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Summary. In the paper various characterizations of full operator-semistable oper-
ator Lévy’s measures on finite dimensional vector spaces are presented. They are
given in terms of: 1. some decomposability properties; 2. the characteristic func-
tions; 3. stochastic integrals. Also a number of decomposability properties, espe-
cially for a full operator Lévy’s measure, are obtained.

0 Introduction

In the class of infinitely divisible laws on a finite dimensional real vector space V,
a very interesting subclass consists of so-called full (i.e. not concentrated on
any proper hyperplane of V') “operator limit laws”. These are the limit distribu-
tions of operator normed and centered sums of a sequence of independent random
vectors in V. Among the full operator limit laws, three classes of particular
interest have so far been investigated in great detail: operator-stable, operator-
semistable and operator Lévy’s distributions. The operator-stable laws are
obviously the smallest class, and it seems an interesting question to find a
description of their “closest relations”, namely, the intersection of the set of the
operator-semistable measures with the set of operator Lévy’s ones. In the one-
dimensional case, it was done in [2]; all that has been done in the multidimensional
setup consists in describing two classes: operator-semistable measures that are
multivariate Lévy’s and operator Lévy’s measures that are multivariate semistable
(ct. [7]).

The main purpose of this paper is to give a complete solution to the above
mentioned problem. We characterize the class of those full operator-semistable
laws that are also operator Lévy’s measures. Actually, three such characterizations
are given. The first one is expressed in terms of some decomposability properties,
the second refers to the characteristic functions, and the third is obtained by means
of some stochastic integrals.

In the course of our analysis, we obtain also some decomposability properties
of a full probability measure which are of interest on their own.
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For the sake of making the paper as self-contained as possible, we present in the
Appendix a fundamental property of compact semigroups of operators, which is
employed in our considerations.

1 Preliminaries and notation

Throughout the paper, J will stand for a finite dimensional real vector space with
an inner product (-, ) and o-algebra Z (V') of its Borel subsets. We let End ¥ denote
the set of all linear operators on ¥, whereas Aut V stands for the linear invertible
operators.

Let A:V — W be a linear mapping into a finite dimensional real vector space
W and let u be a (probability) measure over (¥, Z(V)). The measure Ay on
(W, B(W)) is defined by

AWE) = WA~ HE)), EeB(W) .
The following equalities are easily verified
A(Bp) = (AB)y, Ap() = (A% v), A(uxv)= ApxAv,

for linear operators A, B and probability measures p, v (here " denotes the
characteristic function and the asterisk = stands for the convolution of measures or
for the adjoint of an operator, as the case may be).

By 6(h) we denote the probability measure concentrated at point 5.

We recall that an infinitely divisible measure p on 7 has the unique representa-
tion [m, D, M ], where me V, D is a non-negative linear operator on ¥, and M is the
Lévy spectral measure of y, i.e. a Borel measure defined on ¥, = ¥ — {0} such that
§vo I012/(1 + ||lv|*)M(dv) < oo . The characteristic function of u has then the form

A(v) = exp {i(m, v) — %(Dv, v) + Vf [ei(”’ W1 — %}M(du)}

(cf. e.g. [9]).

The main objects of this paper are full operator semistable measures and full
operator Lévy’s measures on V. For their definitions, being generalizations of the
classical definitions of semistable and Lévy’s limit laws, as well as for more detailed
accounts, the reader is referred to [3, 6] (operator semistable measures} and [14,
16] (operator Lévy’s measures). Here we only recall that a full probability measure
uon Vis: (i) operator semistable; (ii) operator Lévy’s, respectively, if and only if it is
infinitely divisible and

(i) there are 0 < a < 1, he V, and a linear operator Aon V, || 4| < 1, such that

(1) u=Au=sh)y

(ii) there is a linear operator Q on V whose all eigenvalues have negative real
parts, such that, for each t = 0,

2) u=euxp

where p, is a probability measure on V.
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To emphasize the role of a and A, the measures satisfying (1) will be called in the
sequel (a, A)-quasi-decomposable.

For a probability measure u on V, its decomposability semigroup ID{y) is
defined as

D(u) = {BeEnd V: u = Buxv for some probability measure v} .
An important subset of ID(u) is the so-called symmetry group S(u):
S(u) = {SeAut V:p = Sus=5(h) for some hin V} .
Let us introduce the set of exponents of measure u
E(y) = {QeEnd V:e2eD(y) for cach t = 0} .

Finally, two subsets of IE(u) will be of special importance for our considerations:

IEo(p) = {Q e JE(p): all eigenvalues of Q have zero real parts}

IE_(n) = {QelE(p):all eigenvalues of Q have negative real parts} .

To clarify the mutual relations between the sets above, let us observe that, in
general, we may have IE(u) = Eq(p) = {0}, and for p full, IE_ (u) is non-void if and
only if x is an operator Lévy’s measure, which is a consequence of the characteriz-
ation given by formula (2). For the sake of the preliminary description, let us notice
that, for g full, ID(x) and S(g) are compact (cf. [14; Propositions 1.1 and 1.2]), and
E(y) is a closed cone (cf. [8; Proposition 3]).

2 Decomposability properties of full measures

This section is devoted to a more detailed analysis of the set IE(y) yielding some
decomposability properties of a full measure.

Lemma 1 Let p be full. Then (1) = T(S(u)) (where T(S(u)) denotes the tangent
space of S(u) at the point I—the identity operator).

Proof. Let, for a linear operator B on ¥, det B denote the determinant of the matrix
representation of B with respect to a fixed basis in V.

Assume that Qe Eq(u). Then e’?e D () for t = 0, and |det €'¢| = |ef**° 2| = 1,
which, on account of [14; Proposition 1.4], means that €2eS(u) for t = 0, hence
Qe T(S(p))-

Conversely, if Q € T(S(w)), then €' e S(p) for all ¢ e R. By virtue of [ 14; Proposi-
tion 1.2], S(p) is a compact subgroup of Aut ¥, thus there is a non-singular
operator C in Aut ¥ such that, for each S e S(u), CSC ! is orthogonal. This means,
in particular, that |det €| = 1. According to [8; Lemma 2], all eigenvalues of
2 have non-positive real parts, so the last equality is possible only if the real parts
are equal to zero, which shows that QeEq(n). O

Now, we show a facial property of IEq(u).

Lemma 2 Let u be full and let Q, Q,€IE(p). If Q1 + Q,€Eo(y), then Q,, Q€
Eo(w).
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Proof. Since Ey(p) is a subspace, —(Q; + @,)elEq(y), and — Q@ =Q, —
(Q; + Q,)eIE(u) because IE(u) is a cone. On account of [8; Lemma 2], all elements
in IE(u) have eigenvalues with non-positive real parts, so @, — Q; e IE(n), implies
that all eigenvalues of @ must have their real parts equal to zero, thatis Q; e [Eq(u).
Analogously, we get Q,elEq(y). O

As an immediate corollary, we obtain

Corollary 3 Let u be full and let Qy, ..., Q,eEw). If Y{_, Qi€ Eo(u), then Q;¢e
Eo(u),i=1,...,n

This is proved by induction upon observing that [E(u) being a cone implies

i1 Qe E(w).

The following proposition describes the basic properties of the operators from
E(uw).

Proposition 4 Let p be full and let Q€IE(u). Then there exist projections P, T (i.e.
P =P?, T=T?)in D(y) such that
) P+ T=1LPIr=TP=0;
(1) PQ =QP, TQ = QT
(iii) P=0if and only if QeIE_(u), T = 0 if and only if Qe Eq(p);
(iv) PQeEq(u), TO cE(u); moreover, if Q¢IEq(u), then TQ ¢ Ey(u), in particular,
70 + 0.

Proof. Put G = {€'%:r 2 0}. G is a compact abelian semigroup of D(x). Let H be
the set of the limit points at infinity of ¢’?. According to the Appendix, H is a group,
and let P be its unit. P is clearly a projection and Pe D (u). Put 7= I — P. Then, by
virtue of [14; Proposition 1.5], TeID(n); moreover, PT = TP = Q.

Since Pe'? = ¢™P for t = 0, differentiation at ¢ =0 yields PQ = QP, and,
consequently, TQ = QT.

If QeIE_(u), then lim €2 = 0 (cf. e.g. [1, Chap. 13]), so P = 0. Conversely, if

t— o0
P =0, then for some t, — o0, e"¢ — 0 which is possible only if Qe E_ ().
Now, if Q € Eo(u), then e9eS(p), t = 0. Let t, » oo be such that e"¢ —» P. We
have
p=e"2uxd(hy) .

Passing to the limit, we get
w = Pu=d(h)
and the fullness of u yields P = 1.

Conversely, if T =0, then P = I, and taking again ¢, —» oo such that ¢"2 — I,
we have, for any eigenvalue o of Q, e™* — 1, which yields re « = 0, ie. Qe Eq(w).
Next, we have the formulae
(3) el =pe + T, 72=Te?+ P, t20,
and, as Q€ IE(u), for u formula (2) holds. On account of [14; Proposition 1.5],

pw=Pu=Tu,
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and thus, by (3),
¢y« Pu, = eP9(Pu+ Tu) * Py, = eP2Pu+e*eTy
% Py, = ¢"@Pux Tu* Py, = P(eQu+p)+ Tu
=PuxTu=yu,
which means that PQ e E(u). Taking ¢, — oo such that e"? — P, we get
e =pe¢+ TP+ T=1,

which, as before, shows that PQ eIE(u).
Using (3) again, we obtain

eToux Ty, = T(Ppx Tp)+ Tpy = Ppx T(eCpx i)
=PuxTu=p,

showing that TQ eE(y). Finally, if 7QelEq(u), then Q = PQ + TQeEq(u) by
Lemma 2 and the relation PQeEy(yw). O

As an important consequence of the above proposition, we get the following
decomposability result.

Theorem 5 Let u be full and let Q eTE(u). There are decompositions
V=U®W, up=vsi

such that the subspaces U and W are Q-invariant, v' is concentrated on U, X' is
concentrated on W, and denoting

yv=v|U, A=V|W,

we have Q|U € Eo(v) and Q| WeE_(A) if W % {0}. Moreover, U = {0} if and only if
QeE_(u), and W = {0} if and only if Q e Eo(w).
Proof. Putting, for P and T as in Proposition 4,

U=P(WV), W=T(¥), v=Py #=Tu

we obtain the desired decompositions. It remains to prove the relations Q|Ue
Ey(v) and Q| WeE_(4).
For y, as in (2), we have, since PQ €IEq(u),

w= erPQ:u * 6(}%)5
yielding
Pp = e"ePux 3(Phy),

which shows that Q| UelEo( v).
We also have

Tp=eTpx Ty, = e CTus Ty,

hence Q| WeIE(/). For an arbitrary t, — oo, there is a subsequence {t,, } such that
e'¢ — R, where R is an clement in H. Since P is an identity in IH, we get using (3),

enTe = Tem? + P> TR+P=TPR+P=FP,
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SO

(4) lim T2 =P.

t—
If W+ {0}, ie. T # 0, the last equality implies lim"?!" = 0 (zero operator on W),
Tt

showing that Q| WelE_(1) (cf. e.g. [1; Chap. 13]). O

Now, we wish to give a probabilistic description of the set IE_ (u). To this end,
we start with some simple “fullness” considerations.

Lemma 6 Let W be a subspace of V and let u be a probability measure on V. Then
w(W)=1if and only if fi(v) = 1 for each ve W*.

The proof is similar to the proof of Proposition 1 in [12]. The details are left to
the reader.

Lemma 7 Let W be a subspace of V, let u be a probability measure on V and let A be
a linear operator on V. If p(W)=1, Au(W)=1 and Ay is full on W, then
A(W) = W.

Proof. We have Au(A(W)) = u(A~*(A(W))) =Z p(W) = 1 and thus
AuWnAW) =1.
Since Ay is full on W, we get
WnAW)=W,
which means that W < A(W), and therefore W= A(W). [

The following result—the openness of the set of full measures — was mentioned
in [12; p. 52] without proof. For the sake of completeness, we sketch its proof here.

Lemma 8 Let p be a full probability measure on V and let {u,} be a sequence of
probability measures on V weakly convergent to p. Then , are full for all sufficiently
large n.

Proof. 1f y, are not full, then
i (vg) | = 1

for some v eV, || v || = 1 and all aeIR. We may assume that v, — vy and since for
any fixed ze R the set {ve V:||v| < «} is compact,we get

flowo) = lim f, (o)

showing that
alawo)l =1,

which contradicts the fullness of . [
Let us recall that, for a probability measure u on V, [i is defined as
H(E)=p(—E), EeZ(V),

and the symmetrization g of u is i = u# ji. Obviously, ﬁ =4~
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Now, if u is concentrated on a hyperplane W + h, where W is a subspace of ¥,
heV, and if  is full on W + h in the sense that no other hyperplane contained in
W + h has y measure equal to one, then u * §(—h) is concentrated and full on W,

thus g *d6(—h) = ji*J(h) is concentrated and full on W. Consequently,
Luxdo(=h)]=[a=o(h)]=j

is concentrated and full on W, which shows that any symmetrized measure is
concentrated and full on some subspace (which may be the whole space ¥ in the
case when p is full).

Now we are in a position to prove a characterization of a full operator Lévy’s .
measure in terms of some decomposability properties.

Theorem 9 Let y be a full probability measure on V and let Q e E(u) such that
Sormula (2) holds. The following conditions are equivalent:
(1) QelE_(u) (i.e. u is an operator Lévy's measure);,
(1) u, is full for all t > 0,
(1) g, is full for some to > 0.

Proof. (i} = (ii). From formula (2}, we get
CSQ,LL — esQetQ'u % esQul = e(t+S)Q,LL * CSQ,LLt

and thus
=P p =T un ey xp,

On the other hand,
=",

and since y is infinitely divisible, 4(v) + 0, which yields the equality
Pevs =€ Purp,, 1,520,

and, after symmetrization,

(5) furs=eClxfs, t,520.

Assume that, for some ¢, p, is not full Then [ is not full, and let 2, be
concentrated and full on a subspace W. For ve W*, we have, on account of Lemma
6 and (5),

2 0% (A
1= (0) = e20,i0), t+s=1.

Since the characteristic functions on the right hand side of the above equality are
positive, we get

05 >
eSQﬂt(U) = fv) =1,
which, again by Lemma 6, means that
ey, (W) = (W) = 1

forallt,s £ ¢, t +s=1. Equality (5) together with the inequality /i(v) + 0 show
that i, = [, as t — t,. In particular,

eQ/nf}t' _%:‘&t’ ,
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so, according to Lemma 8§ applied to measures considered only on W, we obtain
that e?"jt, . is full on W for all sufficiently large n. As fi, (W) =1, Lemma
7 implies that e2*(W) = W for large n. The formula

Qv = lim n(e?™ - Nv

n—>o0

yields Q(W) < W, thus Q(W) = W. Consequently, ¢’¢(W) = W for all t, which
gives

e 2 (W) = fu(e™ W) = p(W) = 1.
froe (W) = (&"%fty % 1) (W) = 1.

Proceeding further that way, we obtain f, (W) = 1 for all positive integers n. But
the equality

Thus

4& = er‘& * fly

and the relation lim ¢ = 0 yield f, = [ as t —» oo in particular, f,, = i, which
Tt~
gives a contradiction, since f is full and j,, are concentrated on W.
(i) = (iii). Obvious.
(iii} = (i). Assume, on the contrary, that Q ¢ [E_(u). Let P be the projection as in
Proposition 4. By this proposition point (iii), P & 0, moreover, we have

Pu=¢e9Pux Py, = ¢2Pux Py, .
On the other hand, PQ eIEy(u), so
=ePuxé(h),
giving
Py =eTePux5(Ph),
and thus
eP@Pux Py, = ¢PuxS(Ph,),

which yields the equality Pu, = 6(Ph,), showing that, for any ¢, 4, is not full. This
contradiction finishes the proof. [
3 Description of operator Lévy’s measures in terms of the

decomposability semigroup

For the purposes of this section, we recall that a probability measure g is called

operator Lévy’s if it is the limit of sequence A4,(v( * ... *v,)*d(h,), where h, eV,
A,’s are linear operators on V and {v,} is an arbitrary sequence of probability
measures on V¥, such that the measures A,v,, k=1,...,mn=12,..., form

a uniformly infinitesimal triangular arrary. It is shown in [14; Proposition 5.2] that
if D(u) > {"%:¢ 2 0} such that lim &’? = 0, then p is operator Lévy’s, which, as

I—> oo
mentioned in Sect. 1, is a characterization in the case of full u. Since the condition
{e"?:t = 0} = D(y) is usually not easily verifiable, we want to give in this section
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other conditions on ID () which would guarantee u being operator Lévy’s. In order
to keep close to our main objects which are full measures, as well as to simplify the
following considerations, we assume in this section that the measures in question
are full. However, it is worth noticing that the next two lemmas remain true for
arbitrary u.

Lemma 10 Assume that D(y) contains a sequence of linear operators B, with
properties
() lim B,=1;

n—> o

(i) lim (B, ... B;)=0.

n— o0

Then u is an operator Levy's measure.

Proof. In view of (i), we may assume, taking sufficiently large », that B,’s are
non-singular. We have

u=B,uxp, n=12,,...,
which yields the relation
(6) Hn = 06(0) -
The following equality is easily verified
u=B,...Bu*B,...Byuy*...%«Bu, *n,, n=1,12,....

Put
An:Bn"'Bla Vo = U, VnzAn_l)un’ }’3=1,2,....

We then have
(7) p=Ayvo*vi® ... xv).
Moreover, by (i), for each k

@®) lim A,4;* = lim (B,...By+1)=0.

n—co n— 0

Since the operators A,4; * for k=1,...,n,n=1,2,... are in D(y) which is
compact, we have

) (At <e, k=1L1...,n, n=12....

Consequently, by (6), (8) and (9), the measures {A4,v,:k=0,1,...,m n=1,
2,y ={4ve, . AA teck =1, ... mr=1,2,...} form a uniformly in-
finitesimal triangular array, and (7) implies that u is an operator Lévy’s
measure. [J

Lemma 11 Assume that D(u) contains a sequence of linear operators C, with
properties
(i lim C, = I;

=

(i) im Ct=0, n=12,...

k=
Then p is an operator Lévy’s measure.
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Proof. Choose positive integers k; such that
k; 1 :
Hcilué_fi l=1:2:‘~';
i

and put (with ko = 0)
B,,=Cif0rk0+"'+ki_1+l§n§k0+"'+ki, Z=1,2, .

Clearly, lim B, = I. Moreover, for each n we can find an indice i, and a positive

integer 1 £1<k; , such that n=ky + - -+ k; _ + 1. We then have, since Cfe
D (),

IBy... Byl = IC,,Clezy ... CY
1
ScfClill . ICY ] S e,

n—1
where c¢=sup{||A]|:AeD(u)} < co. The last inequality means that
lim (B, ... By) =0, and by Lemma 10, the result follows. ]

n—00

As an interesting corollary, we get the following property of projections of full
operator Lévy’s measures.

Proposition 12 Let u be a full operator Levy's measure and let P be a non-zero
projection in ID(y). Then Pu|P(V) is a full operator Lévy’s measure (consequently, Pu
as a measure on V' is also operator Lévy’s).

Proof. According to [14; Lemma 4.2], for a given non-zero projection P from ID(u)
there exists a sequence {D,} of operators from ID(u) satisfying the conditions

(l) D,P = PD, = D,;

(i) lim D, = P;

(i) im D¥=0,n=1,2,... .
k=0
Put
U=PWV), v=PulU, C,=D,U.
We have

/L:Dnl‘*.un s
SO
Py = D,Pu+ Py, ,

which means that C,eID(v). Clearly, v is full on U; moreover,

lim C,=1Iy; and lm C¢=0, n=1,2....

] k—

Now, Lemma 11 applied to the measure v on U yields the claim. U

4 A basic property of IE(y) for a full operator-semistable operator Lévy’s measure

Throughout this section, y is assumed to be a full (a, A)-quasi-decomposable
measure on V, ie. for x4 formula (1) holds.
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Lemma 13 Let Q€IE(u) be such that AQ = QA and let U, W, v, 4 be the subspaces
and the measures, respectively, given by Theorem 5. Then U and W are A-invariant,
v is (a, A|U)-quasi-decomposable, and A is (a, A| W)-quasi-decomposable.

Proof. Since AQ = QA, we get Ae'? = €24 for all t. Let P and T be the projections
as in the proof of Theorem 5; recall that U = P(V), W = T(V) and P is a limit point
at infinity of the semigroup {e"¢:¢ = 0}. Consequently, we have AP = P4, and thus
AT = TA, which yields the A-invariance of U and W.

The measure u is (a, A)-quasi-decomposable and Q e IE(y), so assume that for
4 formulae (1) and (2) hold. Then we have

Aiw) = € A3(0) (o)

[A(W)]" = [E90()1°[u(v)]*
— OG0 A 0) [4(0)°

and

These two equalities give
SIEE AR [, 0)]° = [A0)]° = ¢ Do)
— 950 L0 25 0
and since y is infinitely divisible, fi(v) %= O for all ve ¥, which gives
[4()]° = =M 4 ) ,

meaning that y, is (a, A)-quasi-decomposable. In particular, T, is (a, A)-quasi-
decomposable for t = 0.
Furthermore, we have

Tu=e9Tux Ty, =TT (Tu)* Ty, .

According to (4),
lim &T2P =P,
T oo
thus
lim 77T = lim ('"2 — ¢T2P) =0 .
t—>w t—
Take to such that |[e°™®T| < 1 and put B = ¢°"2T, p = Ty, . Then
(10) Tu=B(Tw=p
and iterating the last equality, we get
Tu=B""" Tw=*B'p%---*Bpxp, n=12....

Since B* — 0, by putting
pn=B"pi - %Bp=xp,
we obtain
lim p, = Tu .

B0

Since
p*=Ap=*o(h') for some HWeW
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Lemma 13 Let Qe IE(p) be such that AQ = QA and let U, W, v, 4 be the subspaces
and the measures, respectively, given by Theorem 5. Then U and W are A-invariant,
v is (a, A|U)-quasi-decomposable, and A is {a, A| Wi-quasi-decomposable.

Proof. Since AQ = QA, we get Ae'? = ¢'?4 for all ¢. Let P and T be the projections
as in the proof of Theorem 5; recall that U = P(V), W = T(V) and P is a limit point
at infinity of the semigroup {e'2:¢ = 0}. Consequently, we have AP = PA, and thus
AT = TA, which yields the A-invariance of U and W.

The measure p is (a, A)-quasi-decomposable and Q € [E(y), so assume that for
u formulae (1) and (2) hold. Then we have

Ah) = €2 A30) A (o)
[A(0)]° = [E900) 1] fu(v)]°
— IR o) [u(0) ]

and

These two equalities give
SERIEE AR [, )] = (A1 = O Tiio)
— &-950 10 45 0
and since 4 is infinitely divisible, fi(v) 3 0 for all ve V, which gives
()] = &< A (v) ,

meaning that g, is (a, A)-quasi-decomposable. In particular, Ty, is (a, A)-quasi-
decomposabie for ¢t = 0.
Furthermore, we have

Tu=eTux Ty, =TT (T +* Ty, .

According to (4),
lim e’ep =P,

thus o
,11,12 eTerT = tlirg (T2 —¢e7ep)y=0.
Take t, such that ||e°"®T| < 1 and put B = ¢°™@T, p = Ty, . Then
(10) Tu= B(Tup
and iterating the last equality, we get
Tu=B"""(Tw*B'p*---+*Bpxp, n=12....

Since B* — 0, by putting
Pn=B"px---xBpxp,
we obtain
lim p, =Ty .

n—r o0

Since
p*=Ap=*o(l') for some WeW,
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and since AB = BA, it follows that
pe=B"p%x - xp®=B"Apx5(B"h}*x - - - = ApxS(W)
= AB'px - xp)xS(BH + -+ K)
= Ap,*o((B"+ - -+ D)I) .

Passing to the limit yields

(11) (Tw* = A(Twy=5(h"y for W = —B)"'W,
that is, Tu is (a, A)-quasi-decomposable.
Moreover,

p = (P =(Tw* and Ap=APux*A(Ty),
hence

(P = A(Tw) = 5(h") = (Pu)* = (Tp)* = p*
= A(Pp)= A(Tp) = o(h) ,

which implies
(P = A(Pp)so(h —h")

thatis, Pu is (a, A)-quasi-decomposable. Taking into account the equalities v = Py
U, A = Tu|W and the A-invariance of U and W, we conclude the proof. O

In the remaining part of this section, we assume also that y is an opcrator
Lévy’s measure. Then we have

Lemma 14 There exists Q' € IE(u) — Eq(p) such that AQ' = Q' A.

Proof. Take Q"e€lE_(u) and put Q,= A""Q"A" Since u satisfies (1) and the
equality

p=epxp, 120,
with y, infinitely divisible (cf. [14; Proposition 5.2]), we have

pt = ey

s0
Apxd(h) = e [Ap=5(h)]* pf
=&Y Ap* puf x6(e'Yh)
and thus
pu=A"1e Aux A ' uf=5(A" 'Y h — h)).
As

—1.10" “1g
A"1e'Q g = eATI04

we infer that A~ 'Q"AcIE_(u). Repeating this procedure, we obtain that Q,e
IE_ (u).

First, we shall show that the set {Q,:n=0,1,...} is bounded in norm.

If this was not the case, we would have || Q,, | - o for some subsequence {n; }
of positive integers. Since IE(y) is a closed cone, Q,, /|| @, | € [E(u) and passing to
a subsequence of {n,}, if necessary, we may assume that Q, /| Q,, || — Q, where
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OeE(p), |d] = 1. Upon observing that the elgenvalues of @, are the same for all n,
we get that all the eigenvalues of 0 must be zero; in particular, § € Eq(y). Conse-
quently, ee S(u)for all teR. Slnce S(u)is compact, there is a non-singular linear
operator C such that CS(u)C~ ! = ©, where (D is the group of orthogonal oper-
ators on V. ThIS means that CeC 1 = e“?¢™" is orthogonal for all 1€ R, hence
D = COC ' is skew-symmetric. Since the eigenvalues of D are all equal to zero, the
same is true for D% But

D*D = —D?,

which means that D*D is a hermitean operator having all the eigenvalues equal to
zero, so D*D = 0. Consequently, D = 0, and 0 = 0, which contradicts the equality
Q| = 1. Thus

1Qall £¢c, n=0,1,....

Now, put

We have | R, || £ cand R,eIE(u) because IE(p) is a cone, so the closedness of IE(p)
implies that there is a Q" e [E(y) such that

Q' = lim R,

k— o0

for some subsequence {n,} of positive integers. Furthermore,

n—1

Y (Ag;AT" —

i=0

1
”A_anA - Rn” =-
n

1 2c
:; Z (Ql+1 7

<

HQn QO

and passing to the limit for the sequence {m;} gives
ATIQ4—Q =0,
AQ =Q'A.

It remains to prove that Q' ¢ Eq(u).
First, let us observe that all the limit points of the sequence {Q,:n =0,1, ...}

have the same eigenvalues as 0", so IF = {Q.:n=0,1,...}is a compact subset of
IE_(p). Now, if Y 7. | o;F; is a convex combination of elements fromF,0 <o <1,
Y, =1, FeF, then o FielE_(u),i=1,...,m, and thus, by virtue of Corol-
lary 3, Z;"zl o;F; ¢ IEy (). This means that for the convex hull of F, we have the
relation

that is

convFNnEq(u)= & .

Since IF is compact, [13; 3.2.8, p. 92] yields the equality

conv IF = conv IF,
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and so

conv {Q,:n=0,1,...} cconvF=conv IF,

which means that

conv{Q,:n=0,1,.. . }nEo(pw) = .

Since Q' econv {Q,:n=0,1, ...}, the conclusion follows. [J

Now, we shall prove a basic property of full quasi-decomposable operator
Lévy’s measures.

Theorem 15 There exists QeIE_(u) such that AQ = QA.

Proof. Let Q' be the exponent constructed in the preceding lemma. By virtue of
Theorem 5, there are decompositions

V=U@W, u=vsxl

where U and W are Q'-invariant, v'(U) = A'(W) = 1, and by Lemma 13, U and
W are also A-invariant.
For notational convenience, put

Ui=U, Vi=W, Ay=A|U;, A=AV, Q1 =0V,
vi =Vv|U;, A =4V
Since Q"¢ Eq(u), Theorem 5 gives
Vi+{0} and Q,;eE_(i);
moreover, the relation 4AQ" = Q'A yields

A1Q1 = Q1A1 .

Consider now the measure v,. According to Proposition 12, v, is a full operator
Lévy’s measure on U, and.on account of Lemma 13, v, is (a, 47 )-quasi-decompos-
able. Applying, for measure v, , the procedure employed above, we find, by Lemma
14, an operator Q' eIE(v;) — [Eq(v,) such that 4} Q7 = Q] A}, and, accordingly, we
shall get the decompositions

Uy =U,®V,,  vy=visd)
and the operators

5 =AU, =A|U;, Ay =A1|Vy=AlV3, Q2=0ilV,,
such that, putting 1, = 13|V, we have
Va# {0}, QeB_(4y), 4,0,=0,4,.

Moreover, if p is a measure on a subspace X of V and we define the canonical
extension § of p by

PE)=pENX), EcZEV),

then the formula
u= j‘l * /’1\.2 *Vy
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holds. Proceeding further that way, we obtain, by virtue of the condition ¥; + {0}

and the finiteness of dim V, non-trivial subspaces V,,...,V,, operators

A, Ay and Q4, .. ., O, and measures A, ..., 4, with the properties
HV=Ve. &V

(i) 4;is a probability measure on Vi, i=1,...,m;

(iili) A;, Q; are linear operators on V; such that 4;Q; = Q;A;,i=1,...,m

(IV) A1:A|Vlal=115m>
(V) Qiem—(ii%i:l:--'sm;
moreover,

Put
0=0:® " ®Qn.

AZAI@“'@Ami

Since, by (iv),

we have, taking (iii) into account,

AQ = QA .

From (v), we get
/q.i-:etgilli*l?), tgo, l=1,,m

As Q|V; = Q;, for the canonical extensions we have
A —— ~
e:Qil,- = ethi, i = 1, PUPRDENE £/ 2R

which implies the equality

~

ll=€tgz,*ﬁ”, tgo, l=1,,m
Consequently,

po= Ay */T,,,:ethl* . *e’sz*Z?)* coex 10
:ctQ(/Tl* con *Im)*j:(lt)* coex JO
= Quxifn o I, 120,

showing that Q e IE(y).
Forv;e Vi, i=1,...,m, we have, by (v),

lim %, =0,

t—= o0
which implies
lim % =0, vel,

t—ow

that is QeIE_(x) and the proof is finished. O

5 Operator-semistable operator Lévy’s measures

This section is devoted to characterizations of full operator-semistable oper-
ator Lévy’s measures. The first one is given in terms of some decomposability
properties.
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Theorem 16 Let y be a full probability measure on V. u is an (a, A)-quasi-decompos-
able operator Levy's measure if and only if, for each t > 0, decomposition (2) holds
with some Qe IE_(y) and p, being a full (a, A}-quasi-decomposable measure on V.

Proof. Assume that u s (g, A)-quasi-decomposable and operator Lévy’s. According
to Theorem 15, there exists Qe IE_(y) such that AQ = QA. We have

pt = et x uf = e (Apx 5(h)) * pf

= e"QAu* ul = 5(e'%h)
and
Apxd(h) = A(eQu+ )+ o(h) = Aep+ Ap,* 5(h)

=eQAux Ay, = 6(h) .
Taking into account relation (1) and the inequality 4(v) # 0, we get
pi = Ap, % 3(h — e%h),

which shows that ., is (a, A)-quasi-decomposable. The fullness of g, is a conse-
quence of Theorem 9.

Conversely, let in (2) QeE_(u) and u, be (a, A)-quasi-decomposable. Ob-
viously, u is an operator Lévy’s measure. Since lim,, , €’¢ = 0, we can find ¢, such
that |[e?|| < 1. Put B =¢", p = g, . Then

k= DBuxp

and p is (a, A)-quasi-decomposable. The (a, 4)-quasi-decomposability of u follows
exactly as in the proof of Lemma 13, lines from formula (10) to (11). [

Now, we are going to characterize full operator-semistable operator Lévy’s
measures in terms of the characteristic functions.
For a non-singular linear operator A with norm less than one, denote

Zy={weV:ilv| £} n{veV: |4 v > 1}
= weVio| 1} — A(fve Vol £ 1))

Theorem 17 Let u be a full probability measure on V. 1 is an operator-semistable
operator Levy's measure if and only if its characteristic function has the form

(12)  p(v) = exp {l(m v) — 3 (D, v)
i . i(v, e'9A4™)
+ metarn g — 22— \dey(dw) ¢,
o e [ T+ ||e‘QA"unZ} " )}
where meV, 0 < a < 1, V is decomposable as
y=UeWw,

such that U and W are linear subspaces of V invariant with respect to A and Q, vy is
a finite Borel measure on Z 4 W, and the linear operators D, A, Q satisfy:
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(i) D is non-negative and such that
DWU)=U, D(W)={0}, aD = ADA* QD + DQ* <0,
(i) A is non-singular and such that
4]l <1, o(4|U) < {xeC:|a*=a},
o(A|W)c {aeC:lal* <a},
where a stands for the spectrum of the operator in question;
(iii) 0(Q) = {aeC:Rea < 0;
(iv) AQ = QA.
Proof. Assume that y is operator-semistable and operator Lévy’s. According to [3;
Theorem], u is (a, A)-quasi-deccmposable with some 0 < ¢ < 1 and a non-singular

linear operator A which, by [6; Remark 1.1], may be chosen such that | 4| < 1.
Furthermore, there are decompositions

V=U®W, p=vxi,

such that U and W are A-invariant, o(A4|U)c {aeC:|a]* =a},
o(A|W) < {aeC:|e|* <a}, and v is an (a, A)-quasi-decomposable Gaussian
measure concentrated on U and full there, A is an (@, 4)-quasi-decomposable purely
Poissonian measure concentrated on W and full there. Denoting by P the projec-
tion on U along W, and by T the projection on W along U, we see that

v=Puy A=Tu,

so P, TeID(y); in particular, we infer, by Proposition 12, that v|U as well as 1| W
are operator Lévy’s measures.

For simplicity of notation, regard v and 4 as measures on U and W, respect-
ively. Then v = [my, Dy, 0], A = [m,, 0, M, ], where m; € V, D, is a non-singular
covariance operator on U, my,eW, and M, is a Lévy spectral measure on

A, =AU, A,=A|W.

By [7; Lemma 1.17], we have
aD, = A,D, A%, aM,=A,M,.
On account of Theorem 15, there are operators @ cE_(v}, @, €E_(4) such that
A1Q: = 0141, A:0, =014, .
Moreover, by virtue of [14; Theorem 7.1], Q, satisfies
0D, +D,0¥<0.

Consider now the measure . According to [14; Theorem 7.1, formula (7.7)], the
formula

[ee]

(13) | F@Mdu) = | [ f(e2u)deN(du)
Wo

Wo O
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llu]l?
L+ ful?’
to-one correspondence between the Lévy spectral measure M of an operator Lévy’s
measure and a Borel measure N with the property |, log(l + [u[*)N(du) < co.
Thus we have

for every continuous function f such that | f(u)| < ¢ establishes a one-

J flu)(aM)(du) = | Tf (€"?*u)dt(aN)(du) ,

Wo O

and, since 4,Q, = 0, 4,, also

[ (A Ma)du) = | F(Aa)M(dw) = [ [ f(Axe@u)diN (du)
Wo Wo 0

Wo

= | Tf(e’QzAzu)dtN(du): ] Tf(e’Qlu)dt(AzN)(du).

Wo O Wao O
The relation aM, = A, M, yields
(14) aN = A,N .

By virtue of [6; Theorem 1.2], N has the form
(15) N(E)= 3}, ay(A3EnZ,,), EeB(W,),

where 7 is a finite Borel measure on Z,, = Z, n W. Consequently, formula (13)
becomes

(16) { fM(du) = _Z_: a™" | Off(e‘QzA’ﬁu)dty(du).

Now, putting
D=D;®0, Q=0,®0,, M(E)=MEnW), Ee#(@v,),

we easily verify that D, A and Q satisfy all the conditions (i)—(iv). Moreover,
returning to v and A as measures on V, we have

$(v} = exp {i(m;, v} — 3 (Dv, v)}
and

Av) = exp {i(mz, v) + 1!0 [ei(""" -1 %JM(du)}

=exp{i<m2,v>+ Yoa [ et

n= — o0 ZsnW 0

i(v, €2 A" )
1+ ||e‘QA"uI|2:|dty(du)}
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since M is concentrated on W, and e2A|W = €'%24,. The equality
) = 90) A)

yields formula (12} with m = my{ + m,.

To prove the converse implication, assume that for i formula (12) holds with
operators D, A and Q satisfying (i)—(iv).

Define measure N by (15). According to [6; Theorem 1.1], N is a Lévy spectral
measure on W, satisfying (14); moreover, by [6; Lemma 3.2 and Theorem 3.1],
there exists an « > 0 such that

| lol*N(dv) < 0.
lol>1

1t follows that
| log(l + [[v}*)N(dv) < oo,

lof>1

and since N is a Lévy spectral measure, we get

{ log(1 + |v|*)N(dv) < 0.
Wo

By virtue of [14; Theorem 7.1], M defined by (13) is a Lévy spectral measure of
some operator Lévy’s measure on W, moreover, the commutation property
4,0, = 0, A, with A, and Q, as in the first part of the proof, yields, as before,

aM = A, M.
If we write
m=my+my,, melU, meW,

and put 4 = [m,, 0, M ] with M regarded as a measure on V,, then we shall get that
A is an (a, A)-quasi-decomposable measure concentrated on W and such that

A=¢e¢%Uxl, t=0,

where 4, is concentrated on W. Accordingly, putting v = [m,, D, 0], we get, by
condition (i), that v is an (a, A)-quasi-decomposable Gaussian measure concen-
trated on U such that

v=ePvxy,, =0

3

where v, is concentrated on U. Since y = v* 4, we infer that u is (a, A)-quasi-
decomposable and satisfies (2) with y, = A, *v,, which finishes the proof. [

Our final aim is to describe the operator-semistable operator Lévy’s measures
as distributions of some stochastic integrals. To this end, let us recall that for
u formula (2) holds with QeE_(y) if and only if u is the distribution of the
stochastic integral [ ¢’®dZ(r) where (Z(t): ¢ = 0) is a homogeneous process with
independent increments such that E log(1 + [|Z(1)||) < «.
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Moreover, if 4 = [m, D, M] and .#(Z(1)) = [n, B, N] (.¢ stands for the distri-
bution), then

L © Qe Qe
(17 n= Qm+yj0£|:1+|e‘QvH2_l+[|v|l2JdtN(dv)’
(18) B=—~ (0D +DQ*), D= oj?e‘QBetQ*dt \
0
(19) [ fyMdw) = | [ f(e"%u)dtN(du)
Vo Vo O
for each continuous function fsuch that | f(u}| £ C %b—t”“—:il—z Also putting

— i 1 i(u,v) __ _M
tp(u)_z(n,u)—z(Bu,u)+I/fo[e() 1 1_,_“UHZ}N(dv),

we have
20) ) = exp |y uyde

(cf. [4, 10, 11, 15, 16] for these facts as well as for the definition of the stochastic
integral).

Theorem 18 Let u be full. u is an operator-semistable operator Levy’s measure if and
only if there exist 0 < a < 1, linear operators A, Q on V with the properties | A| < 1,
0(Q) = {ueC:re a < 0}, AQ = QA, such that

(21) p= ( T e‘QdZ(t)> ,
4]

where (Z(t):t = 0) is a homogeneous process with independent increments and the
distribution of Z(1) is (a, A)-quasi-decomposable.

Proof. First, let us observe that if #(Z(1)) is (a, A)-quasi-decomposable,
then on account of [6; Theorem 3.1], E|Z(1)|* < oo for some « >0, thus
Elog(1 + [ Z(1))]) < oo and the integral [y’ e ?dZ(z) exists.

Assume now that for x (21) holds with @, 4, Q and Z(z) as in the assumption of
the theorem. Let #(Z(1)) = [n, D, N], ¢ = m Then ¢ = exp ¥; moreover,
since Z(Z(1)) is (a, A)-quasi-decomposable, we have

[P =™ (4%, u),

ay(u) = i(h, u) + y(A*u) .

which yields
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Taking into account formula (20), we get

[Aw)]* = exp Ojo ay (€% u)dt = exp 3? [i(h, €% u)
(o] [¢]

+ Y(4%eCu)]dt = exp {i(h’, u) + Ojo a,b(ezQ*A*u)du}

0
— &0 f(A*u) (h’ = e’tht>,
0

which means that y is (a, A)-quasi-decomposable, thus operator-semistable. As was
remarked earlier, y is also an operator Lévy’s measure.

Conversely, let u be an operator-semistable operator Lévy’s measure. Then
U is (a, A)-quasi-decomposable with 0 <a < 1 and ||4| < 1, and, according to
Theorem 15, there is Q€ E_(p) such that AQ = QA. Let u=[m, D, M]. In the
proof of Theorem 17 it was shown that for M formula (19) holds with a Lévy
spectral measure N satisfying aN = AN.

Define n and B by formulae (17), (18), respectively, and let (Z(t):t = 0)
be a homogeneous process with independent increments such that Z(Z(t)) =
[tn, tB, tN]. Then E log(1 + | Z(1)||} < <o because juuu;llog(l + |ul)N(du) < oo
(cf. [4]), so there exists the stochastic integral | €'¢dZ(¢). Let v be the distribution
of this integral. We have, by virtue of formulae (17), (18), (19), (20),

«©

$(u) = exp T Y(eCu)dt = exp {i | (n, eCu)dt

0

1 < % % ® i(atQ

-5 | (BePu, e®uyde + | [e‘(e wo) ]
o 0 Vo

i€y, v) 1
o mE dib = ; _

T ”UH2:|N(du) t} exp {l(m, ) 2(Du, )

0 . 1Q

R L I NPT

iy [e e [N

= exp {i(m, u) — % (Du, u) + § [ei(“’ O] %]M(dv)}

= fu) ,

which shows that u = £ ([5 ¢*2dZ(t)). Also, since p is (a, 4)-quasi-decomposable
and AQ = QA, we get

aB = —[Q(aD) + (aD)0*] = —(QADA* + ADA*Q*)
~ —A(QD + DQ*)A* = ABA*

which, together with the equality aN = AN, implies that #(Z(1)) = [n, B, N] is
(a, A)-quasi-decomposable, proving the theorem. [
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Now, identify V" as R? and put
Y(s) = [ ¢2dZ(5), s20.
0

If we let G, denote the generator of the process (Z(t):t = 0), i.e.

d d
GofI = T abift)—5 5 BubDi ()

i=1 i k=1

d

+Lbu+w—ﬂx )

=1+nrRDf“]Nm”

where D; stands for the partial derivative with respect to the i-th coordinate, [ By ] is
a positive definite matrix and ;e R, then (¥(s):s = 0) is a Markov process with
generator G of the form

d
(22) G=Go+ Z QuxD; ,
k=1

where [Q;.] is the matrix of the operator Q (cf. [10, 11, 16]).
A Markov process with generator as above is called a process of Ornstein-
Uhlenbeck type. Taking into account the relation

[ e@dZ() = lim [e2dZ (1),
0

570 0
we get

Corollary 19 Let p be full. i is an operator-semistable operator Levy's measure if and
only if there exist 0 <a< 1, linear operators A,Q with the properties
1[4l <1,0(Q) = {aeC:rea <0}, AQ = QA, such that u is the limit distribution of
a process of Ornstein-Uhlenbeck type generated by generator G of form (22), where G
is the generator of a homogeneous process with independent increments associated
with an (a, A)-quasi-decomposable probability measure.

6 Appendix

In this section, we characterize the set of limit points of a compact semigroup of
linear operators acting in V. Let Q be a linear operator on V and let
G, = {€'?:t 2 0} be a semigroup such that sup;s, [€€] < 0. Put G = Gy.
Then G is a compact abelian semigroup of linear operators on V. Let IH denote the
set of the limit points at infinity of G, i.e. TeH if and only if there is a sequence
t, — oo such that T = lim,_ ., ¢"% We have

GZG()U]I_I

Take an arbitrary ReG,, R=¢% and TeH, T = lim,., e"% Obviously,
RTeMH, which means that
RH<zH.
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