section two 

The object of this section is to prove Theorem Two. Given the results of 
Section One, we have reduced the problem to verifying conditions (i) and (ii) of 
Proposition 1.1. 

Throughout  this section we take the transition probabilities p ( x , y ) =  
p(0, x - y) = p(0, y - x) to satisfy 

lylp(0, y) < ~ ,  
y 

and to be the transition probabilities of an irreducible random walk. We give 
a simple consequence of these assumptions. 

Lemma 2.1 There exists a constant c > 0 such that for all O ~ R ~ of Euclidean norm 
equal to unity, ~y l (Y ,  0)lp(0, y) > c. 

Proof The map on the d-dimensional unit sphere 0: ~ (y,  0)  is continuous for 
each y. It follows, therefore, from the condition ~yly[p(0, y ) <  oo and the 
Dominated Convergence Theorem that the map 0: ~ y l ( Y ,  O)lp(O,y) is con- 
tinuous. Since the underlying random walk is irreducible, ~yl(Y,  0)fp(0, y) must 
be strictly positive for each non-zero 0. The result now follows from the compact- 
ness of the unit sphere. [] 

We introduce a Markov process {( Yt, Zt): t > 0} on Z d x {1, 2} with generator 

Of(x ,  v) = i~=1~ ~ p(O, y ) ( f ( x  + y, 1) - - f ( x ,  1)) 
y 

+ I(~=2) ~ p(O, y ) ( f ( x  + y, 1) - f ( x ,  2)) 
( y , x )  6 0 

+ I~v=2~ ~ p(O, y ) ( f ( x ,  1) - f ( x ,  2)) 
( y , x )  > 0 

+ I(,=llfi(1)(f(x,  2) - f ( x ,  1)) 

+ l~=213(2)(f(x, 1) - - f ( x ,  2)). 



266 T.S. Mountford 

The process Zt jumps from 1 to 2 and back in a way that mimics the way particles 
are born and die in the reaction-diffusion process, Yt jumps as a random walk with 
jump probabilities p(0, y) if Zt = 1, but if Zt -- 2, jumps away from the origin are 
suppressed; instead Zt will jump to state 1. We also assume that ( I7o, Zo) -- (0, 1). 

We can regard ( Yt, Zt) as a process on X by identifying (y, z) ~ Z d x {1, 2} with 
c~ e X where ~(y) = z and e(x) = 0 for x 4= y. It follows from Corollary A2 of Shiga 
and Uchiyama (1986) that we can couple the processes ( Yt, Zt) and t/t (recall that 
t/o = eo) so that for all times t 

~ t (5)  _-> Zt .  

That is, the state ~ is always occupied by the configuration r h and if Z, equals 2, 
then at least two particles are present at the site Yr. Since the transition prob- 
abilities are symmetric, ~<y,x> =<op(0, y) is at least l/2 for all sites x. Consequently, 
the jump rate for Yt is always between 1 and 2. 

We define the stopping times T, by 

T o = 0 ;  f o r n > l  T ~ = i n f { t > T , - i " Y t = ~  Yrn-1}. 

The strong Markov property ensures that the discrete time process 
{ Wn = Yr, : n > 0} is a Markov chain. The following lemma follows easily from the 
definition of the transition rates for the process ( Yt, Zt). 

Lemma 2.2 Let Q(x, z) be the transition probabilities for the Markov chain W. There 
exists a strictly positive c~ so that for all sites x 

2 p ( O , y ) > Q ( x , y ) > ( 1  +7)p(O,y) for ( x , y )  <=O 

a n d Q ( x , y ) < ( 1 - 7 ) p ( O , y )  for ( x , y )  >O.  

Lemma 2.3 The Markov chain { W,: n > 1} is positive recurrent and irreducible, 

Proof. The irreducibility of W follows easily from the irreducibility of p(, ). 
Theorem 9.1 of Tweedie (1976) ensures that to prove positive recurrence it 

suffices to show that for some e and N 

Ell  Wn+l [[ W, = y] __< [Yl - 

whenever lyl > N. Showing this constitutes the remainder of the proof. We pick 
K so large that ~IyI>KIYIp(O,Y)< ec/lO, where e and c are the constants of 
lemmas 2.2 and 2.1 respectively. Now consider El i  W,+ 111W~ = x3 for x of large 
magnitude. Write the random quantity W,+ 1 - x as Y,~. Then 

g[-[ W,+ ill Wn = x] = E[-[ Y~ + xl] < El l  Y~t + ]xlI{iyx I>K>] 

+ Ell  Y~ + xII{IL~F__<K}] �9 

From our choice of K, the first term on the right hand side of the inequality is less 
than IxlP[I IZ,~l > K]  + cc~/5. Since the random quantity f Y21 is bounded by K, we 
can use the binomial expansion to write 

El l  Y~ + xlI{lY~l _</r = El-([ Y,I 2 + 2( x, Y , )  + Ix12)l/2I(ly~[ < K}] 

I( (+)) 1 = E  ] x l +  Y.~ ,~  + 0  I{ir~l<K} . 
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It follows from Lemma 2.2 that 

E Y~, I{I __<K} < ~ (1 +c0p(0,  y) % 7 , y  
ly l  --< K, ( x , y )  < O) 

I + Z (1 - ~)p(0, y) ~ ,  y 
lY[ -< K , ( x , y )  > O) 

<=--c~ ~ p(O,y) , y  . 
] y l < K  

From our choices of K and c, it follows that the last term is less than 
- e ( c  - c~/lO), which is less than -c~c/2. Collecting all our work together, we find 

that 

EI-[ W.-IlIW. = x] ~ P[-I Y~[ > K]IxI + c~/5 + P[] Y~[ __< K] ]xT 

(1) 
- c ~ / 2 + O  ~ < ] x l - c ~ / 5  

for I xl large enough and the lemma is proven. [] 

Proof of Theorem Two. We are now ready to verify conditions (i) and (ii) of 
Proposition 1.1. Lemma 2.3 states that the Markov chain W is positive recurrent 
and irreducible. Therefore, for each x in Z a, there will be a time t at which the 
process Y, hits x and stays there for at least unit time. This ensures that (ii) holds for 
the process qt. It remains to establish (i). The Markov chain W has an invariant 
probability measure ft. By Lemma 2.2, irrespective of the state Y,_ 1, { Tn - T,_ 1 } 
are stochastically greater than exponential random variables with mean 1/2 and 
stochastically less than exponential random variables of mean 1. It follows from the 
strong law of large numbers that for any subset A of Z e we have with probability 1 

limsup 2{s __< t: Ys~A} < 2re(A) . 
t--* oo t 

Let us take A to be the set {y: lY[ > n} where n is so large that re(A) < e/4. Then we 
have 

p [ 2 { s < t : , Y s , > n }  3~]  
= < ~ 1  as t--, oo. 

Condition (i) follows via an application of Fubini's Theorem. [] 

Section three 

In this section we prove Theorem Three. Henceforth, we assume that the probabil- 
ity law p(0, y) is in the domain of attraction of a (necessarily symmetric) stable 
random variable of index ~ < 1. As with Theorem Two, it only remains to show 
that under the conditions of this section conditions (i) and (ii) of Proposition 1.1 are 
satisfied. As will be evident from the proof, no generality will be lost by assuming 
that the dimension of the state space for the underlying random walk is one. To 
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minimize notational complexity, we make this assumption. Throughout this sec- 
tion any random walk is assumed to be a continuous time random walk with jump 
rates (and probabilities) p(x, y). 

We use block arguments based on ideas found in Bramson (1989) and Bramson 
et al. (1989). For  a given M and K, we consider random variables Iz,, defined by 

I z , , = l  if~/,~:(y)>0 for some y in ((z - 1 ) M , ( z + I ) M )  

= 0 otherwise. 

We compare the above variables with a 1-dependent oriented percolation system. 
An oriented percolation system is a directed graph with vertex set equal to Z x Z § 
and directed edges from vertices (z, n) to vertices (z + 1, n + 1) or (z - 1, n + 1). 
These edges are open with (bond) probability p and closed with probability 1 - p. 
The system is 1-dependent if edges between disjoint vertex pairs are indepen- 
dent. We write ~ff for the set of z so that (z, n) is connected to some point in 
A( c Z x {0}) by a path of open edges. If A = (0, 0), the superscript is suppressed. 

The majority of work in this section is to the end of proving 

Proposition 3.1 Consider the reaction-diffusion process {r/, :t > 0} with tlo = eo. For 
a given M and K we define Iz,, by 

I z , , =  1 / f t / , K ( y ) > 0  for s o m e y i n ( ( z -  1 ) M , ( z +  1)M) 

= 0  o~herwise. 

Given ~ > 0, we may choose M and K so that the process t /can be coupled wth 
a 1-dependent oriented percolation system with the bond probability equal to 
1 - e ,  so that if zEO,,  then Is,,, = 1. 

The general results of Durrett  (1984) can then be used to complete the proof of 
Theorem Three. 
We record some facts to be used later. 

Fact 3.1 
Let W~ be a symmetric stable process of index :~ (see e.g. Ethier and Kurtz 
(1985), Chap. 3, Sects. 6-8). For a continuous time random walk 73 with jumps 
distributed as p(x, ), there are constants t (M)  so that the continuous time process 
VM(s) = ~ ,M)JM converges to W~ in the Skorohod topology on D [0, II (see e.g. 
Ethier and Kurtz (1985), Chap. 3, Sects. 6 8). 

Fact 3.2 
A continuous time random walk 7, with transition probabilities p(x, y) is transient 
(see e.g. Feller (1971), Theorem 3, page 580). 

Fact 3.3 
Given ~ > 0, we can find M(e) so that ]z[ > M implies P~ hits z] < e. Here 
PY[ ] denotes the probability of an event for a random walk starting at y. (See for 
example Spitzer (1965), P3 page 293.) 
The following corollary is self evident: 

Corollary 3.4 Given M and e > O, we can find R(e, M)  so that [z] > R implies 
PZ[17~ I < M for some tJ < e. 
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L e m m a s  3.5-3.9 below establish couplings between our  reaction diffusion process 
and systems of r a n d o m  walks. These lat ter  processes are easier to deal with in 
establishing that  the number  of occupied sites grows large as t becomes large. 

The following l emma  is just  an appl icat ion of Corol la ry  A2 of Shiga and 
U c h i y a m a  (1986, page 114). (A system of k r a n d o m  walks can be considered as 
a finite process on X = zZ~.) 

L e m m a  3.5 Let X~, i =  1 , 2 , . . .  ,k, be independent random walks until 
T =  inf{t > 0:3i ~=j so that X~ = X]}. At time T let each process be taken to 
a graveyard state A. I f th  is a reaction-diffusion process with tlo(Xto) > O for each i, 
then there is a coupling of the processes so that for all t 

rh(X~) > 0 for each t . 

By convent ion  we write ~,(A) > O for each t. 

Remark. If  for each different i and j, X~ and X~ are at least M(e) apart ,  then it 
follows f rom Fact  3.3 that  P [ T <  o~] < k2e. When  L e m m a  3.5 is used, we will 
usually be dealing with start ing posit ions so that  P [ T < oe] is negligible. 

Fo r  L < N in Z +, let us define an (L, N)  shoot ing process yL, N as a cont inuous 
t ime M a r k o v  process on $1 w Z 2 u A where Sz equals Z x {A, B} and A is a grave- 
yard  state that  the process can never leave. We will always have yL, U in S~. The 
process yL, N has genera tor  

on $1 (g2f)(x, A) = ~ p(x, y ) ( f ( y ,  A) - f ( x ,  A)) + fi(1)(f(x,  B) - f ( x ,  A ) ) ,  
Y 

(f2f)(x, B) = ~ p(x, y ) ( f ( y ,  A) - f (x ,  B)) + 6(1)(f(x, A) - f (x ,  B)) 
Y 

+ ~ p(x, y ) ( f ( x ,  y) - f ( x ,  B)) 
L < [ x - y l < N  

o n  Z 2 

(~2f)(x, y) = ~ p(x, z ) ( f ( z ,  y) - f ( x ,  y)) + ~ p(y, z ) ( f ( x ,  z) - f ( x ,  y)) 
y ~ z  z ~ x  

+ (p(x, y) 4- p(y, x ) ) ( f ( A )  - - f ( x ,  y ) ) .  

As is evident f rom the genera tor  on Z 2, after the process jumps  f rom $1 to Z a it can 
be thought  of as a pair  of particles performing independent  r a n d o m  walks which 
disappear  on meeting. Let T L' n = inf{ t: yL, n ~ Z a }. On  the stochastic interval 
[0, TL'N), yL, N can be writ ten as (Xlt, Nt) where X 1 is a r a n d o m  walk and 
N t ~ {A,  B}.  When N t = B ,  the process "shoots  out"  or creates a second particle at 
rate ~ , t  < lyl < NP(0, y) > 0. Let V L'N = inf{t: YL'NeA }. On the stochastic interval 
[TL, N, vL, N), yL, U can be writ ten as (X~, Xt  b) where the Xs are independent  
r a n d o m  walks which disappear  on meeting at V L'N. 

Notation. Given an L, N shoot ing process yL, N , Xt~ is a r a n d o m  walk so that  
yL, N (Xlt Nt) for t < T L'N. For  all t >= L,N a b = , T (X t ,  X t  ) denotes a pair  of r a n d o m  
walks (killed upon  meeting) so that  yL, N = (XT, Xt  b) for t >= T L'N. 
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Lemma 3.6 Suppose that YL'S e S~. For any L and N with ~ L <  lyl < ~p(O, y) > 0 we 
have T L'N < oo a.s. but l i m L ~ o o P [ V  L'N < oO] = O. 

Remark. It should be noted that the distributions of the s topping times T L'N and 
T L'N are independent of the initial point  of y L , N  in Sz. 

Proof  Let k = Y,L <lyl < Np(0, y). The process Nt jumps  from A to B at constant  
rate fi(1) and when the process N, is equal to B, y~,N will jump from $1 to Z 2 at rate 
k. Since the process is time homogeneous,  it must  jump eventually from Sx to Z 2. 

On  the other  hand during the time interval [ T L'N, V L'Nj the process yL, N can 
be written as two independent r andom walks X" and X b which are distance more 
than L apart  at time T L'N and for which V L'N = inf{t > TL 'N:X  ~ = Xb}. The 
result now follows from Fact  3.3, the Markov  property, and the translation 
invariance properties of r andom walks. [] 

A k-tuple of processes ( y r ,  N, Xta . . . .  , Xt  k) is a k-dimensional L, N shooting 
process if 
(1) For  t < T =  inf{s: Yf 'Ne Z 2  or 31 < i < j  < k with X~ = XJs the process 

yL, N behaves like an L, N shooting process and the X J j  > 1 behave as r andom 
walks. All processes behave independently. 

(2) If  T, of (1) above, = T L'N = inf{ s: Ys L' N e Z 2 }, the on [ T, ~ )  the k + 1 processes 
a b X t ,  X t ,  X { , . . . ,  X~t behave as system of independent r andom walks which 

disappears when any two meet. 
(3) If T = inf {s: 31 < i < j < k with X~ = Xj},  then all processes are instantly sent 

to A a graveyard state where they remain. 

Lemma 3.7 Let  ( yL,  N, X 2, X 3, . . . , X ~ )  be a k-dimensional L, N shooting process. 
Let  Yo c';'T = (xl ,  n)eS1  and XJo = x j f o r  j > 1. 
Let  ti, be a reaction-diffusion process with 

For each j tio(Xj) > 0 and tio(xl)  > 2 if  n = B. 
Then the above processes can be coupled together so that for all t. 

i. For j e [ 2 ,  r] tit(xJt) > O. 
ii. For t < T L'N, if  yL, U = (X, n) then tit(x) > 0 and tlt(x ) > 2 if  n = B. 
and 
iii. f o r  t > T L'zv, t i t(Xf),  t i t(X b) > O. 

Proof  The Lemma is proved by simply compar ing  relevant jump rates and 
applying Corol lary  A.2 of Shiga and Uch iyama  (1986). [] 

Lemma 3.8 Given integers K and k and an a < O, there exists T(e, k, N)  so that for 
t > T  

P { there exist Xl, x2 . . . .  x k each distance K apart f rom the others, 

so that rh(Xi) > OVi] > 1 - e . 

We use induct ion on k. The result is trivially true for k = i and any K and e. 
Suppose now that the result has been proved for k - 1 and any K and e > 0. Fix 
e and K. Choose M so large that for I z[ > M, 

C 

P~[3 t  > 0: ]Xt] < 2KJ < 10k2 . 
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Then  pick N > M with ~ M <  Izl <up(0,  z) > 0. Finally we choose K1 so large that  
]zl > K~ implies P~[I~,] < 2N for some t] < e/ lOk 2. 

By induction there exists T1 = T(e/4, k - 1, Ks )  so that  

S(T1)~/0(there exists x l ,  x2, Xk-1 (each pair  K1 apart)  s.t. rl(xi) > 0 Vi) > ~/4 .  

Let (yZ,  U, X 2, X 3 . . . .  X k - l )  be a k - 1 dimensional  L, N shoot ing process. By 
L e m m a  3.7 and the above definition of / '1 ,  outside of a set of probabi l i ty  e/4, we can 

Ys , X~ , . . . , X ,  so that  couple r/s+ r,  and independent  processes L,u 2 k- 

t l r~+, (X[ )>O f o r i = l ,  2 ,3  . . . .  k -  1 ,  

r / r , + d X ~ ) > 2  f o r N ~ = B a n d t < T  L'N. 

tlr,+<(Xf), ~IT~+dX~) >_-- 1 for t >= T c'N , 

and 
yL, U = (Xl, 1), XJo = xj  f o r j  > 1 with Ixi- xjl > Ks for i 4=j.  

Our  choice of Ks ensures that  outside of a set of probabi l i ty  e/4 + 

(k - 1) 2 1 0 ~  < 3~/8 at t ime T~ + T c'N the shoot ing process has not  hit A, and we 

have 
LN 

a Fr'/,,  = (Yl, Y2) 
b X j = Yj+I f o r j  > 1, with l Y j -  YzI > X for i 4:j. 
We now couple the process r/r I + TL.N + s with a system of independent  r a n d o m  
walks Y~(Y~ = yj) as in L e m m a  3.5. Removing  a further set of  probabi l i ty  e/10 we 
have that  for all t imes s the { Y~} are all at  least N apart .  Thus  we have shown that  
outside of a set of probabi l i ty  at mos t  3e/8 + e/10 < e/2, we have for t > T1 + T L'N 
that  there exist sites zz i = 1 , 2 , . . . , k  each > K apar t  f rom the others so 
that  th(z~ ) > 0. The result now follows by taking T = T(e, k, K)  so large that  
P [  T < T1 + T z 'u]  is less than e/2. [] 

Definition. Fo r  an interval  I, {r/I: t > 0} denotes the modified reaction-diffusion 
process for which no sites are occupied outside I and for which particles a t tempt ing  
to j u m p  outside I are destroyed. Formal ly  r/~ has genera tor  

f2s f (r l )  = ~ f l ( t l ( x ) ) [ f ( t l  + ex) - f ( r / ) ]  + ~ 5 ( r / ( x ) ) [ f ( r / -  ex) - f ( r / ) ]  
x ~ I  x ~ I  

( ~  r l ( x ) p ( x , y ) [ f ( t l - - e x  + e~,) - f 0 7 ) ]  E + 

y ) [ f ( t / -  e~) - f ( ~ ) ]  ~. 2 + ~(x )p(x ,  
y ~ l  c / 

The following is a direct consequence of Corol la ry  A2 of Shiga and Uch iyama  
(1986). 

L e m m a  3.9 Let  ~l~o(Xl) > O for i = 1, 2 . . . .  k. Consider independent random walks 
X i (Xio = xi) which are killed outside I, and which all simultaneously die thefirst  time 
two of  the walks meet. We may couple 17[ with the random walks so that for  all t > 0 

I i t / , (X, )  > 0 .  
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An analogue of Lemma 3.7 also holds. The following corollary follows simply from 
the proof  of Lemma 3.8 above. 

Corollary 3.10 Given integers V, K and k and an e > 0, there exists T(e, k, N) and 
R(e, k, N)  so that for any r/(o -g 'g )  with r/(o-R'a)(z) > 0, for some z in [ - -  V, V] 

P [there exist Xx, x2 . . . .  xk each distance K apart  from the others, 

so that tl(T-R'R)(xi) > OVi] > 1 - g. 

We are ready to begin our renormalization process. For the time being let k and 
be fixed. Choose K to be greater than the M(e) of Fact 3.3. Then pick 

T ( =  T(e, k, K))  and R(=R(e ,  k, K)) as in Corollary 3.10. 
It follows from Fact 3.2 and simple properties of symmetric stable processes 

that there exists a c > 0 (not depending on k, K, ~) etc.) so that for M sufficiently 
large we will have 

inf P[y~M)~(3M/4 ,  M)~ > c > 0 
Iz] < M / 2  

where vM is a random walk killed outside ( - M ,  M) and t (M)  is the number given 
in Fact 3.2. We may choose such an M and will assume that M > R/4. 

For (z, n )EZ  ~ • Z+, z + n = 0(rood2), we will write I z'n = 1 if rl(t(za)+r),,(x) > 0  
for some xE( ( z  - 1)M, (z + 1)M); I z'n = 0 otherwise. In the next few paragraphs 
we will develop some theory which will enable us to compare the set of (z, n) for 
which I -''n = 1 with the set of points connected to (0, 0) in a supercritical, 1- 
dependent, oriented percolation. The lemma underneath follows from the attract- 
iveness of our reaction-diffusion processes (modified or otherwise) and Corollary 
A2 of Shiga and Uchiyama (1986). 

Lemma 3.11 Consider modified reaction-diffusion processes rlZt and independent 
processes rt[J for j = 1, 2 . . . .  k where 
1 The I j are disjoint sub intervals of I 
2 tlxoJ(x) <= rlIo(X). We may couple the processes so that for all t 

For  x in I j, tl[ J (x) < rl[(x).  

Lemma 3.12 Consider the process t/~ -M'M) with tI(O-M'M)(x) > 0 for Ixl < M/4. 
Outside a set of probability e(k 2 + 1) + (1 - c) ~ we have ~(-u,M)I,,~ q t ( M ) + T k Y ]  > O for some 
y in (3M/4, M). 
(Similarly for some y in ( - M ,  -3M/ 4 ) . )  

Proof. From Corollary 3.10 it follows that (outside of a set of probability e), 
~I(T-M'M)(Xi) > 0 for k distinct points x~, x2 . . . .  Xk each K apart  from the rest and 
in the interval ( - M / 2 ,  M/2). (Recall that R < M/4). We now use our coupling of 
Lemma 3.9 and assume that there are k independent random walks X j, killed on 
leaving ( - M ,  M), so that "~T+*'~(-U'M~r > 0. We recall how M was selected and 
deduce that if there does not exist a site y in (3M/4, M) which has a particle at time 
t(M) + T then either 
(i) Two of the random walks X~ must have met 

o r  
k (ii) For each k, Xt(M) is not in (3M/4, M). 

The first event has probability bounded by k2e while the second has probability 
less than (1 - c) k. [] 



The ergodicity of a class of reversible reaction-diffusion processes 273 

Lemma 3.11 allows us to assume the existence of processes (for z + n even) 
,tl l(z- 1)M, (z + 1) M) with the properties 
1 For  s e [ 0 ,  t (M)  + T ]  "tl~(z-1)M'(z+I)M)(X) <= t l , ,(M)+r)+s(X) 
2 "~(O(Z-1)M'(z+1)M)(x) = t/,(t(M)+r)(X) for x e ( ( z  -- 1)M, (z + 1)M). 
3 The process ,q~(z-~)M,(z+~)M) is condit ionally independent  of the processes 

mq~(y- ~)M,(z+ ~)U) for m < n((y, m) # (z, n)) given ~ , , ( ~ ) + r ) .  

Proof of  Proposition 3.1 We shall say that  (z,m) connects with (y, m + 1) 
(y z + 1) ~r m.((~-l)M,(z+l)~t)t~ 

= _ _  x x  qt(M)+T ~.,~,1 > 0 for some x, Ix -- y[ < M/4. It follows from 
Lemm a  3.11 (and the translat ion invariant properties of the process) that: 
(i) The event {(z,m) connects with (y ,m + 1)} has condit ional  probabil i ty 

> 1 - e(k 2 + 1) - (1 - c) k given the a field F~ (=  o-{t/s: s < m( t (m)  + T)}), on 
I~'m= 1. 

(ii) The events {(z, m) connects with (y, m + 1)} is conditionally independent  of 
a({(z ' ,  m) connects with y', m + 1)}, z' + z) given Fro. 

Given these observations Proposi t ion 3.1 follows easily since e can be arbitrarily 
small and k arbitrarily large. 

Proof of Theorem Three. To prove Theorem Three it will suffice to verify that  
conditions (i) and (ii) of Proposi t ion  1.1 hold. To this end we recall some facts about  
oriented percolat ion found in Durre t t  (1984). 

Fact 3.13 
For  oriented percolat ion with the connect ion probabil i ty sufficiently close to 1, 
there exists a ~ > so that for A ~ Z 1 x {n}, 

P [A is not  connected to the infinite cluster] < e-~lAI.  

See Durre t t  (1984) pages 1026-1029. 
F rom this easily follows 

Fact 3.14 
As p tends towards 1, P[ (0 ,  0) is connected to the infinite cluster C]  tends to 1. 

Fact 3.15 
If I, = inf{z: (z, n) is connected to (0, 0)} and r, = sup{z: (z, n) is connected to 
(0, 0)}. Then on ~2 (~176 = {(0, 0) is connected to the infinite cluster C} we have for 
supercritical percolat ion that  

rn l n 
* e( > 0 ) , - - - ,  - e  a s n t e n d s t o  oo. 

n n 

See Durre t t  (1984), pages 1005, 1024-1025, and in the interval [In, r,] x{n}  
the points in C coincide with the points connected to Z 1 x {0}. See Durre t t  (1984), 
page 1021. 

Using the second part  of Fact  3.19 and time reversal it follows that 

Fact 3.16 

inf P[-(0, 0) is connected to (0, n)] tends to 1 as p, the connect ion probabil i ty tends 
n e v e n  

to 1. See Durre t t  (1984), pages 1021 1023. 
The following also follows easily from time reversal ideas. 
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Fact 3.17 
On the event (2 ~~ 0) there exist infinitely many  points (0, n) which are connected to 
(0, 0). 
We proceed to proving that proper ty  (i) holds. Fact  3.16 states that for any 6 > 0 

there exists a p~ so that for connect ion probabilities p __> pa inf P[-(0, 0) is connec- 
n e v e n  

ted to (0, n ) ] > l - 6 .  We may  choose e so small and k so large that 
(k 2 + t)c + (1 - c) k < 6. By Proposi t ion 3.1 we can then find M so large that the 
r andom set of vertices {(z, n): I (z'"~ = 1} contains the vertices of a 1-dependent 
oriented percolation with connect ion probabili ty > (1 - 6) connected to (0, 0). 

It follows that  at times 2n(t(M) + T) the probabil i ty that  there exists an x in 
( - M ,  M) with YI2n(t(M)+T, (X) 7~" 0 exceeds (1 -- 6). We now choose D so large that 
for each t in [0, t(M) + T] P[l,~tl > D]  < 6. It follows from the Markov  proper ty  
of the process t h and Lemma 3.5 with k = 1, that  for all t the probabil i ty that there 
exists an x in ( -  (M + D), (D + M))  with qt(x) > 0 exceeds (1 - 2c5). Since 6 is 
arbitrary we have proved that condit ion (i) holds. 

To prove (ii) we first note that if I ~ is equal to 1 for infinitely many  n, then 
(outside of a set of probabil i ty zero), the coupling of  Lemma 3.5 entails that  for each 
x there must  exist infinitely many  integers m with G,(x) > 0. So given 6 > 0 we can 
take M as in the preceding paragraph.  Fact  3.16 entails that  for this renormaliz- 
at ion the probabil i ty that  I o,, is 1 for infinitely many  n exceeds 1 - 26. Proper ty  (ii) 
follows from the arbitrariness of 6. 
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