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Summary. We build on recent results of Durrett, Ding and Liggett to establish
ergodicity in a class of reversible reaction-diffusion processes.

This paper concerns a class of reaction-diffusion processes. The reaction-diffusion
process has state space X = {#: Z¢ - Z*}. We think of (x) as representing the
number of particles at site x. The particles move as follows:

Particles are born at site x at rate f(n(x)). (Or alternatively, at rate B{n(x)),
n—n+ e,, where e.(y) equals 1 if x = y and is 0 otherwise.)

Particles at site x die at rate d((x)). (Or alternatively, at rate 6(n(x)),
n—n — e, where e,(y) = d,(y)). Necessarily 6(0) = 0.

At rate y(x)p(x, y), a particle jumps from x to y, where p(x, y) is the transition
matrix of an irreducible symmetric random walk on Z¢ with p(x, x) = 0.
(Alternatively, # > 5 — e, + ¢,.)

Under suitable assumptions on f and d (see Chen (1985)), there exists a continuous
time Markov process on a subset of X as described above, which (formally) has
generator

Qf(n) =2 BGNLf (1 + ex) —f(M]1 + L 3N Lf(n — ex) = f(m)]

+ 2 2 1)p(u LS —ex +e,) —f ()] .

In a recent paper, Ding et al. (1990), hereafter referred to as DDL, dealt with
reaction-diffusion processes where for some k,

B = 3 byx¥
j=0

and k+1

S(x)= Y ¢;x
j=1
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and b; = Ac;.; >0 for some 41> 0. In the above, x¥' = x(x — 1)(x —2). ..
(x —j+ 1), x9=1.

One of the reasons for the interest in this class of processes is that simple
invariant measures are known. Janssen (1974) shows that in the above case v, the
measure on Z“¢ where {#(x): xe Z?} are independent Poisson random variables
with parameter 4, is stationary and reversible for the process. In fact, DDL showed
that if by > 0 then v is the only stationary distribution and that it is the limit
starting from any initial state. DDL’s result is trivially not true if by = 0, since then
the birth rate at n = 0 is zero, so the point mass at 5(x) = 0 is also stationary. In
this case DDL conclude:

Theorem one. In the case where by = 0, the only translation invariant, stationary
distributions are convex combinations of v and the point mass at 0, d,.

However, for the class of reaction-diffusion processes under consideration,
by = 0 implies that ¢; =0, so a process starting from a non-identically zero n,
never dies out; that is, it never becomes identically zero. Of course this does not
preclude the process tending to d, in distribution. Shiga (1988) asked whether under
these conditions the system beginning from #, + 0 must tend to v in distribution.
We prove the following theorems:

Theorem two. Let a reversible reaction diffusion process satisfy

1 bo =Cy = 0,

2 for each j, b; = icjiq,

3 Z1y|p(0, y) < oo,

then the process tends to v in distribution, starting from any non-identically zero
starting point.

Theorem three. For a reversible reaction diffusion process, under the above
conditions,

1 bo - CI = O,

2 for each j, b; = Acji1,

3 the probability distribution p(0, y) lies in the domain of attraction of a stable law of
index less than one,

then the process tends to v in distribution, starting from any non-identically zero
starting point.

The two results leave open the cases where the random variable corresponding to
p(0, y) is irregular or in the domain of attraction of the Cauchy law.

The two theorems have different proofs: Theorem two follows because of the
“controllability” of random walks with first moment while Theorem three uses the
fact that the overall process may be compared with auxiliary random walks which
are transient. Despite this, the proofs have common elements, which are presented
in Sect. 1. The proof of Theorem two is completed in Section Two while the proof of
Theorem three is finished in the last section. In the remainder of this introduction
we recall some definitions, recall some important facts and results from DDL, and
make some simple observations.

Notation. Given a configuration # in X, the configuration n* is given by
n*(y) = n(y + x). o . _
Given a subset 4 of X, the subset A is given by n€ 4 if and only if y*e A~
Given a measure p on X, the measure u* is given by u*(4>) = u(A4).
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We denote the semi-group of the process by S(t) ¢ = 0. For a configuration #,
S(t)#n is the measure on X defined by [S(¢)n](4) = P"[n,€ A]. For a subset 4 of
X, S(t)A denotes the function on X defined by n —» [S(#)n](A4).

Definitions. We use the standard partial ordering on X = Z%": 4 < ' if for every
x in Z% n(x) < n'(x).
A function f on X is increasing if # < #’ implies that f(%) < f(n'). We use the
partial ordering on measures on X given by: u; < u, if [ fdu; < [fdp, for every
increasing function f.
For an element 5 of X and a subset 4 of Z¢, the clement #n N A of X is given by

nn A(x)=n(x) if xisin A and is zero otherwise.

We say a site ze Z? is occupied for a configuration # if 5(z) > 0.

Some facts from DDL

A Attractiveness: Suppose that 5y < 5. Then two reaction-diffusion processes
{n,:t =2 0} and {n;: t = 0} with 5, < 5, may be coupled so that for all times ¢,
N <15

B We can start the process with o = 1>, that is the state where the number of
particles at each site is infinite. In this case, for every me Z ™ and every strictly
positive ¢, E[(#°(0))"] < co.

It should be noted that Theorem One and facts A and B imply that S(t)n ® tends to
v in distribution as ¢ tends to infinity. Fact A ensures that we may couple
a reaction-diffusion process {#,: t = 0} with the process {#;° : t = 0} so that for all
t, . = n”. It follows from the above observation that for any #, and for any
increasing function f

limsup [ f(n)d[S(D)ne1(m) < [ f(m)dv(n) .

t—= o0

Suppose now that we knew S(t)e, tends to v in distribution. It immediately follows
from the translation invariant nature of the process and the translation invariance
of v that S(t)e, tends to v as well. If #, is non-zero, there is an x with e, < n,. It
follows from Fact A (again) that for increasing, continuous, and bounded f

§f(n)dv(n) = liminf | f(7)d[S(t)e,](n) < liminf § £ (7)d[S(t)n01(n) -

t—=>

We could then conclude that for any non-zero #, and an increasing, continuous,
and bounded f,

lim §f(m)d[S(t)nol(n) = {f(n)dv(n) .

> o
Such functions constitute a convergence-determining class. Thus, the problem of
showing that for any starting configuration #, S(t)y tends to v in distribution as
t tends to infinity is reduced to showing that S(z) tends to v in distribution
for # = eq.

Consequently, in this paper every reaction-diffusion process {#,: t = 0} has

o = €, unless stated to the contrary. All systems other than #® are finite systems in
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the sense that the initial configuration only has a finite number of occupied sites
and these sites are occupied by finitely many particles.

The author is pleased to thank Tom Liggett for introducing and explaining the
problem and Tokuzo Shiga for showing that Theorem Two could be proved in
greater generality than the author originally thought. The author is also grateful
for their helpful comments and encouragement.

Section one

In this section we show that convergence to the upper invariant measure follows if
two related conditions are satisfied:

Proposition 1.1 Suppose that
1. For every ¢ > 0 there exists a K so that

1 t
liminf;j [S(tyno] [there exists |x| £ K with n(x)>0]dt > 1 —¢
T ¢}

and
ii. For every site x in Z*, there exists P™ a.s. a (random) integer n so that n,(x) > 0.
Then the measures S(t)n, converge to v in distribution.

The proposition is proved via the following lemmas.

Lemma 1.2 Under conditions (i) and (il) above, the measures

1 1
== | S(u)nodu

= J
converge to v as t tends to infinity.

Proof. We first note that while the space X is not compact, we have for every ¢t = 1
t

1
that S(2)n0 < S(1)n*, so the collection of measures . j" S(u)no du is tight. There-
0
fore, convergence to v will follow if every convergent sequence of measures

1 . . e o e

- j S{u)no du with ¢, tending to infinity has v as its limit.

no

Let us take ¢, to be any sequence of times tending to infinity for which

p = lim p, exists. We first show that ¢ must be translation invariant.

Note that since the process is translation invariant, we must have

1 th
lim — | S(u)e,du = pu* .
n~o “B O
The attractiveness of the system ensures that for any #, with n,(x) > 0, we must
have for ¢ larger than »
S(t —n)e, < S{t —m)n, .

Thus it follows that if 4, is the event {n = inf{m: #,(x) > 0}}, then for r greater
than N

r=1

N N
S(t)rf() ; Z PWO[A»']S(K - r)ex + < 1- E PHO[A"} >50 -
r=1
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Integrating this inequality, we obtain for large n

1 N Itn N N
—_[S(t)nodt> ¥ = jP""[A]S(t—r)exdt—&-(l ——><1— Y P"O[A,]>50

r=1 Pl N n r=1
N
Assumption (ii) of Proposition 1.1 guarantees that as N becomes large, Y P"[A4,]

r=1

tends to 1. Thus we let n tend to infinity, then let N tend to infinity, and use
assumption (ii) of Proposition 1.1 to obtain y = u*. But we may interchange the
roles of 0 and x and obtain u* = u in a similar fashion. Thus u = u* and the
measure is translation invariant.

It follows from the main theorem in DDL, quoted in this paper as Theorem
One, that u must be a convex combination of d, and v.

Let By be the set {#:3]x| < K with 5(x) > 0}. Assumption (i) of Proposition
1.1 can be rephrased as

12
for each ¢ > 0 there exists K s.t. liminf — j S(t)nol Bxldt >1 —¢.

t— o0

But for our given sequence t,, this must imply that u(Bg) > 1 — &. Since ¢ may be
taken as small as desired and Jy(Bg) = 0, we must have that y equals v. [J

The above lemma shows that the Cesaro means of the measures S(t)y,
converge to the upper invariant measure v. It remains to show that S(t)#e
converges to v as t tends to infinity. This is a common problem in particle systems.
The following is a simple general lemma.

Lemma 1.3 Consider a measurable bounded function b(t) on t = Q.
1 t
If limsup b(t) = lim " [ b(s)ds = B, then for each ¢ > 0 we have
t— oo t— oo 0
t

Ilm ;f[(b(s)<3~8}ds =0.

t=>w © 0

Proof. Given 6 > 0, there exists T so that b(t) < B + ¢ for all ¢ larger than T.

t
B = lim 1fb(s)ds

t—»ooto

(1 1
éhmlnf( § — & I{b(s)<B E}dS‘{" j B+5)I{b(s)>B E)dS)
0

I~

This entails that
o

1!
limsup — j Lipsy<p-eyds <
t— oo 4 ¢ 5

Since 6 can be made arbitrarily small we are done. O

Let A be any increasing event (that is, the indicator function I is an increasing
function). Then S(#)n®(A4) tends to v(A4) and by attractiveness S(t)y=(4) =
S(t)no(A). Thus, applying Lemma 1.3 to the bounded function b(t) = S{t)n,(A)
with B = v(4), we obtain
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Corollary 1.4 Given an increasing event A and any & > 0,

o AL0EL01: S(pne(A) < v(4) —e}] _

t— o t

0.

Before completing the proof of Proposition 1.1 we require one last lemma. This
lemma is really just a reformulation of Theorem B on page 68 of Halmost (1950).

Lemma 1.5 Suppose B is a measurable subset of [0, T] with A(B)>9/10T (A
denotes Lebesgue measure). Then for every z in [T, 3/2T], there exist x and y in
Bwithz=x+y.

Proof. Suppose not. In that case, there exists a z in the interval [ 7, 3/2 7] which
cannot be expressed in the desired form. This property of z is equivalent to the sets
B and z — B being disjoint. However A([0, 7] n z — B) must exceed 4/107 and so
MBnz— B)=9/10T + 4/10T — T = 3/107. This contradiction establishes the
lemma. O

Proof of Proposition 1.1
To show that S(t)n, converges in distribution to v it will suffice to show that
S(t)no(A) tends to v(A) in distribution

for every cylinder set 4. In turn, to show the above it will be sufficient to show this
for every increasing cylinder set A4.

Recall that B, is the subset of X consisting of configurations which have an
occupied site within n of the origin. Fix ¢ positive but otherwise arbitrarily small.
We can find an #n so big that v(B,) > 1 — &/2. Corollary 1.4 implies that

infxl[{ue[O, t]: S(ut)no(Bn) >1—¢}] _

lim

t— o0

1. ()

Forthisnletiy, iy, . . . iy be an (unimportant but fixed) ordering of the elements of
the lattice within distance n of the origin. Using Corollary 1.4 once more we find
that for a fixed increasing set 4 we must have

Al{uel0, r]: S(u)no(A™) > v(A) —&}] _
t

1

liminf
t— oo
for each k.
Now let V be the set of times u for which
(a) S()no(B,) > 1~ ¢
(b) S(u)ne(A™) > v(A) — ¢ for all k. It follows from the preceding statements that
there is a T such that for all t > 7, A(Vn[0,¢]) > 9/10t. Tt follows from
Lemma 1.5 that for all t > T we can find s and u in V" with s + u = . We fix
such a triple. Now for k=1, 2,..., M, let subsets of X be defined by
C, = {n:k is the smallest j with 5(i;) > 0}. So | J,C, = B, and by condition (a)
in the definition of the time set B we have S(s)no({ Ji=1Ci) > 1 — &. Also by
attractiveness of the system and the fact that A is an increasing event, we have

for ne Gy, [S(u)n1(4) Z [S(u)e;, ]J(A) = [S(u)eo](4™5).
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Since u is a member of ¥, this last expression is greater than v(A4) — &. Thus on
the set B, we have
[S(u)n](A) z v(4) —¢.

Therefore, using the semigroup property and the fact that se V, we have
[S(6)no1(A) = [S(s)no1(S(w)A) = [S(s)n0](I5,S(u)A)
2 (v(4) — e)[S(s)nol(Ip,) 2 (1 —&)[v(4) —¢] .

Since A4 is an arbitrary increasing set and ¢ is arbitrarily small, the proof is
complete. [

Section two

The object of this section is to prove Theorem Two. Given the results of
Section One, we have reduced the problem to verifying conditions (i) and (ii) of
Proposition 1.1.

Throughout this section we take the transition probabilities p(x,y) =
(0, x — y) = p(0, y — x) to satisfy

Y 1yp0, y) < o,
¥y

and to be the transition probabilities of an irreducible random walk. We give
a simple consequence of these assumptions.

Lemma 2.1 There exists a constant ¢ > O such that for all 6 € R? of Euclidean norm
equal to unity, Y 1<y, 0>1p(0,y) > c.

Proof. The map on the d-dimensional unit sphere 8: — {y, 8> is continuous {or
each y. It follows, therefore, from the condition ) ,iy[p(0, y) < oo and the

Dominated Convergence Theorem that the map 6:— Y ,|<{y, 0>|p(0, y) is con-
tinuous. Since the underlying random walk is irreducible, Y ,[<{y, 6>{p(0, y) must
be strictly positive for each non-zero 8. The result now follows from the compact-
ness of the unit sphere. [

We introduce a Markov process {(Y;, Z,): ¢t Z 0} on Z¢x {1, 2} with generator

‘Qf(x9 V) = 1{v=1} Zp(oa y)(f(x + ¥, 1) _f(x= 1))

+Ip=2y Y PO Y(f(x+y 1) —f(x2)

{(yx>20

+I{v=2} 2 p(0> y)(f(xa l) —'f(xa 2))

{(y.x>>0
+ 1=, NS (%, 2) — f(x, 1))
+ 1= 0 f(x, 1) = f(x, 2)) .
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The process Z, jumps from 1 to 2 and back in a way that mimics the way particles
are born and die in the reaction-diffusion process. Y, jumps as a random walk with
jump probabilities p(0, y) if Z, = 1, but if Z, = 2, jumps away from the origin are
suppressed; instead Z; will jump to state 1. We also assume that (Y, Zo) = (0, 1).

We can regard (Y,, Z,) as a process on X by identifying (y, z)e Z¢x {1, 2} with
e X where a(y) = z and a(x) = 0 for x =+ y. It follows from Corollary A2 of Shiga
and Uchiyama (1986) that we can couple the processes (Y;, Z,) and #, (recall that
o = €o) so that for all times ¢

n(Y)zz,.

That is, the state Y, is always occupied by the configuration #, and if Z, equals 2,
then at least two particles are present at the site Y;. Since the transition prob-
abilities are symmetric, Y ¢, > <oP(0, y) is at least 1/2 for all sites x. Consequently,
the jump rate for Y, is always between 1 and 2.

We define the stopping times 7, by

To=0;, forn=>1T,=inf{t>T,_1:Y,+Yr,_,}.

The strong Markov property ensures that the discrete time process
{W, = Yy,:n z 0} is a Markov chain. The following lemma follows easily from the
definition of the transition rates for the process (Y, Z,).

Lemma 2.2 Let Q(x, z) be the transition probabilities for the Markov chain W. There
exists a strictly positive o so that for all sites x

2p0,y)20(xy) 21 +4)p0,y) for {xy>=0
and Q(x, y) £ (1 —)p(0, y) for <{x,y>>0.
Lemma 2.3 The Markov chain {W,:n = 1} is positive recurrent and irreducible.

Proof. The irreducibility of W follows easily from the irreducibility of p(,).
Theorem 9.1 of Tweedie (1976) ensures that to prove positive recurrence it
suffices to show that for some ¢ and N

E[|Wn+1HWn=y]§[y|_8

whenever |y| > N. Showing this constitutes the remainder of the proof. We pick
K so large that Y |, >k|y[p(0, y) < 0¢/10, where o and ¢ are the constants of
lemmas 2.2 and 2.1 respectively. Now consider E[| W, || W, = x] for x of large
magnitude. Write the random quantity W,+, — x as Y;. Then

E[[WuirlIWy=x] = E[1Y5 + x|]1 = ELI Y3l + [xH vy > k1]
+ E[|Y,)f + xII{|Yj[§K}] .

From our choice of K, the first term on the right hand side of the inequality is less
than | x| P[| Y| > K] + ca/5. Since the random quantity | Y| is bounded by K, we
can use the binomial expansion to write

E[|Y; + x|I{|ij\ <k}l = E[(1Y,1? +2{x, Y,> + |x?2)1/21{1Y:[§K}]

N NI R Y Iyyi<xy |-
| x] x| S
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It follows from Lemma 2.2 that

X X
E|:<Yﬁ=—>1{|mgf<}}< > (1+<x)p(0,y)<—,y>
|x] " Iy] €K, (xov) £0) x|

+ Y (1—oc)p(o,y)<i,y>

[y <K (%) >0) Ix|

X

[yl =K

From our choices of K and ¢, it follows that the last term is less than
—oafc — ca/10), which is less than —oac/2. Collecting all our work together, we find
that

ELIW, o 1|[Wa=x] = P[|Y3] > K]|x| + ca/5 + P[|Y5] = K]|x]

—co/2 + O<i> < x| — caf5

x|
for |x| large enough and the lemma is proven. O

Proof of Theorem Two. We are now ready to verify conditions (i) and (ii) of
Proposition 1.1. Lemma 2.3 states that the Markov chain W is positive recurrent
and irreducible. Therefore, for each x in Z¢, there will be a time ¢ at which the
process Y, hits x and stays there for at least unit time. This ensures that (ii) holds for
the process #,. It remains to establish (i). The Markov chain W has an invariant
probability measure 7. By Lemma 2.2, irrespective of the state Y1, {7, — T},_, }
are stochastically greater than exponential random variables with mean 1/2 and
stochastically less than exponential random variables of mean 1. It follows from the
strong law of large numbers that for any subset 4 of Z¢ we have with probability 1

A{s<t1:Y,ed}

limsup ;

1= ®

<2n(A).

Let us take A to be the set { y:|y| > n} where n is so large that n(A4) < /4. Then we

have
Als <117,
P|: {S"tLS|>n}<§f}—>l ast— .

Condition (i) follows via an application of Fubini’s Theorem. [

Section three

In this section we prove Theorem Three. Henceforth, we assume that the probabil-
ity law p(0, y) is in the domain of attraction of a (necessarily symmetric) stable
random variable of index o < 1. As with Theorem Two, it only remains to show
that under the conditions of this section conditions (i) and (ii) of Proposition 1.1 are
satistied. As will be evident {from the proof, no generality will be lost by assuming
that the dimension of the state space for the underlying random walk is one. To
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minimize notational complexity, we make this assumption. Throughout this sec-
tion any random walk is assumed to be a continuous time random walk with jump
rates (and probabilities) p(x, y).

We use block arguments based on ideas found in Bramson (1989) and Bramson
et al. (1989). For a given M and K, we consider random variables I, , defined by

I,=1 ifng(y)>0 forsomeyin ((z— )M, {(z+ 1})M)
=0 otherwise .

We compare the above variables with a 1-dependent oriented percolation system.
An oriented percolation system is a directed graph with vertex set equalto Zx Z*
and directed edges from vertices (z, n) to vertices (z + 1, n+ 1}or (z—1,n + 1).
These edges are open with (bond) probability p and closed with probability 1 — p.
The system is I-dependent if edges between disjoint vertex pairs are indepen-
dent. We write Y for the set of z so that (z, n) is connected to some point in
A( < Z x {0}) by a path of open edges. If A = (0, 0), the superscript is suppressed.
The majority of work in this section is to the end of proving

Proposition 3.1 Consider the reaction-diffusion process {n,:t = 0} with 5, = eq. For
a given M and K we define I, , by

L,=1 ifnk(y)>0 forsomeyin((z— DM, (z+ 1)M)
=0 otherwise .

Given ¢ > 0, we may choose M and K so that the process # can be coupled wth
a l-dependent oriented percolation system with the bond probability equal to
1 —¢,sothatifzey,, then I, , = L

The general results of Durrett (1984) can then be used to complete the proof of
Theorem Three.
We record some facts to be used later.

Fact 3.1

Let W, be a symmetric stable process of index « (see e.g. Ethier and Kurtz
(1985), Chap. 3, Sects. 6-8). For a continuous time random walk v, with jumps
distributed as p(x, ), there are constants t(M) so that the continuous time process
VM(s) = y,0us/ M converges to W, in the Skorohod topology on D[0,1] (sce e.g.
Ethier and Kurtz (1985), Chap. 3, Sects. 6-8).

Fact 3.2
A continuous time random walk y, with transition probabilities p(x, y) is transient
(see e.g. Feller (1971), Theorem 3, page 580).

Fact 3.3

Given ¢ > 0, we can find M(e) so that |z| > M implies P°[y, hits z] < e. Here
PY[ ] denotes the probability of an event for a random walk starting at y. (See for
example Spitzer (1965), P3 page 293.)

The following corollary is self evident:

Corollary 3.4 Given M and ¢ > 0, we can find R(s, M) so that |z| > R implies
P |y.] < M for some t] < &.
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Lemmas 3.5-3.9 below establish couplings between our reaction diffusion process
and systems of random walks. These latter processes are easier to deal with in
establishing that the number of occupied sites grows large as ¢t becomes large.

The following lemma is just an application of Corollary A2 of Shiga and
Uchiyama (1986, page 114). (A system of k random walks can be considered as
a finite process on X = Z4")

Lemma 3.5 Let X! i=1,2 ...,k be independent random walks until

=inf{t > 0:3i +j so that X} = X]}. At time T let each process be taken to
a graveyard state A. If n, is a reaction-diffusion process with o(X%) > 0 for each i,
then there is a coupling of the processes so that for all t

n(XH>0 foreacht.
By convention we write #,(4) > 0 for each t.

Remark. 1If for each different i and j, X} and X3 are at least M(¢) apart, then it
follows from Fact 3.3 that P[T < o0] < k*s. When Lemma 3.5 is used, we will
usually be dealing with starting positions so that P[ 7 < oo] is negligible.

For L < Nin Z*,let us define an (L, N ) shooting process Y% as a continuous
time Markov process on S; U Z2 U A where S, equals Z x {A, B} and 4 is a grave-
yard state that the process can never leave. We will always have Y5~ in S;. The
process YE¥ has generator

on §; (Qf)(x, A) ZP(X N A) = f(x, A)) + BA)(f(x, B) = f(x, 4))
(Qf)(x, B) = ZP(X I (y, 4) =1 (x, B)) + 6()(f (x, 4) — f(x, B))

+ Y pley(f(xy)—f(x, B))

L<|x—y|<N

on Z?

@N(xy) =% p(x2)(f(z ) —fx )+ X p(2)(f(x,2) = f(x, )

y#*z z#x

+ (p(x, y) + p(y, N (f(4) = f(x, y)) -

As is evident from the generator on Z?2, after the process jumps from S, to Z2 it can
be thought of as a pair of particles performing independent random walks which
disappear on meeting. Let 75" = inf{s: Y"NeZ?}. On the stochastic interval
[0, T-M), Y=Y can be written as (X}, N,) where X' is a random walk and
N,e{A, B}. When N, = B, the process “shoots out” or creates a second particle at
rate Y <, <nP(0,y) > 0. Let V¥ = inf{#: Y=Y e 4}. On the stochastic interval
[T5N, VEN), YEN can be written as (X7, X!) where the Xs are independent
random walks which disappear on meeting at V=¥,

Notation. Given an L, N shooting process YV | X! is a random walk so that
YN =(X1, N)fort < THYN Forallt > T% N (X X?) denotes a pair of random
walks (killed upon meeting) so that Y=¥ = (X, X?) for t = TEV.
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Lemma 3.6 Suppose that Y5 €S,. For any L and N with Y 1, <, <xp(0, y) > 0 we
have TN < oo as. but lim; , ,P[VEY < 0] = 0.

Remark. Tt should be noted that the distributions of the stopping times 7%V and
TV are independent of the initial point of Y%V in §,.

Proof. Let k=31 <y <nP(0, y). The process N, jumps from A to B at constant
rate (1) and when the process N, is equal to B, Y will jump from S, to Z2 at rate
k. Since the process is time homogeneous, it must jump eventually from S, to Z2.

On the other hand during the time interval [ 75", V¥ ¥] the process Y*" can
be written as two independent random walks X* and X® which are distance more
than L apart at time 75" and for which V" =inf{r > T": X* = X*}. The
result now follows from Fact 3.3, the Markov property, and the translation
invariance properties of random walks. [

A k-tuple of processes (YN, X2, ..., X¥) is a k-dimensional L, N shooting
process if

(1) For t < T=inf{s: Y""eZ? or 31 £i <j <k with X[ = X}, the process
YN behaves like an I, N shooting process and the X/j > 1 behave as random
walks. All processes behave independently.

(2) It T, of (1) above, = T™¥ = inf{s: Y-V e Z?}, the on [ T, o) the k + 1 processes
X% X X2, ..., X¥ behave as system of independent random walks which
disappears when any two meet.

(3) T =inf{s: 31 £i<j < kwith X! = X7}, then all processes are instantly sent
to A a graveyard state where they remain.

Lemma 3.7 Let (Y-N, X2, X3, ..., X5 be a k-dimensional L, N shooting process.
Let Y5V = (xy,n)eS; and X} = x; for j > 1.
Let u, be a reaction-diffusion process with
For each j no(x;) > 0 and no(x,) 22 if n=B.
Then the above processes can be coupled together so that for all t.
i. Forje[2,r] n(X{)>0.
ii. Fort < T, if YEN = (x, n) then n,(x) > 0 and n,(x) = 2 if n = B.
and
iti. Fort=TEN, 5 (X9, n(X?)>0.

Proof. The Lemma is proved by simply comparing relevant jump rates and
applying Corollary A.2 of Shiga and Uchiyama (1986). [

Lemma 3.8 Given integers K and k and an ¢ < 0, there exists T(g, k, N) so that for
t>T

P{there exist X, x5, . . . X each distance K apart from the others,
so that n,(x;) > 0vVi]>1 —¢.

We use induction on k. The result is trivially true for k =1 and any K and e.
Suppose now that the result has been proved for k — 1 and any K and ¢ > 0. Fix
g and K. Choose M so large that for |z > M,

&

P[3t>0:|X,] <2K] < 102
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Then pick N > M with Y 5 <1, <»P(0, z) > 0. Finally we choose K, so large that
|z] > K, implies P*[}y,] < 2N for some ] < ¢/10k?.
By induction there exists Ty = T(¢g/4, k — 1, K,) so that

S(T,)ne(there exists x, x5, x,— (each pair K, apart) s.t. (x;) > 0 Vi) > ¢/4 .

Let (YN, X2, X3, ... X* !)be a k — 1 dimensional L, N shooting process. By
Lemma 3.7 and the above definition of T, outside of a set of probability ¢/4, we can
couple 7, r, and independent processes Y& ¥, X2, ... X571 g0 that

N +(XH>0 fori=1,2,3,... k-1,
Hr,+(X) =2 for Ny=Band ¢t < TEV.
Hr+(XE), 77T1+I(X£7) >1 fort=TMV,

and
Yo =(xy, 1), Xh=x; forj>1with |[x;— x;| > K, forij.

Our choice of K; ensures that outside of a set of probability &/4 +
(k— 1y

10 7S < 3¢/8 at time T; + T™¥ the shooting process has not hit 4, and we
have

a Ylfb{\iv = V1, ¥2)

b X/ =y;s, forj>1, with |y; — y;| > N for i % j.

We now couple the Process 1, 1 =8 4 with a system of independent random
walks Y{(Y} = y;) as in Lemma 3.5. Removing a further set of probability /10 we
have that for all times s the { Y7} are all at least N apart. Thus we have shown that
outside of a set of probability at most 3¢/8 + &/10 < ¢/2, we havefort > T; + TV
that there exist sites z; i=1,2,...,k each > K apart from the others so
that 7,(z;) > 0. The result now follows by taking T = T(s, k, K) so large that
P[T < T, + T""]is less than /2. []

Definition. For an interval I, {n]:t = 0} denotes the modified reaction-diffusion
process for which no sites are occupied outside I and for which particles attempting
to jump outside I are destroyed. Formally 5{ has generator

QUf(m) = Y BNLf(n + ex) —f(M1+ X d@CNLS(n — es) —f(m)]

xel xel

+ 2 ( Y 0(x)p(x, »)[f(n—ex+e) —f(m)]

xel \yel

+ 2 n(x)p(x YL (1 — ex) = f ()] ) :

yel®

The following is a direct consequence of Corollary A2 of Shiga and Uchiyama
{1986).

Lemma 3.9 Let no(x;))>0fori=1,2,...k Consider independent random walks
X' (X o = x;) which are killed outside I, and which all simultaneously die the first time
two of the walks meet. We may couple 5| with the random walks so that for all t > 0

ni(XH>0.
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An analogue of Lemma 3.7 also holds. The following corollary follows simply from
the proof of Lemma 3.8 above.

Corollary 3.10 Given integers V, K and k and an ¢ > 0, there exists T(g, k, N) and
R(e, k, N) so that for any #4 ®® with n§ ®R)(z) > 0, for some zin [V, V]

P [there exist xy, X5, . . . X, each distance K apart from the others,
so that 7 8 (x,) > 0vi]>1—¢.

We are ready to begin our renormalization process. For the time being let k and
¢ be fixed. Choose K to be greater than the M(e) of Fact 3.3. Then pick
T(=T(e k, K)) and R(=R(s, k, K)) as in Corollary 3.10.

It follows from Fact 3.2 and simple properties of symmetric stable processes
that there exists a ¢ > 0 (not depending on k, K, &) etc.) so that for M sufficiently
large we will have

inf  P[yMu,eBM/4, M)]>c>0
lz] <Mj2
where y* is a random walk killed outside (— M, M) and t(M) is the number given
in Fact 3.2. We may choose such an M and will assume that M > R/4.

For (z,m)eZ' x Z .,z + n = 0(mod 2), we will write =" = 1 if 1 (an+ 1ya(x) >0
for some xe((z — YM, (z + 1)M); I*" = 0 otherwise. In the next few paragraphs
we will develop some theory which will enable us to compare the set of (z, n) for
which I*" =1 with the set of points connected to (0, 0) in a supercritical, 1-
dependent, oriented percolation. The lemma underneath follows from the attract-
iveness of our reaction-diffusion processes (modified or otherwise) and Corollary
A2 of Shiga and Uchiyama (1986).

Lemma 3.11 Consider modified reaction-diffusion processes w! and independent
processes wli for j=1,2, ... k where

1 The I’ are disjoint sub intervals of 1

2 75 (x) £ ni(x). We may couple the processes so that for all t

For x in I’, !’ (x) < #l(x) .

Lemma 3.12 Consider the process 5™ ™™ with 5 M™(x) >0 for |x| < M/4.
OQutside a set of probability e(k* + 1) + (1 — ¢)* we have niGy 4 (y) > 0 for some
yin (3M/4, M),

(Similarly for some y in (—M, —3M/4).)

Proof. From Corollary 3.10 it follows that {outside of a set of probability &),
nG MM (%) > 0 for k distinct points Xy, X5, . . . x; each K apart from the rest and
in the interval (—M/2, M/2). (Recall that R < M/4). We now use our coupling of
Lemma 3.9 and assume that there are k independent random walks X/, killed on
leaving (— M, M), so that n**)(XJ) > 0. We recall how M was selected and
deduce that if there does not exist a site y in (3M /4, M) which has a particle at time
t(M) + T then either

(i) Two of the random walks X! must have met

or

(i) For each k, X ¥y is not in (3M/4, M).

The first event has probability bounded by k¢ while the second has probability
less than (1 — ¢)*. O
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Lemma 3.11 allows us to assume the existence of processes (for z + n even)

ny{E DM 2+ DM) with the properties

1 For se[0, t(M) + T] "p{ DM ETDM0 () < poany+ 1y+5(%)

2 " {ET M EEDM(x) = 1, any+ 1y(%) for xe((z — DM, (z + M).

3 The process "y{E~ DM (=*DM) is conditionally independent of the processes
O IME RN for m < n((y, m) # (2, n)) GVeD Mgy 1

Proof of Proposition 3.1 We shall say that (z,m) connects with (y,m + 1)

(y =1z £ 1)if "G E"DM(x) > 0 for some x, [x — y| < M/4. 1t follows from

Lemma 3.11 (and the translation invariant properties of the process) that:

(i) The event {(z,m) connects with (y,m + 1)} has conditional probability
>1—¢(k* + 1) — (1 — ¢)* given the ¢ field F,, (= o {n,:5s < m(t(M) + T)}), on
=" =1,

(ii) The events {(z, m) connects with (y, m + 1}} is conditionally independent of
a({(z', m) connects with y’,m + 1)}, z' & z) given F,,.

Given these observations Proposition 3.1 follows easily since ¢ can be arbitrarily

small and k arbitrarily large.

Proof of Theorem Three. To prove Theorem Three it will suffice to verify that
conditions (i) and (ii) of Proposition 1.1 hold. To this end we recall some facts about
oriented percolation found in Durrett (1984).

Fact 3.13
For oriented percolation with the connection probability sufficiently close to 1,
there exists a y > so that for 4 = Z' x {n},

P[ A is not connected to the infinite cluster] < e~ 74!,

Sec Durrett (1984) pages 1026-1029.
From this easily follows

Fact 3.14
As p tends towards 1, P[(0, 0) is connected to the infinite cluster C] tends to 1.

Fact 3.15

If [, = inf{z: (2, n) is connected to (0, 0)} and r, = sup{z: (z, n) is connected to
(0,0)}. Then on Q% = {(0, 0) is connected to the infinite cluster C} we have for
supercritical percolation that

¥ l
‘L >oa(>0),-— —a asntendsto oo.
n n

See Durrett (1984), pages 1005, 1024-1025, and in the interval [[,, r,]x {n}
the points in C coincide with the points connected to Z" x {0}. See Durrett (1984),
page 1021.

Using the second part of Fact 3.19 and time reversal it follows that

Fact 3.16

inf P[(0, 0)is connected to (0, n)] tends to 1 as p, the connection probability tends

to 1. See Durrett (1984), pages 1021-1023.
The following also follows easily from time reversal ideas.
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Facet 3.17

On the event Q%% there exist infinitely many points (0, n) which are connected to
(0, 0).

We proceed to proving that property (i) holds. Fact 3.16 states that for any ¢ > 0

there exists a p; so that for connection probabilities p = p; inf P[(0, 0) is connec-

ted to (0, n)]>1—35. We may choose ¢ so small and k so large that
(k* + 1)e + (1 — c)* < §. By Proposition 3.1 we can then find M so large that the
random set of vertices {(z, n): 1**™ = 1} contains the vertices of a 1-dependent
oriented percolation with connection probability > (1 — 6) connected to (0, 0).

It follows that at times 2n(t(M) + T) the probability that there exists an x in
(—M, M) with 15, (a)+ 1, (x) > 0 exceeds (1 — ). We now choose D so large that
for each t in [0, t(M) + T] P[|y.| > D] < é. It follows from the Markov property
of the process #, and Lemma 3.5 with k = 1, that for all ¢ the probability that there
exists an x in (— (M + D), (D + M)) with #,(x) > 0 exceeds (1 — 26). Since 9 1s
arbitrary we have proved that condition (i) holds.

To prove (ii) we first note that if I %" is equal to 1 for infinitely many n, then
{outside of a set of probability zero), the coupling of Lemma 3.5 entails that for each
x there must exist infinitely many integers m with 7,,(x) > 0. So given é > 0 we can
take M as in the preceding paragraph. Fact 3.16 entails that for this renormaliz-
ation the probability that I %" s 1 for infinitely many n exceeds | — 24. Property (ii)
follows from the arbitrariness of J.

References

Bramson, M.: Survival of nearest particle systems with low birth rates. Ann. Probab. 17, 433-443
(1989)

Bramson, M., Durrett, R., Swindle, G.: Statistical mechanics of crabgrass. Ann. Probab. 17,
444-481 (1989)

Durrett, R.: Oriented percolation in two dimensions. Ann. Probab. 12, 999-1040 (1984)

Chen, M.: Infinite dimensional reaction diffusion processes. Acta Math. Sin. New Ser. 1, 261-273
(1985)

Ding, W., Durrett, R., Liggett, T.: Ergodicity of reversible reaction diffusion processes. Probab.
Theory Relat. Fields 85, 13-26 (1990)

Ethier, S., Kurtz, T.: Markov processes. New York: Wiley 1986

Feller, W.: An introduction to probability theory and its application II. New York: Wiley

Halmos, P.: Measure theory. New York: Van Nostrand 1950

Janssen, H.: Stochastisches Reaktionsmodell fur einem Nichtgleichgewichts-plasinubergang.
Z. Phys. 270, 67-73 (1974)

Shiga, T.: Stepping stone models in population genetics and population dynamics. Stochastic
Processes Phys. Eng. 345-355 (1988) Dordrecht: D. Reidel 1988

Shiga, T., Uchiyama, K. Stationary states and their stability of the stepping stone model
involving mutation and selection. Probab. Theory Relat. Fields 73, 87-118 (1986)

Spitzer, F.: Principles of random walk. New York: Van Nostrand 1964

Tweedie, R.: Criteria for classifying general Markov chains. Adv. Appl. Probab. 8, 737-771 (1976)



