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Summary. A sufficient condition for statistical completeness of location families 
generated by a probability density in euclidean space is given. As an application, 
completeness of families generated by a symmetric stable law is proved. Our 
criterion, complementing a classical result of Wiener and recent work of Isenbeck 
and Rfischendorf, is in terms of regularity of the generating density and zerofree- 
ness of its characteristic function. Its proof rests on a local version of the convolu- 
tion theorem for Fourier transforms of tempered distributions. A more general 
version of the criterion is applicable to apparently different problems, as is 
illustrated by giving a simultaneous proof of a theorem on translated moments 
by P. Hall and a uniqueness result of M. Riesz in potential theory. 
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1 Introduction and main result 

In view of the importance of the statistical notion of completeness (see e.g. 
[9] and [10]) of families of probability measures (laws), it is not surprising 
that some work has been done in order to study this and related concepts 
for their own sake (recent examples are [1], [7], [13], and [14]), partly with 
the object of deciding whether given families are complete. The latter seems 
to be quite difficult in general. 

Before supporting this view in the case of location families, let us recall 
definitions and fix some notation. If f is a probability density with respect 
to Lebesgue measure 2 d in d-dimensional euclidean space R d, let fo(x).'=f(O-x) 
be the reflected and translated density and call 

~ " :  {f0 2 d: 0~Rd} 

the location family generated by f. Let L ~ (fo 2d) denote, as usual, the space 
of integrable functions with respect to the parenthetical measure and put 

L~ ( ~ ) : =  ~ 12 (fo 2a) �9 
OcRa 
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For geI2 (if)  write 

(1) 
h (0):=~g (x) fo(x) )e (d x) 

= ~ g(x) f (O- x) dx. 

Then completeness of ~ means: 

(2) g~Ll(ff) ,  h(x)=0 (xeR d) =~ g (x)=0  [2e]. 

[2 ~] indicates, as usual, that a statement holds outside some null set for 2!  
Concerning the special case of location families on the line, completeness 

of ~ is known from the literature in the following cases via the arguments 
indicated below. 

(i) f ) ?  =N(0,  1), the standard normal law, 
(ii)f(x)=F(cO -1 exp(ex-eX),  i.e. f ) ?  is the law of log Ywhere Y is a gamma 
distributed random variable with fixed shape parameter c~ > 0 and scale parame- 
ter I, 

(iii)f(x) = 1_(1 + x2) - 1, the Cauchy density, 
7C 

(iv) f (x) = �89 
(v) f 2 1 = ) ~ ( 6  a) with fixed positive integer n and 62 >0,  

(vi) f (x)  = 2  e~(1 + e2~)_ 1 

In cases (i) and (ii), ~ is an exponential family of full rank so completeness 
of ~ follows from the completeness theorem for exponential families [9, p. 
46]. This method of proving completeness is not as general as it appears, since, 
by a theorem of Dynkin and Ferguson [9, p. 35], every exponential location 
family is, apart from a scale parameter, given by (i) or (ii). 

In case (iii), completeness of ~ was proved by Pollard [15] by exhibiting 
a rather complicated inversion formula for the so-called Poisson transformation, 
which transforms any geL  1 ( g )  into the function h defined by (1). The existence 
of any inversion formula implies in particular injectivity of the transform which 
is equivalent to statistical completeness. Actually Pollard treated a more general 
problem, with L 1 (g )  replaced by some larger space. 

Case (iv) is handled by Oosterhoff and Schriever [14] in a special, elementary 
way. 

Case (v), also due to Oosterhoff and Schriever [14], is based on a theorem 
producing new complete families out of given ones. 

The final case (vi) is implicit in [11, p. 314], where completeness of the scale 
family generated by the absolute value of a Cauchy distributed random variable 
with zero median is proved, which yields, by taking logarithms, the complete 
location family with f as above. 

Apart from the trivial possibility of introducing a scale parameter in each 
case, there do not seem to be any (or at least not many) further examples 
of complete location families in the literature. This small number of complete 
location families and the variety of methods used for obtaining them naturally 
results in the demand of a general completeness criterion for location families. 
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Heuristically, it is clear what such a general criterion should look like (com- 
pare [5, p. 1673]): Since the rightmost member in (1) is an integral of convolution 
type, completeness of ~ may be written as 

(3) h=g* f=O =~ g=0,  

which, by taking Fourier transforms, should be equivalent to 

(4) K = ~ f = 0  =~ ~=0,  

which in turn should be the case iff 

(5) ?,o.  

The problem with these heuristics is to assign a meaning to ~ and to explain 
what (5) precisely means. 

The present paper gives a solution of this problem by imposing suitable 
restrictions on f ( a n d  thus indirectly, via the definition of LI(Y), also on g). 
This enables us to prove the following completeness criterion. 

Theorem 1.1 Assume that the generating density f of the location family ~ sat- 
isfies the following conditions. 

(i) f ( x +  y)< C(1 + [x12) k f (y)  for some finite C and positiv integer k and all x, 
y~R ~, 

(ii) f the characteristic function of f is infinitely often differentiable in R~\A 
for some finite set A. 

Then ~ is complete iff f has no zeros. 

Note that, for Y to be complete, necessity of the zerofreeness of f is trivial 
(and well known), regardless of whether (i) and (ii) are assumed or not: If t 
is a zero of f take g(x)=cos tx, the real part of exp ( - i t x ) ,  to show that (2) 
is not valid. It is however not dear, to what extent the conditions (i) and (ii) 
may be relaxed without affecting the sufficiency. See Sect. 4 below. 

The following simple proposition compares condition (i) above with two 
more easily checked conditions. 

Proposition 1.2 Condition (i) in Theorem 1.1 is implied by 

(i') 0 < c ~ f (x)(1 + Ix I) ~ ~ C < ~ ,  x ~ R ~, for some real e, C and ~ > O, 

and implies 

(i") c (1 + ]xl 2) - k ~ f (x) ~ C (1 + I xl2) k, x ~ R d, for some positive c and finite C and 
the same k as in (i). 

It turns out that our approach to Theorem 1.1 leads in fact to the considerably 
stronger Theorem 1.3 below. We need some more notation in order to state 
it. 

By a complex measure G on R d we mean a complex valued countably additive 
set function defined on the class of bounded Borel sets. We denote integration 
with respect to G and its total variation measure by dG(x) and IdG(x)[, respec- 
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tively. If f is any complex or extended real valued Borel function, then M (~)  
denotes the set of those complex measures G for which 

(6) Slf(x-Y)lldG(y)l<c~ E)?l 

holds. Clearly, the space L 1 (~),  defined above in the special case where f is 
a probability density, may be identified with a subset of the set of nonnegative 
and absolutely continuous elements of M (~-). 

Theorem 1.3 Let f be any complex or extended real Borel function on R d. Assume 
that f is locally integrable and satisfies the following conditions. 

(i) The inequality 

(7) If(x-hi)] >(1 c 
i= J + Ixl2) k 

and the implication 

(8) I x - y l > e  ~ I f (x -y )L<C(l  +lxl2) k ~. I f ( - y - b i ) ]  
i = 1  

hold for some positive integer m, bl .... , b,,~R a, c>0,  and R, C, k< oo. 

(ii) ~ the Fourier transform of f in the sense of tempered distributions, is outside 
some finite set A given by an infinitely often differentiabIe Jhnction. 

Then the implication 

(9) G~M(~),  j f ( x - y ) d G ( y ) = O  [2 d] ~ G = 0  

is true if either f is integrable and f is zerofree in R a or f is not integrable 
and f is zerofree in Ra\A. 

Theorem 1.3 contains Theorem 1.1 as a special case, since the usual characteristic 
function of a probability density f is also the Fourier transform of f in the 
sense of tempered distributions. 

The following is an analogue of Proposition 1.2. 

Proposition 1.4 Condition (i) in Theorem 1.3 is fulfilled if the implication 

[x[>__R ~ O<c<f(x)( l+Ixl)~<C<oo 

holds for some real R, c, C, and ~. 
The rest of this paper is organized as follows. Section 2 gives proofs of 

Theorem 1.3 and Propositions 1.2 and 1.4. Section 3 first gives examples of 
complete location families, including those generated by a symmetric stable 
law, by applying Theorem 1.1. Theorem 1.3 is illustrated by giving a simulta- 
neous proof of a theorem on translated moments by P. Hall and a uniqueness 
result of M. Riesz in potential theory. In Sect. 4, we compare Theorem 1.1 
with a classical theorem of Wiener and recent work of Isenbeck and Riischendorf. 
The possbility of omitting the conditions (i) and (ii) in Theorem 1.1 is also 
discussed in that context. 
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2 Proofs 

This section assumes some familiarity with the theory of Fourier transforms 
of tempered distributions as treated in [17]. In particular, we assume as known 
the spaces 9 ,  ~ ' ,  50, 5 P', (9~ and (9~. 

In the following, the term convolution and the symbol �9 will be reserved 
for the convolution of two tempered distributions of which at least one belongs 
to the space (9~ (see [17, p. 247]). 

Returning to the heuristic equivalence of (3), (4) and (5), the first idea is 
to make sure that g is a tempered distribution so that its Fourier tranform 

exists, again as a tempered distribution. Remembering that products and con- 
volutions of tempered distributions are not defined in general, our second idea 
is to consider the function h defined by (1) as a limit of convolutions of suitable 
tempered distributions, in order to conclude that ~=  ~ f  holds locally wherever 
the product on the right is defined. This latter idea is made precise by the 
following lemma, which may be "well known",  but for which I do not know 
any reference. 

Lemma 2.1 Let f g and h be tempered distributions. Assume the existence of 
a sequence (g,) with 

(i) g, e (.0~, 
(ii) g, ~ g in 5P', and 
(iii) g, * f ~ h in 5P'. 

Then, for every open set U ~ R a such that f is infinitely often differentiable in U, 

(10) ~lu=~lu.]lu, 

where ]v denotes restriction to U and equality is understood in the sense of distribu- 
tions in ~'(U). 

Proof Let ~ be any function with ~ ( U ) .  Then ~e5  p c (9~ and ~e(gM. It follows 
(see the argument given below) that 

/ ~ = h * ~  
= ((lim g ,* f )*e)~  

n - + o o  

-- ( lira ((g,*f)* ~))^ 
n --+ o~ 

= ( lim (g, �9 ( f ,  c0)) ~ 
n - + o o  

= (g* ( f*  ~))^ 

= ~ (f* a) 

In fact, the first equality holds by [17, Th6or6me XV, p. 268], since ~e(9~. 
The second equality is trivial by assumption (iii). The third holds by the hypocon- 
tinuity of the convolution [17, Th6or~me XI, p. 247] and assumption (iii). The 
fourth equality follows from the associativity of convolutions [17, Th6or6me 
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A 

XI, pp. 247-248], since gn, ee(9~. Now f*a=fd~ has compact support and 
thus belongs to (9 M. It follows from [17, Th~or~me XV, p. 268] that f*~e(~b, 
so that the fifth equality above follows by hypocontinuity of the convolution 
and assumption (ii). The remaining two equalities follow again from [17, Th6or- 
ame XV, p. 268], since f . a e (gb  and ee(gb. 

In order to prove equality (10), note first that both sides of it are actually 
defined as elements of ~ '  (see [17, pp. 26, 117]). If now q0e@(U) is given, we 
may choose c~ with ~e@(U) in such a way that ~ - 1  in the support of (p. 
Then we clearly have, omitting the symbol [v and writing <u, @> for the value 
assumed by the distribution u at the test function 0, 

= < ~( fa ) ,  ~0> 

by the definition of multiplication of distributions with infinitely often differenti- 
able functions. [] 

We have given the above proof in detail, since it is well known that careless 
formal manipulations with convolutions of distributions may easily lead to 
wrong results (see [17, p. 117]). 

Proof of Theorem 1.3 Let G e M ( N )  be given. We may assume that 

( 1 1 )  f l f ( - -bi- -y) l ldG(y) l<oo (i=1, . . . ,m) 

holds, since, by (6), this will certainly be the case if d G (y) is replaced by d G (y + Yo) 
for some Yo, and this replacement does not affect the validity of (9). We define 
complex measures G, by 

dG,(x) = 1 (Ix[ < n) dG(x) 

(where 1 (statement) is 1 or 0 according to whether statement is true or false), 
and almost everywhere defined functions h, h~ by 

h(x) = ~f (x  - y) d G(y), 

hn(x) = f f  (x - y) d G,(y), 

and check the hypothesis of Lemma 2.1, with G and G~ in place of g and g,. 
First of all, f is a tempered distribution, since it is locally integrable and, 

by (8) with some fixed y making the right hand side finite, dominated by a 
polynomial outside some compact set. By (7) and (11), 

IdG(x)[ < oo, 
(12) ~ (1 +lx12) k 

so that G is a tempered distribution in view of [-17, Th6or6me VII, p. 242]. 
We have GneOb because G~ has compact support. In order to prove that G, ~ G 
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in 5 P', let (see [17, pp. 238, 71]) ~b be any bounded set in 5 ~. By [17, p. 235], 
there exists a function k with k (x )=o( l x l  -~) as Ixl--' oo for every v, such that 
I(o(x)] < k ( x )  for every x~R e and every ( o ~ .  This implies 

sup I ( G -  G., q)>l=< f k(x) l(Ixl > n) ldG(x)[ ~ 0 

(by (12) and dominated convergence), i.e. G, ~ G in 5 P'. 
It remains to show that he5  #' and h,---, h in 5 ~'. To this end write 

(13) h(x) = [ . f ( x - y )  1 ( Ix -y l  =< R) dG(y) 

+ S f ( x - y )  l ( I x - y l  > e )  dG(y) 

= h(1)(x) + h(2)(x). 

h (~) is the convolution of the tempered distribution G with a compactly supported 
distribution and hence again tempered, e.g. by [17, Th6or6me XI, p. 247]. Fur- 
ther, by (8) and (11), 

(14) ]h(Z)(x)l dx<j"  1 C(l +]xl2)k~ ~ If(-y-bl)lldG(y)ldx 
(1 -It- ]XI2)/ (1 -~ IXI2)I i=1 

< O O  

if I is large enough, so that h (2) is also tempered. If we now replace G by G -  G, 
with n > R  in (13) and (14), then h (1) vanishes and an argument similar to one 
given above yields the convergence h, ~ h in 5 ~'. Thus Lemma 2.1 is applicable 
in the present situation. 

Assuming now that h vanishes almost everywhere, its conclusion reads 

0 = G Ii~d\A fl,,d\A, 

which, since f is zerofree outside of A, implies 

0 = d IRd\A. 

This means that the support of G is contained in the finite set A and implies 
(see [17, Th6or6me XXXV, p. 100]) that G is a finite linear combination of 
derivatives of Dirac measures, located at pairwise different points al . . . .  , a, e R  d 
for some nonnegative integer n (where n = 0  is admitted and means that G 
is zero). Hence G has a 2a-density g given by 

(15) g(x) = L ~, cj,~ xJe ia~x, 
v = l  j 

where the inner sum ranges over some finite set of multiindices J=(J l  . . . .  ,Jd), 
the % ~ are complex numbers, and a, x denotes the euclidean inner product. 

In order to prove that g vanishes identically, we assume the contrary, i.e. 
n > l  in (15), and for every v there is some j with cj,~>0. We will show in 
a moment that this implies 

(16) ~ei"(x-Y) f (y)  d y = 0  [2d], 
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which gives the desired contradiction: In case that f is integrable, the left hand 
side of (16) is e x p ( i a l x ) f ( - a l ) ,  and f ( -a l )4=O by assumption, whereas, in 
case that f is not integrable, the left hand side of (16) simply does not exist 
for any x. 

To derive (16) from 

(17) ~ g ( x - y ) f ( y ) d y = O  [-2 a] 

and (15), consider the operator  T =  T~,, which transforms a function 3' in M(o~) 
(i.e., the 2a-density of an absolutely continous element of M(Y))  into the function 
T3' defined by 

(T3') (x) = e- ia ,  3' (x + t/) -- 7 (x) 

for a c r  e and r/eRe\{0}. Clearly, if 3' satisfies (17) when substituted for g, so 
does T3'. In particular, T3' is again a function in M(~) .  For  r/=(0 . . . . .  0, r/d), 
we have 

T x a.  .x{~e i . . . .  x{'. ,x~_-r i"~'r 
a , r l  1 " "  " - -  " " " 

where 
p(t) = (e i("~-~)"~- 1) t a~ + e-  i"" t a~- 1 + . . .  

is a polynomial. If r/d is sufficiently small, p has degree Ja or Ja-  1, according 
to whether a~ equals a or not (we attribute degree - 1 to the polynomial identi- 
cally 0). 

Hence it is clear that first we may repeatedly apply Ta~,, for v = 2  . . . .  , n 
and 

r / =  (r/~, o,  . . . ,  o) ,  (o,  , h ,  o . . . . .  o) ,  . . . ,  (o,  . . . ,  o ,  r/~), 

with t/~ sufficiently small, to g in such a way as to obtain a function 

~(x) = Y, ~j,, xJe i~'~ 
J 

satisfying (17) when substituted for g and with coefficients Cj, 1, n o n z e r o  for 
the same j as cj, 1. In a second step we can apply Ta~,, with the same vectors 
r/as above so often to ~ as to obtain a function 

with 20,1 4=0 satisfying (17) when substituted for g, i.e. (16) is true. 

Proof of  Proposition 1.2 We use the elementary inequalities 

(18) 

and 

(19) 

l+te<( l+t)2<__2( l+t  a) (t>O), 

l + l x + y l ~ ( l + l x l ) ( l + l y l )  (x, ycla) .  

In (19) replace x by x + y  and y by - x  in order to obtain 

1 + lYl (x, y~Ra). 
(20) l + l x + y ] >  l+ [x ]  
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(i') implies (i): If (i') is true, then 

f ( x  + y) <= C(1 + Ix + yl)-" 
= < C ( ~ )  -~ 

_c( 
< 2 1 + IxlZ)~f(y) 

c 

by (20), positivity of e, and (18). 
(i) implies (i"): The first inequality in (i") follows by taking y = - x  in (i) 

and subsequently replacing x by - x .  The second follows from (i) by taking 
y=0.  [] 

Proof of Proposition 1.4 We have, under the hypothesis of Proposition 1.4, 
for m=2, bx =0, and b2 =(2R, 0, ..., 0) 

i = 1  

which, by applying (19) or (20) to 1 + l - b 2  +x[ according to whether e is positive 
or not, is seen to be 

(21) ~ (1 § Ixl) ~ 

for some positive ~. This implies the inequality in condition (i). Further, if Ix 
-y[>R,  we get 

C 
I f (x-y) l  < 1 + [x -y lF  

1 
< c(1 + Ixl) I ' j -  

( l + l y l )  ~' 

_-<g'(l+lxl2) ~ ~ I f ( x -b i ) l ,  
i = 1  

by first using (19) or (20) according to whether c~ is negative or not, and then 
(18) and (21). [] 

3 Examples 

Considering the six examples of the introduction, we see that only for the Cauchy 
distribution completeness of the generated location family may be deduced with 
the present method. The other densities do not fulfill condition (i") of Proposition 
1.2 and hence not condition (i) of the Theorem 1.1. Concerning the Cauchy 
density we have in fact the following more general result, including in particular 
Student's t-densities. 
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Theorem 3.1 The location family in R d generated by the density 

f(x)  = - -  
rc~ r (1 + Jxl2) ~ -  

with fixed positive fl, is complete. 

Proof Condition (i') of Proposition 1.2 is fulfilled and the characteristic function 
o f f  may be expressed as (compare [2, p. 294]) 

1 oo d2 
f ( t ) =  j" e-(l'J2/4)% - 1/'~2-~/2 

F ~ o  2 '  

which is everywhere positive and real analytic away from the origin. Hence 
Theorem 1.1 applies. []  

It is easy to construct numerous other densities for which completeness 
may be deduced using Theorem 1.1. For example, we may take any nondegener- 
ate mixture of the Cauchy density and a density g with g(x)< C(1 + x 2)- a, ~(x) 
>0, and ~ infinitely often differentiable. Then condition (i) in Theorem 1.1 is 
easily checked via Proposition 1.2 and the location family generated by f is 
seen to be complete. For the special case g(x)=(1--cosx)/)zx z, ~, is triangle 
shaped (compare e.g. [3, p. 503]) and the set A in Theorem 1.1 consists of 
three points (note that it will always contain the origin). 

More interesting examples are provided by the symmetric stable laws. 

Theorem 3.2 The location families generated by a density f in R with characteristic 
function f(t) = e x p ( - r  tl~), 0 < e < 2, are complete. 

Proof We consider the case c~ = 2 of the normal distribution as known and 
assume 0<c~<2. Then i t  is known that f is continuous, everywhere strictly 
positive (this follows from the unimodality of f in conjunction with symmetry 
and noncompactness of the support) and satisfies (compare [12, p. 140, formula 
(5.8.6) and p. 149, formula (5.9.3)]) 

r e )  1 0 [ 1 \ z(xl-r(  sin 

for Ixt--+ oo. Hence (i') of Proposition 1.2 is true and Theorem 1.1 is appli- 
cable. []  

Now we consider applications of Theorem 1.3. 

Theorem 3.3 Let p> - d  be fixed and # 2 k  for k=0 ,  1, 2 . . . . .  I f  G is a complex 
measure such that 

j x -  y[P dG(y) 
l l a  

exists and vanishes for 2d-almost every x, then G = O. 
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Proof Put f ( x ) =  Ixl p. Then, since p > - d ,  f is locally integrable, but not integra- 
ble, and fulfills the assumption of Proposition 1.4 and hence assumption (i) 
of Theorem 1.3. The Fourier transform o f f  is given by 

f ( t )  = 2d+'= ~ 1 

(see [-17, p. 257]), if the singularities of the right hand side are interpreted correct- 
ly. In any case, for p as above, the gamma quotient remains finite and nonzero, 
so that f fulfills the remaining conditions of Theorem 1.3 with A-- {0}. [] 

A similar result holds for the logarithmic kernel. It may be thought of as 
a limiting case of Theorem 3.3 if p ~ 0. 

Theorem 3.4 I f  G is a complex measure such that 

l o g l x - y l  dG(y) 
lid 

exists and vanishes for 2a-almost every x, then G = O. 

Proof Condition (i) of Theorem 1.3 is easily checked for, e.g., m=2,  bl=O, 
bz = (3, 0, ..., 0), k = 1 and R = 1. 

The Fourier transform o f f ( x ) =  log Ix[ is away from the origin given by 

1 f(t)= --2d-lTJ V(d) itld 

(see [17, p. 258]), which is strictly negative and real analytic in t. Since f is 
not integrable, Theorem 1.3 applies again. [] 

A partial history of Theorem 3.3 is as follows. It was stated without complete 
proof for p < 0  by M. Riesz in [16, pp. 10, 11], and proved (in a stronger 
form) under the additional hypothesis that G has compact support and p >  - d  
is : # 2 k + 2 - d  for k=0 ,  1,2, .... P. Hall obtained Theorem 3.3 for d = l  and 
p > 0 in case that G is assumed to be the difference of two probability measures 
(see [-6, Theorem 1]). Note  that our proof explains why the cases p=2k,  
k=0 ,  1, 2 . . . .  have to be exluded: In these cases f=(--A)k6,  a distribution sup- 
ported at the origin, so that formal multiplication with f does not look like 
an injective operation on G, and so neither does formal convolution of f with 
G. 

It is interesting to note that the notoriously slightly more difficult to handle 
logarithmic kernel causes no pain in the present proof of Theorem 3.4. 

Further applications of Theorem 1.3, including a new proof  of [-6, Theorem 
2], can easily be given by using tables of Fourier transforms of distributions, 
e.g. [4, pp. 346-353] or [8]. 

4 Discussion 

We concentrate on the simpler situation of Theorem 1.1. Returning to the heuris- 
tics of the introduction, observe that our restriction on f via condition (i) of 
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that theorem was chosen in order to induce a desired restriction on geD(~-). 
A different idea is to impose restrictions on g directly, i.e. replacing D (if) in 
the definition (2) of completeness by some subset E. The resulting concept is 
termed E-completeness. If E is the space of bounded measurable functions, E- 
completeness is customarily called bounded completeness. As observed by Ghosh 
and Singh [-5], boundedly complete location families are characterized by a 
classical theorem of Wiener, making the equivalence (3)~=>(5) precise in a way. 

Theorem 4.1 (Wiener) ~ is boundedly complete iff the characteristic function 
f of the generating density has no zeros. 

In order to point out the importance of the space E which g in (2) is restricted 
to, we state another theorem of Wiener, making (3)<>(5) precise in a different 
way. 

Theorem 4.2 (Wiener) Assume that the generating density f is in L 2 (2d). Then 
..~is L2(2d)-complete iff 2d({f= 0})= 0. ~ l n t  

For example, if f is the uniform density on [ - 1 ,  1], f ( t ) = = ~ ,  and 
is L 2 (2d)-complete but not boundedly complete. 

Wiener's theorems where generalized by Beurling to weighted LP-spaces on 
the line, i.e. E=LP(w21) where the so-called weight function w is assumed to 

the conditions w (x)_>- 1, w(x + y) < w (x) w (y) and w (o)  ---< w (x) for x, y s R satisfy 

and p > l .  A typical example is w ( x ) = ( l + I x l )  ~ for some e>0.  Recently, the 
theory of Wiener and Beurling was extended by Isenbeck and Riischendorf 
with the object of deciding LP(o~)-completeness of location families (where LP(o ~)  

r O~" s O~" is similarly defined as D (~)  above). Note that r < s  implies /2 (m)=/~ (~'), so 
that E(~)-completeness of g implies/X(~)-completeness of ~-. In particular, 
for 1 < p <  oo, completeness implies LP(o~)-completeness, which in turn implies 
bounded completeness. Isenbeck and Riischendorf proved the following result 
([7, Corollary 1]). 

Theorem 4.3 (Isenbeek and Riisehend0rf) Let w be any weight function and p > 1. 
Assume that the following conditions hold for the generating density f. 

(a) fw6L 1 (21), 
1 

(b ) f -p  w-1 eL~O (21) U Lq (21), 1 +_1 = 1. 
P q 

Then ~ is LP(W)-complete iff f has no zeros. 
Note that (a) and (b) would be mutually exclusive for p=  1. [7] gives an 

example of a density f for which LP(~)-completeness of ~ can be shown for 
every p > 1 using Theorem 4.3. 

While the Theorems 1.1, 4.1, 4.2 and 4.3 are analogues of each other, neither 
of them implies any other of them in an obvious way. The technical character 
of the conditions (i) and (ii) in Theorem 1.1 however suggests the possbility 
of omitting them without affecting the truth of the resulting statement, which 
would then include Theorem 4.1 as well as Theorem 4.3. According to Wiener's 
Theorem 4.1, proving such a statement would be equivalent to proving the 
assertion "Every boundedly complete location family on R d is complete". It 
is known that this latter assertion becomes false if the word "location" is omitted. 
An early counterexample was given by Lehmann and Scheff6 [11, p. 312], others 
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where  given only  recent ly  by  Bar -Lev  and  P l a c hky  [1],  bu t  none  of  them is 
given by  a l oca t i on  family.  Hence,  it  is an open  and  pe rha ps  no t  ent i re ly  t r ivial  
p r o b l e m  to decide  whe the r  the  cond i t ions  (i) and  (ii) in T h e o r e m  1.1 m a y  be 
omi t ted .  

O u r  final r e m a r k  concerns  the  miss ing " o n l y  if" s t a t emen t  in T h e o r e m  1.3. 
I f  f is a s sumed  to be in tegrable ,  this m a y  of  course  be added ,  wi th  the same 
p r o o f  as given in case of  T h e o r e m  1.1 i m m e d i a t e l y  after its s ta tement .  W h e t h e r  
o r  no t  this should  be poss ib le  in general ,  i.e. also if f is no t  in tegrable ,  is no t  
c lear  to the au thor .  
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