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Summary. We study the minimal displacement (X,) of branching random
walk with non-negative steps. It is shown that (X, —EX,) is tight under
a mild moment condition on the displacements. For supercritical B.R.W.
(X,) converges almost surely. For critical B.R.W. we determine the possible
limit points of (X, — EX,), and we prove a generalization of Kolmogorov’s
theorem on the extinction probability of a critical branching process.
Finally we generalize Bramson’s results on the almost sure convergence of
X, log2/loglogn.

1 Introduction

We consider discrete time and discrete space branching diffusion. At time
0 there is a single particle at the origin. At time 1 this particle splits into
a random number N of particles, which move to positions Dy, D,, ..., Dy,
where the D; are (not necessarily independent) integer valued random variables.
At time n’ a particle v with position k gives rise to a random number
N(v) of particle at positions k + D;(v), k+ D5(v), ..., k+ Dyy(v), where the
vector (N(v); Dy(v), ..., Dy,(v)) is distributed as (N; Dy, ..., Dy), and is
independent of the evolution of all other particles at the same and previous
times.

Let I, be the set of all particles at time n, and let N, = Card I",. Then (N,)
is a Galton-Watson process with offspring distribution N; = N. Furthermore,
let d(v) be the position of a particle v in I',. The random variable

X, =min{d(v) :veTl,}

18 the minimal displacement of the branching random walk process determined
by the random vector (N ; D, ..., Dy). Here we put X,, = co if I', is empty.
Note that Xy, = 0. The random variables (X,) have been studied by several
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authors, sometimes in unexpected contexts [4], [8]. The following basic result
holds for the sequence (X,,).

N
H.K.B.-Theorem ([2,6,9]) Let H(t) = E > [ _q, 4(D;), and m(0) = [e % dH(2).
j=1 R
Suppose that m(8) < oo for some 6 > 0. Then

X
7” — v almost surely on S, andin L, (1.1)

where S is the set of nonextinction of the branching process (N,), and
y = inf{a : u(a) > 1}, with p(a) = inf{em(d) : 6 = 0}

In this paper we consider the case where the displacements are non- negative
{this is no loss of generality if the displacements are bounded)

D;z0 j=1,...,N.
This obviously implies that (X,) is increasing
X, 12X, n=0,1, ... (1.2)
It is convenient to introduce the random variables N (k) defined for k = 0 by

N(k) = Card{j : D; =k} .

[ve)
With this notation we have m(9) = > EN(k) e~ Note that the constant y in
k=0

(1.1) is zero if and only if u(0) = 1. But since m’(6) < 0 in any non-trivial case,
we have that u(0) = Glim m(6) = EN(0). As p is continuous on the set where
— 0

u is positive, we obtain the following.

Observation. Let (X,) be the minimal displacement of a branching random walk
with non-negative steps and H.K.B.-constant y. Then y =0 iff EN(0) = 1.

We call a branching random walk determined by (N(k)){, subcritical,
critical, or supercritical if, respectively, EN(0) <1, EN(0) =1, or EN(0) > 1.

In Sect. 2 we prove that (X,) converges a.s. on the set of nonextinction
(without any norming), if the process is supercritical (this answers a question
by Durrett [5, p. 118]). We also determine the distribution of the limit. In Sect.
3 we show quite generally that the sequence (X, — EX,) is tight (travelling
wave phenomenon). The remainder of the paper is devoted to the critical case.
In Sects. 4 to 7 we determine the possible limit distributions of (X, —d,)), where
(d,) is an integer sequence such that (d, — EX,) is bounded. In the final part
of the paper we generalize Bramson’s results on the almost sure behaviour of
(X)) ([3]). Except for a strong form of tightness, we do not have results for the
subcritical case.
To shorten our statements and arguments, we assume from now on that

P[N =0] =0, (1.3)
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ie., that the process survives with probability 1. The usual techniques (see e.g.
[1, L.12]) will extend our results to the case where one only assumes

EN>1. (1.4)

As the case EN = 1 (with (1.3)) corresponds to ordinary random walk, we
assume henceforth that (1.4) holds. Finally there is one trivial case we want to
exclude in the whole paper, we assume from now on that

PINO)=1]<1. (1.5)

2 Supercritical branching random walk

First we give another characterization of the supercritical case.
Lemma 1 Let n = P[X, > 0]. Thenn=0o0rn=1and n =0 iff EN(0) > 1.

Proof. Let XU) be the minimal displacement of the j® particle in the first
generation j=1, ..., N;. Then

Ny
[X, — o] = [([XY - oo] .
j=1

Since the XU) are independent, n satisfies 7 = ExnV. By (1.3) it follows that
n =0 or 1. Let us denote

N,(0) =Card{v €T, : d(v) =0}
for the number of particles at zero at time n. We observe (as in [7]) that
(N,(0)) is a Galton-Watson process with offspring distribution N(0). Now if
EN(0) > 1, then
l-n=2P[X,=0, n=0,1,2,...]=P[N,(0)>0, n=1,2,..]1>0,

hence = = 0. On the other hand, by (1.2)

[X, 4 o] = |JIX, - pl = UUMMnX—m
p

Hence if 7 = 0, then there are p and m such that P[X, =p : n = m] = 0. This

implies that with positive probability there is at least one particle in the mt?
generation at p such that the minimal displacement of the branching random
walk generated by this particle is 0 for all subsequent times. We then have that
(N, (0)) is supercritical, hence EN(0) > 1. (recall (1.5)).
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Theorem 1. Let (X,) be the minimal displacement of a supercritical branching
random walk with non-negative steps. Then there exists an almost surely finite
random variable X such that

X, = X almost surely.
If F(ky = P[X = k], then for k > 0 F(k) is the unique solution in [0, 1) to
F(k) = EF)NOF(k — nND  FyNE=D 2.1
Moreover, if inf; D; is a.s. bounded, then X,, — X in L, for all p > 0.

Proof. The almost sure convergence follows immediately from Lemma 1 and
the monotonicity of the X .

Let F, (k) = P[X,, = k]. Conditioning on the positions of the first generation
particles, we find

Fopq(k) = EF,(NOF, (k— )N F ()NE=D (2.2)

Almost sure convergence of (X)) implies F, (k) — F(k) for all k as n — o0, and
(2.1) follows by bounded convergence. Now for k = 1, (2.1) reduces to F(1) =
EF(1)NO which has a unique solution in [0, 1), in fact F(1) = P[X = 1] equals
the extinction probability of (N, (0)). For k = 2, let ¢(x) = ExYOF(1)NW . Then
F(2) is a fixed point of ¢. This map is a increasing convex map from [0,1] to
itself, and has a unique fixed point in [0, 1), since either ¢(1) < 1 or (1) =1
and ¢'(1) = EN(0) > 1. An analogous argument applies for k = 3.

For L,-convergence it suffices to show that the limit variable X has an

exponentially decreasing tail (the result will follow by monotone convergence).
If inf; D; is a.s. bounded, then there exists an integer L such that P[N(0) + ---
+N({L) 21 =1 Let t = P[N©O)+ -+ + N(L) = 1] if this probability is
positive, or any number in (0,1) otherwise. Since EN(0) > 1, P[N(0) = 2] > 0,
and hence 7 is less than 1. Define

w(x) = ExNO -+ +N({L)

Then w(0) = 0 and ' (0) < 7 < 1. Hence for all positive x small enough, say
x < 6, we have p(x) < yx, for some y < 1. Now choose ky = L such that
F(k) = P[X z k] < ¢ for all k = k. then for k = k; + L we have
F(k) = EF(k)NO .  F()N&-1
é EF(k__L)N(O)+"'+N(L)
=ypFk—L)=yFlk—1L).

Iterating shows that X has an exponentially decreasing tail.

Note that the proof of (2.1) gives a method to compute the distribution of
X step by step.
Example. Let N=2,1—P[D, =D, =0] = P[D; = D, = 1] = p, for some
p € (0,1). Then EN(0) = 2(1 — p), so the process is supercritical iff p < %
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Application of Theorem 1 yields

F(k) = (1 = p)F?(k) + pF*(k — 1) .
Solving this equation we find F(1) = P[X = 1] = Lp, and in general

1-—

F(k) = @k(1), the k™ iterate of ¢,(x) = (1 —T—=4pT—p)x})(2(1 —p))~L.
We say that X has an elliptic distribution (this generalizes the geometric
distribution where ¢, is linear).

It might seem more natural to consider the process where N = 2, and
Dy, D, areiid. with 1 — PID, =0] = P[D, = 1] = p ([4], [7]), but this process
behaves in the same way as the one above. The limiting distribution X with
P[X > k] = F(k) satisfies F(k) = F2(k) for all integers k.

Theorem 1 settles a special case of old questions and conjectures by
Hammersley ([6]) on certain refinements of the H.K.B.-Theorem of Sect. 1.
Let y = Iim %EXH. Then [6, p. 677] the questions are

n— oo
(i) How does EX,, — ny behave? (ii) Does EX, | | — EX, — y? (iii) Is Var(X,)
bounded? Theorem 1 gives the answers in the case y = 0 and EN(0) > 1. In
Sect. 4 we show that EX, , ; —EX, — 0 in case y = 0 and EN(0) = 1 and
the displacements are bounded, and in Sect. 6 there is an example for this
case where Var X, is bounded but does not converge. For y > 0 we can only

prove (for bounded displacements) that Var X, is bounded (this follows from
Proposition 2).

3 Tightness

In this section it is convenient to assume that the displacements are ordered
D/ £D,=...=Dy.

Our goal is to prove tightness of the sequence (X, — EX,) under a moment
condition. We define

D =D liy_y+Dyliyzy -
Proposition 1 Suppose ED < co. Then for all n

2ED
E|X, - X,| < P (3.1)

IN>1]"
if X,, X, are independent and distributed as X,,.

Proof. Note first that EX,, is finite because ED < co. Argueing as before we
have

X, 1= lénjigN(X,gi) +D)), (3.2)
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where the X!) are the independent minimal displacements of the first
generation particles. From this we obtain

EX,,; S EXP 4+ D)oy + Emin(X{V + Dy, X + D)y oy

1
=EX" + D) pyoy + EE(X,S” +XP 42D, — XV — XP D1y
~ 1
= EX, + ED = ZEIX{) — X1y 25
< 1
=EX,+ED - PNz 20E|X — x@),

where the last step holds since N and (X!, X{?) are independent. As
EX, . —EX, 20, (3.1) follows.

Theorem 2 Suppose ED < co. Then (X, — EX,) is a tight family.

Proof. For any two iid. random variables Z; and Z, with EZ;, = 0, one has

E|Z; - Z,| Z E|Z,|. Applying this, the Markov inequality and Proposition 1,

we obtain

EIX, - EX,| _ EIX;—X/|
K = K

< 2ED

=~ KP[N>1]

P [:IXn _Ean = K] =
(3.3)

for all K > 0, which is tightness of (X, — EX,).

If the displacements are bounded, we can obtain a much stronger result
than (3.3), which will be used in Sect. 4.

Proposition 2 Suppose that D, =L for j =1, ..., N as. for some integer L.
Then there exist y < 1 and C > 0 such that for all n

PIX,—EX,|=kK <Cy* k=0,1,2, ... (3 .4)

Proof. Let w(x) = ExN. Then w(0) = P[N =0] =0, »'(0) = P[N = 1] < 1,
p(1) =1 and p’(1) = EN > 1 (possibly infinite). Hence there exist 6 > 0 and
7 < 1 such that

P S 7% %€ 10,3,
{I—X§7(1~w(X)) xell—6.1]. (3-3)

By Theorem 2, we can choose M > 0 such that foralln>1and k= M

where e, = [EX,].
For all n and k we deduce with (2.2) that

Fy(k) < Fyp (k) S EFy(k— L)Y = p(F,(k— L)) .
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Iterating this inequality p times, where p for each k = M is determined by
0 < k—M—pL < L, one obtains with (3.5) and (3.6)

Fyle, + ) S Fyp ey +K) STPF (e, + kg —pL) SyPF <M=, (3.
putting y =7 /L,

Similarly one obtains for all k = M, choosing p such that — L
< —k+M+pL=0,

1 —F,(e, — k) <FP[1 —F,(e, —k+pL)] <97 <=M L (3.8)

Accounting for EX, —e,, (3.4) follows from (3.7) and (3.8) with C =
~M—L=2
y .

4 The critical case, first resulis

In the critical case, i.e. EN(0) = 1, we shall make a precise asymptotic analysis
of F,(k) = P[X, = k]. For this we need stronger conditions. From now on we
assume that the displacements are bounded almost surely, so there exists an
integer L such that

D,<L j=1,...,N. 4.1
The fundamental relation (2.2) then simplifies to
F, (k) =®(F, k), F,(k—=1), ..., F,(k—L)) nz0, keZ 4.2)

where
D(xg, .oy xp) = Exg Oxy M x VB 4.3)

is the generating function of (N(k))L_,.

Our goal is to determine all possible limit points of the sequences (X,, — d,,),
where the d, are integers, and (d, — EX,) is a bounded sequence. By Theorem
2 these sequences are tight, and the only interesting normings of X,. We remark
that the condition of bounded displacements is not needed till Theorem 4.

We first prove some properties of the function ®. Two important quantities
are

6=PINO)>1], = %VarN(O) .

Note that ¢ and 7 are positive by assumption (1.5). Throughout this section we
assume that

EN <w, VarN(0) < owo. 4.4

The function ®(x) is convex and differentiable in each variable x,, where
x=(xg, ..., x;). We denote @;(x) = %(x) fori=0, ..., L.
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Lemma 2 (i) For all x € [0, 1]F+!

L
L—0(x) 2 ) (1= x)D;(x) + 6(1 - x)°

i=0
(i) For all ¢ > O there exist & > 0 such that for all x € [1 -6, 1] x [0, 1]&
L
L—O(x) 2 ) (1= x)®;(x) + (t — &) (1 — x)* .
i=0

Proof. Let f(x) = ExV®_ Then

L=f() 2 (1 =x)f'() + 01 —x)° 4.9)

since f is convex, and 6 = 1 — f(0) — f/(0). By convexity of ®, fori =1, ..., L
Dlxg, ..., %, 1, o, )—=D(xg, ..., x5, L, .00, 1)
Z (1 =x)@;(xg, ..., x;, 1, ..., 1) 2 (1 —x)D;(x) .

Adding these equations and (4.5) with x = x;;, we obtain Lemma 2 (i), noting
that f(xg) = ®(xg, 1, ..., 1), and f'(xg) = Dy(xy, 1, ..., 1) = @y(x). Lemma
2 (i) is derived in a similar way.

Because of relation (4.2) the set
A={xe[0, 11" ixg ... S xp, Dx) = x4}

is of special interest to us. We denote 1 = (1, ..., 1).

Lemma 3 Let g =min{i > 0 : EN(i) > 0}. Then {5 —0as x — 1 in A
Proof. Note that g exists by condition (1.4) since EN(0) = 1. By Lemma 2 (i),

1-— CD(x)

1
I—XO

v

(I)o()-l- cD() 0.

Since ®y(x) — EN(0) = 1, and <Dg(x) — EN(g) > 0 as x — 1, the conclusion
of Lemma 3 follows.
For vectors x, y we denote x S yif x; S y; for 0 <i< L.

Lemma 4 Let x, y € A with x £ y, and suppose that y —x = c(1 — y) for some
real number ¢. Then

0 O0)— () = e[l — Ol — g1~y
(i) for all € > 0 there exists 5 > 0 such that for Vo=1—p9
D(y) — O(x) < c[l —OW)IL — T (L =yl

Proof. By convexity of @,

L L
1—0(p) <> &)1 —y) =D ENO(I —y). (4.6)

i=0 i=0
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Since yy < ... < yy, it follows that 1 —®(y) < (1 — y,)EN, and hence, with
Lemma 2 (i), that

L 6
2= £ 1 - ) [1 - (L= J’O)] .

Also, by convexity and the hypotheses,

L L
D(y) — @(x) £ > (3, — %)) S ¢ Y (1 — )@, (»),

i=0 i=0

and (i) follows. On the other hand (4.6) implies (as EN(0) = 1) that

1—(D(y)§1—y0+(1—yg)EN=(1—yO)[1+

]_.._
%EN]§u~mxrmL
11—y,

for a given ¢ > 0, if y, is close enough to 1, by Lemma 3. Now (ii) follows as
above with Lemma 2 (i).
Our main tool in the analysis of the critical case is the following result.

Proposition 3 Let F, (k) = P[X, = k]. For all p <1 there exists a real number
K such that forall k= 1,n>0

By (0= Fy®) _ K
Rty S @1

Proof. By Kolmogorov's theorem on the extinction probability of a critical
branching process (see e.g. [1.p.19])

2

1
nVarN©) o S "T%

1—-F,(1)=P[X,=0] =P[N,(0) > 0] ~
Choose ¢ > 0 such that T — & > fr(1 + ¢)%. There exists n, such that for n = n,

1
— >1-— D — >
1-F,(k)21—F,1) = g forall kz1.

Letn < 1 be associated to ¢ as in Lemma 4, and let n; = max(n,, [BEN/n6] + 1).
Also, let
Foyr(k) — Fy (k)

Qn(k) = 1 —Fn+1(k)

» M, =supQ,(k).
k>0

For n = n; and all k with F, | (k) =Z 1 —# it holds by Lemma 4 (ii) that

T—¢&

Qi =00, 1= (12 )=, y00)|

(t—¢ p
=M1 ) <)
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On the other hand, if n Z ny, and F, , (k) <1 —#, then by Lemma 4 (i)

0
Quei0) S M, [ 1= 1= Fy 0
0 p
oo meit)

Sofornzn, M,,| < M,[1—- ;%], which implies the existence of K such
that M, < Kn—# for all n.
As corollaries we obtain the following theorems.

Theorem 3 Let X be a weak limit point of a sequence (X, —d,), where
(d, — EX,) is bounded. Then F(k) = P[X = k] satisfies OF = F.

Proof. Suppose X, —d,, — X weakly as n’ — co. Then

Fn’+l(k+dn’) =(D(Fn/(k+dn/), rees Fn/(k-l—dnr —L))

by (4.2). The right side tends to @®(F(k), ..., F(k—L)) by dominated
convergence, the left side to F(k), since F,/  ((k+d,)—F, (k+d,;) — 0
by Proposition 3.

Theorem 4 Let (X,) be the minimal displacement of a critical branching random
walk satisfying (4.4). Then EX, ., —EX, — 0 as n — oo.

Proof. Let e, = [EX,]. Note that

+ o0
EXn+1_EXn= Z [Fn+1(k)_Fn(k)]
k=—w
+ 0
= > [F,y (e, +k) —Fyle, + k)
k= —00
-M-1 M
= Z [1_Fn(en+k)]+ Z [Fn+1(en+k)_Fn(en+k)]
k=—c0 k=—M
+ Z Fn+1(en+k)’
k=M +1

for any positive integer M. The result now follows from Proposition 2 (more
precisely from (3.7) and (3.8)) and Proposition 3.

We end this section with a noteworthy property of the total number of
particles U, = Card{v € ', : d(v) = X, } at X, : the expectation of U, tends
to infinity. This follows from Theorem 4 by noticing that

P[N(0) > 0]%Un < EP[N(0) > 0]"" =P[X,.,, > X, ] S E(X,,, —X,).

We conjecture that U, + oo almost surely.
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5 Shape of limit distributions

In this section we shall refine some of the results of the previous section
replacing (4.4) by
EN? < w0, (5.1)

and prove a generalization of Kolmogorov’s theorem on the extinction
probability of critical branching processes (Theorem 6).

Theorem 5 Let 7 = %Var N(0) and suppose = EN(1) > 0. Then uniformly in
kz2andn=1,
1-Fk=1)

—

F, (k) —1.
i-rep u ©H07
Proof. Since EN? < o0, ®(x) can be expanded as

L L
) =1— > (1-x)EN@® + > (1—x)(L—x)®;;() +RE), (52)
i=0 i, j=0

2
where ®;;(x) = 3 72 and R(x) = o1 — x|?).
On A, the remainder term R(x) = o((1 — x,)?), and all (1 — x;)(1 — x;) are
O((1 — x)?). Since ®(x) = x5, EN(0) = 1, EN(1) = g, and all EN(i) > 0, it
follows that u(1 —x;) = O((1 — x,)?) on the compact set 4, and hence that

on A
(1 —x;) < B(1 — x)? (5.3)

for some constant B.
By Proposition 3 with f =2/3
Foi1()) = Fy() S Kn~ 2P0~ F, () S Kn 2P =F,(0) . (5.4

But by monotonicity of F, and (5.3) with x = (F,(2), F,,(1), 1, ..., 1) we have

I-F0) 2 1—F@ 2 B U—F,0)"2 2o 2,

for some ¢ > 0, again by Kolmogorov’s result. With (5.4) this gives (putting
¢=Ke™43)
F () = F,(k) S K[e ™' (1 = F, ()] (1 = F,(k) =¢(1 — F, (k)" . (5.5)

We apply (5.2) with x = (F,(k), ..., F,(k—L)). We just showed that
O(x) — x5 < T —x)73. From (5.3) it follows that 1=x)1-x) =
B(l—xg)* for (i, ) # (0,0). Furthermore 1 —x; < 1—x, < B(l —x,)?
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< B3(1 —x)* for i > 1, applying (5.3) twice. Using these estimations in
(5.2), noting that ®yy(1) = %EN(O) [N(0) — 1] =1, we find that

(1 =xp) =71 = xp)? = O((1 = x)"%) .
This implies the statement of the theorem.

Corollary. Let 1 = EN(1) > 0. Uniformly on the set of limit distributions

1-F(k—1)

As another corollary to Theorem 5 we have

Theorem 6 Let t = %Var N(0), and suppose y = EN(1) > 0. Then for all k = 0

1

PIX, SK~E gy

T [un]

as n-—ao.

6 An example

We apply the results of the previous section to our standard example
N=2,P[D;=D,=01=P[D =D, =1] = % Let X be a weak limit point
of (X, — d,), where (d, — EX,) is bounded sequence. According to Theorem 3,
F(k) = P[X = k] satisfies

F(k) = %Fz(k) + %F2(k —1)

for all integers k. Hence if we define for x € [0, 1]
(p(X):I— v 1_x2 5

then F(k) = @(F(k — 1)) for all integers k. For any « € (0, 1) let the integer
valued random variable X(«) be defined by

PlX(@) 2kl =@, keZ. (6.1)

Here ¢° = Id, o* = po...op, 0 ¥ =9l o...0op~! (k times) for k > 0.
We call X(x) a circle law. By the remarks above any limit point X has to be
a circle law. We shall show later (Theorem 7), that any circle law does occur
as a limit point. We give a list of some properties of circle laws, the proofs of
which are left to the reader.

Observation, Let X () be a circle law for a € (0, 1). Then (i) X(p(a)) = X(2) — 1.
(i) « — EX (o) is a strictly monotone function from (0, 1) onto R. (i) X(1 — a)
is distributed as —X(o)—1 (iv) EX(1/2) = —1/2,EX(4/1/2) = 0. (v)
Var X (p(«)) = Var X(«), Var(X (1 — o)) = Var(X(x)).
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Hammersley conjectures in [6] that Var X, converges for this example.
Since any circle law X (o) can occur as a limit this is not true, as Var X («) is
not constant. See the following table (whose entries were computed with (6.1))

o Var X (o) o Var X (%)
0.1 0.85851501 0.4 0.85852356
0.2 0.85852356 0.5 0.85850792

0.3 0.85854271

7 Parametrisation of limit distributions

We continue the analysis of the critical case. Although condition (4.4) will
suffice for some of the results in this section we will assume throughout that

EN? < 0. The goal of this section is to prove a converse to Theorem 3, ie.,
that if a = (a;); <z is a sequence of real numbers satisfying

a1 =aq forall k, klérzlooak =0, kl—i—I»nooak =1 (7.1)

and for all integers k

(I)(ak,ak+1,...,ak+L)=ak, (72)

then F defined by F(k) = a_ is a limit distribution. (We inverted the direction
of space as we are more interested in the left tails of the limit distributions).
We call sequences a satisfying (7.1) and (7.2) admissible sequences. Note that
(7.1) and (7.2) imply that 0 < g, < 1 for all k.

The proof that any admissible sequence yields a limit distribution relies on
finding good parametrizations of these sets. Note for example that (by Theorem
4) for each real number e there exists a limit point X with EX =e.

Lemma 5 For all s € (0, 1) there is a limit distribution F with F(0) = s.

Proof. For all m = 1 the set {F,(k) : n = m, k = 0} is dense in [0,1]. To see this,
let ¢ > 0. By Proposition 3 we can chose p = m such that F, (k) — F,(k) <e¢
for all n = p. Now choose a k such that F,(k) < e. Since F, (k) — 1 as n — oo,
the sequence {F,(k) : n = p} is e-dense in [0,1]. Let s € (0, 1). By our first
remark there exists a sequence of the form (Fnj(d ;) such that Fnj(d ;) — s as
j — oo. Since 0 < s < 1, it follows by Theorem 2 that (d = EXn]_) is bounded,
and that the sequence (an —d;) has a weakly converging subsequence. The

limit distribution F satisfies F(0) = s.

In the sequel we want to show that a limit distribution F is uniquely
determined by F(0). This is not the case in general. For example take

N =2,P[Dy =D, =0 =P[D, =D; =2 = 1, and k, = [EX,]
if this is even, or k, = [EX,]+ 1 otherwise. Then any limit point X of
(X,, — k) is concentrated on 27, but there are limit points Y of (X, —k, — 1)

concentrated on 2Z 4 1 with P[X = 0] = P[Y = 0], while obviously X # Y.
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Formulated in another way, we want to avoid (near) sign changes in the
sequence (a, — b;) if a and b are admissible. Here the case L > 1 is essentially
more complicated than the case L = 1. For L = 1 it is easy to sec that sign
changes in these differences are not possible. If W(x, y) = ®(x, y) — x, then
dy/dx = —0W/0x/0W/dy = (1 — 8®/0x)/0D/0y = 0, since EN(0) = 1. To
study the sign changes for general L we define

o =max{0,a .,y —bpyy, s Gy —beyr)s
B =max{0, by — a1, by — @ p} -

Lemma 6 Suppose EN(i)) > 0 for 1 £i < L, and let a, b be admissible sequences.
Then there exists a constant ¢ > 0 and all integer ky such that for all k = k,

if g 2b, then o Zcf,

if bk g a then ﬂk Z Co -

Proof. The second assertion follows from the first by symmetry. Let ¢ =
2min{EN() : 0 £ i < L}, and define ¢ = ¢/EN. Since ®;(1) = EN(j) Z 2,
there exists 6 > 0 such that ®;(x) Ze¢forx € [1 -6, 1] and 0 < i < L.

Choose k, such that for k =2 ky g =2 1—06 and b, = 1—4. Let
¢, = max(ay, by). Then max{c, ,; —a;,; : 1 £i £ L} = f,. Therefore if
k = ky and a;, = by, then we obtain from the mean value theorem

Obys Cp1s s Cogr) 2Pk gy -5 Gppp) a2 b+ Bre,
since Oy(x) <1 and D(ay, ..., g, 1) = a;.
On the other hand, since EN(0) + -+ + EN(L) = EN,
(I)(bk,ck+1, ey ck+L) §®(bk’bk+l’ ees bk+L)+akEN .

Combination of these inequalities yields o, EN = ¢ or a; = ¢f;.
We need yet another simple lemma for the proof of Proposition 4.

Lemma 7 Let a, b be admissible, k € Z. If a;, ; = b, ; for i=1, ... L then
ay = by, if moreover a; ;> by, ; for at least one i, and EN(i) > O, then a; > by.

Proof. Let h(x) = ®(x, a3 1, ..., &, ). Then h(a;) = a;, and h'(x) £ 1 for all
x € [0, 1], since EN(0) = 1. But h(b) = ®(b;, by, ..., by, 1) = by, hence
by < . If a; > by, and EN(i) > 0, for some i then the inequalities are
strict.

Proposition 4 Suppose EN(i) > 0 for 1 < i < L. Let a, b be two admissible
sequences with a # b. Then either a, > by for all k, or a; < by for all k.

Proof. Suppose on the contrary, that there are integers p and g such that
a, > bp and a; < bq. Let k = max(p, g). If &, =0, then by Lemma 7, g, < b.
Applying the same lemma repeatedly, we arrive at the contradiction a, < b,,.
So for all k = max(p, ¢) there exists i with 1 <i < L and a;,; > b, ;. But
then f, = 0 implies a; > b, by Lemma 7, and again repeated application of
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this lemma yields the contradiction, a, > b,. We conclude that oy > 0 and
Bi > 0 for all k = max(p, q). Let k; = max(ky, p, q), where k; is given by

Lemma 6, and let
Iy ={kzk 1aqy2b,a ) <b}.

We showed above that at least one of every L consecutive integers belongs
to I, . Let k € I,. By Lemma 6 there exists i with 1 < i < L such that
Uy —bpy; = cfy. Let j =max{¢ :a,, < b, ,}. Since g, < by, and
Uk4i > by, we have 1 < j <i = L. Therefore o ; = a,; — by ;. Let

I_ ={k;k1 :ak§bk,ak+1>bk+1}.

We just showed that for each k € I there exists kel_withk<k<k+L
and o = ¢f;. By symmetry there exists for each / € I_ and /el 4 with
¢ < { < ¢+ L such that ﬁ7 2 co. Thus there exists foreach k€ I, anme I,

with k < m < 2k + L such that 8,, 2 ¢*B,. In this way we obtain a sequence
of elements (m;) of I such that 0 <m;,; —m; < 2L for all j and

2
ﬁmj+l gc leI ‘

Choose k; € {m; {,m;+ L} such that bk]_ —a, = ,ij. Then k; — oo,
kj <my+2Lj, and

bk — 4.

lim inf J—JL >0. (7.3)

j— oo c?
But by Lemma 8 below, a;, and b, tend to 1 faster than geometrically, in
particular 1 —a; and 1 — b, are bounded by ¢?*/I for k large enough, and so
b, — a, < /L for k large enough, implying that b, — @, < ¢2mo/L e which
contradicts (7.3).
Theorem 7 Su[fpose EN@) > 0 for 1 £ i £ L. For each admissible sequence
a, F(k) = a_, is a limit distribution.
Proof. Let a be admissible. By Lemma 5 there is a limit distribution F such
that F(0) = a,. By Proposition 4, F(k) = a_,, for all integers k.

Note that Proposition 4 also implies that F — F(0) is one to one, and hence
a true parametrization. In the next sections we shall need a parametrization
with a more global character.

Lemma 8 Letr u = EN(1) > 0, and let a be an admissible sequence. Then there
exists a positive real number y(a), such that, uniformly on the set of admissible
sequences

log (2(1 —ak)> + 2*%(a) —> 0 as a — 1.

Proof. Following the proof of Theorem 5 with x = (4, ap ¢, ..., a4, 1),
except for the argument leading to (5.5), which is not needed here as ®(x} = x,
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by (7.2), we find that
Pl = a.q) =l — ) = O((1 — @) . (7.4)

Putting u, = logfl(l —a;), (74) implies that w, ;| —2u, = O(1 —ap). It is
straightforward to show that this implies the existence of a real number ¢ such
that u, +12* = O(1 —ay). Since u, —» —o0 as k — o, t = y(a) is strictly
positive.

The remainder of this section is devoted to proving that a — y(a) is a
bijection from the set of admissible sequences to R.

Lemma 9 Let a, b be admissible sequences with a, = by for all k. Then

|
lin_folip l—ak l_ao
Proof. We apply Lemma 4 (i) with x = (by, ..., b;) and y = (ay, ... a;). Since
ag — by

®a = a and ®©b = b we obtain with ¢; = sup, > =

a—by _ _e
1——~a0 :C0<1 EN(l ao) .

As the factor on the right is strictly smaller than 1, this implies that

ay—b a, —b
M§c1 = sup &
1“‘@0 kzl 1'—ak

Repeatedly applying Lemma 4 (i) we obtain that

Letting n — oo yields the conclusion of Lemma 9.

Lemma 10 Let a, b admissible sequences. The following statements are equivalent.
1) a, > by, for all integers k, 2) (1 —a,)/(1 —b) = 0as k — o,
3) x(@) > x(b).

Proof. The equivalence of 2) and 3) is immediate from Lemma 8. If 2) holds,
then g, > b, for all large k, and hence for all k by Lemma 7. It remains
to prove that 1) implies 3). But this follows from Lemma 8 and Lemma 9:

“k—’j{k > 0 implies y(a) > x(b).

1—a

lim sup;, _, ., r“"

=5 ~ 1 =limsup,_, .

It is for the proof of the following that we needed the uniform estimation
in Lemma 8.

Proposition 5 Suppose EN(i) > 0 for 1 £i < L. For each positive real number t
there is a unique sequence a such that y(a) = t, and y is continuous in dy.

Proof. By Proposition 4, the sequence a (a;, = F(— k)) in Lemma 5 is unique for
each s € (0, 1). Hence there exists a function g : (0, 1) — (0, 1) with g(ay) = g,
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for each admissible sequence a. The function g is strictly increasing (apply
Proposition 4 with (b)) = (@, )), and surjective, hence continuous. More
generally, a, is a continuous function of a,. Now let a be a fixed admissible
sequence. Then for any admissible sequence b

where 7,(a) = |x(a)2% + log(ﬁ(l —a))|- Let ¢ > 0. By Lemma 8 there exists

6 > O such that r, (c) < ¢/3 for any admissible sequence ¢, as soonas 1 — ¢, < 9.
Fix k such that 1 — g, < 6/2. Then for any admissible b such that b, is close
enough to a,, we have |g, — b;| < 6/2 by the continuity proved above. But
then also r () < ¢/3. By taking b, closer to g (if necessary) we can also ensure
that |log(1 — b,)/(1 —a)| < &/3. We conclude that y is continuous in g;. By
Proposition 4 and Lemma 10, y is strictly increasing. Moreover y(b) = 2y(a)
if b = (by) = (a, ). Hence there exists for each ¢ > 0 a unique admissible
sequence a such that y(a) =t.

1—b,
1—ak

(@) — 2(B) <2 [rk(a) +r(®) + | log

8 A martingale

In this section it is convenient to interpret the branching random walk as a
labelled random tree. The particle at time zero is identified with the root of
the tree. Particles at time n are identified with vertices v in the n™ level T,
of the tree. Each gives rise to a random number N(v) of vertices in I', | |,
which obtain labels D;(v), D5(v), ..., Dy,)(v). There is a unique shortest
path (v, v@ v®) called the family line of v, connecting v = v® to
be root. The position d(v) of v is obviously equal to the sum of the labels
of v .| vy" We write a(v) = v~ for the next to last member of the
family line of v € I',. A cutset IT of the tree is a set of vertices such that every
infinite path from the root intersects II at exactly one vertex. Inspired by ([3])
we define the following cutsets IT, = {root} and for k > 1

O, ={v:d(v) 2 k, d(a(v)) <k} .

We partition IT; in the sets I, (j) = {v € II, :d(v) =k + j} for 0 £ j < L,and
write 4, (j) = Card(I1,(j)). Finally let «/; = 6{A4,(j) :0<¢/ <k, 0= j <L}
be the o-algebra generated by the A4,(j) for £ < k.

Lemma 11 Let (a,) be an admissible sequence, and let

_ A Ay Ap(L-1)
Ok =a" a1 BerL—1 -

Then (Q})5., is a martingale w.r.t. (o)), .

Proof. Note that 44(0) = 1, Ay(j) =0 for j = 1. So @y = ay. We first consider
k = 1. We then have to show

Ea1Ogh® . gl _ o 8.1)



420 F.M. Dekking and B. Host

Now v € II, (j} iff d(v) = j+ 1 and d(x(v)) = 0. Hence if N(0), ..., N(L) are
the number of first generation particles at 0, ..., L, then we can write for
j=0,..., L—1
N(0)
A =NG+D+ Y 4 (), (8.2)
/=1
where the 4; ,(j) are distributed as 4, (j), and independent of (N(0), ..., N(L)).

Therefore, for x; € [0, 1]

Exfl(o)xfl(l) xzh(L—l)
_yNO (8.3)
=F [Xiv(l) e xg(L) {Exfl‘ll(o)x/z‘ll (n xz](L 1)} ] .

Hence if we put x; = Exf11 (O)Xfl(l) - AI ==Y then xo € [0, 1], and the right

side of (8.3) equals ®(xg, X, ..., Xz ). So (8. 1) follows by admissibility of a
(@(ay, ..., a;) = a,), and uniqueness of this solution (h(x) = O(x, a;, ..., a;)
is a convex function with h’(x) < 1). Now for k = 2. Since IT, is a cutset, each
vertex in IT;, ; has a unique member of its family line in II,. The vertices in
II,(j) for j=1, ..., L — 1 are also vertices of II, , ; (j — 1), and each vertex in
I1,(0) gives for each j rise to a random number (distributed as 4, (j)) of vertices
in IT; | ; (j). Therefore, putting 4, (L) = 0, we have for j =0, ..., L—1

At (D) =4G+D+ D 4 0), (8.4)

where the 4; ,(j) are random variables distributed as 4, (j) and independent
of 4,(0), ..., 4, (L —1). Hence

Aj 1110} Ay 1(E—2) App1(L—1D
E[x 1k+1( k_+11 Lk 1 1, ]
~ _ 1740
=ka(l) Ak(L [EXAI(O xﬁl_(]] 2)xf1(L 1)] k )

Now if we take x; = a;, ;, then by (8.1) (since a shift of an admissible sequence
is admissible), E(Q, . 1|#;) = Q.

We now define for k = 1 (interpreting log0 = — o0)
log 4, (1)
= o 8.5
i ongl?}L 2 ®5)

Proposition 6 There exists a random variable W, with a continuous distribution
such that Zk — W almost surely as k — oo.

Proof. Let (a,) be the admissible sequence with y(a) = ¢, for t > 0 (cf.
Proposition 4). Let

A0

A (L—1
Or =0k =q,"" - akl—(i—(L—l)
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be the martingale of Lemma 11. Note that 0 < Q,(¢t) < 1 for all k. Let Q(t) be
the almost sure limit of (Q, (t)). We claim that for ¢ > s

o =1 as.on [Q(s)>0]. (8.6)

Indeed, let b be the admissible sequence with y(b) = s. By Lemma 8, there exist
y > 0 and ¢ > 0 such that for k large enough

g =1y~ and b, <1—de 2" 8.7)
For x close enough to 0, — log(1 — x) < 2x, hence for k large enough

,tzk“‘j

0= — log(a, ) < — log(l —y e*fz"”)gz

=2y e SHH g 92kt = -

(8.8)
log(bk+f)e (t—s)2k+i )
Multiplying by A,(j), and summing over j, we see that logQ,(t) — 0 if
0.(s) = Ofs) > 0. By (8.6), 0(r) is non-decreasing in ¢ and a.s. assumes the
values 0 and 1 for all but at most one t. We define W by W = inf{z : Q(t) = 1}.
Since EQ(t) = EQy(t) = ay, we have 0 < W < co almost surely. Moreover,

Pls < W <1 =P[O() — Q(s) = 1] = EQ(1) — EQ(s) = aq — by

if y(a) = t and y(b) = s. Since x is continuous in a, and conversely by
Proposition 5, W has a continuous distribution. Finally we have

1 ,
— 7 logQ(0 = oZax, — Ai(j)loglag ;) = — log Q1) .

Since 1 —a, ~ fe”tzk we deduce from this (by estimations as in (8.8)) that

Iim max Ak {(J)e

_t2k+j o0 a.s. on [W >t],
k—=w0=j<L -

0 as.on [W <.

This impiies that

Z, log 4, (j)
Ek— = OlgjlgLW — W as..

Without proof we mention the following facts. Let N,(k} = Card{v € T,
d(v) = k} be the number of particles with position k at time n. Then
M, = Hk;oaff"“‘) is a martingale (w.rt. o{N,(k) : m < n,k = 0}), and
M, converges to the same limit as (Q).

9 Almost sure convergence

Here we generalize Bramson’s result [3] on the almost sure convergence of X,.
Lemmas 12 and 13 are closely related to Bramson’s work. Instead of X, we
study the first passage times

T, =inf{n : X, = k}
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for positive integers k. This will be done with aid of the cutsets I, defined in
the previous section. Recall that I', denotes the cutset of all level n vertices.
We define

)= J{per, v "em}.

mzn

So I, (IT,) is the cutset of all n'® generation descendents of particles of IT;. Let
E, ,=ld@)zk+L forall vel dL)].

the clearly

PE, ,i4,] = F(L)y%OF (L — y4® ... F (1)AE-D (9.1)

Lemma 12 For alln >0,k =0

[Toyr <n < B, . ©.2)
On the other hand for all k and ny >0, ..., n;, > 0 we have that
EoﬁnoﬂEl)nlﬂﬁEk’nkC[Tk+L§?IO++}’ik] (93)

Proof. Since [T, Enl=[X, Zk+L]=[d(v)2k+LforallveTl,], (92
follows immediately. It is convenient to phrase the proof of (9.3) in terms of the
partial ordering of cutsets. We write I' < A if any infinite path starting at the
root intersects I' not later than it intersects A. For k = 0 (9.3} holds. Suppose
(9.3) has been proved for / =1, ..., k. Then Ey , N...NE; , NEx g o <
[Xno+"'+nk > k+ L) hence d(v) =2 k+ L for v € Fn0+...+nk, which implies
that I, ,, < Fno+'"f”k" Bu.t then rnk+1(Hk+1) < | T and
for v € Eyq ., this implies that d(v) 2 k+L ifv el .., pn
80 Eg g N oos NEgyy ny, © Xygtyny,, & k+1+L] This finishes the
induction proof.

Lemma 13 Suppose EN(i) > 0 for 1 =i < L, and let Z;, = maxy <y, 27 log A, (i).
Almost surely for k large enough

1 _
Teyr Z 7 exp" 712y ©.4)
and
T < Y, expk+2"7'Z) . 9.5)
0=j=k

Proof. By Theorem 6, and since F; (L) > 0, there exist two positive real numbers
o and 8 such that for allnand 1 £k < L

pn2"F < —logF, () <an—2' " (9.6)
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Let us take n =n; = [% exp(2k—12,)] in (9.1). Since n, is o/,-measurable, we
have
—log P[Ey , | ] = — A (O)F,, (L) — - — A (L—1)1ogF, (1)

> BAOn > " o+ BAL — Dyng !

2 (A 0 e H 4 e+ AL D) em2 T2
Zﬁkzl_L
since by (8.5)
2T -2y
Jggﬁ}AkOH ek =1. 9.7

Therefore

[e¢] o0 o0

1-L
> P(E, ,)=Y EPE, , |#)S) exp(—pk* ) <ow.
k=1 k=1 k=1

By Lemma 12 ((9.2)) and Borel-Cantelli, T}, ; < n, only finitely many times
a.s., so (9.4) follows. For the proof of (9.5) we take n; = [exp(k + 2b-1z7 )] in
(9.1), for 0 £ j £ k. Then, since ;< oy for0ZLj<k,

—log P[E; , |7]
— 4 (O)F, (L) = -+ — A)(L—1)log F,, (1)

< OCAj(())nj“zl_L + ot ady (L - 1)11]-‘1
ae—ml*‘{Ajm)e‘Zi+---+<AAL-ne-2L‘“%}

A

o 1—-L
aLe ¥ ,

lIA

(the last inequality follows by (9.7)). It thus follows that
P[Ej, nj|=9/k] = exp(— ocLe“"ZI_L) >1-— aLe—kzl—L ’

and hence that forallk = 1, P[E; , O-+-NE; ,, ]2 1~ (k4 DaLexp(— k2! 1),
Now (9.5) follows by the second half of Lemma 12 and Borel-Cantelli.

Proposition 7 Let T, = inf{n : X, = k}. Then
2k log(Ty,) =V almost surely,

for a random variable V, with 0 < V < oo a.s. and with a continuous distribution.

Proof. From Lemma 13 we have a.s. for k large enough

1 —
log (E) +2L—1Zk < log(Tk+L) <k+ 10g< z e2L 1Zj>

0= =k

< L—1 .
Zk+ loglk+1)+2 orgnjész .
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After multiplying by 2%, the left side and the right side converge to
V = W /2, by Proposition 6.
Theorem 8 Let (X,) be the minimal displacement of a critical branching random

walk with bounded steps determined by (N(0), ..., N(L)). Suppose EN? < oo
and EN(@{) > 0 for 1 £i < L. Then

X, = [loglogn — logV

log? + R,,} almost surely 9.8)

for all n large enough, where V is a random variable with a continuous
distribution on (0, ), and R, a sequence of random variables with R, — 0
a.s.

Proof. By Proposition 7 there exists a sequence of random variables (g;) such
that log(T,) = 2¢~ %V, with g, — 0 as. Since X, = k iff T}, < n we obtain

loglogn — logV loglogn — logV
—1<
log2 tex, v~ 1= X, log 2

IA

+8X

0t

Since X, — oo by Lemma 1, there exist R, such that (9.8) holds.

With a small loss of precision in the statement (9.8) we can get rid of the
condition on the EN(i).
Theorem 9 Let (X,) be the minimal displacement of a critical branching random
walk with bounded steps and EN? < 0. Let g =min{i 2 1 : EN(i) > 0}. Then

B gloglogn

is bounded almost surely for all .
log?2

n

Xy log2
loglogn

In particular — g a.8. as B — 0.

Proof. Let the steps be bounded by L. Let (N (i)) and (N (i) be defined
by NU(©) = N (0) = N(0); NP(g) = N(g) + - + N(L), NV () = 0 iff
i#0i+g; NP(@g) = N(g), N¥(mg) = N(m—Dg+ 1)+ - + N(mg—1)

m=2,...,M,where M = [(L+1)/g], N@(@) =0ifi¢ {0,g, ..., Mg}. Here
moreover, if N®(mg) = 0 for some m, then some mass of N@(g) = N(g) is
moved to N@ (mg) in order to have EN®(mg) > 0 for m = 1, ..., M. Let

(X() and (X?) be the minimal displacements of the branching random walks
generated by (N (-)) and (N®(-)). By construction, for all n

xP=x,=x2. 9.9)

Both new processes are concentrated on gZ. Rescaling by g~ ! we obtain

processes on Z which satisfy the conditions of Theorem 8, and so there exist
finite random variables UM and U® such that

X_,g") B loglogn

<y
g log?2

for j =1, 2 and all n. The result now follows from (9.9).
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The following result is a refinement of Theorem 2 in [3] for the discrete
case.
Theorem 10 Let (X)) be the minimal displacement of a critical branching random
walk with EN? < oo, and let g = inf{i 2 1 : EN(i) > 0}. Then as n — ©

X, log2

loglogn — g as.

Proof. As always we assume EN > 1. Then for any L = g it holds that

L
EN() > 1. Let NU(-) and NP (-) be defined by
=0

I

NYGH =NAG@) =N@ for0<i<L—1, NYGOH=NP@H =0 fori>L,

NO(@) = N@), N?(L) = N(L) .
i=L

For j=1,21let NU = f N (i), then E(ND)?2 < o0, ENY > 1, and the gap
i=0
parameters gl = inf{i = 1 : ENU (i) > 0} are both equal to g. Let X\ for
j =1, 2 be the associated minimal displacements, then XV log2/loglogn — g,
as., and XPlog2/loglogn — g as. on the set S; of non-extinction of
N® = N@ by Theorem 9. Since (9.9) holds for X, X2 this implies
that X, log2/loglogn — g as. on S;. To finish the proof it suffices to see
that P(S;) — 1 as L — . Now 1 — P(S;) is the unique solution in (0,1) of

PIN? = kJs* = s. Using the fact that EN? = EN® > 1 and (recall (1.3))
=0 L L g

L o]
PIN? =01=pP [ZN(i) =0] gp[ > NO)z 1] <EN—ENY 50
i=0 i=L+1
as L — oo, it follows that P(S;) — 1.
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