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Summary. The one dimensional nearest neighbors asymmetric simple exclusion 
process in used as a microscopic approximation to the Burgers equation. We 
study the process with rates of  jumps p > q to the right and left, respectively, 
and with initial product  measure with densities ~ < 2 to the left and right 
of  the origin, respectively (with shock initial conditions). We prove that a 
second class particle added to the system at the origin at time zero identifies 
microscopically the shock for all later times. If  this particle is added at another  
site, then it describes the behavior of  a characteristic of  the Burgers equation. 
For vanishing left density (~ = 0) we prove, in the scale t 1/2, that the position 
of  the shock at time t depends only on the initial configuration in a region 
depending on t. The proofs are based on laws of  large numbers for the second 
class particle. 
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Introduction 

The inviscid Burgers equation 

Qu 0[u(1 - u)] 
0~- + 0 Or - 0 (1.1 .a) 

with 0 > 0 admits travelling wave (weak) solutions u(r - vt), where, for ~ < 2, 

u(r) = ~l{r < O} +21{r  ____ O} 

v ---- 0(1 -- ~- -  2) . 
(1.1 .b) 
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These solutions are called the entropic solutions. In this paper  we continue the 
study of  Ferrari, Kipnis and Saada [fks] of  the microscopic approximat ion of  
these solutions by the asymmetric  simple exclusion process. This is a Markov  
process on the state space X := {0.1} ~. For configurations tl E X we say that 
there is a particle at x if q(x) = 1, otherwise x is empty, so that at each site 
of  the one dimensional lattice 2g there is at most  one particle. Informally the 
process is described by saying that if there is particle at site x, then it jumps 
to site x + 1 (respectively x - 1) with rate p (resp. q) if x + 1 (resp. x - 1) is 
empty and with rate 0 if it is cccupied. We assume p + q = 1 and p > q. The 
generator of  the process is given by 

Lf (~)  = Z Z p(x ,  y)r/(x)(1 -- ~(y))[f(~x,y)  --f(r /)]  
x ~ Tl y=x+_l 

where f is a cylindric function, qx,y is the configuration obtained when 
the values of  q at x and y are interchanged, p(x ,  x + 1) = p, p(x ,  x - 1 )  
= q = 1 - p and p(x ,  y) = 0 if Ix - Yl > 1. We call qt the resulting Markov  
process and S(t) the semigroup generated by L. Liggett proved that all the 
translation invariant  and (time) invariant  measures for this process are convex 
combinations of  the product  measures v~, 0 _< c~ _< 1, for which the probabil i ty 
that a given site is occupied is given by c~. Under  the invariant measure v~ 
the average velocity of  the particles is ( p -  q)(1 - c  0. There are also so called 
"blocking" invariant measures v (n) , n ~ 77.. These measures are also product,  
have marginals 

(p /q )X-  n (1.2) 
v(n)(tl(x)) -- 1 + ( p / q ) x - n  

and are even reversible for the process. They approach exponentially fast the 
densities 0 and 1 to the left and right of  the origin respectively [L], [1]. We 
consider these measures as a first example of  a microscopic shock: at any time 
the process with initial measure v (n) has a measure (which is the same v (~)) 
which, if shifted by x, approaches v 0 as x --* - o o  and v I as x ~ oo. This 
corresponds to the case ~ = 0 and 2 = 1 in the Burgers equation. The explicit 
formula for v (') plays a crucial role in this paper  as it did in [fks] we use (1.2) 
to find shocks for other values of  ~ and 2. 

In order to derive Eq. (1.1) in the general case one starts with the product  
measure vQ, 2 with densities ~ and 2 to the left and right of  the origin 

respectively, Q < 2. Under  this measure the particles initially to the left of  the 
origin have average velocity ( p -  q)(1 - ~ )  which exceeds the initial velocity of  
the particles to the right of  the origin ( p -  q)(1 - 2 ) .  This together with the 
exclusion interaction is the reason of  the format ion of  shocks in this model. In 
fact it has been proven by Benassi and Fouque [bf] and Andjel and Vares [av] 
that the hydrodynamical  limit of  this process is given by (1.1) with 0 = p - q. 
They proved that  ~E_I r%, ~S(~-~t)  converges, as ~ ~ 0, to v~ if r < vt and to 

v~ if r > vt, where v = (p - q)(1 - 2 - p) and ~ is the translation by x. We 
call v the schock velocity. At r = vt it is expected to see what Wick calls a 
"dynamical  phase transition", i.e. a convex combinat ion of  ve and v;. This was 
in fact proven by Wick [w] and De Masi et al. [dkps] for the case ~ = 0 and by 
Andjel et al. [abl] for the case 2 + Q = 1. Notice however that this is not true 
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when 0 = 0 and 2 = 1, as v (~) are invariant and not a convex combination of  
v i and v 0. Some of  these results were reviewed by Bramson [b]. 

The question that arises naturally then is what does the shock look like? 
The hydrodynamic limit shows that it is rigid in the scale e -1 .  Is there another  
scale such that it is smooth? [fks] answered this question negatively. Indeed 
they proved that the shock is rigid on the microscopic level by defining a 
random position X(t) and a measure # ~ v~, ~ such that at any time t the 
system as seen from X(t) is distributed according to #, where # ,~ vo, i means 
that for all cylindric f on X, 

x lQm_ooZX#f = vof and lilnooZX# f = v x f .  (1.3) 

In this paper we show that the microscopic shock is also described by a 
"second class particle". One of  the advantages of  this approach is that the 
shock can be shortly described and we proceed to do that now. We use the 
graphic construction and the basic coupling. We refer to Liggett's book [L] 
for both techniques, widely used in interacting particle systems. The graphic 
construction of  the simple exclusion process ~t is determined by the following 
rules. At each pair of  sites (x, x + 1) associate two Poisson point processes 
(Ppp), one with rate p and the other with rate q. Each of  these Ppp is a 
sequence of  times on N + . We say that an arrow going from x to x + 1 is 
present at each of  these times for the Ppp with rate p and a left arrow going 
from x § 1 to x for the Ppp with rate q. These Ppp are mutually independent. 
When an arrow occurs going from x to y if x is occupied and y is empty, then 
the particle jumps to the empty site. Otherwise nothing happens. In this way, 
for each realization of  the arrows and each initial configuration we construct a 
version of  ~t. 

The basic coupling consists in realizing jointly two or more versions of  
the process with different initial configurations using the same realization of  
the arrows. In this way each marginal has the distribution of  the simple 
exclusion process and we can learn other properties by comparing the same 
realization with different initial configurations. In particular, consider two 
initial configurations that differ at only one site, say the origin. The reader can 
check that the coupling has the property that at later times the two marginals 
also differ at only one site. This site is called a second class particle. The name 
comes from the way this "particle" interacts with the other particles that we 
call first class: First and second class particles at rate p jump to the right site 
if it is empty and at rate q do the same to the left. None of  them jump to sites 
occupied by first class particles. But, when a first class particle tries to jump to 
a site occupied by the second class, the jump is realized and the two particles 
interchange positions. 

We describe now our results. We show in Sect. 2 that starting with the 
second class particle at the origin and distributing the other particles according 
to v~, ;~, the process as seen from that particle at time t has a distribution --, v0, ;. 
uniformly in t, where ,-- is defined in (1.3). Furthermore,  as t -+ oo, this process 
converges weakly to an invariant measure ~ ~ v~, 4. The process as seen from 
the second class particle is a Markov process. This is an improvement over the 
process as seen from the random position described by [fks]. 
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In Sect. 3 we show laws of  large numbers for the second class particle: 
call R(t) the position at time t of  the second class particle (R(0) = 0). We 
prove that R(t)/t converges almost surely to v = ( p -  q)(1 - - , ~ -  0) when the 
initial measure is either the product measure ve, ;0 or the invariant measure 

ft. To prove these laws we use and improve laws of  large numbers of  [fks]. 
Furthermore we show that if the first class particles are distributed according 
to the (translation invariant) mesure v~, then R(t)/t converges almost surely to 
(p - q)(1 - 2~). 

In Sect. 4 we consider the situation when the second class particle starts at 
the position e - 1 r > 0 and study its motion in the hydrodynamic limit described 
above. We prove that its macroscopic motion can be described as follows: it 
starts at r and has velocity ( p -  q ) ( 1 -  2)0 up to the moment  that it meets 
the shock that started at the origin and has velocity (p - q)(1 - 2 - 0). At this 
moment  the second class particle adopts the velocity of  the shock. On the other 
hand, when the initial point is g - l r  < 0, the velocity is ( p -  q)(1 - 2 0 )  up to 
the moment  it meets the shock. This is the behavior that the characteristics of  
the Burgers equation have. 

The fluctuations of the shock are at least diffusive. In fact we prove in Sect. 
6 that 

lim inf t -  1E~ ~ (R(t) - vt) 2 > (p - -  q) 0(1 -- 0) + 2(1 -- 2) 
t--, oo v0, = }. - -  

(1.4) 

where E v is the expectation of  the process with initial measure v ; the measure 
?Q, ;~ is the measure that puts a second class particle at the origin and the first 

class particles are distributed according to re, ~ ; finally, in this paper we write 

E(.) 2 for E[(.)2]. 
Equation (1.4) proves half  of  the conjecture of  Spohn [lps] [S], who has 

heuristic arguments that justify the existence of the limit and the identity in 
(1.4). Also Boldrighini et al. performed computer simulations that support  the 
conjecture [bcfg]. The proof  of  (1.4) is based on a result shown in Sect. 5: if 
a particle is added to the system at time zero at any site, then, as t ~ 0% the 
shock shifts to a random position that differs in average - (2 - 0) - 1 from the 
shock position of  the original process. 

More can be said when 0 = 0. In Sect. 6 we show that the fluctuations of  
the shock depend only on the initial distribution. We prove that 

t ~ o o  lim t - l / d % ,  A~)E. (R(t) n 0 ( t / '  r + f ) )  2 .,], = 0  (1.5) 

Y 
where no(q,y ) := ~ ( 1 - r / ( x ) )  is the number of  empty sites of the 

x= l  
configuration i/ between the origin and y and r + = ( p -  q)2. This extends 
a result by G~irtner and Presutti [gp] who proved (1.5) for p = 1. Equation 
(1.5) implies a central limit theorem for R(t) because n0(t/, r+t) is a sum of  
independent identically distributed random variables. In Remark 6.6 we show 
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that for the tagged particle [f], [k], [df], i.e. a regular particle, (1.5) is also true 
substituting v0, ~ by v~. For any ~ and 2 we conjecture that the following is 
true 

lim t - l f d ? o  ,~(tl)E~(R(t) no(~l , r + t) nl (~/, r -  t)'~ 2 
2 - 0  ~22~ ) = 0  (1.6) 

where n~ (t/, x) is minus the number of particles between the origin and x < 0 
a n d r  + = - r -  = ( p - q ) ( 2 - Q ) .  

Finally let us mention that the second class particle is conjectured to 
have the " l / f  noise" behavior. The conjecture is that when 2 = 0 = c~ the 
fluctuations are superdiffusive: 

lim t -4 /3E .- (R( t ) - -ER(t))  2 =  constant > 0 .  
t--+ O0 "r 

See [S] and [vb] for a heuristic justification and [bcfg] for computer simulations. 

2 A second class particle identifies the shock 

We define the process with a second class particle described in the introduction. 
Define (tit, R(t)) on the state space X x Z as the process with generator 

L ' f  (q, r) = Z Z p(x, y)3/(x)(1 -- tl(y))[f(tl x'y, r) -- f(tl ,  r)] 
x:~r y=x+_l(:r 

+ Z (p(x, r)q(x) + p(r, x)(1 --tl(x)))[f(tl :~'r, x) - - f ( q ,  r)]. 
X=r-~I 

(2.1) 
Consider also ~t := ~R(t)qt, the process as seen from the second class particle. 

This is a Markov process with state space ~" := {0, 1} 7t\{~ • {0}, the space 
with a second class particle at the origin and with first class particles and 

empty sites on the other sites. Call L and S(t) the corresponding generator and 

semigroup. Let re, ~ be the product measure on ~" for which the density of first 
class particles to the right of the origin is 2 and the density to the left of the 
origin is 0. The symbol ~ is defined in (1.3) above. 

Theorem 2.2 The following holds uniformly in t 

Vo , ~ . 

Furthermore, ~ ,  ;.S(t) converges weakly, as t --+ o0, to an invariant measure 
~ "~ VO, 2. 

In the remainder of this section we prove Theorem 2.2 The proof uses 
the identification of the interface given by [fks]. They proved that there exists 
a position X(t) such that if t/0 is %, ~ distributed, then the process "CX(t)tlt 
has distribution ~ re, a uniformly in t. We will prove here that there exists a 
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coupling for which EIR(t  ) - X ( t ) ]  < C for all t. The major difference between 
X(t)  and R(t) is that the process ZR(0~ t is Markovian while rx(t)qt is not. 

Now we recall the results of [fks]. The position X(t) is obtained from 
the basic coupling described in the introduction between two copies of the 
simple exclusion process. The first copy has initial (marginal) measure v o and 
the second v~. Under the initial measure the configuration of the first copy 
is coordinatewise less or equal than the configuration of the second one. We 
call second class particles those occupied sites of the second copy that do not 
have a corresponding particle in the first copy, and we call first class particles 
the common occupied sites. This nomenclature is justified in the introduction. 
The resulting process is denoted (o- t , it), where the a particles are the first 
class and the ~ particles are the second class. We say as in [ak] that the o 
particles have priority over the i particles and denote the priority a t F ~t- By 
construction a t is the simple exclusion process with initial measure v o while 
at + it (cordinatewise) is the simple exclusion process with initial measure v.~. 
Call v 2 the initial measure for the process (~r t, ~t) and v~ := v2(.]i(0 ) = 1), 
so that under v~ there is a second class particle at the origin. Let X(t)  be 
the position of that particle at time t. Each realization of X(t)  is univoquely 
determined by the corresponding realization of the path is ,  0 _< s _< t. 

To recover the original process t h [fks] define yet a new process (at, 7t, ~t) 
where 7t + ~t = ~t with priorities a t F 7t F ~t. This means that the particles 
follow the arrows to jump either to empty sites or to sites occupied by another 
particle of lower priority interchanging positions. The initial distribution of 
(at, 7t, ~t) is given as follows. Pick (a0, i0) from the distribution v~, and 
label the n-th i particle counted from the origin a 7 particle with probability 
(p/q)~/(1 + (p/q)n), otherwise a ~ particle. Do this independently for each n. 
Call v~ the resulting distribution of (a 0 , 70, ~0)- The notable property of this 
construction is that the distribution of the 7t and ~t labeling is the same 
for all t _>_ 0. In Lemma 3.26 of [fks] it is proved that the shifted process 
Zx(t)(at, Yt, ~t) is Markovian and has measure v~S3'(t ) with the property that 
the a + 7 marginal has distribution ~ vo, ~ uniformly in t. Using compactness, 

[fks] proved that there exists an invariant measure #~ with the same properties. 
The original process is recovered by defining qt = at + 7t but with a different 
initial distribution. In fact note that at time zero the projection of  v 3 over the 
t/ coordinate is not exactly vo, ~ but a measure equivalent to it. Hence "Cx(t)tlt 
has distribution ~ %, x uniformly in t. Projecting the invariant measure /~; 
over a + y one obtains a measure # --~ %, ~ such that, starting with #, "rX(t)rlt 
is distributed according to # for all t. The position of X(t)  can be recovered 
from the process "Cx(t) (a t , ~t) by counting the algebraic number of translations 
of this process in [0, t]. 

Now we establish the relationship between R(t) and X(t).  For p = 1 we 
simply label the i-particles to the right of the origin at time 0 as y particles 
and those to the left as ~ particles. In this case notice that X(t)  is just a second 
class particle with respect to the ~t process (which is the same as a t + 7t). So 
in this case R(t) ==- X(t),  and ~ =/~. 

When p < 1 we have the following 
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Proposition 2.3 There exists a coupling between (t/t, R(t)) with initial measure 
v~,,l and (a t 4t, X(t)) with initial measure v~ such that for all t >= 0 

EIR(t)--X(t)I ~ C < oo. (2.4) 

Proof At time t = 0 distribute (a 0, 40) according to v~ and set (t/0, R(0)) as 
follows 

R(0) = X(0) = 0 

t /0 (x)=a0(x  ), for x < 0  (2.5) 

t/0(x)=~r 0(x)+40(x) ,  for x > 0 .  

Now call 7 and ~ the 4 particles to the right and left of  the origin respectively. 
For later times consider the following priorities: 

at ]- ~t [- R(t) t- (t 

(we identify R(t) with the configuration with a particle at R(t) and no particles 
elsewhere). Hence (t/t, R(t)) = (a t + 7t, R(t)) and (at, 4t, X(t)) = (a t, (Tt + (t) 
UR(t), X(t)) have the right distribution. (We identify the configuration t/ with 
the set of  occupied sites {x : t/(x) = 1} and abuse notion by writing R(t) for 
{R(t)}.) 

We now study the process zx(t)(at, 7t, ~t, R(t)). For the initial distribution 
' for which v~(.[A) of this process it is convenient to consider a new measure v 4 

satisfies (2.5),with A := {R(0) = 0 ; 7 ( x )  = 0 ,  x < 0 ;  ((x) = 0 ,  x > 0}. To 
define v~, put the o- and 4 particles according to v~. Define x i := position of 
i-th particle (x 0 = X(0) = 0). Choose R(0) to be equal to x i, with probability 

re(i) : = M ( ( l + ( p / q ) i - � 8 9 1 8 9  -1 (2.6.a, 

independently of the Configuration (a, 4), where M is a normalizing constant 
making ~ re(i) = 1. Finally decide which 4 particles different from R(0) are 7 
particles: label the j- th 4 particle as 7 with probability 

( p / q ) J - � 8 9  j - � 8 9  

m(jli) := (1 �89 (p/q);+�89 +(p/q)J+ ) 

independently of everything, otherwise as (. A 
(2.11) below. The values of re(i) and m(j[i) are 
holds. Other choices are possible but this one 
respect to the origin. 

i f j < i  

i f j > i  

(2.6 .b) 

formal definition is given in 
chosen so that (2.16) below 
makes re(i) symmetric with 

Call xi(t ) the position at time t of  the i-th it particle (Xo( t )  - X ( t ) ) .  We 
prove below that for all t > 0, 

P~'4 (R(t) = xi(t ) ~ 2 ,  t )  = re(i) (2.7) 
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where ~'~2, t is the sigma algebra generated by {(as, is) " 0 < s <= t}. Before 
proving (2.7) we finish the proof of the proposition. Equation (2.7) implies that 
{R(t) = xi(t)} is independent of (at, it). Hence 

i 6Z  

= ~ ~l~2m(i)= constant < 
i 6Z  

(2.8) 
where in the second identity we used that for all i and all t >= O, Ev/~ (xi(t) -- 

Xi_a(t)) = 1 / ( 2 -  0). This proves (2.4) when the initial measure is v~. In fact 
our initial measure is v~(.[A). Since v~ gives positive mass to A, (2.8) implies 
the proposition. [] 

Proof of  (2.7). The process ~x(o(ot, 7t, (t, R(t)) is a Markov process with 
generator L; := L;' + L;' + L~', where L;' is the generator of  the motion of 
the o and i particles and the translations due to the jumps of X(t): 

L~' f (a, y, ~, r) 

= Z - Y) 
x~0 y=x• t 

• [ f ( a X ' y , T x ' y , ~ x ' y , r X ' y ) - f ( f f , 7 , ~ , r ) ]  

+ ( ? ( x ) + : ( x ) + l { r = x } ) ( 1 - a ( y ) - 7 ( y ) - ~ ( y ) - l { r = y } ) p ( x , y )  

+ Z 
y=--1 

+ ( 1 - -  a(Y) -- 7(Y) -- ~ (Y) -- I {r = y} )p(O, Y) 

• [ f ( 'Cya, 'CyT~176176 

(2.9) 

where r x,y = r for r ~ x and r x'y = y if r = x; L~' is the generator of  the 
exchanges between 7 and ~ particles: 

L;' f (a, 7, ~, r) 

= ~ "  ~ 7(x)~(y)p(x,y)[f(o, 
x~ry=x• 

?x,y, r r) - - f ( a ,  7, r r)] (2 .lo) 
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and L~ ~ is the generator which describes the motion of R(t) on the ~ particles: 

7,  r) 

The point here is that the generators L~' and L~' do not affect the position of 
the o- and ~ particles as they describe interchanges of  ~ particles. On the other 
hand, L~ r does not affect the 7, ( and R labeling of xi(t ). 

Let 7c 2 be a measure on X 2 with the good marginals, i.e. fdzc2(o-, ~)f(a) 
= vef and fd~2(o-, ~)f(o + 4) = v~f. Let rc~ := rc2(.]~(0 ) = 1). Define the 

measure rc~ on X 3 x Z as follows. Let A, B, C, {r} be pairwise disjoint subsets 

of  2g and  fA, B, C, r( ~y, ~, ~, R) :=  [IxaA o'(x) I-Ix6B 7(X) 1-[x6C ((x)I{R = r}. 
The fourth coordinate stands for the position of R(t) - X(t). 

rC~fA,,, C , r ' =  f d ~ ( a ,  ~) I-I o(x) I-I ~(x)m(n(~, x)in(~ , r)) 
xEA xEB 

x I-I ~(x)(1 - m ( n ( ~ ,  x)ln(r r))) 
xEC 

x ~(r)m(n(~, r)) 

(2.11) 

where re(i) and m(jli) are defined in (2.6) and n(~, x) is the signed number of 
particles between the origin and x: 

Z y = l  ~(Y) 
: =  0 

- (y) 

if x > 0  

if x = 0  

if x < 0  

i.e. the label of the ~ particle at x. We use the notation rc 2 for any measure with 
the good marginals and v 2 for the product measure with the good marginals. 

' and ' are constructed in the same manner from zc 2 and v 2 The measures rc 4 v 4 
respectively. Call S/(t) the semigroup corresponding to the generator L~. We 
shall prove that v~Sd(t) can be constructed from v2Sd(t ) t  , as ~4t is constructed 
from rc~ in (2.11). To do that we prove that if ~z~ is defined as in (2.11) then it 
is reversible for Ld' and L~': 

! I I  ! I I  
TC 4 (gL3 f )  = 7c 4 (fL 3 g) 

! I !  I I f  
~z4(gL4 f )  = 7c40eL4 g) 

(2 .12)  

(2.13) 

for all f and g cylindric. We prove first (2.13) that is equivalent to prove that 
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for all finite pairwise disjoint sets A, B, C, {r, r + 1}, 

r c 4 ( q l { R : r } 7 ( r + l )  l - Ir  ~eB 

x E A  x E B  x E C  

(2.14.a) 

rc~(pl{R=r}r + 1) I - I  o-(x)I-I 7 (x ) I - I  ~(x)) 
x E A  x E B  x E C  

x E A  x E B  x E C  

(2.14.b) 

Notice however that rc~ is not even invariant for L~, the generator of  the whole 
process. By the definition of ~z~, (2.14a) is equivalent to the following identity 

I .  when integrated with respect to rc 2 . 

~(r)~(r + 1)q m(n(~, r))m(n(~, r + 1)ln(~, r)) 

• YI  m(n(~, x)ln(~ x, r)) 11 (1 - m(n(~, x)tn(~, r))) 
x E B  x E C  (2.15) 

= ~(r)~(r + 1)pm(n(~, r + 1))m(n(~, r)[n(~, r + 1)) 

x 11 m(n(~, x)ln(~, r + 1)) YI (1 -- m(n(~, x)in(~, r + 1))) . 
x E B  x E C  

Equation (2.14.b) is equivalent to an analogous identity. Now (2.15) holds if 
~(r) = 0 or ~(r + 1) = 0. Otherwise n(~, r + 1) = n(~, r) + 1. Hence it suffices 
to check that, for all i, the first of  the following identities hold: 

q m(i)m(i § 11i) = pm(i + 1)m(ili -t- 1) 
(2.16) 

pro(i)(1-re(i+ 1Li)) = qm(i+ 1)(1 - m ( i l i +  1)). 

The second identity in (2.16) implies (2.14b). The proof of (2.16) is left to the 
reader. This proves (2.13). The proof of (2.12) is similar, the last step being to 
show that for j ,  j + 1 :p i 

p m(jii)(1 -- m(j + 11i)) = q m(j + lIi)(1 -- m(jii)) . 

The motion related to the generator L~ t does not change the labels of  the 
particles and by (2.12) and (2.13) the distribution of these labels remains 

invariant under the motion related to the generators L~ t and L~ r. Equation 
(2.7) is then consequence of the Trotter-Kato formula: 

S~(t) = lim (S~'(t/n)S~'(t/n)S~(t/n)) n/3 . 
n ---~ O0 

where Si'(O is the semigroup corresponding to the generator L[ ~, i = 2, 3, 4. 
[] 
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Remark. We have proven that v~S~(t) is reversible for L ; ' +  L;'. This implies 
that, letting J ,  K c 7l,, i E Z, {i}, J ,  K pairwise disjoint, 

P~'4 (R(t) = xi(t ) ; 7t(xj(t)) = 1, j C J;  

= re(i) H m(jli) H (1 - m(kli)) 
j E J  k E K  

~t(xk(t)) = l ,  k E K ~2 ,  t )  

or, in other words, using the notation of  (2.11), for all t > 0, 

! ! 
v4S4(t)f ' B, C,r = dv2Sz(t)(o-, 4) I-I o-(x) I-I ~(x)m(n(4, x)ln(4, r)) 

x E A  x E B  

x H 4(x)(1 -- m(n(~, x)jn(4, r))) 
x E C  

x 4(r)m(n(4, r)) . 
(2.17) 

The next proposition is used to prove the convergence to an invariant measure 
in Theorem 2.2. Its proof  uses again the basic coupling, but now between two 
copies of  the process if/t, ~t) which was constructed itself using that coupling. 
What  we mean for basic couplig is again the fact that the two copies use the 
same realization of  arrows. This guarantees that each marginal has the correct 
distribution. The same remark is valid for the future, where we will copy up to 
three processes each with different priorities. 

Proposition 2.18 Let 7c 2 be a measure on X 2 with the good marginals, i.e. 
f drc2(o-, ~)f(o-) = vQf and f dg2(o-, ~)f(o- + 4) = v,~f, and let re6 "=  ~2(.1~(0) = 

1). Let ~2 be an invariant measure for S2(t ) with the good marginals (its existence 
is proven in [tics]). Then rc2S2(t ) converges weakly to ~2 and 7r~S~(t) converges 
weakly to #~ := #2(.14(0) = 1). 

Proof Consider the basic coupling between two copies of  (o-t, 4t): 

(o-o, 4o) with initial measure rc 2 

O-1 ~1 ( t ,  t) with initial measure #2 �9 

Since the o- and the o- + 4 marginals are the same for rc 2 and f12, we can 
assume that under our coupling, at time 0 (and hence for all later times), 
o-o + 400 = o-o 1 + 41. In that way the marginal (o-o, o-1) has a translation invariant 
measure and we can apply Lemma 3.2 of  Chap. VIII of  Liggett [L] to the 
marginal coupling (o-o, o-I) to obtain that any weak limit fi of  (o-o, a~, 4 ~ , 4t 1) 
satisfies fi(o-~ = o-l(y) = 1, o-0(y) = o-l(x ) = 0) = 0 for all x, y. Hence 
fi(o-o > o_1 or o-0 < o_1) = 1. This implies that either fi{o-o > o.1} > 0 or 
fi{o-0 < o.1} > 0. Assume fi(A) > 0, where A := {o-0 => o-1}, the other 
case being similar. We want to prove that fi(o-0 = o.1) = 1. We proceed by 
contradiction. Assume that fi(o-o > o-1, A) > 0. Then, by translation invariance, 
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~(o-~ > al(x) ,  A) = c > 0 for all x, and for all n > 0, 

))) dfi(o- ) a ~  = > 0 .  (2.19) ,O-1 C 

A \ x = l  

But his leads to a contradiction because the first two marginals of ~ are v~, 
and the law of  large numbers plus dominate convergence imply that the limit 
as n ~ oe of  the left hand side of  (2.19) is zero. Then ~(o-0 = o-1) = 1. Since 
o-~ + ~ = o-0 + ~0 for all t, this implies that rc2S2(t ) converges to #2. This and 
the fact that rc~S~(t) = ~2S2(t)(.1~(0) = 1) (Lemma 3.6 of  [fks]) imply that 

t I [ ]  ~2S2(t) converges to # '  2" 

Proof o f  Theorem 2.2. Proposition 2.3 guarantees that since v~ has the good 
marginals, then, under initial measure v~, X(t) - R(t) is tight. This and the fact 
that the projection over o- + 7 of  v~S~(t) is ~ V o ' ;0 uniformly in t (Lemma 3.26 

of  [fks]) imply that zn(t)t/t has distribution ~ v~, ;0 uniformly in t. This proves 
the first part of  the theorem. 

For the second part, we observe that Proposition 2.18 and Eq. (2.17) imply 
that v~S~(t) converges to a unique measure for the process as seen from X(t). 
This implies that X(t) - R ( t )  converges in distribution. Since EIX(t) --R(t)[ is 
uniformly bounded, ~R(t)tlt = ~n(t) X(OzX(t)(o-t +Tt) converges in law to the 
invariant measure ~. [] 

3 Laws of large numbers 

In this section we prove laws of  large numbers for R(t) and others microscopic 
shocks. We start with a strong law of  large numbers for X(t) when the initial 
measure in any measure with the good marginals. This extends the results of  
[fks], who proved a weak law when the initial measure is product and a strong 
law when the initial measure is the invariant measure # '  We give here an 2" 
unified proof. Let v = (p - q)(1 - 2 - ~). 

Theorem 3.1 Let rc 2 be a measure with the good marginals as in Proposition 2.18, 
! and rc 2 = rc2(.]~(0 ) = 1). Then 

lim X(t) - -  = v, P ~  almost surely. 
t---~ ov t 

Proof. Let U(t) ~ 2~ and define F(~t, U(t)) := number of  ~ particles that at 
time zero were to the left of  the origin and at time t are to the right of  U(t) 
minus the number of  ~ particles that at time zero were to the right of  the 
origin and at time t are to the left of  U(t). In other words, F(~t, U(t)) is the 
net flux of ~ particles throught the space time line [(0, 0), (U(t), t)]. Notice 
that F(~ t , X(t)) =-- O. Define analogously F(o-t, U(t)) for the process o-t and 
F(o-t + ~t, U(t)) for the process at + it. Now assume that U(t) is a random 
walk on ~ that jumps to the right neighbor at rate w independent of  (o- t, it) 
and study the process rcr(Oo- t. Using the techniques of Liggett [1], it can be 
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proven  tha t  all invar ian t  measures  for  this process  are t rans la t ion  invar ian t  
and  tha t  v~, 0 _< a < 1, are ex t remal  invar ian t  for  this process. Not ice  tha t  
F(zv(t)at, O) = F(at~ U(t)). N o w  we can use the mar t inga le  decompos i t i on  o f  

F(~u(t)at, 0) and  the fact wha t  v~ is ex t remal  for  Zu(oat to prove  - as in the 
p r o o f  o f  T h e o r e m  6 o f  [k] or  T h e o r e m  1 o f  [s] tha t  

lira F(at' U(t)) _ ( p _  q)9(1 - 0) - wo, P~'2 a.s. 
t--+ cc t 

where we used tha t  the a marg ina l  o f  n~ is absolute ly  con t inuous  with respect  
to %. Ana logous ly  using the fact tha t  a t + i t  is also the s imple exclusion 

process  with measu re  (absolutely  con t inuous  with respect  to) v2, 

lim F(at + ~t, U(t)) = (p _ q)2(1 -- 2) - w2, P~'2 a.s. 
t ~ c o  t 

f rom where, using the fact tha t  F(~ t, U(t)) = F(a t + i t ,  U(t)) -- F(at, U(t)), 

l im F(~t' U(t)) _ (p _ q)(2(1 --  2) - ~(1 - 0)) - w(2 - 0) P ~  a.s. 
t ---~ oo t 

N o w  check tha t  this limit is negat ive  for  w > v = ( p - q ) ( 1 - 2 - 0 )  and  
posi t ive for  w < v. On the o ther  hand,  limt_,o o U(t)/t = w a.s. because  U(t) 
is a Poisson r a n d o m  var iable  with m e a n  wt. Also F(~t, x) is a non  increasing 
funct ion  o f  x. Hence,  since F(~t, X(t)) = O, 

l i m s u p  X(t) < lira U(t) __ - -  = w ,  P ~  a.s .  
t --, cc t - -  t --~ oo t 

for  all w > v, and  analogously ,  

l iminf  X(t) > lira U(t) - -  - - = w ,  P ~  a.s .  
t---,cxz t - -  t ~  t 

for  all w < v. This  proves  the Theorem.  []  
The  next  l e m m a  is a corol la ry  to Propos i t ion  2.3. 

L e m m a  3.2 Let G(t) be the position o f  the leftmost particle of  7t and Z(t) the 
position of  the rightmost particle of  ~t. Then for all t > 0 

Ev, 4 IR(t) - G(t)l = E~; IR(t) - Z(t)l < C < oo (3.3) 

and 
Ev, 4 (R(t) -- X(t)) = 0. (3.4) 

' the average  dis tance be tween succesive Proof W h e n  the initial measu re  is v 4, 

part icles is ( 2 -  Q ) - t  for all t imes. F u r t h e r m o r e  the way  o f  choosing which 
part icles are y part icles and  the R part icle is independen t  o f  the posi t ion of  

the ~ particles. This  implies tha t  

(p/q)k 1 
E" '3]X( t ) - -G( t ) l=(2- -O)- I  kc~Z ]k]l +(p/q)kl~>k l §  < 0 ~  (3.5) 
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This and EIX(t )  - -R( t ) l  < C < oe (Proposition 2.3) imply (3.3). Equation (3.4) 
is a consequence of the symmetry of re(i) with respect to the origin. [] 

In the next theorem we show that the different positions of the shock satisfy 
laws of large numbers. 

Theorem 3.6 The fol lowing holds 

lim R(t) = v, P? and P~ a.s. " (3.7) 
t - * o o  t Q , 2  /~ ' 

lim G(t) _ lim Z(t____~) = v, Pv, 3 and PY3 a.s.. (3.8) 
t - ~  oo t t ~ oo t 

Proo f  By Theorem 3.1, X ( t ) / t  converges P"'2 a.s. and Pv~ a.s. to v. Proposition 

2.3 says that X(t )  - R(t) is tight. Hence R( t ) / t  converges P3 a.s. and P?~o, j. a.s. 

to v. This and Lemma 3.2 imply that both G(t) / t  and Z ( t ) / t  converge Pp~ a.s. 

and Pv~ a.s. to v. [] 

Now we prove a law of large numbers for a single second class particle 
when the initial density of first class particles out of the origin is e (no shock). 
We consider the process (tlt, D(t)) on X x Z, with priority t/t ~- D(t) and inital 
measure ?~, the product measure of density ~ with the second class particle at 
the origin. 

Theorem 3.9 Let  tl t ~- D(t). Then 

lim D(t) = ( p - q ) ( 1 - - 2 ~ ) ,  P^ a.s. 
~--~ oo t v ~  

Proo f  Couple the process (th, D(t)) and the process (at, ?t, (t) with initial 
distribution v~, with 2 > ~o --- ~, in such a way that at t = 0, D(0) = 0, q0(0) = 0 
and t/0(x ) = cr0(x ) for x @ 0. This gives distribution ?~ to (t/0, D(0)) and the 
correct distribution for later times. Letting G(t) to be the position of the 
leftmost 7t particle, 

70(0) = 1 implies D(t) > G(t) . (3.10) 

To prove (3.10) observe that it holds trivially for t = 0. Then observe that if 
G(t) = O(t), a right jump of G(t) implies a right jump of D(t) while a left jump 
of D(t) implies a left jump of G(t). From (3.10) we get that, for any 2 > r in 
{yo(O) ---- 1}, 

l iminfD(t)  >_ lim G(t) = ( p - q ) ( 1 - ~ o - 2 ) ,  a.s. (3.11) 
t - ~ o o  t - -  t - -~  oo t 

where the identity is (3.8). Since this holds for all 2 > Q, 

l iminf  D(t) > ( p - q ) ( 1  - 2 ~ )  P?~ a.s. (3.12) 
t - 4 o o  t ~ 

where we have used that v~(7(0 ) = 1) > 0. 
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On the other hand, couple again (tlt, D(t)) with (at, 7t, ~t) but now with 
initial distribution v~ with ~ < 2 = ~. At time t = 0: 

D(O) = o ,  ~o(O) = o 

tlo (x) = a t (x) + 7t (x) + (t (x) for x # O. 

Leting Z( t )  to be the rightmost (t particle, analogously to (3.10), 

( 0 ( 0 ) = 1  implies O ( t ) < Z ( t ) ,  t__>O, 

and 

This and (3.12) finish the proof. 

lim sup D(t) < (p _ q)(1 - 2a) 
t - - ~  t ~ 

[] 

P?~ a.s. 

4 Second class particle and characteristics 

In this section we prove that the macroscopic motion of  a second class particle 
coincides with a characteristic of  the Burgers equation. The characteristic 
corresponding to r E lR is the curve w(r, t) in space time satisfying w(r ,  O) = r 
and u(w(r, t), t) = constant, where u is a solution of  (1.1). In our case 0 = p - q 
and 

w(r,  t) = { (p -- q)(1 -- 22)t + r for r > 0 (4.1) 
(p q ) ( 1 - - 2 Q ) t + r  for r < 0 .  

Since 2 > 0, the characteristics to the right are slower than the ones to the 
left. Hence they meet, developing a shock. The shock is travelling at velocity 
v = ( p -  q ) ( 1 -  2 -  0). The characteristics starting at r and - r  respectively 
meet the shock at time 

Irl 
t(r) := (p _ q)(2 -- O) ' (4.2) 

In the next theorem we abuse notation. The measure %, ;~ stands for a measure 
on X x Z, being a product  measure on X for all but one site: at (the integer 
part  of) e - l r  there is a second class particle. 

Theorem 4.3 Let  Y (x, t) be the position at time t o f  a second class particle that 
at time zero is at site x. Then as e - *  O, e Y ( e -  l r , e - i t )  converges Pv ~, ;~ a.s. to 

w(r ,  t) f o r  t <  t(r) and to vt f o r  t >= t(r). 

Proo f  For each pair (e, r), r > 0 couple the processes (tit, Y ( e - l r ,  t)), with 
priority qt F Y(. ,  t); (at,  7t, ~t, R(t)) with priorities o- t F 7t F R(t) F ~t and 
(gt, D( e - l r ,  t)) with priority gt F D ( e - ~ r ,  t). At time t = 0 set R(0) = 0 and 
distribute (a 0, Y0, ~0) on the other sites according to v~. Set */0 = a0 + 70, 
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0% = ao + 7o + ~o and Y ( e -  1 r ,  O) --= D (e 1 r ,  O) = [e -  1 r]. Define 

T1(e , r )  " - - - - i n f { t ' D ( e - l r ,  t ) @ Y ( e - l r ,  t) or  Y(e-lr,  t)=R(t)} 

T2(g , r) "--  inf{t  �9 Y(e-lr,  t) = g(t)} 

if those first times do no t  exist, we set Ti = oo. Under  this coupling, 
D( . ,  t) = Y( . ,  t) up to the first m o m e n t  tha t  they meet  a ( particle. By 
the laws o f  large numbers  for D(t) and Z(t) (the posi t ion o f  the r ightmost  ( 
particle), (Theorems 3.9 and 3.6) 

lim eT  l(e,  r) = t(r), a.s. (4.4) 
e--+0 

After  T2, Y(., t) =-- R(t). Hence  it suffices to prove that  lira eT2(e, r) = t(r). 
e--~0 

Let  f~' :=  { l i m e T 1 ( e , r  ) = t(r)}. Since T 2 > T1, it suffices to show 
~--~0 

that  P ( l imsupe_~0e(T  2 - T1) > 0, fY) = 0. But, after  T1, Y(e-lr,  t) <= 
max{Z( t ) ,  R(t)} by the same argument  to prove (3.10). Hence  

P(limsupe(T2--T1)>O,O') <=P(Z(t)--R(t)>O, g t > t ( r ) ) .  (4.5) 

By L e m m a  3.2, E(Z( t ) -  R(t)) < C < oo. Then  Chevychev inequali ty implies 
that,  for all 6 > 0, there exists M > 0 such that  P (Z ( t )  - R(t) > M) < ~, for  all 
t > 0, which implies, for  n c N ,  P (Z (n )  - R ( n )  < M, infinitely often) > 1 - -6 .  
But each time that  Z(n) -  R(n) < M, they have a uni formly bounded  above 
zero probabi l i ty  o f  meet ing in a time interval  o f  length 1. Hence  

P(Z(n)=R(n),  for some n ) > l - 6 .  (4.6) 

Since (4.6) holds for all 6, this implies that  the right hand  side o f  (4.5) vanishes. 
A similar a rgument  wokrs for  r < 0, by defining ~-0 = %. []  

5 Initial perturbations produce shock translations 

In this section we show that,  as r -+ 0% a pe r tu rba t ion  at one site of  the inital 
measure  vQ, ~ produces  a t ranslat ion o f  the shock o f  the order  o f  (2 - ~) - a 
This behavior  can also be observed in the Burgers equa t ion  with shock initial 
conditions.  Deno te  R(t/, t) the ( random) posi t ion at t ime t o f  a second class 
particle that  at t ime 0 is at the origin when the initial conf igurat ion is t/. For  
any conf igurat ion r/, a site y E ~,  let t/yli be defined by (i c {0, 1}) 

rtYhi(x) = { 7(X) ~ r x ~ y  
~ r x = y .  

Define r + := (2 - 0) (P -- q), r -  := - (~o -- 2) (p -- q). 
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T h e o r e m  5.1 For all ~ > 0 it holds 

lim sup Eve , ; (R(r/yl0, 
t - ~  oo (r - + O t < y < ( r  + - -  e ) t  

t) - -R( r /y j l  , t ) )  - -  ( ~ _ _ Q ) - I  = 0 (5.2) 

lim 1 ~  t -  E~e (R(tlYl~ t) R(tlYll t)) p - q -  = 
t-*co t y=0 ,2 ' ' 

(5.3) 

t-,cotlim 1 ~ Evo, x (R(tffl 0, t ) - -  R(tff [1, t ) )  = p - - q  . (5.4) 
y = r -  t 

In order to prove this Theorem we need the following Lemma 

Lemma 5.5 Let R _ l ( t  ) be a particle such that tlt F- R(t) t- R_ 1. Then the 
initial distribution o f  (qt, R(t), R_1(0) can be chosen such that, for all t > O, 

both ZR_ 1 (o(rlt U R(t)) and zR(Otlt have distribution ~ ,  ,~S(t). Furthermore, with 

respect to the chosen initial distribution, E ( R ( t ) -  R 1(0) = ( 2 -  0)-1,  t > 0. 

Proof First observe that R _ l ( t  ) is a second class particle with respect 
to t h U R(t). Consider the coupling (at, 7t, ~t, R(t), R_l( t))  with priorities 
7t ~- (t ~- R(t) f- R_  t(t). To define the initial distribution pick (a, 4) from the 
product measure v~ = v2(.l~(0 ) = 0) and call x i the position of  the i-th 
particle, x 0 = 0. Set ~(xi) = 1 for i < - 2 ,  7(xi) = 1 for i > 1, R(0) = x 0 = 0, 
R_  1 (0) = x _ 1- Under  the resulting distribution, ZR _ 1 (t) (at, 7t U R(t), (t) and 
ZR(t) (o-t, 7t, (t U R _  1 (t)) are identically distributed for all t > 0. The projections 

ZR-1(0 (at UTt UR(t)) and ZR(t)(at UYt) are both distributed according to ~'e, xS(t). 
Hence, denoting t/t = a t + 7t, we have proven the first part of  the Lemma. 

By (3.4) E(R( t ) - -X( t ) )  = 0 and E ( R _ l ( t ) - - X _ l ( t ) )  = 0, where xi(t ) 
is the position of  the i-th particle of  ~ (xo(t) - X(t)). This implies that 
E(R(t) -- R_l( t ) )  = E(X(t) - - x_ l ( t ) )  = (2--  0) -1.  [] 

Proof o f  Theorem 5.1 Couple (t/Yll)t and (qYl~ - the processes with initial 
configurations ~/y[1 and t/yl0, respectively - according to the basic coupling. 
Let Y(y ,  t) be the site where (qyI1)t and (tlYl~ are different. Then Y(y ,  t) 
behaves like a second class particle with respect to t/, i.e. (qYl~ F- Y(y ,  t). Now, 
R(~ yl~ t) = R(t/yll , t) until Tl(y ) := first time that Y(y ,  t) = R(t/y[0, t). After 

r 1 , R(tlYll, t) = Y(y ,  t). Define T2(y ) := first time that Y(y, t) = R _ l ( t  ). After 
T 2 , Y (y, t) = R_  1 (t). Then 

Eve ' ~ (R(r/yr0 , t) - -  R ( r / y l l  , t ) )  = Evo ' ; (R(t) -- R_ l ( t ) ,  

+ E v e , ; ~ ( R ( t ) - - Y ( Y , t ) ,  T1 <--t<-- T2(Y)) . 

t => T2(y)) 
(5.6) 

A coupling argument shows that the processes can be constructed in such a 
way that {t > T/(y)} is non decreasing for positive y and non increasing for 



98 

negative y. Hence, as in the proof  of  Theorem 4.3, 

, ( l i m (  sup (t--T2(Y)))>_>_O) 
t (r - + s ) t < y < ( r  + - -  s) t  

RA. Ferrari 

= 1.  (5.7) 

The first term in the right hand side of  (5.6) is bounded by E [ R ( t ) -  R_l(t)[  
< C < oo. Hence, by dominated convergence and (5.7) it converges to 
( 2 -  0 ) -  1 The second term in the same equation converges to zero by an 
argument analogous to the one we used to prove Theorem 4.3. 

Since E(]R(t) -- Y (y ,  t)[, r 1 _< t <_ T2) < C < ~ ,  Eq. (5.6) also implies that 
Ev~, ~ (]R(qyl0, t) -R(~ffllt)t  ) < C < ~ .  Hence, by dominated convergence (5.2) 

implies (5.3) and (5.4). [] 

6 Dependence on the initial configuration 

We prove here a formula relating the diffusion coefficient of  the shock R(t) to 
the conjectured diffusion coefficient. We call, as before, v -- ( p -  q)(1 - 0 -  2). 
Define 

~ . = ( p _ q )  O ( 1 - 0 ) + 2 ( 1 - 2 )  , 

2 - - 0  

F(t) �9 = F_qv e, z (R(t) -- vt) 2 , 

, t ) .  x(t l)E(R(t  l . t) n~ 0 
nl ~ , r -  t) ~ 2 

/ 

where R(t/, t) and r -+ are defined at the begining of  Sect. 5 and n0(t/, x) 
x 

:= ~ ( 1 - ~ ( y ) )  is the number of  empty sites of  t/ between 0 and x and 
y = 0  

0 

nl(t/, x) := - ~ t/(y) is minus the number of  t 1 particles between the origin 
y = x  

and x < 0. 

Theorem 6.1 The following holds 

lim F(t) =-~  + lim I(t) (6.2) 
t--~ oo t t--~ oo t 

i f  the limits exist. I f  not (6.2) holds with lim substituted by either lim sup or 
lim inf. 
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Proof Summing and substracting vt, I(t) equals 

f no(_q, rm+ t) 

+/d~. " ./'n~(,. ~-t) 

( ("~ 
• e R(,7, t) ~---~- 

(p--q)(1--2) t )  2 

(p-q)et)2-2 f dVo,2(O 
(P--q)(1--2)t+nl(tl'r-t)Q--2 (p-- q)ot)) 

(6.3) 

where we have used that no(,, r+t) and nl ( , ,  r-t) are independent under 
re, 4. Dividing by t and taking t ~ ~ ,  the first term gives lim(F(t)/t), and the 

second and third terms give D. Then it suffices to show that dividing by t and 
taking t ~ ~ the last term equals - 2D. Using the definition of ni(., .), the 
expectation in the last term in (6.3) equals 

1_ E [r+t -1 
~xZ__l R("' t)(1- "(x) - (1- 2)) + Z R(rl' t)(rl(x) -- e) 

2 - 0 x=~-t ] (6.4) 

Integrating the first term of (6.4), 

r+t 1 /  ( ) 
2 - 0 dv'e' ~(") Z E R(. ,  t)(q(x) - 2) 

x=l  

r+t 

-- 2--01/dv~'2(") ~-~ [E(R(rl't)q(x)=l) 2 
x=]  

--2(E(Rffl, t) . ( x ) =  1)2 + E(R(q ,  t ) . ( x ) = 0 ) ( 1 - - 2 ) ) ]  

-- 1 ~ . 2 ( 1  -- 2) / d y e ,  4(q) 
2 - Q  

•  , = - - E  = 

r + t  

-- 2-01 2(1-2)/d've'2(q)~-[E( R("xll't,-R("xl~ " 
x=l  

(6.5) 

Dividing by t and taking the limit as t ~ ~ of the first term of (6.4), we get 
using (5.3) on (6.5) that 

r§ 
lim - 1 l / d ~ e , 2 ( .  ) Z E(R(q, t ) (- . (x ,+2))  

x =  - -  1 
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and ana logous ly  using (5.4), 

- i  

X ~  r - -  [ 

This implies the Theorem.  []  

E(R(rl,  t)(rl(x ) - ~o)) = (p - -  q ) - -  
~o(1 - O) 

2 - - O  

I thank Errico Presutti for telling me the above proof. 

Remarks 6.6 F r o m  Theorem 6.1 we conclude:  

1. The diffusion coefficient o f  the shock is the same as the conjectured 
diffusion coefficient if and  only if the posi t ion o f  the shock at time t is given 

- in the scale v~ - by ( p -  q ) ( 2 -  ~ ) - I  times the n u m b e r  o f  holes between 0 
and r+t minus the n u m b e r  o f  particles between 0 and r - t .  In any case, I(t) 

is non  negative, then D is always a lower b o u n d  for the lim inf  o f  F(t)/t as 
announced  in (1.4). 

2. Tightness o f  R ( t ) -  X(t) and R ( t ) -  G(t) imply that  Theorem 6.1 also 
holds for X(t) and G(t). W h e n  0 = 0, X(t) has the dis t r ibut ion o f  a plain 
tagged particle in the simple exclusion process with density 2 and G(t) has the 
dis tr ibut ion o f  the leftmost  particle in simple exclusion with initial dis t r ibut ion 

v0,; .  In  the case ~o = 0, it is k n o w n  that  D :=  lim t - iE(X( t )  --EX(O) 2 = 
t - - * c O  

= (p - q)(1 - 2) [df]. This implies that  lim I(t)/t = 0, hence in the scale x/t the 
t ---~ oo 

posi t ion o f  R(t) is de termined by the initial conf igura t ion in the sense discussed 
above. This was proved for G(t) when p = ! by Giirtner and  Presutti  [gp]. This 
and  the previous remark  imply that  we get for free the central  limit theorem o f  
[k] for the tagged particle and  o f  [dkps] for the leftmost  particle. Unfor tuna te ly  
one needs to use the precise c om pu t a t i on  o f  [df] for the diffusion coefficient. 
A n  independent  p r o o f  that  l imI(t)/t  = 0 would  give a direct p r o o f  o f  the 
central  limit theorems for all these objects. 
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N o t e  added in proof. Items (b) and (c) of Proposition 1 of [bf] are false. Indeed, in our notation, 
the product measure v o is not stationary for the process (a t , it). Hence the subadditive ergodic 
theorem can not be applied. 
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