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Summary. In a previous paper we obtained upper and lower class type results 
refining the bounded LIL for sums of iid Hilbert space valued mean zero random 
variables, whose covariance operators satisfy certain regularity assumptions. We 
now establish precise convergence rates for the bounded LIL in the "non-regu- 
lar"  case. It turns out that the almost sure behavior in this case is entirely 
different from the behavior in the previous situation. 

1 Introduction 

Let X, XI ,  X2, ... be iid mean zero random variables taking values in a separable 
infinite-dimensional Hilbert space H with norm II" II and scalar product (.,.). 

Set S, := ~ X k, n >  1. Suppose that 
k = l  

(1.1) E[(X ,y )2]<oo ,  y e l l ,  

and 

(1.2) E [ l lx  Ih 2/L2 IIx l l]< o9, 

where Lt,=log(max(t ,  e)), L 2 t ,=L(Lt) ,  t >O. 
Then it follows from a known result of DeAcosta and Kuelbs (1983) that 

with probability one, 

(1.3) lim sup I / S . I I / ~  n = o-, 
n --* oo 

where q2:=sup{E[(X, 2)2-]. ][y]l ~ 1}. In particular, one has for any e>0 ,  

(1.4) P { ]lS,]l < o-((2 + 8) nL2 n) 1/2 eventually} = 1. 

* Supported in part by NSF Grant DMS 90-05804 
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Fact (1.4), in turn, implies that there exists a null-sequence z, $ 0 such that 

(1.5) P { II S, ]1 < o-((2 + 5,) nLz n) 1/2 eventually} = 1. 

The above sequence {8,} provides a kind of convergence rate for the bounded 
law of the iterated logarithm (LIL) (1.3), and it is therefore of interest to determine 
{e,} in terms of appropriate characteristics of the distribution of X. 

If X is Gaussian, then an application of the infinite-dimensional Kolmogorov- 
Erd6s-Petrowski type integral test due to Kuetbs (1975) yields that one can 
choose {e,} as 

(1.6) e,=aL3 n/L2 n, if a > d + 2 ,  

where d is the multiplicity of 0 .2 which is an eigenvalue of the (compact) covari- 
ance operator of X, and L 3 t:=L(L 2 t), t>=O. 

Moreover, it follows from this result that the probability in (1.5) is zero 
whenever a<=d+2. We thus see that (1.6) gives the exact convergence rate for 
the Gaussian case. 

Given this result, it is natural to ask what are the rates for non-Gaussian 
random variables. It has been shown by Einmahl (1989a) that the upper class 
part of the above integral test applies to arbitrary pregaussian mean zero random 
variables, i.e., to mean zero random variables satisfying 

(1.7) E [IfX II 2] < oo. 

This clearly implies that, if we define {e,} as in (1.6), then (1.5) remains valid 
for sums of iid random variables satisfying (1.7). The situation, however, becomes 
more complicated for random variables with infinite second strong moments. 
Contrary to the previous cases, it can happen that the covariance operator 
of X, which will be denoted by cov(X) in the sequel, is not compact. The quantity 
o-2 is not necessarily an eigenvalue of cov(X), and even if this is the case, its 
multiplicity may be infinite. It will turn out that in order to establish convergence 
rates for the bounded LIL, one has to partition the class of random variables 
with infinite strong second moments into two subclasses: 

The first class contains all random variables, whose covariance operators 
satisfy certain regularity assumptions. In particular, all random variables with 
compact covariance operators belong to this class. The second class contains 
among others all random variables whose covariance operators are multiples 
of the unit operator. 

To be more specific, the regularity conditions determining the first class 
of random variables are as follows, 

(1.8) 0.2 is an eigenvalue of coy(X), 

(1.9) the corresponding eigenspace V of coy (X) is finite-dimensional, 

and, for some p < 1, 

(1.10) sup {E [(X, y)2]: ye  V • I]yll < 1} <po-2. 

The second class consists of all random variables, where either of the conditions 
(1.8)-(1.10) fails; we call this the non-regular case. 
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Einmahl (1991) has recently obtained lower and upper class type results 
for random variables satisfying (1.8)-(1.10), from which one can easily get conver- 
gence rates in the first case (see Theorem A below). The main purpose of the 
present paper is to establish exact convergence rates in the non-regular case. 

Theorem 1 Let X be a mean zero random variable satisfying conditions (1.1), 
(1.2), and E [ I] X II 2] = o0. I f  en = a ft, L (L  2 n/fin)/L 2 n with a > 1, 
where fi,:=E[I[XI[ 2 1 {NXN <=Vn/(L2 n)5}]/a2, then 

P { [] S.II s a((2 + e.) nLz n)l/z eventually} = 1. 

Note that we have on account of (1.2), 

(1.11) f ln=o(Lzn)  as n--* oo. 

In fact, one can even infer a somewhat stronger property from (1.2), namely, 

(1.12) ~ (/~,--/~,_ 1)/L2 n <  co; 
n=2 

this implies (1.11) via the Kronecker lemma. It is now obvious that {e.} is 
a null-sequence, but, since E [ I[X [12] = o% we also have, 

(1.13) L 3 n/L2 n=o(8n) as n ~ o9. 

This means that one cannot obtain the Gaussian convergence rate O (L3 n/L2 n) 
from Theorem 1. 

In order to formulate the corresponding results for random variables satisfy- 
ing (1.8)-(1.10), we have to consider a sequence {S,} of positive semidefinite 
self-adjoint compact operators defined by 

(1.14) (x, x ,  y) = e [ ( x ; ,  x) (x' , ,  y)], x, y e H, 

where X':=Xn 1 { l l / . l l  ~ ~ / ( L 2  n)5}, n ~  1. 
Let 0-~,,>0-~,,> ... be the positiveeigenvalues of Z, arranged in a non- 

increasing order and taking into account the multiplicities. If there are only 
finitely many positive eigenvalues, set 0-2 = 0  for large i. Put l, ?/ 

7'n ~ 1og(0-2/( 0-2 0-2 ..= _ ,,,)), 
i=d+l 

where d,=dim(V), which is finite on account of (1.9). Note that by (1.10), 

(1.15) 7',< a~,, 0-2(1--p)Ntrace(X,) /0-2(1--p)=fl , / (1--p) .  
\ i = d +  1 

Applying Theorem 3, Einmahl (1991), we then obtain: 

Theorem A Let  X be a mean zero random variable satisfying conditions (1.1), 
(1.2), (1.8)-(1.10). 
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i) I f  e~, = a((d + 2) L 3 n + ?',)/Lz n and a > 1, then 

P { l] S, 11 --< o((2 + e',) nLz n) 1/2 eventually} = 1. 

ii) Under the additional assumption 

(1.16) E[(X ,y )  2 l {[(X,y)]>t}]=O((L2t) -1) as t ~ o o ,  y ~ V  

we have/fe',=a((d+2) L 3 n+7',)/L 2 n and a< 1, 

P { ]IS, IT < a((2 + c',) nL z n)1/2 eventually} = O. 

Recalling (1.13) and (1.15), we see that the convergence rate in the "regular" 
case is of order O((fl, v L 3 n)/L2 n), which is better than the rate in Theorem 1. 
Our next result, however, shows that the latter rate is sharp if either of the 
conditions (1.8)-(1.10) fails. 

Theorem 2 Let ~Jn'~ oo be a sequence of positive real numbers satisfying (1.12). 
I f  the underlying p-space (f2, o~, P) is non-atomic, one can construct random vari- 
ables X: f2 o H satisfying (1.1), (1.2), 

(1.17) E[IIX[I 2 1 {l[Xl] <=~/(L2 n)S} ] <='fin o2, 

and one of the following three conditions, 

(1.18 a) a s is not an eigenvalue of coy(X), 

(1.18 b) coy (X)= o 2 I, where I is the unit operator, 

(a 2 is an eigenvalue of coy X; 
! 

(1.18 c) ~the corresponding eigenspace V of coy (X) is finite-dimensional; 

Land sup {E [(X, y)2]: IrYll < 1, yE V • } = o 2, 

such that, if e,=afln L(Lz n/~,)/L2 n and a< t we have: 

(1.19) P { II Sn II _-< a ((2 + en) nL2 n) 1/2 eventually} = O. 

It seems worthwhile to mention that in one case our Theorem 1 also provides 
exact convergence rates for the clustering in the LIL. This problem has been 
extensively studied in the literature (see Bolthausen (1978); Grill (1987); Good- 
man and Kuelbs (1991a, i991b)). To formulate our result, let us recall that 
one has under assumptions (1.1) and (1.2) with probability one, 

(1.20) C({S./(2nL2 n)1/2}) = K, 

where K,={cov(X)l /2.y:  IlY]I < 1}, and C({zn}) denotes the set of limit points 
of the sequence {z,} c H  (see Corollary 4 and Lemma 6.1, De Acosta and Kuelbs 
(1983)). 

Similarly as in (1.5), one can infer from (1.20) that there exists a null-sequence 
6,, $ 0 such that 

(1.21) P {S J(2 nL2 n) 1/z E K '5. eventually} = 1, 

where K'~,={yEH: inf IIx-yN <6}, 6>0.  
x ~ K  
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If we now consider mean zero random variables X: f2--*H such that 
cov(X) = I, it follows from Theorem 1 that (1.21) holds true if 

(1.22) (~n=afln L ( L  2 n/fln)/L 2 n, a >  1/4. 

Moreover, it follows from Theorem 2 that there exist mean zero random vari- 
ables with cov(X)= I, where the probability in (1.21) is equal to zero if a < 1/4. 

Goodman  and Kuelbs (1991b) have shown that the convergence rate for 
the Brownian motion (considered as a Gaussian random variable in the Hilbert 
space ~ 2 [ 0 ,  1]) is of order O((L 3 n)l/3/(L2 n)2/3). It is also known that in this 
case the rate in (1.21) cannot be better than O((L 2 n) -2/3) (see Goodman  and 
Kuelbs (1991a)). Comparing these results with (1.22), it is easy to see that the 
above rates will be better if we assume, 

(1.23) g[llXlli/(g21lXll)~']<oo for some c~ < 1/3. 

This might be somewhat surprising since we are now dealing with random 
variables having infinite second strong moments. But this only demonstrates 
that, unlike the convergence rates for the bounded LIL, the rates for the cluster- 
ing are highly dependent on the geometric structure of the cluster set K. 

Returning to the bounded LIL, one can also infer from (1.3) that for some 
null-sequence g, $ 0, 

(1.24) P { 115,11 > or((2-- g,) nL2 n) 1/2 infinitely often} = 1. 

If X satisfies conditions (1.1), (1.2), (1.8)-(1.10) and (1.16), one can choose g,=0,  
and, in fact, a much more precise result can be obtained from Theorem A(ii). 
But this is no longer true if condition (1.16) fails. In the classical setting of 
real-valued random variables, the following somewhat surprising result can be 
inferred from the work of Feller (1946). 

Theorem B Let  g,+O be a null-sequence. One can f ind  a random variable 
X :  f2 ~ ~ with mean zero and variance one such that 

(1.25) P {[Sn[ _-< ( ( 2 -  g,) nL2 n) 1/2 eventually} = 1. 

This means that sums of iid mean zero random variables with variance one 
can be much smaller than sums of independent standard normal random vari- 
ables. Note also that (1.25) implies for any 6 > 0, 

(1.26) E [IXl 2 +0] = oo. 

To see (1.26), observe that if E [-]XI 2+ a] were finite for some 6 > 0, the Kolmo- 
gorov-Erd6s-Petrowski integral test would apply, and the probability in (1.25) 
would be zero. 

Our last theorem is to show that this phenomenon occurs in Hilbert space 
even in a more extreme form. 

Theorem3 Let  g,~O be a null-sequence, and let g: [0, oo)-~(0, oo) be a non- 
decreasing funct ion such that 

(1.27) g(t) /L 2 t -~O as t ~ oo. 



182 U. Einmahl 

I f  the underlying p-space ([2, ~ ,  P) is non-atomic, one can f ind  a mean zero random 
variable X :  [2 --, H satisfying 

(1.28) E [IXX[I 2/g([[Xll)] =- oo 

and 

(1.29) cov(X) = I ,  

such that 

(1.30) P { I[ S, < ((2 - gn) nL2 n)1/2 eventually} = 1. 

The proofs of Theorems 1, 2 and 3 will be presented in Sects. 2, 3, and 4, respec- 
tively. 

2 Proof of Theorem 1 

The proof is based on two auxiliary results which might be of independent 
interest. 

Lemma 1 Let  t ll . . . . .  tl d be independent standard normal random variables, where 
d > 3. Then we have for t > 2 d, 

(e)) 
n { ~ l ~ + . . . + q ~ > t } < A t d - 1 / 2 e x p  - ~ +  ~ - - 1  log 

where A 1 > 0 is a universal constant. 

Proof  Since t/2 + ... 72 has a gamma distribution, an elementary argument based 
on integration by parts yields, 

p{~2+  ... + t l 2 > = t } = ( i ~ i y ~ - l - i F ( a _ i ) - l ) e x p ( _ y )  

+ F(a -- j)-  1 ; u ~ - i -  1 exp (-- u) d u, 
y 

where c~= d/2, y =  t/2, and j =  cr or = c~-1/2 according as d is even or odd. 
Since in both cases a - j -  1 <_ O, we have: 

~ u~-j - 1 exp(--u) d u < y~-J- 1 ex p ( -y ) .  
y 

Combining this with the inequality F(~)/F(c~-i)<~i, 0 <= i<=j, we find that the 
above probability is less than or equal to 

J 
F ( a ) - l y ~ - l e x p ( - y )  ~ ( e / y ) i < 2 F ( e ) - l y ' - l e x p ( - - y )  if y>2c~. 

i = 0  



Exact convergence rates for the bounded LIL 183 

Using similar arguments as in the proof  for Stirling's formula (see, for instance, 
Feller (1957), p. 51), one easily finds that 

F(cO>=c.((c~--l)/e) ~'-1/2 for c~__> 3/2, 

where c > 0 is a universal constant. 
Combining the last two inequalities, we obtain the assertion of the lem- 

ma.  [ ]  

Using Lemma 1, Einmahl (1991), we can infer from the above lemma: 

Lemma 2 Let Y be a Gaussian mean zero random variabie in Hitbert space. 
Let ~ > ~ 2 >  ... be the eigenvalues of cov(Y). Then we have for b>a~,  t>~V2d 
and d > 3 :  

P { H Y I l > t } < A l d - 1 / 2 e x p - 5 +  --1 l o g ~ ) + c ~ r ) ,  

oO 

where ar:=~ ~ log(b/(b-~2)). 
j = d + l  

We now have all tools which are required for the proof  of Theorem 1. W.l.o.g. 
we assume a 2= 1. Further  let for any a >  1, ~ be an increasing function such 
that 

(2.1) ~9. (n) = (2 L 2 n + a ft. L(L 2 n/fl.)) a/2. 

By (1.11) we have for large enough n, 

(2.2) (2L2 n) 1/2 < ~,(n) <= 2(L 2 n) 1/2. 

Using the same arguments as in the proof  of Theorem 3(A), Einmahl (1991), 
Theorem 1 reduces to verifying that for any K > 0, 

(2.3) L P { I1Y~j+I IL > t#a(nj)--K/t#.(n)} < oo, 
j = l  

where {I1.} is a sequence of Gaussian mean zero random variables with cov(Y.) 
= Z.,  which is defined by (1.14), and n j ,= [exp (j/Lj) ], j > 1. 

Set d.: m a x { k : a ~ , . > l - 6 } v 3 ,  where 6,=(a--1)/6A 1/2, and { az , . : k > l}  is 
the eigenvalue sequence of the operator  S. .  Applying Lemma 2 with b = 1 and 
d = d.j .... we obtain for t > ~ ,  : 

(2.4) 
(t2 ) 

P { II Y.j+111 ~ t} ~ A~ exp - - ~ - +  aj( t ) ,  
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where aj(t):=(�89 1) L(et2/(d. ,+,-2))+~y,  
( 1 -  a2.j+ ,)). By the definition of d, we have, 

(2.5) c ~ j < ~  ~ 2 1 
�9 ~i,.~+~ - 2 a / L ~ + , .  
l = l  

Also note that 
dnj  + 1 

~..1>= X 
i = l  

Recalling that 5 < 1/2, we find that 

and 

2 >(1--5) d.,+, O-i, Rj + 1 

U. Einmahl 

~2j :=�89 ~ log(i /  
i =d~j + I + 1 

whence the last term is 
O ((L n j) - - 1  ( L  2 h i )  - 3). 

Recalling the definition of the sequence {n;}, we readily find that 

F, P{H Y,~+, I1 >=~,.(nj)-K/~(nj)} < co. 
jeN1 

Thus, it remains to show that 

(2.9) ~ P { II Y,j +, I] > ~,,(nj)- KAb~(nj) } < 0% 
jzN2 

where 
N 2  .'= { j : / % + ~  > (1 + 5 /3 ) /~ , , } .  

(2.6) d,,+, <(1 +26)  ft,,+ ~. 

Combining (2.6) and (1.11), we see that d,j+,/Lznj+,-- ,O as j--+ oo. We now 
can infer from (2.5) and (2.6) for t < 2(Lz n j) 1/2 and large j, 

(2.7) 2~j(t) <(1 + 36) ft.,+, L(L  2 nj+ ,/[3,, + ,). 

Setting N1 ,= {j: ft., +, < (1 + a/3)/~.j}, we obtain for t < 2 (L2 n)  1/2 and large 
jeN,, 

(2.8) 2c~j(t) <(1 +45)  fl,j L(L  2 ni/fl, ). 

Because of (2.6) and (1.11), we can now infer from (2.4) that for large enough 
j ~ N 1 ,  

P {]l Y,,, +, ][ > ~9, (n j) - K/@a (n 3) } < A ,  e K exp ( - Lz n j  - -  5 fin~ L (L 2 n j f l , ) ) .  

Since we assume that E [ ' H X [ I 2 ] = o O ,  it follows that fl, T oo. We thus have for 
large j, 

ft,, L(L2 n j f l , )  >= 3 5-1 La n j, 
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Assumption (1.2) implies that 

(2.10) ~ (fl.j+ l -- fl .)/L2 n i < o~. 
j=l 

Since we have f o r j e N  2, 

fl,j +, - fl,j > (1 - (1 + 8/3)-  1) fin i+, > (~ flnj + ,/4, 

we can infer from (2.10), 

(2.11) Z fl.j+ ,/L2 nj < o~. 
j~N2 

Using Markov's inequality and recalling (2.2), we find that for large enough 
J, 

P { I[ Y.j +, II > 0~ (n) - K/O a (nj)} N E [ I1Y.j +, II 2]/L2 nj -= fln~+ ,/L2 nj. 

Combining this inequality with (2.11), we obtain (2.9), thereby completing the 
proof of Theorem 1. [] 

3 Proof of Theorem 2 

The proof is based on the following three lemmas. 

Lemma 3 Let  t 11, . . . ,  tle be independent standard normal random variables, where 
d > 3. Then we have for  t > 1, 

P{thzW...+tl~>=t}>=A2d-1/2exp - 5 +  ~ - 1  log 

where A 2 is a universal constant. 

The proof of Lemma 3 is very similar to that of Lemma 1, and it is therefore 
omitted. Using Lemma 3, we obtain the following result for Gaussian random 
variables. 

Lemma 4 Let  Y be a Gaussian mean zero random variable in Hilbert space. 
Let  ~r~ > cr~ > ... be the eigenvalues o f  cov(Y) .  Then we have for  0<b=<~r~, t > b 1/2, 
and d>= 3, 

P{[lY, l>=t}>-_A2d-1/2exp(--  Lo 1) l O g ( b ( ~ )  ) e t 2  . 

Proof. First recall that 

2~ ~ 2 2 IIYII = ~9 r/j, 
j=l 



186 U. Einmahl 

where q j, j > 1 are independent standard normal variables. This enables us to 
conclude that 

P{ } ![Yll>t= - P  aj tlj t 2 
j= 

> P ,1) > t : / b  �9 
j= 

Applying Lemma 3, we obtain the assertion. [] 

We finally need, 

Lemma 5 Let  N: H ~ H be a positive semidefinite, selfadjoint compact operator 
with eigenvalues cr 2 > cr 2 >= ....  Let  V be a d-dimensional subspace o f  H such that 

(y, Zy)>=bj[yH 2, y 6 V  

Then we have: a~ > b. 

Proof. Let {e~} be a sequence of orthonormal eigenvectors corresponding to 
the eigenvalues {a{}. S e t  P:=span{el . . . .  ,ea_l}, and let rc be the orthogonal 
projection from V onto V. Using a well-known result from linear algebra, we 
find that 

dim re-~ {0} > d im(V) -  dim(V)= 1. 

This implies that there exists a vector y s V n  V•  with IrYll =1. Since 
y~ P• we have, 

(3.1) (y, Xy) =< o-~. 

On the other hand, since ye  V, we also have: 

(3.2) (y, Z y) > b. 

Combining (3.1) and (3.2), we obtain the assertion of Lemma 5. [] 

~1/2 . . . . t~ '~1 /2  and We now start the proof of Theorem 2. Set Ok;=l /2L  2 n, e ,_ i - . . ,~_ -p ,  , 

ak ,=l / /n/ (Lzn)S=,c , ,  ~ _ l < k < f l , ,  n>=l, where ~0.-=0. Let {6~} be a sequence 
satisfying 

(3.3) 0N61N@k, k ~ l .  

Since the p-space (~2, ~ ,  P) is non-atomic, there exists a sequence of indepen- 
dent random variables {r satisfying 

= -- (~k)/ak (1--6k)/2ak,  P{~k=0} 1--(1 ' 2 (3.4) P{r = +ak} = ' 2 

(use Theorem 5.2 and Problem 5.2, Billingsley (1986)). Let {ek} be a complete 
orthonormal basis of H, and set 

(3.5) X =  ~ r ek. 
k = l  
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Using the independence of the ~k'S, it is easily checked that 

(3.6) El(X, y)2] ~ Ilyll 2, y e l l  

Moreover, it follows that 

E[IIXII2/L2 I/Xll-I ~ ~ E[r 
k = l  

~ '  ( L  2 ak) -1  
k = l  

~ ,  ( [ - L ]  - -  [-J~n - 1] )/L2 c,,  
n = l  

where the last series is finite since {/~,} satisfies condition (1.12). 
We thus see that any random variable as above satisfies conditions (1.1) 

and (1.2). In order to verify (1.17), note that 

g[llXll 2 l{/]x/I ~c.}] = ~ El(X, ej) 2 1 {llXII ~Cn}'] 
j = l  

= ~ E[~ } l{llxll =<c.}] 
j = l  

_-< ~ gl-~] 1 {l~jl_-<c.}] 
j = l  

< E/L-1 

To see the last inequality, observe that 

E[-~ 1 {lr = 0  if a j > c  n. 

We next show (1.19). For that purpose we need lower bounds for the eigenvalues 
2 of the operator S, ,  which is defined by (1.14). O'k, n 

Using the independence of the Ck'S, we have for large enough n, 

j~:k 

> E [-~2 1 {IGI _-< C[n/2]}] P (IIXl[ _-< c,/2}. 

__> E [-~ 1 {IGI < ct./2j}] - P  {llSll >c,/2}. 

If w e  have k,, 1 ,= [~d,//~] < k <  [fit,/21]=: k,, 2, it follows from (3.3) for large enough 
gt, 

(3.7) E [-~ 1 { I[ X Ii < c,,}] > 1 -- (L z n)- 1. 
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kn, 2 

Set V,:=span{ek: k,, l<k<k,,2},  and let y =  ~ Yk ek be a vector in V,. Since 
kn, 1 

the random variables ~k are symmetric and independent, it follows that the 
random variables ~k 1 { ]]XI] < x,} are uncorrelated. This enables us to infer from 
(3.7) that 

(y, ~. y)= E [(x, y)21 {Irxrl __<c.}] 

= g  2 y~ ~k l{llXrl <c.} 
k \ kn ,  1 

km 2 

= Z yg E [ ~  l{llxll __<e.}] 
kn, 1 

~_~(1--(L 2 / / ) - 1 )  IlYl[2. 

Recalling Lemma 5, we find that for large n, 

(3.8) a ~ . , .  > 1 - -  (L  2 n ) -  1 

where k. ,=k., 2 - k., 1 + 1. To simplify our notation, we set for a < 1, 

~b,(n).'=(2L 2 n +  aft, L(L 2 n/~,)) l/e, n > 1. 

Using Lemma 13, Einmahl (1991), and arguing as in Sect. 5, Einmahl (1989b), 
one can reduce the proof of (1.19) to showing that 

(3.9) P{][ S~, [I/~fn > ~b, (n)+ 1/(L 2 n) lie infinitely often} = 1, 

where S',.-= ~ Xj 1 { [IXjf] <ej}, n >  1. 
j = l  

Let the subsequence {m,} be defined by m,:=[exp(3nL2 n)], n > l .  We first 
show for 0 < a < 1 and K > 0, 

(3.10) ~ P { ] l S m j - - S m j  1 [[>=[/mJ(c/~.(mj)+K(L2mj)-l/2)} =~176 
j = l  

Let { Y.} be a sequence of independent Gaussian mean zero random variables 
with cov(Y.)=Z.=cov(X'.), n>__l. Then we can infer from Lemma 5, Einmahl 
(1991): 

! S t  1 P { HS,.j- ,.j [[>]/~((J.(mj)+K(L2mj)-a/2)} 

>=P ~ >= (~b.(mj)+ 2K(L2 m~) -1/2) 
rt l j -  1 -}- 1 

- A K -  3 (L2  m~) 3/2 m; ~/2 E [ II X~,~l[ 3], 

where A > 0 is a universal constant. We now claim that 

(3.11) ~ (L2 m j) 3/2 mf  t/2 E [-I] X'jll 3] < ~ .  
j =  1 
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Relation (3.11) implies that in order to prove (3.10) it is enough to check that 

"=  k.II ??Z j  _ 1"-~ 1 
(3.12) j~=IP~ ~ Yk ~V'mjj((/)a(gHj)-JcRg(g2gglj)-l/2)}=oo. 
To see (3.11), set n~,=2 z, l>  1,/ j :=min{/:  2~>mj}, l>  1. Then we have 11 < /2</3  
< ..., and it is clear that 

j= l  j= l  

Relation (3.11) now follows from Lemma 8, Einmahl (1991). 
As to (3.12), observe that COV(Yk)--Cov(Ymj_,) is positive semidefinite if k 

> my_ 1. This enables us to conclude that 

--> P { [] Ym~_, II >= (1 - mj_ l/mj)- l/2 (Ca (m j) + 2 K (L 2 m j)- 1/2)} 

Since mj_ 1/mj<(L 2 rn2)-1 for large j, we find that the last probability is 

>_-O{ll gm~_ ~ II >r mj) -1/2} 

for some constant K 1 > 2K. This probability, in turn, is for large enough j, 

> Ka d j- 1/2 exp (1 (d j -  2) L(L2 mj/(dj-- 2))-  qS~ (m j)/2 b j), 

where dj=kmj_,, b j= 1 - ( L  j)-1, and K 2 is a positive constant. 
Here we have used Lemma 4 in conjunction with (3.8). Setting ~. '=(1-a)/2, 

we obtain after some calculation that the last term is 

=> K 3 (L m j)- I(L 2 m j)- 1/2 exp (�89 ('flm~ 2 -- (a + 6) ~,~j) L(L 2 mj/~mj)) 

provided j is large enough. To verify the last inequality, notice that m j _  2 

=< [rn~_ 1/2], whence we have for large j, 

~,~j_2--fi "l~,,j<=dj- 2 <=flmj=o(L2 mj). 
Set 

N1 :={j: + 6) < 
N z : = N - N 1 .  

Using (1.12), we readily obtain, 

(3.14) ~ ('tim j -  ~,~_ ~)/L2 mj < oe. 
j=3 

I f j ~ N  2, we have 
Lj-Lj_2>= Lj. 
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Since fl, q" o% we can infer from (3.14), 

(3.15) F, (L2 m) -1 < oo. 
jeN2 

But from the definition of {mr} it also follows that 

(3.16) ~ (Lmj)- 1 (L2 m r) 1/2 = oo. 
j = l  

This implies in combination with (3.15), 

(3.17) ~ (Lmj) -1 (L 2 mj)- 1/z = oo. 
jsN~ 

Since we have according to the previous considerations for large jEN1,  

(3.12), and, consequently, (3.10) follows from (3.17). 
In view of Borel-Cantelli, it is now clear that for any K > 0 with probability 

o n e ,  

(3.18) [I S ; , , -  S;,j_, tl > ~ (q~, (m j) + K (L2 rag) - t/z) i.o. 

On the other hand, it follows from Lemma 11, Einmahl (1991) that with probabil- 
ity one, 

(3.19) ]IS,-S',II =o(nL2 n) as n ~  oo. 

This means in view of (1.4) and (3.6), that we have with probability one, 

(3.20) [I S ' j_,  [1 < (3 m j_ 1 L2 m j) I/2 eventually. 

Using the fact that for large enough j, 

m l / 2  / v ,a l /2~ ' [T  m j ) - I  
j-- I/,,Lj ~_ k~2 

we obtain from (3.18) (applied with K =  3) and (3.20) that with probability one, 

t t t 
lIS;~ll > [ ]s .  v -  s , , j  , I[ - I ls , . j_  1 II 

> ~ ( q S ,  (m j) + (L 2 m j)- 1/2) i.o. 

This completes the proof of (3.9), thereby establishing (1.19). To finish the proof 
of Theorem 2, consider the three sequences, 

(3.21a) ~5', = ~,, n=>l 

(3.21 b) 6;,=0, n > l ,  

(3.21 c) 6'~ =0, ~5', = 6,, n>2 .  
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It is straightforward to verify that o-2= 1 and that cov(X) satisfies (1.18a), 
(1.18b) or (1.18c), according as we define {6"} by (3.21a), (3.21b) or (3.21c). 
(Note that in the last case, V= span {el} is 1-dimensional.) Theorem 2 has been 
proved. []  

4 Proof  of  Theorem 3 

W.l.o.g. we assume that the function g satisfies the condition 

(4.1) g(t)/L 2 t is decreasing 

If (4.1) is not satisfied, we can find a non-decreasing function ~(t)__> g(t) such 
that ~,(t)/Lz t is decreasing and still f,(t)/L2 t ~ O. 

Since E[lIXll2/f,(llXll)]=oo implies (1.28), it is clear that it is enough to 
prove Theorem 3 for functions with the property (4.1). 

Set p,,=g(ee)n/g(exp(exp(n)), n>l ,  p o = 0 ,  a,,'.=exp(exp(pZ/(p,--p,_l))), 
n > I. From the definition of p, it immediately follows that 

(4.2) (p,--pn_l)/p,<=l/n, n>=l, 

which in turn implies 

(4.3) a,>exp(exp(np,))>exp(exp(n)), n> l. 

Set ~,.'=pL(L~,V/21, n >  1, and let 6 ,$0 be a sequence such that for large enough 
j, ifnj_l <n<nj,  

6,.'=(�89 + ~- (log ~,j)/~,j + 3 L3 n j_ ~/L2 nj_ 1)/x �89 

where nj=[exp(j/Lj)], j > l .  Let {~k} be a sequence of independent random 
variables satisfying 

(4.4) 

(4.5) 

(4.6) 

P{~k= +-ak} =�89 -- 6,,~) a [  2, 

P{~.k = -I-Crn}=�89 2, m>mk, 

P{~k=O}=l--(1--6m~)a[ 2 -  ~ (Om-l--~m) Cm 2, 
m = m k +  1 

where Cm :=]fm/(L2 m) 5, m, ..=min {m: cm > ak}, k > 1. Let {ek} be a complete ortho- 
normal basis of H, and set, 

X = ~ G ek- 
k = l  

It is easily checked that 

(4.7) E [~] = 1, k > 1. 



192 u. Einrnahl 

Using the fact that the ~k's are independent and that {ek} 
we readily obtain, 

(4.8) E[(X,y)2]=ltyll2, ye l l .  

Relation (4.8) immediately implies (1.29). Further note that 

is complete in H, 

co 
E [IIXlr2/L~ IlXll3 ~ ~, E[r ak 

k = l  

oo 
~-- E P k - - P k - 1  

k=l #~ 

< l + ~ x - 2 d x = 2 .  
1 

Thus, we have 

(4.9) E[ItXH2/g2 IlXll] < 0o. 

Next observe that on account of (4.1) and (4.3), 

g(ee)/g(ak) >= pk(L ~ ak )- 1 > (Pk-- Pk- 1)/Pk, 

Using (4.2) which implies that Pk <= 2pk- 1, k_>- 2, we get: 

k_>l. 

(4.10) ~ g(ak)- 1 = o0. 
k = l  

Consider now the events Bk:={~k=a~} ~ ("] {~j=0}, k >  1. Then we have 
j4:k 

E[lIXll2/g(llXII)] = ~,, E[~/g(nXII)] 
k = l  

~ E[~ 2 IBffg(llXll)] 
k = l  

= ~ P(Bk)a~/g(ak) 
k = l  

1 ~ ( I I  P{~i=O})g(ak) -1 
4 k= I j * k  

oo 

>% 13 = 4 j = 1  k=l 

> exp a7 2 - ~_ ~ g(ak) 
k = i  
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where we use the inequalities 

P { { j = O } > l - a f 2 > e x p ( - 2 a f 2 ) ,  j > l .  

It is clear that ~ a f 2 <  0% which in conjunction with the above lower bounds 
j = l  

implies (1.28). 
It remains to verify (1.30). Let qS:[0, oo)--+ (0, oo) be an increasing function 

such that q~ (n) = ((2 - g,) L2 rt) 1/2, 17 > 1. 

Recalling (4.8) and (4.9), we can see that, as in the proof of Theorem 1, 
it is enough to show for any K > 0, 

(4.11) ~ P ( II Yn, +, II ~ ~ (n j) --  K / (o  (n j)} < oo, 
j = l  

where Y., n > l  are Gaussian mean zero random variables with cov(Yn)=S,, 
n >  1, and Z, is defined as in (1.14). 

We now want to apply Lemma 2, Sect. 2, for which reason we need an 
upper bound for the largest eigenvalue cra of ~, .  Note that if mk <- n, 

E[~ 2 l{llXll ~c~}] ~EV~ 2 1 {l~kl ~c.}] 

If mk> n, we have, 

(4.12) 

Using the symmetry and 

Y= ~ ykekeH,  
k = l  

=(1 -6 .0+  ~ (6,._~-6.,) 
m=mk + l 

=I-@ 

E[r 1 {IlXll ____ c.}] =0. 

the independence of the Ck'S, we obtain for 

oo 

EV(X, y)2 I{IIXH ~cn}] = ~ y2 EUr l{tlXl[ ~c.}3 
k = l  

< Ilyll2(1-a,), 
whence we have: 

(4.13) G~,,< 1 -an ,  n > l .  

Set V, = span {el . . . .  , ek~ }, where k,..=max {k: m k <= n}. Then it easily follows from 
(4.12) that 

(4.14) E[(X,Y) 2 I{IIXII<c.}]---0, yeV#. 

Relation (4.14) in turn implies that 

(4.15) a2 - 0 ,  i>kn.  
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We now need an upper  b o u n d  for k,,. On  account  of  (4.3) we have, 

(4.16) k, </~,,, 

where k, : = m a x  {k: n~ k < n}, n__< 1, and rh k :=rain {m: cm > exp (exp (kpk))}. It  is obvi- 
ous that  

(4.17) f(, p~<La c ,<(L+ I )P~,+I  < (~:, + 1) 2. 

In particular, (~ ,+  1 ) > ( L  z c,) 1/2, which in conjunct ion  with the first inequality 
in (4,17) and (4.1) implies for large enough  n, 

(4.18) k. < ~.__< 2 L2 n/~..-=a.. 
Applying  L e m m a  2 with b = 1 - 6 , j +  1, and d = d,j+ ~, we find that  for large enough  

J, 
P{]I Y,j+~ II ~ ~b(ni)-K/qS(ni)} 

( i-g./~_2 L2 nj+L2 log(2e~,~+,)/fi,j+ ~) ~ K  1 exp -- l _ 6 , s +  1 ni+ 1 

e x p ( _ [ 1 - - g ~ / ~ 2  3 lo " ~ ] 
[ 1 -  ~,,j+,--2-( g p.~+~)/p.~+~JLz nj) <KI  

\ 

/ 1 \ 
< K 1 (Lnj) -t exp ~ -  ~-(2 6.j+ ~ - g.j--  3(log ~.j+ ,)/~.j+ ,) L 2 nj), 

where Kx > 0  is a constant .  
Recall ing the definition of  (~., we readily obtain  that  the last term is 

O((Lnj)- ~(L2 n~)- 3) = O(j -~  (L j ) -  2). 

This shows that  (4.11) is true, and Theorem 3 has been proved. [ ]  
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