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Summary. We study the minimal displacement (Xn) of  branching r andom 
walk with non-negative steps. It  is shown that  ( X ~ -  EX~) is tight under 
a mild moment  condition on the displacements. For supercritical B.R.W. 
(X~) converges almost  surely. For critical B.R.W. we determine the possible 
limit points of  (X, - E X ~ ) ,  and we prove a generalization of Kolmogorov 's  
theorem on the extinction probabili ty of  a critical branching process. 
Finally we generalize Bramson's  results on the almost sure convergence of 
X n log 2 / l o g  log n. 

1 Introduction 

We consider discrete time and discrete space branching diffusion. At time 
0 there is a single particle at the origin. At time 1 this particle splits into 
a r andom number  N of  particles, which move to positions D1, D 2 . . . . .  DN, 
where the Dj are (not necessarily independent) integer valued random variables. 

At time n ' a  particle v with position k gives rise to a r andom number  
N(v) of  particle at positions k + D 1 (v), k + D 2 (v), ... , k + Dm(v) (v), where the 
vector (N(v ) ;Dl (v ) ,  . . . ,  DN(,,)(v)) is distributed as (N;  D1, . . . ,  DN), and is 

independent of  the evolution of  all other particles at the same and previous 
times. 

Let F n be the set o f  all particles at time n, and let N n = Card Fn. Then (N~) 
is a Gal ton-Watson  process with offspring distribution N 1 = N. Furthermore,  
let d(v) be the position of  a particle v in F, .  The r andom variable 

X n = min{d(v) : v ~ F,} 

is the minimal displacement of  the branching random walk process determined 
by the r andom vector (N ; D 1 . . . . .  DN). Here we put X n = ~ if F n is empty. 
Note  that X 0 ~ 0. The r andom variables (Xn) have been studied by several 
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authors, sometimes in unexpected contexts [4], [8]. The following basic result 
holds for the sequence (Xn). 

N 
H.K.B.-Theorem ([2, 6, 9]) Let H (t) = E ~ 1(_ ~, d (D j), and m(O) = f e -  or dH(t). 

j=t 
Suppose that m(O) < oc for some 0 > O. Then 

Xn -~ 7 almost surely on S, and in L1, (1.1) 
n 

where S is the set of  nonextinction of  the branching process (Nn), and 

7 = inf{a :#(a) > 1}, with #(a) = inf(e~ : 0 => 0}. 

In this paper we consider the case where the displacements are non- negative 
(this is no loss of  generality if the displacements are bounded) 

D j > O  j = l , . . . ,  N .  

This obviously implies that (Xn) is increasing 

Xn+ 1 ~ Xn n = O, 1, ... (1.2) 

It is convenient to introduce the random variables N(k) defined for k > 0 by 

N(k) = Card{j " Dj = k} . 

oo 

With this notation we have m(O) = ~ EN(k) e -k~ Note that the constant 7 in 
k=0 

(1.1) is zero if and only if #(0) > 1. But since m'(O) < 0 in any non-trivial case, 
we have that #(0) = lim re(O) = EN(O). As # is continuous on the set where 

0 --+ oo 
# is positive, we obtain the following. 

Observation. Let (X~) be the minimal displacement of  a branching random walk 
with non-negative steps and H.K.B.-constant 7. Then 7 = 0 iff EN(O) > 1. 

We call a branching random walk determined by (N(k))~= 0 subcritical, 
critical, or supercritical if, respectively, EN(O) < 1, EN(O) = 1, or EN(O) > 1. 

In Sect. 2 we prove that (Xn) converges a.s. on the set of nonextinction 
(without any norming), if the process is supercritical (this answers a question 
by Durret t  [5, p. 118]). We also determine the distribution of the limit. In Sect. 
3 we show quite generally that the sequence (X n - E X n )  is tight (travelling 
wave phenomenon). The remainder of  the paper is devoted to the critical case. 
In Sects. 4 to 7 we determine the possible limit distributions of  (X~ - dn), where 
(d~) is an integer sequence such that (d~ - E X ~ )  is bounded. In the final part 
of the paper we generalize Bramson's results on the almost sure behaviour of 
(X~) ([3]). Except for a strong form of tightness, we do not have results for the 
subcritical case. 
To shorten our statements and arguments, we assume from now on that 

P [N = 0] = 0, (1.3) 
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i.e., that the process survives with probability 1. The usual techniques (see e.g. 
[1, 1.12]) will extend our results to the case where one only assumes 

E N  > 1.  (1.4) 

As the case E N  = 1 (with (1.3)) corresponds to ordinary random walk, we 
assume henceforth that (1.4) holds. Finally there is one trivial case we want to 
exclude in the whole paper, we assume from now on that 

P [N(0) = 1] < 1.  (1.5) 

2 Supercritical branching random walk 

First we give another characterization of  the supercritical case. 

Lemma 1 L e t  ~ = P [ X  n ~ co]. Then  zc = 0 or 7c = 1, and rc = 0 i f f  EN(O)  > 1. 

Proof. Let X(n j) be the minimal displacement of  the jth particle in the first 
generation j = 1, . . . ,  N 1. Then 

N1 

Ix,, --, col = n oo1. 
j= l  

Since the X~) are independent, ~z satisfies ~z = E g  N. By (1.3) it follows that 
= 0 or 1. Let us denote 

Nn(0) = Card{v ~ r~ : d(v) = 0} 

for the number  of  particles at zero at time n. We observe (as in [7]) that 
(Nn(0)) is a Galton-Watson process with offspring distribution N(0). Now if 
EN(O)  > 1, then 

1 - - z ~ > P [ X n = O ,  n = O ,  1 , 2 , . . . ] = P [ N n ( O ) > O ,  n = 1 , 2  . . . .  ] > 0 ,  

hence zc = 0. On the other hand, by (1.2) 

[X  n ../L> CO] = U [ x n  __~ p] = U U [  n >= m :  X n = p ] .  
p p m 

Hence if ~ = 0, then there are p and m such that P [X  n = p : n > m] >= O. This 

implies that with positive probability there is at least one particle in the mth 
generation at p such that the minimal displacement of  the branching random 
walk generated by this particle is 0 for all subsequent times. We then have that 
(Nn(0)) is supercritical, hence E N ( O )  > 1. (recall (1.5)). 
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Theorem 1. Let (Xn) be the minimal displacement o f  a supercritical branching 
random walk with non-negative steps. Then there exists an almost surely finite 
random variable X such that 

X n --* X almost surely. 

I f  F(k) = P [ X  > k], then for k > 0 F(k) is the unique solution in [0, 1) to 

F(k) = EF(k)N(~ - 1) N(1) . . .  F(1) N(k-  1) . (2.1) 

Moreover, i f  inf j  Dj is a.s. bounded, then X n ~ X in Lp for all p > O. 

Proof The a lmos t  sure convergence  follows immedia te ly  f rom L e m m a  1 and 
the mono ton ic i ty  o f  the X n. 

Let F,(k) = P [X n > k]. Condi t ion ing  on the posi t ions  o f  the first genera t ion  
particles, we find 

f n  + l ( k )  _= EFn(k)N(O)i~n(k _ 1)N(I) . . .  f n ( i ) N ( k -  1) . (2.2) 

A l m o s t  sure convergence of  (Xn) implies Fn(k ) ~ F(k) for  all k as n --+ 0% and 
(2.1) follows by  b o u n d e d  convergence.  N o w  for k = 1, (2.1) reduces to F(1) -= 
EF(1) u(~ which has a unique solut ion in [0, 1), in fact  F(1) = P [X _> 1] equals 
the ext inct ion probabi l i ty  o f (N n (0)). For  k = 2, let (p (x) = Ex N(~ F (1)N(1). Then  
F(2) is a fixed poin t  o f  ~o. This m a p  is a increasing convex  m a p  f rom [0,1] to 
itself, and  has a unique fixed poin t  in [0, 1), since either ~0(1) < 1 or  (p(1) = 1 
and  (0r(1) = EN(O) > 1. An  ana logous  a r g u m e n t  applies for k > 3. 

For  Lp-convergence it suffices to show tha t  the limit var iable  X has an 

exponent ia l ly  decreasing tail (the result  will follow by m o n o t o n e  convergence) .  
I f  inf j  Dj is a.s. bounded ,  then there exists an integer  L such tha t  P [N(0) + �9 .. 

+ N ( L )  > 1] = 1. Let  z = P [N(0 )  + - . .  + N(L)  = 1] if  this p robabi l i ty  is 
positive, or any  n u m b e r  in (0,1) otherwise.  Since EN(0)  > 1, P [N(0) > 2] > 0, 
and  hence z is less than  1. Define 

tp (x) = E x  N(O) + " +  N(L) 

Then  lp(O) = 0 and  ~p1(O) < r < 1. Hence  for all posi t ive x small  enough,  say 
x < 3, we have  ~(x)  < 7x, for some ~ < 1. N o w  choose k 0 > L such tha t  
F ( k ) = P [ X > k ]  < 5  for  a l l k > k  0 . t h e n f o r k > k  0 + L w e h a v e  

F(k) = EF(k) m(~ ... F(1) N(k- 1) 

< EF(k  -- L) m(~ + ' +N(L) 

= ~(F(k  -- L)) <_< 7F(k - L ) .  

I te ra t ing  shows tha t  X has an exponent ia l ly  decreasing tail. 

No te  tha t  the p r o o f  o f  (2.1) gives a m e t h o d  to c o m p u t e  the d is t r ibut ion o f  
X step by step. 

Example. Let  N --  2, 1 - - P  [D 1 = D 2 = 0] = P [D 1 = D 2 = 1] = p, for some 
1 p E (0, 1). Then  EN(O) = 2 ( 1 -  p), so the process is supercri t ical  iff p < g. 
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Appl ica t ion  of  Theo rem 1 yields 

e (k )  = (1 - p ) F 2 ( k )  - t - p F 2 ( k -  1) .  

Solving this equa t ion  we find 

F(k) = @(1),  the k th i terate o f  

We say that  X has an elliptic 
dist r ibut ion where (pp is linear). 

It might  seem more  natura l  
D~, D 2 are i,i.d, with 1 - P [D i = 

behaves  in the same way as the 

P [X- __> k] = F(k) satisfies ~'(k) = 

F(1) = P [ X  >= 1] - -  l Pp, and in general  

<Op (x) = (1 -- v/1 -- 4p(1 -- p) x 2) (2(1 -- p)) - 1 

dis t r ibut ion (this generalizes the geometr ic  

to consider  the process where N ---- 2, and 
0] = P [Di = 1] = p ([4], [7]), but  this process 

one above. The  limiting dis tr ibut ion X with 

F 2 (k) for  all integers k. 

T heo rem 1 settles a special case o f  old quest ions and conjectures by 
Hammers l ey  ([6]) on certain refinements o f  the H.K.B. -Theorem of  Sect. 1. 

Let  7 = lim 2 E X  n. Then  [6, p. 677] the quest ions are 
n - - +  O~3 gl 

(i) How does E X  n -- n7 behave?  (ii) Does  E X , +  1 - E X  n ~ 7? (iii) Is Var(X~) 
bounded?  Theo rem 1 gives the answers in the case 7 = 0 and EN(O) > 1. In 
Sect. 4 we show that  E X n +  1 - - E X ,  ~ 0 in case 7 = 0 and EN(O) ---- 1 and 
the displacements are bounded ,  and in Sect. 6 there is an example for this 
case where Var X ,  is bounded  but  does not  converge. For  7 > 0 we can only 
prove (for bounded  displacements) that  Var )2 ,  is bounded  (this follows f rom 
Propos i t ion  2). 

3 Tightness 

In this section it is convenient  to assume that  the displacements are ordered  

D 1 <=D 2 < = . . . ~ D  N . 

Our  goal  is to prove tightness o f  the sequence (X  n - E X n )  under  a m o m e n t  
condit ion.  We define 

= D 11[N=I] + D21[N>2] �9 

Proposi t ion 1 Suppose E l )  < ~ .  Then for  all n 

2ED 
EIX 'n-X '~ ' ]  < P [ N  > 1] ' (3.1) 

�9 ! I! i f  Xn ,  Xs are independent and distributed as X n. 

P r o o f  No te  first tha t  E X  n is finite because E D  < oo. Argueing as before we 
have 

Xn + 1 = min (X~) + D j) (3.2) I<=j<=N 
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where the X(n )) are the independen t  min ima l  d isp lacements  
genera t ion  particles. F r o m  this we ob ta in  

E X , +  1 < 

o f  the first 

E ( X  (1) + D1)I[N=I ] + E min(Xn {1) + D2, X~ 2) + D2)l[N>2 ] 

1E(X(1) + X (2) + 2D 2 - I X n  (1) -- X(2) I)I[N_>_2 ] = E(X(1) § D1)I[N=I] + 2 " n 

=- E X  n "+- E f t ) -  1 E I X ~ I ) -  X(2)[I[N>2] 
Z 
1 

= EXn + E D  - ~ P [ N  > 2 ] E I X ~  1) - -X~(2) l ,  

where the last step holds  since N and (X~ (z) , X~ (2)) are independent .  As 
EXn+ 1 - E X  n > O, (3.1) follows. 

The o rem 2 Suppose ED < oo. Then (X n - EXn) is a tight family. 

Proof. For  any  two i.i.d, r a n d o m  var iables  Z 1 and  Z 2 with E Z  1 = 0, one has  
EJZ1 "Z2]  > E[Z11. Apply ing  this, the M a r k o v  inequal i ty  and  Propos i t ion  1, 
we obta in  

p [ lx  _ EX,~[ > K] < EIXn -- = K =< E[X~ -- 

2ED (3.3) 
< 
= K P  [ N  > 1] 

for all K > 0, which is t ightness o f  (X n - EX,,). 

I f  the d isp lacements  are bounded ,  we can obta in  a m u c h  s t ronger  result  
t han  (3.3), which will be used in Sect. 4. 

P r o p o s i t i o n  2 Suppose that Dj <= L for j = 1 . . . . .  N a.s. for some integer L. 
Then there exist ? < 1 and C > 0 such that for all n 

e [ l X , - - E X n l  > k ] < C 7  k k = 0 , 1 , 2 ,  . . . .  (3.4) 

Proof Let tp(x) = Ex N. Then  tp(0) = P[N = 0] = 0, tp'(0) = P[N = 1] < i, 
~p(1) = 1 and  ~p1(1) = E N  > 1 (possibly infinite). Hence  there exist 6 > 0 and  
~" < 1 such tha t  

{ ~(x) < Fx x ~ [0, c~], (3.5) 
1 - x < g (1  - w ( x ) )  x E [1 - 6 ,  1] . 

By T h e o r e m  2, we can choose M > 0 such tha t  for all n > 1 and  k > M 

P [ l X n - - e , ~ l > = k ] = l - - F n ( e n - k - - 1 ) + F n ( G + k ) < = ( 5 ,  (3.6) 

where  e n = [EXn]. 
For  all n and  k we deduce with (2.2) that  

G(k)  <= Fn+ l (k ) < EFn(k -- L) N = r -- L)) . 



Minimal displacement of branching random walks 409 

Iterating this inequality p times, where p for each k __> M is determined by 
0 < k - M -- pL  < L, one obtains with (3.5) and (3.6) 

F n (e n + k) <= F n +l(en + k) < "~PF n (e n + k k - pL) <= ]]pL ~ 7 k - M - L ,  (3.7) 

putting 7 = "~I/L. 
Similarly one obtains 

< - - k + M + p L < = O ,  
for all k => M, choosing p such that - L  

l _ F n ( e n _ k )  < = y p [ l _ F n ( e n _ k  +pL)]  ~.~TpL ~,~k--M-L . ( 3 . 8 )  

Accounting for E X  n --e~, (3.4) follows from (3.7) and (3.8) with C 
--M--L--2 

4 The critical case, first results 

In the critical case, i.e. EN(O) = 1, we shall make a precise asymptotic analysis 
of  F n (k) = P [X~ > k]. For this we need stronger conditions. From now on we 
assume that the displacements are bounded almost surely, so there exists an 
integer L such that 

Dj <=L j =  I ,  . . . ,  N .  (4.1) 

The fundamental relation (2.2) then simplifies to 

F n + l ( k ) = c P ( F n ( k ) , F , ( k - 1  ), . . . ,  F n ( k - - L ) )  n > O ,  ke7Z ,  (4.2) 

where 
N(0) N(1) . .  xN(L) 

~ ( x 0 ,  . . . ,  X L ) = • x 0  x t  . (4.3) 

is the generating function of (N(k))~= o. 
Our goal is to determine all possible limit points of the sequences (X n - dn), 

where the d~ are integers, and  (d, - EX~)  is a bounded sequence. By Theorem 
2 these sequences are tight, and the only interesting normings of X n. We remark 
that the condition of bounded displacements is not needed till Theorem 4. 

We first prove some properties of the function ~. Two important quantities 
are 

1 
0 = P [ N ( 0 ) > I ] ,  z = ~ V a r N ( 0 ) .  

Note that 0 and z are positive by assumption (1.5). Throughout this section we 
assume that 

E N < G o ,  V a r N ( 0 ) < o o .  (4.4) 

The function q~(x) is convex and differentiable in each variable xi, where 
0q~ x = (x o . . . . .  xL). We denote ~i(x)  = ~ ( x )  for i = 0 . . . . .  L. 
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L e m m a  2 (i) For all x E [0, 1] L + I  

L 

1 - ~(x)  > ~--" (1 - x i ) ~ i ( x  ) + 0(1 - x 0 )  2 . 

i=0 

(ii) For all e > 0 there exist  (5 > 0 such that f o r  all x c [1 - 6, 1] x [0, 1] L 

L 

1 - -  qi)(X) ~ Z ( 1  - -  Xi)CDi(X ) q -  ('C - -  ~)(1 - -  X0) 2 . 

i=0 

P r o o f  Let  f ( x )  = E x  N(~ Then  

1 -- f ( x )  > (1 -- x ) f ' ( x )  + 0(1 - x )  2 (4.5) 

since f is convex,  and  0 = 1 - f ( 0 )  - i f ( 0 ) .  By convexi ty  ofqb, for i = 1, . . . ,  L 

~(Xo,  " ' ,  xi 1,1  . . . . .  1 ) - - q ) ( x  0 . . . . .  x i , 1 ,  . . . ,  1) 

> (1 -x i )@i(Xo,  . . . ,  xi ,  1, . . . ,  1) > (1 -x i )C~i (x  ) . 

Adding  these equat ions  and  (4.5) with x = x0, we obta in  L e m m a  2 (i), not ing  

tha t  f ( x o )  = r  0, 1, . . . ,  1), and  f ' ( x o )  = q)o(X0, 1, . . . ,  1) > O0(x ). L e m m a  
2 (ii) is derived in a similar way. 

Because o f  re la t ion (4.2) the set 

A = {x  ~ [0,  1] c + ~  �9 x 0 < . . .  < x c ,  q~(x) __> Xo} 

is o f  special  interest  to us. We denote  1 = (1 . . . . .  1). 

L e m m a  3 Le t  g = min{i > 0 " EN( i )  > 0}. Then l -~g  l - x0  ---~ O as x -* l in A. 

P r o o f  Note  that  g exists by condi t ion  (1.4) since EN(O) = 1. By L e m m a  2 (i), 

1 - xg 
1 > 1 ~(x)  > C~o(X) + Og(x) > 0 

= 1 - -  x 0 ~ = " 

Since O0(x) ~ EN(O) = 1, and  Og(x) ~ EN(g )  > 0 as x ~ 1, the conclusion 

o f  L e m m a  3 follows. 
For  vectors  x ,  y we denote  x < y if x i < Yi for 0 _< i _< L. 

L e m m a  4 Le t  x ,  y E A with x <= y,  and suppose that y - x < c(1 - y)  f o r  some 
real number c. Then 

(i) ~ (y )  - q~(x) =< c[1 - r  [1 - ~ (1 - Y0)], 

(ii) f o r  all ~ > 0 there exists  rl > 0 such that f o r  Yo >- 1 - r l 

,~(y)  - O ( x )  __< c[1 - O ( y ) ] [ 1  - ~ ( 1  - yo) ] .  

P r o o f  By convexi ty  o f  q), 

L L 

1 -- qb(y) <_ Z ~i(1)(1 -- Yi) = Z EN( i ) (1  -- Yi) �9 (4.6) 
i=0 i=0 
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Since Yo < . . .  < YL, it follows that  1 -  q)(y) < ( 1 -  yo)EN,  and hence, with 
L e m m a  2 (i), that  

L 

i=0 

Also, by convexi ty  and the hypotheses,  

L L 

O(y) -- Cb(x) <= Z ( y  i -- x i )~ i (y  ) <= c Z ( 1  - yi )~i (y) ,  
i=0 i=0 

and (i) follows. On the other  hand  (4.6) implies (as EN(O) = 1) that  

I- 1 Yg 
E N ]  Yo + (1 -- y g ) E N  ---- (1 -- Yo) ]1 + < (1 -- yo)(1 + e), 1 qS(y) < 1 

= t. 1 --  Y0 ] = 

for  a given e > 0, if Y0 is close enough  to 1, by L e m m a  3. Now (ii) follows as 
above with L e m m a  2 (ii). 

Our  main  tool in the analysis o f  the critical case is the following result. 

Propos i t ion  3 Let  F n(k) = P [ X  n > k]. For all fi < 1 there exists a real number 
K such that for  all k >__ 1, n > 0 

F n + ~ ( k ) - F  n(k) < K  

1 - -  F n + l ( k )  = n~ " 
(4.7) 

Proof. By Kolmogorov ' s  theorem on the extinct ion probabi l i ty  o f  a critical 
b ranching  process (see e.g. [1.p.19]) 

2 1 
~ - -  a s  n---~ o o .  1 - -Fn(1  ) = P [ X ,  0] P [N , (0 )  > 0] ~ nVar  N(0) ~n 

Choose  e > 0 such that  z - e > fiz(1 + 0 2. There  exists n o such that  for n > n o 

1 
1 - F n ( k ) > I - F , ( 1 ) > - -  for  all k > l .  

~(1 + e)n 

Let  ~ N 1 be associated to e as in L e m m a  4, and let n I = max(n0,  [fiEN/~IO] + 1). 
Also, let 

Qn (k) = Fn + 1 (k) - F n (k) 
1 - -  Fn+l (k  ) ' Mn = supQn(k)  " 

�9 k>0 

For  n >__ nl and  all k with F n + I (k) => 1 - ~ it holds  by L e m m a  4 (ii) tha t  

[ ] Qn+l(k)  ~ M  n 1- -  \ l + e . ]  - -Fn+l (k ) )  

<--_M n l - -  (1 , - ~ T V ~ + l  ) = < M  n 1 n + l  " 
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On the other hand, if n > nl, and Fn+l(k ) < 1 - t / ,  then by Lemma 4 (i) 

Qn+ l (k) < Mn [ 1 -  E-~(1- -  Fn+ l (k)) ] 

= < M  n 1 < Mn 1 - - E N  = n + l  

So for n > n 1, Mn+ a =< Mn[1 -- n-~] '  which implies the existence of K such 

that M n < K n - ~  for all n. 
As corollaries we obtain the following theorems. 

Theorem 3 Let X be a weak limit point o f  a sequence (X n - d n ) ,  where 
(d n - EXn) is bounded. Then F(k) = P [X > k] satisfies a~F = F. 

Proof Suppose X n, - d n, ~ X weakly as n I ~ oo. Then 

Fn,+l(k +dn, ) =OP(Fn,(k +dn, ) . . . .  , Fn,(k + d  ., - L ) )  

by (4.2). The right side tends to ~(F(k),  . . . , F ( k - L ) )  by dominated 
convergence, the left side to F(k), since F n , + l ( k + d n , ) - F n , ( k + d n ,  ) --* 0 
by Proposition 3. 

Theorem 4 Let (Xn) be the minimal displacement o f  a critical branching random 
walk satisfying (4.4). Then E X  n + 1 - EXn -+ 0 as n --* oo. 

Proof Let e n = [EXn]. Note that 

+ o o  

EXn+I--EXn--- -  ~ [Fn+l(k)-rn(k)]  
k ~  - -  Go 

+ o o  

= Z [Fn+ l ( en - t - k ) -Fn(en+k)]  
k =  - oo 

- M - 1  M 

< y "  [ 1 - F ~ ( e ~ + k ) ] +  ~ [F ,+l (en+k) - -Fn(e~+k)]  
k =  - c o  k =  - M  

oo 

+ Z F ' + l ( e n + k ) '  
k = M + l  

for any positive integer M. The result now follows from Proposition 2 (more 
precisely from (3.7) and (3.8)) and Proposition 3. 

We end this section with a noteworthy property of the total number of 
particles U n = Card{v ~ Fn : d(v) = Xn} at X~: the expectation of U~ tends 
to infinity. This follows from Theorem 4 by noticing that 

P[N(O) > O] EU" ~ EP[N(O) > O] y~ = P[Xn+ 1 > Xn] < E(X.+ 1 -- Xn). 

We conjecture that U~ ~ oo almost surely. 
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5 S h a p e  o f  l imi t  d is tr ibut ions  

In this section we shall refine some o f  the results o f  the previous section 
replacing (4.4) by 

E N  2 < oo,  (5.1) 

and prove a general izat ion o f  Kolmogorov ' s  theorem on the extinct ion 
probabi l i ty  o f  critical b ranching  processes (Theorem 6). 

1 Var N(0) and suppose IX = EN(1)  > 0. Then uniformly in Theorem 5 Let  z = 

k > 2 a n d n > l ,  

1 - Fn(k - 1) 
- as Fn(k ) --* 1 . 

[1 -- Fn(k)] 2 I x 

Proof. Since E N  2 < oo, ap(x) can be expanded  as 

L L 

O(x) = 1 -- Z ( 1  -- x i )EN( i  ) + Z (1 -- xi)(1 -- xj)Oij(1  ) + R ( x ) ,  (5.2) 
i=0 i, j=O 

1 02q~(x) and R(x) = o([ll -- xLI2). where r j(x)  - 2 &iaxj 

On A, the remainder  term R(x) = 0((1 - x o ) 2 ) ,  and all (1 - x i ) ( 1  - x j )  are 

O((1 - Xo)2). Since ap(x) > Xo, EN(O) --- 1, EN(1)  = #, and all EN(i)  > O, it 

follows that  IX(1- Xl) = O ( ( 1 -  Xo) 2) on the compac t  set A, and hence that  
o n  A 

(1 - -  xl)  =< B(1 - -  x0)  2 (5 .3)  

for some constant  B. 

By Propos i t ion  3 with fl = 2 /3  

Fn+l(k) - F n ( k )  < Kn-2 /3 (1  - F n + l ( k ) )  <= Kn--2/3(1 - F n ( k ) )  . (5.4) 

But by monoton ic i ty  o f  F n and (5.3) with x = (Fn(2), F~(1), 1, . . . ,  1) we have 

1 
1 - F n ( k  ) > 1 - - F n ( 2  ) > [ B - I ( 1 - - F n ( 1 ) ) I  1/2 > ~ n  - 5  , 

for  some ~ > 0, again by Kolmogorov ' s  result. With (5.4) this gives (putt ing 
~" = K ~ - 4 / 3 )  

Fn+ l(k ) - Fn(k ) <= K[ 'd - I (1  - Fn(k))] 4/3 (1 -- Fn(k)) = "6(1 -- Fn(k)) 7/3 . (5.5) 

We apply (5.2) with x = (Fn(k) . . . .  , Fn(k - -L) ) .  We just  showed that  

�9 ( x ) - x  0 ~ " c ( l - x o )  7/3. F r o m  (5.3) it follows that  ( 1 - x i ) ( 1 - - x j )  < 

B ( 1 - x 0 )  3 for ( i , j )  @ (0,0) .  Fu r the rmore  1 - x  i < 1 - x  2 < B ( 1 - X l )  2 
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< B 3 ( 1 -  X0) 4 for i > i, applying (5.3) twice. Using these est imations in 

(5.2), no t ing  that  ~00(1) = �89 -- 1] = r, we find that  

/~(1 -- xl)  --  z(1 - Xo) 2 = O((1 - x0) 7/3) . 

This implies the s ta tement  o f  the theorem. 

Corollary. L e t / ~  -= EN(1)  > 0. Uniformly on the set o f  limit distributions 

1 - F ( k  - 1) 
- as F(k)  ~ 1 . 

[1 -- F(k)] 2 # 

As another  corol lary to Theorem 5 we have 

Theorem 6 Le t  r = gl Var N(0), and suppose # = EN(1)  > 0. Then f o r  all k => 0 

P [ X  n < k] ,., I~ 1 
z [ ~ n ] 2  - ~  

as n ~ oo . 

6 An example 

We apply the results o f  the previous section to our  s tandard  example 
1 

N -- 2, P [D I = D 2 = 0] = P [D 1 = D 2 = 1] = ~. Let X be a weak limit point  

o f  (X n - dn), where (d~ - EXn)  is bounde d  sequence. Accord ing  to Theorem 3, 
F(k)  = P [X > k] satisfies 

F(k) -.= 1F2(k)q- -  ~F2(k  - 1) 

for all integers k. Hence if  we define for x E [0, 1] 

~ 0 ( x )  = 1 - ~ / 1  - x 2 , 

then F(k)  = c p ( F ( k -  1)) for all integers k. For  any e c (0, 1) let the integer 
valued r a n d o m  variable X(a) be defined by 

P [X(a )  > k] = Ok(a), k E 7A. (6.1) 

Here r ~ = I d ,  (pk = (p o . . .  o ~o, qo - k  = r - 1  o . . .  o (p-1 (k times) for k > 0. 
We call X(cr a circle law. By the remarks  above any limit point  X has to be 
a circle law. We shall show later (Theorem 7), that  any  circle law does occur  
as a limit point.  We give a list o f  some propert ies o f  circle laws, the proofs  o f  
which are left to the reader. 

Observation, Le t  X(~)  be a circle law f o r  c~ E (0, 1). Then (i) X(cp(c~)) = X(c~) -- 1. 
(ii) :~ ~ E X ( ~ )  is a strictly monotone func t ion  f r o m  (0, 1) onto IR. (iii) X(1 - ~) 

is distributed as - X(c~) - 1 (iv) EX(1/2) = - 1 / 2 ,  EX(x/Tf2) = 0 .  ( v )  

Var X(~o(~)) = Var X(~),  Var(X(1 - c0) = Var(X(~)). 
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Hammers ley  conjectures in [6] that  VarX~ converges for this example. 
Since any circle law X(:r can occur as a limit this is not true, as VarX(e)  is 
not constant. See the following table (whose entries were computed  with (6.1)) 

VarX(a)  e VarX(e)  

0.1 0.85851501 0.4 0.85852356 

0.2 0.85852356 0.5 0.85850792 

0.3 0.85854271 

7 Parametrisation of limit distributions 

We continue the analysis of  the critical case. Although condition (4.4) will 
suffice for some of  the results in this section we will assume throughout  that  
E N  2 < oo. The goal of  this section is to prove a converse to Theorem 3, i.e., 
that  if  a = (ak)ke:g is a sequence of  real numbers  satisfying 

ak+ 1 ~ a k for all k, k l imooak = 0, lim a k = 1 (7.1) 
k ---~ oo 

and for all integers k 

q~(a k ,  ak + 1 . . . . .  ak + L) = ak,  (7.2) 

then F defined by F(k )  ---- a k is a limit distribution. (We inverted the direction 
of space as we are more  interested in the left tails of  the limit distributions). 
We call sequences a satisfying (7.1) and (7.2) admiss ible  sequences. Note  that 
(7.1) and (7.2) imply that  0 < a k < i for all k. 

The proof  that any admissible sequence yields a limit distribution relies on 
finding good parametrizat ions of  these sets. Note  for example that (by Theorem 
4) for each real number  e there exists a limit point X with E X  = e. 

Lemma 5 For all s c (0, 1) there  is a l imit  d is tr ibut ion F wi th  F(O) = s. 

Proof .  For all m > 1 the set {F~(k) �9 n > m, k > 0} is dense in [0,1]. To see this, 
let e > 0. By Proposit ion 3 we can chose p > m such that  F~ + ~ (k) - F n (k) < e 
for all n > p. Now choose a k such that  Fp(k) < e. Since F~(k) ~ 1 as n ~ 0% 

the sequence {Fn(k ) �9 n > p} is e-dense in [0,1]. Let s E (0, 1). By our first 
remark  there exists a sequence of the form (F~j (dj)) such that F~j (dj) ~ s as 

j ~ oo. Since 0 < s < 1, it follows by Theorem 2 that (dj - E X n j  ) is bounded, 

and that  the sequence (X~j  - d  j )  has a weakly converging subsequence. The 

limit distribution F satisfies F(0) = s. 

In the sequel we want  to show that a limit distribution F is uniquely 
determined by F(0). This is not the case in general. For example take 

N =-- 2 ,  P [ D  o = D 1 = 0] = P [ D  o = D 1 = 2] = �89 and k n = [EXn] 

if this is even, or k n = [EXn] + 1 otherwise. Then any limit point X of  
(Xn - k~) is concentrated on 22g, but there are limit points Y of ( X  n - k n - 1) 
concentrated on 27Z + 1 with P [X > 0] = P [Y > 0], while obviously X ~ Y. 
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Formula ted  in another  way, we want  to avoid (near) sign changes in the 
sequence (a k - bk) if a and b are admissible. Here the case L > 1 is essentially 
more  compl ica ted  than the case L = 1. For  L = 1 it is easy to see that  sign 
changes in these differences are not  possible. I f  W(x, y) = q)(x, y) - x, then 
d y / d x  = - O ~ / O x / O ~ / ~ y  = ( 1 -  Orb/~?x)/~?rb/@ >__ O, since EN(O) = 1. To 
study the sign changes for general  L we define 

ak = max{0,  ak+ ~ - b ~ + a ,  . . . ,  ak+ L -- bk+L},  

fik = max{0,  bk + ~ - a k + ~ ,  . . . ,  bk + L - - a k + L }  . 

L e m m a  6 Suppose EN( i )  > O f o r  1 < i < L, and let a, b be admissible sequences. 
Then there exists a constant c > 0 and all integer k 0 such that f o r  all k >= k o 

if  a k=>b k then ak>=Cflk,  

if b k _ > a  k then flk > c ~ k .  

Proo f  The second assertion follows f rom the first by symmetry.  Let  e = 

! m i n { E N ( i )  �9 0 < i < L}, and  define c = s / E N .  Since ~i(1) = EN(i )  > 2~, 

there exists 6 > 0 such that  ~/(x) > e for x c [1 - ~ ,  1] L+l  and 0 _< i _< L. 
Choose  k 0 such that  for k > k 0 a k > 1 - 6  and b k > 1 - c 5 .  Let 

c k = max(ak,  bk). Then max{ck+ / - -ak+ i : 1 <_ i < L} = ilk" Therefore if 
k > k 0 and a k > b k, then we obtain f rom the mean  value theorem 

qb(bk, c k + l ,  . . . ,  Ck + L) > ~(bk ,  a k + l ,  . . . ,  ak + L) + i l k  e > b k + fike , 

since q)0(x) =< 1 and Cb(ak, . . . ,  ak + L) = a k. 
On the other  hand, since EN(O) + . . .  + E N ( L )  = E N ,  

r~(bk , ck+l  . . . . .  Ck + L) ~ ~ (bk ,  bk+l . . . . .  bk + L) + c~kEN . 

Combina t ion  o f  these inequalities yields a k E N  >_>_ fl1~e or  ak > eflk" 

We need yet another  simple l emma for the p r o o f  o f  Proposi t ion  4. 

L e m m a  7 Let  a, b be admissible, k E ~.  I f  ak+ i ~ b k + i f o r  i = 1, . . .  L then 
a k > bk; i f  moreover ak+ i > b k + i f o r  at least one i, and EN( i )  > O, then a k > b k. 

Proo f  Let h(x) = r ak+ 1 . . . . .  ak+L). Then h(ak) = ak, and h'(x)  =< 1 for all 
x E [0, 1], since EN(O) = 1. But h(bk) >= @(bk, bk+ 1 . . . .  , bk+c)  = b k, hence 
b k < a k. I f  ak+ i > bk+ i and EN( i )  > 0, for some i then the inequalities are 
strict. 

Proposit ion 4 Suppose EN( i )  > 0 f o r  1 <_ i < L. Le t  a, b be two admissible 
sequences with a ~ b. Then either a k > b k f o r  all k, or a k < b k f o r  all k. 

P r o o f  Suppose  on  the contrary,  that  there are integers p and q such that  
ap > bp and  aq ~ bq. Let k > max(p,  q). I f  a k = 0, then by L e m m a  7, a k < bk. 

Apply ing  the same l emma repeatedly, we arrive at the cont radic t ion  ap ~ bp. 

So for all k > max(p,  q) there exists i with 1 < i _< L and  ak+ i > bk+ i. But 
then fik = 0 implies a k > b k by L e m m a  7, and again repeated applicat ion o f  
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this lemma yields the contradiction, aq > bq. We conclude that ek > 0 and 

fik > 0 for all k > max(p, q). Let k I = max(k0, p, q), where k 0 is given by 
Lemma 6, and let 

I +  = {k  >= k 1 : a k _> bk, ak+ 1 < bk+~} . 

We showed above that at least one of  every L consecutive integers belongs 
to I+ .  Let k E I+ .  By Lemma 6 there exists i with 1 < i < L such that 

ak+ i - - bk+  i > Cflk. Let j = max{d "ak+ t <= bk+~}. Since ak+ 1 < bk+ 1 and 
ak+ i > bk+ i we have 1 < j < i =< L. Therefore ek+j  > ak+i -- bk+i. Let 

I _  = { k > k  1 :a  k < b k , a k +  1 > b k + l } .  

We just showed that for each k c I+  there exists k E I _  with k < k __< k + L 

and e~- > cfik. By symmetry there exists for each d E I'_ and d E I+  with 

d < d < d + L such that fiT~ > cae. Thus there exists for each k E I+  an m E I+  

with k < m __< 2k + L such that fi,~ => c2flk . In this way we obtain a sequence 
of  elements (mj) of  I+  such that 0 < mj+ 1 - m y  < 2L for all j and 

2> 2 
~.~nj+ l = C ~ r a j  ' 

Choose kj E { m j + l , m j + L  } such that bk j - - ak ;  = flmj" Then kj ~ 0% 

kj < m o + 2L j ,  and 

l iminf  bkj - akj > 0 (7.3) 
j -~ oo c2 J " 

But by Lemma 8 below, a k and b k tend to 1 faster than geometrically, in 

particular 1 - a k and 1 - b k are bounded by c 2k/L for k large enough, and so 
< C2mo/Lc4J~ which b k - a k < c 2k/L for k large enough, implying that bkj -- akj = 

contradicts (7.3). 

Theorem 7 Suppose EN( i )  > 0 f o r  1 <_ i < L. For each admissible sequence 
a, F(k) = a k is a limit distribution. 

P r o o f  Let a be admissible. By Lemma 5 there is a limit distribution F such 
that F(0) = a 0. By Proposition 4, F(k) = a k for all integers k. 

Note that Proposition 4 also implies that F ~ F(0) is one to one, and hence 
a true parametrization. In the next sections we shall need a parametrization 
with a more global character. 

Lemma 8 Let  # = EN(1) > O, and let a be an admissible sequence. Then there 
exists a positive real number z(a), such that, uniformly on the set o f  admissible 
sequences 

/ \  

o , +2  lat 0 
\ #  t 

Proof. Following the proof  of  Theorem 5 with x = (a k, ak + l ,  . . . ,  ak + L) , 

except for the argument leading to (5.5), which is not  needed here as (I)(x) = x 0 
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by (7.2), we find tha t  

#(1 - ak+ l )  -- ~(1 -- ak) 2 = O((1 -- ak) 3) . (7.4) 

"C 

Putt ing u k = log ; ( 1 -  ak), (7.4) implies tha t  Uk+ 1 - - 2 u  k = O ( 1 - - a k ) .  It  is 

s t r a igh t fo rward  to show tha t  this implies the existence of  a real n u m b e r  t such 
tha t  u k + t 2  k = O ( 1 - - a k ) .  Since u k ~ --c~ as k - - ~  oo, t = )~(a )  is strictly 
positive. 

The  remainder  of  this section is devoted  to proving  tha t  a ~-~ z(a) is a 
bi ject ion f rom the set o f  admissible  sequences to IR. 

L e m m a  9 Let  a, b be admissible sequences with a k > b k for  all k. Then 

a k - b k ao - b o 
lim sup i - ~  ~-k > 

k-,oo = 1 -- a 0 

Proo f  We app ly  L e m m a  4 (i) with x = (b 0 , . . . ,  bL) and y = (a 0 . . . .  aL). Since 
ale - -  b k qba = a and  qbb = b we obta in  with c o = supk__> 0 l - a k  

a ~ 1 7 6  ( 1  E ~ ( I  - a0) )  i 2 j  ~ <=co - 

As the factor  on the right is strictly smaller  than  1, this implies tha t  

a o - b o ak -- b k 
1-- -~o  < c l  :=supk>l 1 - - ~  " 

Repea ted ly  app ly ing  L e m m a  4 (i) we obta in  that  

a 0 -- b 0 ak - b k 
~ - - ~  < c  n : = s u p  

k__>n 1 - a k 

Let t ing n --* oo yields the conclusion o f  L e m m a  9. 

L e m m a  10 Let  a, b admissible sequences. The fol lowing statements are equivalent. 
1) a k > b k for  all integers k, 2) (1 - ak)/(1 - bk) --+ 0 as k --+ oe, 
3) )~(a) > 2(b). 

Proof. The  equivalence of  2) and  3) is immedia te  f rom L e m m a  8. I f  2) holds, 
then a k > b k for all large k, and  hence for all k by  L e m m a  7. It  remains  
to prove  tha t  1) implies 3). But this follows f rom L e m m a  8 and  L e m m a  9: 

a k -  bk > 0 implies z(a) > )~(b). l im supk ~ oo 1 - ak _ 1 = l im supk_, oo 1 - ak 
1 - b  k 

I t  is for the p r o o f  o f  the fol lowing tha t  we needed the un i form es t imat ion  
in L e m m a  8. 

Proposi t ion 5 Suppose EN(i )  > 0 for  1 <_ i <_ L. For each positive real number t 
there is a unique sequence a such that z(a) = t, and Z is continuous in a o. 

P r o o f  By Propos i t ion  4, the sequence a (a k = F(  -- k)) in L e m m a  5 is unique for  
each s E (0, 1). Hence  there exists a funct ion g : (0, 1) --~ (0, 1) with g(a0) = a 1 
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for  each admiss ible  sequence a. The  funct ion  g is strictly increasing (apply 
Propos i t ion  4 with (bk) = (ak+l)) ,  and  surjective, hence cont inuous .  M o r e  
generally,  a k is a con t inuous  funct ion o f  a 0. N o w  let a be  a fixed admissible  
sequence. Then  for any  admiss ible  sequence b 

Iz(a) - z(b)l < 2 - k  Irk(a) + rk(b) + log 1 -- b k ] 
: l _ a k  j ' 

where  rk(a ) = Iz(a)2k + l o g ( ~ ( 1 -  ak))l. Let  e > 0. By L e m m a  8 there exists 

6 > 0 such tha t  rk(c ) < e/3 for  any  admissible  sequence c, as soon as 1 - c k < 6. 
Fix k such tha t  1 - a  k < 5/2 .  Then  for any  admissible  b such tha t  b 0 is close 
enough  to a 0, we have  l a k -  bkl < 5 / 2  by the cont inui ty  p roved  above.  But  
then also r k (b) < e/3. By tak ing  b 0 closer to a 0 (if necessary) we can also ensure 
tha t  I log(1 - b k ) / ( 1  --ak)l  < e/3. We conclude tha t  )~ is con t inuous  in a 0. By 
Propos i t ion  4 and  L e m m a  10, Z is strictly increasing. Moreove r  z(b) = 2x(a) 
if  b = (bk) = (ak+l) .  Hence  there exists for  each t > 0 a unique admissible  
sequence a such tha t  z(a) -- t. 

8 A martingale 

In  this section it is convenient  to in terpret  the b ranch ing  r a n d o m  walk  as a 
labelled r a n d o m  tree. The  part icle at  t ime zero is identified with the root  o f  
the tree. Particles at t ime n are identified with vertices v in the n th level F n 
o f  the tree. Each  gives rise to a r a n d o m  n u m b e r  N(v)  of  vertices in F n + i ,  
which obta in  labels D l ( v ) , D 2 ( v  ) . . . .  , DN(v)(v ). There  is a unique shor tes t  

p a t h  (v (I), v(2), . . . ,  v(n)), called the family  line of  v, connect ing v = v (n) to 
be root.  The  pos i t ion  d(v) of  v is obvious ly  equal  to the sum o f  the labels 
o f  v (1) , . . . ,  v (~). We write e(v) = v (n - 1) for  the next  to last m e m b e r  o f  the 
family  line o f  v c F n. A cutset I I  o f  the tree is a set o f  vertices such tha t  every 
infinite pa th  f rom the root  intersects I I  at  exact ly one vertex. Insp i red  by  ([3]) 
we define the fol lowing cutsets ri0 = {root} and  for k > 1 

n k  = {v .d(v) > k, d(~(v)) < k}.  

We par t i t ion  IIk in the sets I lk( j )  = {v ~ I I  k �9 d(v) -= k -t- j} for  0 ___< j < L, and  
write Ak(j)  = Card(I lk( j )  ). Finally let d k = a{A t ( j )  �9 0 <_ d <_ k,  0 < j < L} 
be the a - a l g e b r a  genera ted  by  the Ae (j) for  d < k. 

Lemma 11 Let  (ak) be an admissible sequence, and let 

, A k(O), A k(1) A k ( L -  1) 
~k = ~k '~k+l " ' "  U k + L - 1  �9 

d Then (Qk)~-o is a martingale w.r.t. ( k)k=O" 

Proof. Note  tha t  Ao(O ) = 1, Ao(j) = 0 for  j => 1. So Q0 = ao- We first consider  
k --- 1. We then  have  to show 

A 1(0) A 1(1) A I(L-1)  
E u  1 u 2 " ' "  a L = a o . (8.1) 
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N o w  v E H I ( j )  iff d(v) = j +  1 and  d(~(v)) = 0. Hence  if N(0) . . . . .  N(L)  are 
the n u m b e r  o f  first genera t ion  particles at  0, . . . ,  L, then we can write for 
j = 0  . . . . .  L - 1  

N(0) 

AI( j )  = N ( j  § 1) 4- E A l , e ( J ) '  (8.2) 
E=I 

where the A1, t(J) are dis t r ibuted as A 1 (j), and independen t  o f  (N(0) . . . . .  N(L)) .  

Therefore ,  for x i E [0, 1] 

E AI(0 ) AI(1) AI(L--1) 
x I X 2 . . . .  x L 

. .  . A l ( 0 ) .  A 1 XL 

A 1(0) A 1(1) A I (L-1 )  
Hence  if we put  x 0 --= L x  1 X 2 �9 x L , then x 0 E [0, 1], and  the right 
side of  (8.3) equals  d)(x o, x 1, . . . ,  XL). So (8.1) follows by admissibi l i ty  o f  a 
(O(ao, . . . ,  aL) = a0), and  uniqueness  of  this solut ion (h(x) = ap(x, al , . . . ,  ac) 
is a convex  funct ion with h~(x) < 1). N o w  for k > 2. Since Ilk is a cutset,  each 
vertex in I I  k+ l  has a unique m e m b e r  o f  its family  line in H k. The  vertices in 
Ilk(J) for j = 1, . . . ,  L - 1 are also vertices of  I I k + l (  j - 1), and  each vertex in 
I lk(0 ) gives for each j rise to a r a n d o m  n u m b e r  (distr ibuted as A 1 (j)) o f  vertices 
in H k + l ( j  ). Therefore ,  pu t t ing  Ak(L  ) = 0, we have  for  j = 0 . . . . .  L -- 1 

Ak(0) 

A k + l ( J ) = A k (  j + l ) +  Z A1, ~ ( j ) '  (8.4) 
t '=l  

where the A1, t(J) are r a n d o m  variables  d is t r ibuted as AI( j )  and independen t  

o f  Ak(0 ), . . .  , Ak(L  -- 1). Hence  

E[ xAk+l(O) . . . .  ~'LAk+I(L-2)vAk+I(L-- 1 ~L 1)11 ~'~ "//kl1 

. . . .  •L'Ak(L--1)--I [ [Ex  A1 (0) . .  ~L" AI(L--2)--I xLAI(L--1)]Ak(O)J xAk(1) 

N o w  if we take  x i = ak+ i, then by (8.1) (since a shift o f  an admissible  sequence 

is admissible),  E(QK+ 11~r = Qk" 

We now define for k => 1 ( interpret ing log 0 = - ~ )  

log A k (i) 
Z k = m a x  2; (8.5) 

O<=i<L 

Proposi t ion 6 There exists a random variable W,  with a continuous distribution 
Zk 

such that ~ --~ W almost surely as k --~ ~ .  

Proof. Let (ak) be  the admissible  sequence with )~(a) = t, for t > 0 (cf. 
Propos i t ion  4). Let  

Ak(O) .Ak(L-- 1) 
Q~k = Q k ( t )  = ~k  " '  " k + L - I  
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be the mar t ingale  o f  L e m m a  11. Note  that  0 < Qk(t) < 1 for all k. Let  Q(t) be 
the a lmost  sure limit o f  (Qk(t)). We claim that  for t > s 

Q(t) = 1 a.s. on  [Q(s) > 0 ] .  (8.6) 

Indeed,  let b be the admissible sequence with z(b) = s. By L e m m a  8, there exist 
7 > 0 and 6 > 0 such that  for k large enough  

a k > l - ? e  -~2k and b k = < l - 3 e  -s2k . (8.7) 

For  x close enough  to 0, - log(1 - x) < 2x, hence for k large enough  

e - r 2 k + j  2 7 e t2k+J 0 < -- log(ak+j) < -- log(1 -- 7 ) < 
(8.8) 

= 27e-S2k+J e - ( t  s)2k+J < _2?cS-11og(bk+f )e  (t s)2k+J 

Mult iplying by Ak( j  ), and summing  over j,  we see that  log Qk(t ) ---, 0 if 
Qs(s) ~ Q(s) > 0. By (8.6), Q(t) is non-decreasing in ~ and  a.s. assumes the 
values 0 and 1 for all but  at mos t  one t. We define W by W = inf{t : Q(t) = 1}. 
Since EQ(t)  = EQo(t ) = %, we have 0 < W < oo a lmost  surely. Moreover ,  

P [ s < W < t ]  = P [ Q ( t ) - Q ( s ) =  1 ] = E Q ( t ) - E Q ( s ) = a  o - b  o 

if z(a) -= t and  ):(b) = s. Since Z is cont inuous  in a 0 and conversely by 
Propos i t ion  5, W has a con t inuous  distribution. Finally we have 

1 
L log Qk(~) < max - A k ( j ) l o g ( a k + j )  < -- log Qk(t) . 

0 < j<L  

Since 1 - a k ~ -~ e -  t2k we deduce f rom this (by est imations as in (8.8)) that  "C 

lim max  Ak (j) e -  
k---~ oo O ~ j <L 

t21'+i = { 0  

This implies that  

a.s. on [W > t], 

a.s. on [W < t] . 

Z k log A k (j) 
2k -- max  --* W a.s. .  

O < j < L  2 k + j  

Withou t  p r o o f  we ment ion  the following facts. Let Nn(k ) = Card{v E F n " 
d(v) = k} be the n u m b e r  o f  particles with posi t ion k at time n. Then  

M~ = [Ik>=oa~ "(k) is a mart ingale  (w.r.t. a{Nm(k ) " m < n, k > 0}), and 

M~ converges to the same limit as (Qk)- 

9 A l m o s t  sure convergence 

Here  we generalize Bramson ' s  result [3] on the a lmost  sure convergence  o f  X~. 
L e m m a s  12 and 13 are closely related to Bramson ' s  work. Ins tead o f  X~ we 
study the first passage times 

T k = inf{n " X n > k} 
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for positive integers k. This will be done with aid of the cutsets IIk defined in 
the previous section. Recall that F n denotes the cutset of all level n vertices. 
We define 

rn( l l [k)  = U {!; E F m " V (m-n) C I l k }  . 

m > n  

So F,  (Ilk) is the cutset of all n th generation descendents of particles of IIk. Let 

E k , , = [ d ( v ) > k + L  for all v EFn(I Ik)] .  

the clearly 

p [Ek, nlAk ] = Fn(L)&(O)Fn(L _ t)Ak(1) . . .  Fn(1)&(L-  1) . (9.1) 

Lemma 12 For all n > O, k > 0 

[Tk+ L < n] c Ek,~ . (9.2) 

On the other hand for  all k and n o > O, . . . ,  n k > 0 we have that 

Eo, no f l E l , n l  ~ .. .  NEk ,  nk [Tk+ L < n o + --- +nk] . (9.3) 

Proof  Since [Tk+ 5 < n] ---- IX, > k + L] = [d(v) > k + L for all v c F,],  (9.2) 
follows immediately. It is convenient to phrase the proof of (9.3) in terms of the 
partial ordering of cutsets. We write F < A if any infinite path starting at the 
root intersects F not later than it intersects A. For k = 0 (9.3) holds. Suppose 
(9.3) has been proved for d = 1, . . . ,  k. Then E0, n0 A. . .  NEk, nkAEk+l,nk+l c 

[Xn0+...+, k > k + L ]  hence d(v) > k + L  for v ~ F~0+...+l~k, which implies 

that 1Jk+ 1 < Fn0+...+n k. But then Fnk+i(FIk+l) < Fn0+...+nk+nk+1, and 
for v E Ek+l,nk+1 this implies that d(v) > k + L if v C Fno+...+nk+nk+~. 

> k + 1 + L]. This finishes the So E0,n0 N ...  AEk+l ,nk+l  c [Xn0+...+nk+ t _.= 
induction proof. 

Lemma 13 Suppose EN(i )  > O for  1 < i <_ L, and let Z k = max0<i< L 2 - i  log Ak(i). 

Almost  surely for  k large enough 

1 
Tk+ L > ~ exp(2L-1zk) (9.4) 

and 
Tk+ c <  ~ e x p ( k + 2 C - l z j ) .  (9.5) 

O<=j<=k 

Proof  By Theorem 6, and since F 1 (L) > 0, there exist two positive real numbers 
and fi such that for all n and 1 _< k < L 

[3n -2~ -k  <= -- logFn(k ) =< ~n -21-k . (9.6) 
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Let us take n -= n k = [~ exp(2L-izk)]  in (9.1). Since n k is ~r we 

have 

-- log P [Ek, nk I Jk]  = -- Ak(O)Vnk (L) . . . . .  Ak(L - 1) log Fnk (1) 

> fiAk(O)nk 21-L + . . .  + f i A k ( L -  1)n~ -1 

>= flk21-L {Ak(O) e - z k  + ".. + A k ( L -  2) e - 2L - I z k  } 

= > ~ k  2 ~ - c  

since by (8.5) 

Therefore 

o9 

max~ ...[Ak(i)] 2-i e - z k  = 1 .  
O<i<L  

(9.7) 

o9 O(3 

~_P(Ek ,  nk ) = Z EP(Ek, nkldk) < Z exp(--f lk21-L) < oo. 
k = l  k = l  k = l  

By Lemma 12 ((9.2)) and Borel-Cantelli, Tk+ L < n k only finitely many times 

a.s., so (9.4) follows. For the proof  of  (9.5) we take nj --- [exp(k + 2 L -  IZj)] in 

(9.1), for 0 < j < k. Then, since d j  c d k for 0 < j < k, 

- l o g P  [Ej, nj Idk]  

= -- Aj(O)Fnj (L) . . . . .  Aj(L -- 1) log Fnj (1) 

<= c~Aj(O)n~ 21-L + . . .  + c~Aj(L-  1)nj -1 

_= e-k21-L {Aj(0)e-Zj + . .  +Aj(L_2)e-2L-Izj}  
< ~ L e - - k 2 1 - L  

(the last inequality follows by (9.7)). It thus follows that 

P[Ej, njlSgCk] > exp( -- o:Le -k2~-L) > 1 -- o~Le -k21.L 

and hence that for all k > 2, P [E0, no N . . .  C~Ek, nk] >= 2 -- (k + 1)eL exp( -- k21 -L) .  

Now (9.5) follows by the second half  of  Lemma 12 and Borel-Cantelli. 

Proposition 7 Let T k = inf{n " X n >= k}, Then 

2 -k  log(Tk) --~ V almost surely, 

for a random variable V, with 0 < V < Qo a.s. and with a continuous distribution. 

Proof. From Lemma 13 we have a.s. for k large enough 

l~ ( ~ ) + 2L-1Zk <= l~ + L) <= k + l~ (o=< j~ <=~ e2L-l zj ) 

< k + l o g ( k + l ) + 2  L-~ max Z~.  
O<=j<=k a 
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After multiplying by 2 - k - L ,  the left side and the right side converge to 
V = W/2,  by Proposition 6. 

Theorem 8 Let (Xn) be the minimal displacement oJ'a critical branching random 
walk with bounded steps determined by (N(0), . . . ,  N(L)). Suppose E N  2 < oo 
and EN(i) > 0 for 1 <_ i < L. Then 

= [log log_ n -- log V 1 
X,~ [ log 2 + R,,_ almost surely (9.8) 

for all n large enough, where V is a random variable with a continuous 
distribution on (0, co), and R~ a sequence of" random variables with R n --+ 0 
a . s .  

Proof By Proposition 7 there exists a sequence of  random variables (ek) such 

that log(Tk) = 2 k ek V, with ~k --+ 0 a.s. Since X~ > k iff T~ < n we obtain 

log log n - log V log log n - log V 
+ ex,, + 1 - - 1 <  X n <  + exn �9 

log 2 log 2 

Since X n --* oo by Lemma 1, there exist R n such that (9.8) holds. 

With a small loss of  precision in the statement (9.8) we can get rid of the 
condition on the EN(i). 

Theorem 9 Let (Xn) be the minimal displacement of  a critical branching random 
walk with bounded steps and E N  2 < oo. Let g = min{i __> 1 " EN(i) > 0}. Then 

g log logn  is bounded almost surely for all n. 
Xn log 2 

In particular x, log2 loglogn ---4 g a.s. a s  n ~ o0,  

Proof Let the steps be bounded by L. Let (N(~l(i)) and (N(2)(i)) be defined 
by N0)(0) = N(2)(0) = N(0); NO)(g) = N ( g ) + . . - + N ( L ) ,  N(1)(i) = 0 iff 
i@ 0 i @ g; X(2)(g) = N(g), N(2)(mg) = N ( ( m - 1 ) g  + 1 ) +  ' "  + N ( m g - - 1 )  
m = 2 . . . . .  M, where M = [(L + 1)/g], N (2) (i) = 0 if i ~ {0, g, . . . ,  Mg}. Here 

moreover, if N (2)(mg) = 0 for some m, then some mass of N (2) (g) = N(g) is 
moved to N(2)(mg) in order to have EN(2)(mg) > 0 for m = 1 . . . . .  M. Let 
(Xn(1)) and (Xn (2)) be the minimal displacements of  the branching random walks 

generated by (N 0) (.)) and (N (2) (-)). By construction, for all n 

X~ 0) < X n < X~ 2) . (9.9) 

Both new processes are concentrated on g2~. Rescaling by g - 1  we obtain 
processes on 2g which satisfy the conditions of Theorem 8, and so there exist 
finite random variables U 0) and U (2) such that 

_XnU) log log n < u(j) 

g log 2 = 

for j = 1 ,2  and all n. The result now follows from (9.9). 



Minimal displacement of branching random walks 425 

The following result is a refinement o f  T heo rem 2 in [3] for the discrete 
case. 

Theorem 10 Let (Xn) be the minimal displacement o f  a critical branching random 
walk with E N  2 < o% and let g = inf{i > 1 : EN(i) > 0}. Then as n ~ oo 

X n log 2 
log l o g n  + g a.s. 

Proof As always we assume E N  > 1. Then  for any L > g it holds that  
L 

EN(i) > 1. Let  N (1) (.) and N (2) (-) be defined by 
i=0 

N(1)(i)=N(2)(i) =X( i )  for 0 _ < i < L - - 1 ,  N(1)( i )=N(2)( i )  = 0  for i > L ,  

oO 

N (1) (L) = Z N(i), N (2) (L) = N(L) . 
i=L 

oo 

For  j = 1 , 2  let N (j) = ~ N(J)(i), then E(N(J)) a < oo, E N  (j) > 1, and the gap 
i=0 

parameters  g(J) = inf{i > 1 :EN(J)(i) > 0} are bo th  equal to g. Let X~) for 

j = 1 , 2  be the associated minimal  displacements,  then Xn(1) log 2 / l o g  log n ~ g, 

a.s., and Xn(e ) log2 / log logn  ~ g a.s. on  the set S c o f  non-ext inct ion o f  

N (2/ = N(Z ), by  Theorem 9. Since (9.9) holds for X~ 1) , Xn (2), this implies 

tha t  X n log 2 / l o g  log n ~ g a.s. on  S c. To finish the p r o o f  it suffices to see 
that  P(SL) ~ 1 as L ~ oo. N o w  1 -  P(SL) is the unique solut ion in (0,1) o f  

2 P [N~ e) = k] sk = s. Using the fact that  EN(L 2) > EN~ 2) > 1 and  (recall (1.3)) 
k>0 

P[N(Z ) = O ] = P [ E N ( i ) = O  ] < P [  N(i) >__1 < E N - E N  )--*0 
i=0 i=L + 1 

as L ~ o% it follows that  P(SL) ~ 1. 
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