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Summary. In the paper various characterizations of full operator-semistable oper- 
ator L6vy's measures on finite dimensional vector spaces are presented. They are 
given in terms of: 1. some decomposability properties; 2. the characteristic func- 
tions; 3. stochastic integrals. Also a number of decomposability properties, espe- 
cially for a full operator  L6vy's measure, are obtained. 

0 Introduction 

In the class of infinitely divisible laws on a finite dimensional real vector space V, 
a very interesting subclass consists of so-called full (i.e. not concentrated on 
any proper hyperplane of V) "operator  limit laws". These are the limit distribu- 
tions of operator  normed and centered sums of a sequence of independent random 
vectors in V. Among the full operator limit laws, three classes of particular 
interest have so far been investigated in great detail: operator-stable, operator- 
semistable and operator L6vy's distributions. The operator-stable laws are 
obviously the smallest class, and it seems an interesting question to find a 
description of their "closest relations", namely, the intersection of the set of the 
operator-semistable measures with the set of operator L6vy's ones. In the one- 
dimensional case, it was done in [2]; all that has been done in the multidimensional 
setup consists in describing two classes: operator-semistable measures that are 
multivariate L6vy's and operator L6vy's measures that are multivariate semistable 
(cf. I-7]). 

The main purpose of this paper is to give a complete solution to the above 
mentioned problem. We characterize the class of those full operator-semistable 
laws that are also operator L6vy's measures. Actually, three such characterizations 
are given. The first one is expressed in terms of some decomposability properties, 
the second refers to the characteristic functions, and the third is obtained by means 
of some stochastic integrals. 

In the course of our analysis, we obtain also some decomposability properties 
of a full probability measure which are of interest on their own. 
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For  the sake of making the paper as self-contained as possible, we present in the 
Appendix a fundamental property of compact  semigroups of operators, which is 
employed in our considerations. 

1 Preliminaries and notation 

Throughout  the paper, V will stand for a finite dimensional real vector space with 
an inner product ( . , . )  and a-algebra ~ ( V )  of its Borel subsets. We let End Vdenote 
the set of all linear operators on V, whereas Aut V stands for the linear invertible 
operators. 

Let A: V ~ W be a linear mapping into a finite dimensional real vector space 
W and let # be a (probability) measure over (V, N(V)). The measure A# on 
(W, ~ (W))  is defined by 

A p ( E )  = # ( A -  I (E)  ), E ~ ~ ( W )  . 

The following equalities are easily verified 

A(B#)  = (AB)# ,  " ~ ( v )  = fi(A* v), A ( #  * v) = A p  * Av , 

for linear operators A, B and probability measures #, v (here / - .  denotes the 
characteristic function and the asterisk * stands for the convolution of measures or 
for the adjoint of an operator, as the case may be). 

By 5(h) we denote the probability measure concentrated at point h. 
We recall that an infinitely divisible measure p on V has the unique representa- 

tion [m, D, M],  where m e V, D is a non-negative linear operator on V, and M is the 
L6vy spectral measure of p, i.e. a Borel measure defined on Vo = V - {0} such that 
~Vo II v [I 2/( 1 + II v [I 2)M(dv) < oe. The characteristic function of p has then the form 

/~(v) = exp i(m, v) - ~ (Dr, v) + No ~ ei<V,u) _ 1 1 - - +  ilul12 M(du) 

(cf. e.g. [9]). 
The main objects of this paper are full operator semistable measures and full 

operator L6vy's measures on V. For their definitions, being generalizations of the 
classical definitions of semistable and L6vy's limit laws, as well as for more detailed 
accounts, the reader is referred to [3, 6J (operator semistable measures) and [14, 
16] (operator L6vy's measures). Here we only recall that a full probability measure 
p on Vis: (i) operator semistable; (ii) operator L6vy's, respectively, if and only if it is 
infinitely divisible and 

(i) there are 0 < a < 1, h e V, and a linear operator A on V, II A II < 1, such that 

(1) pa = A p * 5 ( h ) ;  

(ii) there is a linear operator (2 on V whose all eigenvalues have negative real 
parts, such that, for each t __> O, 

(2) # = e'e# * #~ 

where #t is a probability measure on V. 
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To emphasize the role of a and A, the measures satisfying (1) will be Called in the 
sequel (a, A)-quasi-decomposable. 

For  a probability measure p on V, its decomposability semigroup 1D(p) is 
defined as 

D(#) : {BeEnd  V: p = Bp* v for some probability measure v} . 

An important subset of lD(p) is the so-called symmetry group S(#): 

S(p) = {SeAut  V:/~ = Sp*6(h) for some h in V}. 

Let us introduce the set of exponents of measure p 

lE(p) = {Q~End V:e te~D(p)  for each t > 0} . 

Finally, two subsets of 1E(p) will be of special importance for our considerations: 

lEo(p) = {(2 ~ lE(p): all eigenvalues of Q have zero real parts} 

IE_ (p) = {Q ~ lE(#) : all eigenvalues of Q have negative real parts} . 

To clarify the mutual relations between the sets above, let us observe that, in 
general, we may have IE(#) = lEo(P) = {0}, and for # full, IE_ (p) is non-void if and 
only if p is an operator L6vy's measure, which is a consequence of the characteriz- 
ation given by formula (2). For  the sake of the preliminary description, let us notice 
that, for p full, 1D(N and N(#) are compact (cf. [14; Propositions 1.1 and 1.2]), and 
lE(#) is a closed cone (cf. [8; Proposition 3]). 

2 Decomposability properties of full measures 

This section is devoted to a more detailed analysis of the set lE(p) yielding some 
decomposability properties of a full measure. 

Lemma 1 Let p be full. Then lEo(p) = T(S(p)) (where T(S(#)) denotes the tangent 
space of S(t~) at the point I--the identity operator). 

Proof. Let, for a linear operator B on V, det B denote the determinant of the matrix 
representation of B with respect to a fixed basis in V. 

Assume that Q ~lEo(p). Then e*Q~D(p) for t > 0, and [det e tQI = le ttr"~ Q] = 1, 
which, on account of [14; Proposition 1.4], means that eros S(p) for t > 0, hence 
Q ~ T(S(p)). 

Conversely, if Q ~ T(~;(#)), then e t~ ~ S(p) for all t ~ JR. By virtue of [14; Proposi- 
tion 1.2], ~;(#) is a compact subgroup of Aut V, thus there is a non-singular 
operator C in Aut V such that, for each S ~ S (p), CSC-1 is orthogonal. This means, 
in particular, that l det etQJ = 1. According to [8; Lemma 2], all eigenvalues of 
Q have non-positive real parts, so the last equality is possible only if the real parts 
are equal to zero, which shows that Q~lEo(p). [] 

Now, we show a facial property of lEo(p). 

Lemma 2 Let ~ be full and let Q1, Q 2 ~ l E ( # )  �9 I f  Q1 -? Q2EIEo(#),  then Q1, Q2~ 
lEo(p). 
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Proof. Since leo(#) is a subspace, - ( Q 1  + Qe)~leo(#), and - Q 1  = Q 2 -  

(Q 1 + Q:)~ lE (#) because le (#) is a cone. On account of [-8; Lemma 2J, all elements 
in lE(#) have eigenvalues with non-positive real parts, so Q1, - Q1 ~ lE(#), implies 
that all eigenvalues of Q~ must have their real parts equal to zero, that is Q~ ~ leo(#). 
Analogously, we get Qz e leo(#). [] 

As an immediate corollary, we obtain 

Corollary 3 Let  # be full and let Q1 . . . . .  Q,~IE(#). I f  ~ =  1 Qiele0(#), then Qie 
leo(#), i =  1 . . . .  , n. 

This is proved by induction upon observing that lE(#) being a cone implies 
?t--i 

~i=1 Qi~lE(#). 
The following proposition describes the basic properties of the operators from 

~(#). 

Proposition 4 Let  # be full and let QelE(#). Then there exist projections P, T (i.e. 
p = p2, T = T 2) in ]D(#) such that 

(i) P +  T = I, P T  = TP = O; 
(ii) PQ = QP, TQ = QT; 

(iii) P = 0 if and only i f  Q~ le_ (# ) ,  T =  0 if and o n l y / f  Q ~]Eo(#); 
(iv) PQ~IEo(#), TQr moreover, if Qr then TQ(~IEo(#), in particular, 

T Q # O .  

Proof. Put G = {etQ:t > 0}. (l~ is a compact abelian semigroup of ]D(#). Let IH be 
the set of the limit points at infinity of e tQ. According to the Appendix, lEI is a group, 
and let P be its unit. P is clearly a projection and P ~ ID (#). Put  T = I - P. Then, by 
virtue of [14; Proposition 1.5], Tr moreover, P T  = TP = O. 

Since PetQ= et~ for t > 0, differentiation at t = 0 yields PQ = QP, and, 
consequently, TQ = QT. 

If QEIE_(#), then lira e tQ = 0 (cf. e.g. [-1, Chap. 13J), so P = 0. Conversely, if 
t--+ r 

P = 0, then for some t, --+ ~ ,  e ~~ --* 0 which is possible only if Q~E_(#) .  
Now, if Q ~lEo(#), then etQ ~ S(#), t > 0. Let t, ~ ~ be such that e t"Q ~ P. We 

have 
# = et~Q# * 5(h,) . 

Passing to the limit, we get 

# = P #  * ~ (h) 

and the fullness of # yields P = I. 
Conversely, if T = 0, then P = I, and taking again t, -+ cc such that e t"Q -+ I, 

we have, for any eigenvalue ~ of Q, et"~-~ 1, which yields re ~ = 0, i.e. Qr 
Next, we have the formulae 

(3) e tPQ=Pe  'Q+ T, e t rQ= Te ~Q+P, t > 0 ,  

and, as Q r lE(#), for # formula (2) holds. On account of [,14; Proposition 1.5], 

# = P # *  T g ,  
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and thus, by (3), 

eteQ# * P#t = eteO(P# * T#) * P#t = eteQP# * e~eQT# 

�9 P # t  ~- eteP# * T# * P # t  = P(C~ * #t) * T# 

= P g * T # = # ,  

which means that PQEIE(#). Taking tn--, oe such that e tnQ --~P, we get 

e ~ : Q = P e  t~ T ~ P +  T = I  

which, as before, shows that PQ e lEo(g). 
Using (3) again, we obtain 

etTQ# * T#t = etTQ(P# * T#) * T#t = P# * T(et~ * #t) 

= P # * T # = # ,  

showing that TQelE(#). Finally, if TQelEo(#), then Q = PQ + TQelEo(#) by 
Lemma 2 and the relation PQelEo(~O. [] 

As an important consequence of the above proposition, we get the following 
decomposability result. 

Theorem 5 Let # be full and let Q e lE(#). There are decompositions 

V = U |  # = v '*2 '  

such that the subspaces U and W are Q-invariant, v' is concentrated on U, 2' is 
concentrated on W, and denoting 

v = v ' l U ,  2 = I ' ] W ,  

we have Q IU e lEo(V) and 9_1 W e  lE_ (2) if w .  {0}. Moreover, U = {0} if and only if 
Q~IE_(#), and W =  {0} if and only if QelEo(#). 

Proof Putting, for P and T as in Proposition 4, 

U = P(V), W = T(V), v' = P#, 2 ' =  T# 

we obtain the desired decompositions. It remains to prove the relations Q IU e 
lEo(V) and Q] WeIE_(2). 

For  #, as in (2), we have, since PQ e leo (#), 

# = eteQ# * 6(ht), 
yielding 

P# = etVeP# �9 6(Phi), 

which shows that Q[ U e lEo(V). 
We also have 

T# = e teT#.  T#, = e t r e r # *  r # , ,  

hence Q lwe lE(2.). For  an arbitrary t,, ~ oe, there is a subsequence {t,, k} such that 
e '"~e --, R, where R is an element in IH. Since P is an identity in IH, we get, using (3), 

e t ' : e =  Te ~ " ~ e + P ~ T R + P =  T P R + P = P ,  
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S O  

(4) l i m e  tr~ = P .  
t ~ o O  

If  W :# {0}, i.e. T ~ 0, the last equality implies lim tQI w = 0 (zero operator on W), 
t ~ o O  

showing that QI WelE_(2) (cf. e.g. [1; Chap. 13]). [] 

Now, we wish to give a probabilistic description of the set IE_ (#). To this end, 
we start with some simple "fullness" considerations. 

Lemma 6 Let  W be a subspace of  V and let # be a probability measure on V. Then 
# ( W )  = 1 if  and only if  /2(v) = 1 for  each v c  W 1. 

The proof is similar to the proof  of Proposition 1 in [12]. The details are left to 
the reader. 

Lemma 7 Let  W be a subspace of  V, let p be a probability measure on V and let A be 
a linear operator on V. I f # ( W ) =  1, A p ( W ) =  1 and A #  is full  on W, then 
A ( W )  = IV. 

Proof  We have A p ( A ( W ) )  = # ( A - I ( A ( W ) ) )  __> #(W) = 1 and thus 

Since A #  is full on W, we get 

A # ( W ~ A ( W ) )  = 1 .  

w n  A ( W )  = W ,  

which means that W c A ( W ) ,  and therefore W = A ( W ) .  [] 

The following resul t -- the openness of the set of full measures was mentioned 
in [12; p. 52] without proof. For  the sake of completeness, we sketch its proof  here. 

Lemma 8 Let  # be a full  probability measure on V and let {#,} be a sequence of  
probability measures on V weakly convergent to #. Then #,  are full for  all sufficiently 
large n. 

Proof  If #,~ are not full, then 

1/2,~(~v~)l = 1 

for some vk ~ V, [[ Vk [I = 1 and all c~ ~ IR, We may assume that Vk ~ VO and since for 
any fixed e e l R  the set {re  V: Ilvll < ~} is compact,we get 

/2(cw0) = lira [Z,k(OWk), 
k--+ o~ 

showing that 
I/2(~Vo)l = 1 ,  

which contradicts the fullness of #. [] 

Let us recall that, for a probability measure # on V,/~ is defined as 

fi(E) = # ( - E ) ,  E ~ ( V ) ,  

and the symmetrization/~ of # is/~ = #*~ .  Obviously, f i =  1/212. 
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Now,  if # is concent ra ted  on a hyperp lane  W + h, where W is a subspace of ~; 
h e V, and if # is full on W + h in the sense that  no other  hyperplane  contained in 
W + h has # measure  equal  to one, t h e n / ~ ,  6 ( - h )  is concent ra ted  and full on W, 

thus # �9 6 ( - h )  = /~  * 6(h) is concent ra ted  and full on W. Consequently,  

[/~ �9 6 ( -  h)] �9 [-fi �9 cS(h)] = 

is concentra ted  and full on W, which shows that  any  symmetr ized measure  is 
concentra ted  and full on some subspace (which m a y  be the whole space V in the 
case when # is full). 

N o w  we are in a posi t ion to prove  a character izat ion of a full opera to r  L6vy 's ,  
measure  in terms of some decomposabi l i ty  properties.  

Theorem 9 Let  # be a full probability measure on V and let Q~IE(#) such that 
formula (2) holds. The followin 9 conditions are equivalent: 

(i) Q ~ IE_ (#) (i.e./z is an operator Lbvy's measure); 
(ii) /~t is full for all t > 0; 

(iii) #70 is full for some to > O. 

Proof  (i)=-(ii). F r o m  formula  (2), we get 

and thus 

On the other  hand,  

esQ# = esQetQ#  , esQt~ t = e( t+s)Q# , esQ#t  

l~ = eSQ# * kts = e(t+s)Q~t * eSQ#t * #s  . 

# = e ( t + s ) Q ~ , l l t + s  , 

and since # is infinitely divisible, fi(v) + 0, which yields the equali ty 

#t  + s = esQ#t  * #s  , t, s > 0 

and, after symmetr izat ion,  

(5) ~ t+s  = e S e ~ , , / S s ,  t , s _ > _ 0 .  

Assume that, for some t', /~c is not  full. Then Bt, is not  full, and let ~c be 
concentra ted  and full on a subspace W. For  v s W • we have, on account  of  L e m m a  
6 and (5), 

1 = ~t, (v) = e ' e ~ , ( v ) ~ ( v ) ,  t + s = 

Since the characterist ic functions on the right hand side of the above  equality are 
positive, we get 

A 

eSe[zt(v) = fis(V) = 1 , 

which, again by L e m m a  6, means  that  

e~Qfi,(W) = / ~ ( W )  = 1 

for all t, s < t', t + s = t'. Equal i ty  (5) together  with the inequality/~(v) =~ 0 show 
that/~t =~ fir~ as t ~ to. In part icular,  
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so, according to L e m m a  8 applied to measures  considered only on W, we obtain  
that  ee/"~t,_ ~ is full on W for all sufficiently large n. As /~t,_~(W) = 1, L e m m a  
7 implies that  eQ/"(W) = W for large n. The formula  

Qv = lira n ( e  Q/" - I ) v  
n ~  oo 

yields Q ( W ) ~  w ,  thus Q ( W ) =  w .  Consequently,  e~Q(W)= W for all t, which 
gives 

Thus 
e~'eft~,(W) =/~t ,(e-~ 'e(W)) = )~,(W) = 1 . 

/~2~,(W) = (et'Q~ , * ) t , ) (W) = 1 .  

Proceeding further that  way, we obtain/~,t ,(W) = 1 for all posit ive integers n. But 
the equality 

and the relation l i m e  tQ = 0 yield/~t ~ / ~  as t ~ oo ; in par t icular , /~ , ,  = /~ ,  which 

gives a contradiction,  since f, is full and ~ t '  are concentra ted on W. 
(ii) ~ (iii). Obvious.  
(iii) ~ (i). Assume, on the contrary,  that  Q ~ IE_ (#). Let P be the project ion as in 

Propos i t ion  4. By this proposi t ion  point  (iii), P :t: 0, moreover ,  we have 

P #  = e t ~  * P#t  = etP~ * P#~ �9 

On the other  hand,  P Q s l E o ( # ) ,  so 

giving 

and thus 

# = e~Pe# �9 6(h~), 

P #  = e~PeP# * 6(Pht)  , 

etPQP# * P#t  = eteQP# * 6(Pht)  , 

which yields the equality P#~ = 6(Pht),  showing that, for any t, #~ is not  full. This 
contradic t ion finishes the proof. [] 

3 Description of operator Levy's measures in terms of the 
decomposability semigroup 

For  the purposes  of this section, we recall that  a probabi l i ty  measure  # is called 
ope ra to r  L6vy's if it is the limit of sequence A,,(v~ ~ . . . .  * v,,) * c~(h,l), where h , e  V, 
A,'s are linear opera tors  on V and {v~} is an arbi t rary  sequence of probabi l i ty  
measures  on V, such that  the measures  A,,vk, k = 1 , . . . ,  n; n = 1, 2 . . . .  , form 
a uniformly infinitesimal t r iangular  arrary.  It  is shown in [14; Propos i t ion  5.2] that  
if ID(#) ~ {e ~e : t > 0} such that  l i m e  ~e = 0, then # is opera to r  L6vy's, which, as 

~ c o  

ment ioned in Sect. 1, is a character izat ion in the case of full #. Since the condit ion 
{ete:t  > 0} c ID(#) is usually not  easily verifiable, we want  to give in this section 
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other  condit ions on D(g)  which would guarantee  # being opera to r  L6vy's. In order  
to keep close to our  ma in  objects which are full measures,  as well as to simplify the 
following considerat ions,  we assume in this section that  the measures  in question 
are full. However ,  it is wor th  noticing that  the next two lemmas  remain true for 
a rb i t ra ry  #. 

L e m m a  10 A s s u m e  t h a t  ID(#) c o n t a i n s  a s equence  o f  l inear  o p e r a t o r s  B,, w i t h  

p r o p e r t i e s  

(i) lira B ,  = 1; 
n + o o  

(ii) lira ( B ,  . . . B1)  = O. 
t l + o O  

T h e n  # is an o p e r a t o r  L ~ v y ' s  measure .  

P r o o f  In  view of (i), we may  assume, taking sufficiently large n, that  B, 's are 
non-singular.  We have 

which yields the relation 

(6) 

# = B , # * # , ,  n = 1, 2 . . . . . .  

, .  ~ 6 ( o ) .  

The following equali ty is easily verified 

# = B n . . . B I # * B n . . . B 2 # 1 * . . . * B n # , - I * ~ , ,  n - - l ,  2 . . . . .  

Put  
A ,  = B ,  . . . B 1 ,  Vo = #,  v ,  = A [  l l~,, n =  1 , 2  . . . . .  

We then have 

(7) # = An(vo * vl  * . . . * v,,) . 

Moreover ,  by (ii), for each k 

(8) lim A n A ~  1 = lira (B . . . .  Bk+l)  = 0 .  
n ~ c o  n ~ o o  

Since the opera tors  A , A ~  I for k = 1 , . . . ,  n, n = 1, 2 . . . .  are in ID(/~) which is 
compact ,  we have 

(9) [ IA,A; i l I  < c ,  k =  1 , . . . , n ,  n =  1, 2 , . . . .  

Consequent ly,  by (6), (8) and (9), the measures  { A ,  v k : k  = O, 1 . . . . .  n; n = 1, 

2 . . . .  } = { A ,  vo . . . . .  A , A k ~ # k : k  = 1 . . . . .  n ; n  = 1,2 . . . .  } form a uniformly in- 
finitesimal t r iangular  array,  and (7) implies that  # is an opera to r  Ldvy's 
measure.  [] 

L e m m a  11 A s s u m e  tha t  ID(#) con ta in s  a s equence  o f  l inear  o p e r a t o r s  C ,  w i t h  
p r o p e r t i e s  

(i) lira C ,  = I ;  
n ~ c o  

(ii) lim C, k = 0, n = 1, 2 . . . .  
k + c o  

T h e n  # is an o p e r a t o r  L ~ v y ' s  measure .  
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Proo f  Choose positive integers ki such that 

1 
IIC~ll =:_:, i =  1 , 2 , . . , ,  

1 

and put (with ko = 0) 

Bn = Ci for ko + �9 �9 �9 + k i -  1 -[- 1 ~ n ~ ] s  - [ -  ' " ' -1- ki, i = 1, 2, . . . . 

Clearly, lira B, = I. Moreover ,  for each n we can find an indice in and a positive 
n + ~ 3  

integer 1 _< l _< kl,, such that n = k0 + �9 " " + ki,_~ + 1. We then have, since Cf 
~D(#), 

lIB,, B~II ii ~ k. C~ . . . .  C~~ . , ,  II 

< c l l C  ~al[ IlC !11 < e l .  
1 

where  c -- sup { II A II : A e lD(~)} < oo. The  last inequal i ty  means  tha t  

lira ( B , . . .  B1) = 0, and by Lemma 10, the result follows. [] 
n--+ oo 

As an interesting corollary, we get the following property of projections of full 
operator  Ldvy's measures. 

Proposit ion 12 Let  # be a full  operator L~vy's measure and let P be a non-zero 
projection in ID(#). Then P # I P ( V )  is a ful l  operator Lbvy' s measure (consequently, Pt~ 
as a measure on V is also operator Lhvy's). 

Proof. According to 1-14; Lemma 4.2], for a given non-zero projection P from ID(#) 
there exists a sequence {D,} of operators  from ID(/~) satisfying the conditions 

(i) D . P  = PD,  = On; 
(ii) lim D. = P;  

n--+ oo 

(iii) lim D~ = 0, n = 1, 2 . . . . .  
/ g - * c o  

Put  
U = P(V), 

We have 
v =  P#IU,  C . =  D . I U .  

# = Dn# * #n , 

[] 

so  
P# = D , P #  * P#n , 

which means that  C~ ~ lD(v). Clearly, v is full on U; moreover,  

lim C , , = I v  and lim Ck ,=0 ,  n =  1 , 2 , . . . .  
n ~ o 0  k---r ~ 

Now, Lemma 11 applied to the measure v on U yields the claim. 

4 A basic property of  IE(#) for a full operator-semistable operator L6vy's measure 

Throughou t  this section, # is assumed to be a full (a, A)-quasi-decomposable 
measure on V, i.e. for # formula (1) holds. 
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L e m m a  13 Let  QeIE(#)  be such that AQ = QA and let U, W, v, 2 be the subspaces 
and the measures, respectively, given by Theorem 5. Then U and W are A-invariant, 
v is (a, A lU)-quasi-decomposable, and 2 is (a, A] W)-quasi-decomposabIe. 

Proof. Since AQ = QA, we get Ae 'e  = etQA for all t. Let  P and T b e  the project ions 
as in the p roo f  of Theo rem 5; recall that  U = P(V), W = T(V) and P is a limit poin t  
at infinity of  the semigroup {ere: t > 0}. Consequently,  we have A P  = PA,  and thus 
A T  = TA, which yields the A-invariance of U and W. 

The  measure  # is (a, A)-quas i -decomposable  and Q e IE(#), so assume that  for 
# formulae  (1) and  (2) hold. Then  we have 

~ < v ) - -  ~ ( v ) A ~ ' ~ ( v )  
and 

E~(v)]~ = Ee4~(v) ]~  ~ 

= ei(+~h, ~ ) e A ~ ( v )  [/~(v)] ~ , 

These two equalities give 

ei(e%~)e/iQ~#(v)[~,(v) ] a = [ / ~ ( v ) ] "  = ei~176 A1~(v) 

= ei (h ,  v) V t V 

and since # is infinitely divisible, ~(v) # 0 for all v e V, which gives 

[/~t(v)] ~ = e,(h-r h.O A#t(v) , 

meaning  that  #t is (a, A)-quasi-decomposable .  In part icular,  T#~ is (a, A)-quasi- 
decomposab le  for t > 0. 
Fur thermore ,  we have 

T# = e ' Q T # ,  T#~ = e ' r e T ( T # ) ,  T#t .  

According to (4), 
lira etTOP = P ,  
t ~ c O  

thus 
lira etrQT = lim (e trQ -- etrQP) = 0 . 
t ~ c O  t---~ o0 

Take  to such that  Ilet~ < 1 and put  B = et~ p = T#to. Then 

(10) T# = B(T#)  �9 p 

and i terating the last equality, we get 

T # = B " + I ( T # ) * B " p * " - * B p * p ,  n = l , 2  . . . . .  

Since B " ~ 0 ,  by put t ing 

we obtain  

Since 

p.  = B " p *  �9 �9 �9 * B p * p  , 

l i m p .  = T # .  
n - ~ o o  

p ~ = A p * 6 ( h ' )  for some h ' e W ,  
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and 
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we obtain  

Since 
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and since A B  = BA,  it follows that  

p~ = B ' p "  , . �9 �9 , p" = B~Ap  , c~(B'h') * . . .  * A p  , b(h') 

= A ( B ' p *  ' ' '  * p ) * 5 ( B ~ h  ' + " "  + h') 

= Ap,*b( (B" + ' . .  + I )h ' ) .  

Passing to the limit yields 

(11) (T/Z)"= A(T/Z)*b(h")  for h " = ( I -  B ) - l h  ' ,  

that  is, T/Z is (a, A)-quasi-decomposable .  
Moreover ,  

/Z" = (P/Z)" �9 (T/z)" and A/Z = A(P/Z) * A(T/Z) ,  

hence 

which implies 

(P/Z)" �9 A (T# )  �9 b(h") = (P/Z)" �9 (T/Z)" =/Z" 

= A(P/Z) �9 A(T/Z) �9 5 (h ) ,  

As 

and thus 

that  is, P/Z is (a, A)-quasi-decomposable .  Tak ing  into account  the equalities v = P#] 
U, 2 = T /Z lW and the A-invariance of U and W, we conclude the proof. [] 

SO 

In the remaining par t  of this section, we assume also tha t /Z is an opera to r  
L6vy's measure.  Then  we have 

L e m m a  14 There exists  Q' EIE(/Z) -- ]Eo(/Z) such that AQ'  = Q'A. 

Proof. Take  Q"elE_(/Z) and put  Q, = A - ' Q " A ' .  Since /Z satisfies (1) and the 
equali ty 

]1 = etQ"/z * /zt, t ~= 0 , 

with/zt  infinitely divisible (cf. [14; Propos i t ion  5.2]), we have 

/Z" = etq"/z . ,/Z~ , 

A/Z* b(h) = etQ"[A/Z* 5(h)] */Z~' 

= etO"A/z */zt * g~(eto''h) 

/Z = A - l e t Q"A / Z*  A 1/z~ * 5 ( A - ~ ( e t q " h  -- h)) . 

A - l e t Q " A  = etA-1Q ''A 

we infer that  A-1Q"AelE_(/Z) .  Repeat ing this procedure,  we obta in  that  Q ,~  
_ (/z), 

First, we shall show that  the set {Q, :n = 0, 1, . . . } is bounded  in norm. 
If  this was not  the case, we would have [[ Q,~ l[ ~ oo for some subsequence {nk} 

of positive integers. Since IE(/Z) is a closed cone, Q , J  [1Q,,~ ][ ~ IE(/Z) and passing to 
a subsequence of {nk}, if necessary, we m a y  assume that  Q,JI[  Q,~][ ~ (2, where 

(p#)a = A (P#) * b(h - h") ,  
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~ IE(p), II Q [I = 1. U p o n  obse rv ing tha t  the eigenvalues of Q, are the same for all n, 
we get that  all the eigenvalues of Q must  be zero; in part icular ,  (~ e lE0 (p). Conse-  
quently,  e~Qs S(p)  for all t e IR. Since S(p)  is compact ,  there is a non-s ingular  linear 
opera to r  C such that  CS(p)  C -  1 U �9 where �9 is the g roup  of o r thogona l  oper-  
ators on V. This means  tha t  Ce te C - 1  = etCOC -~ is o r thogona l  for all t e IR, hence 
D = C Q C  - 1 is skew-symmetric .  Since the eigenvalues of D are all equal  to zero, the 
same is true for D 2. But 

D*D = - 0  2 , 

which means  that  D*D is a hermi tean  opera to r  having all the eigenvalues equal  to 
zero, so D*D = 0. Consequently,  D = 0, and Q = 0, which contradicts  the equali ty 
IIQI] = 1. Thus 

IIQ, I [ < c ,  n = 0 , 1 , . . . .  

Now,  put  
ln--1 

R n = - Z  Qi. 
Hi=O 

We have [[R,[[ < c and R,  e lE(p)  because IE(p) is a cone, so the closedness of lE(p) 
implies that  there is a Q ' e  IE(p) such that  

Q ' =  lim R,k 
k~oo 

for some subsequence {nk} of positive integers. Fur thermore ,  

1 
.~1 ( A Q i A -  2 Qi) [ [ A - a R . A -  R.[[ n i=o 

1 n&l 1 2C 
= -  ~_. ( Q z + l - Q i )  = -  Q . - Q o  _-<--,  

H i = o  n /'1 

and passing to the limit for the sequence {nk} gives 

A - 1 Q ' A  - Q' = O,  
that  is 

AQ'  = Q ' A .  

It  remains  to prove  that  Q ' r  IEo(#). 
First, let us observe that  all the limit points  of the sequence {Q. : n = 0, 1 . . . .  } 

have the same eigenvalues as Q", so IF = {Q. :n = 0, 1 . . . .  } is a compac t  subset of 
IE_ (p). Now,  if ~i"= 1 eiFi is a convex combina t ion  of elements f rom IF, 0 < ei < 1, 
~i'--1 ei = 1, Fi~IF,  then c~iFielE_(p),  i = 1 . . . .  , m, and thus, by virtue of Corol-  
lary 3, ~ 1  cqFir  �9 This means  that  for the convex hull of IF, we have the 
relat ion 

conv IF n lEo(p) = ~ . 

Since IF is compact ,  1-13; 3.2.8, p. 92] yields the equali ty 

cony IF = cony IF, 
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and so 
conv {Q, :n = 0, 1 . . . .  } ~ conv IF = c o n v  iF,  

which means that 

cony {Q,:n = 0, 1 . . . .  } c~ IEo(#) = ~ .  

Since Q '~conv  {Q,:n = 0, 1, . . .}, the conclusion follows. [] 

Now, we shall prove a basic property of full quasi-decomposable operator 
L~vy's measures. 

Theorem 15 There exists Q~IE (#) such that AQ = QA. 

Proof Let Q' be the exponent constructed in the preceding lemma. By virtue of 
Theorem 5, there are decompositions 

V =  U O  W; # = v'*)o' 

where U and W are Q'-invariant, v'(U) = 2'(W) = 1, and by Lemma 13, U and 
W are also A-invariant. 
For  notational convenience, put 

U I = U ,  V I = W ,  A ' I=AIU1,  A t = A I V 1 ,  Q I = Q ' [ V 1 ,  

vl = v'lU1, ~-1=2'1V1.  

Since Q'r  IEo(#), Theorem 5 gives 

V I + { 0 }  and Qls lE_(21) ;  

moreover, the relation AQ' = Q'A yields 

A1Q1 = QIA1 �9 

Consider now the measure va. According to Proposition 12, vl is a full operator 
L6vy's measure on U~, and on account of Lemma 13, Vl is (a, A'~)-quasi-decompos- 
able. Applying, for measure vl, the procedure employed above, we find, by Lemma 
14, an operator Q'I ~]E(V1)  - -  lEo(v1)  such that A'I Q'I = Q'IA'I, and, accordingly, we 
shall get the decompositions 

U I = U 2 |  v l = v ~ * 2 ~  
and the operators 

A~2= A'I[U2= A[U2, A2= A'I[V2= A[V2, Q 2 = Q ' I [ V 2 ,  

such that, putting 22 = )~1 V2, we have 

V2~: {0}, Q26]E_(22), A2Q2=Q2A2.  

Moreover, if p is a measure on a subspace X of V and we define the canonical 
extension ~ of p by 

~(E)=p(E~X), Ee~(V), 

then the formula 
# -- ,~1.22.92 
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holds. Proceeding further that  way, we obtain, by virtue of the condit ion V~ + {0} 
and the finiteness of dim V, non-trivial subspaccs V, . . . . .  V,., operators  
A~ . . . .  , A,. and Q~ . . . . .  Q~, and measures 2~ . . . . .  2,. with the properties 

(i) v = v~ | ... | v,,; 
(ii) 2~ is a probabil i ty measure on V~, i = 1 . . . . .  m; 

(iii) A~, Q~ are linear operators  on V~ such that  A~ Qi = Q~A~, i = 1 , . . . ,  m; 
(iv) A i = A[ Vi, i = 1 . . . . .  rn; 
(v) Q~ �9 IE_ (2,), i = 1 , . . . ,  m; 

moreover ,  

# = / ~ 1 "  " " " * ; m "  

Put  

Since, by (iv), 
Q = Q 1 0 " "  @ Q , , .  

A = A 1 0  " '"  G A , . ,  

that  is Q � 9  and the proof  is finished. 

we have, taking (iii) into account,  

A Q  = Q A .  
F r o m  (v), we get 

2i=e~Q~2i*2! t), t > 0 ,  i = l , . . . , m .  

As Q IV~ = Q~, for the canonical  extensions we have 

e~Q~2i = e~Q~, i = 1, . . . , rn,  

which implies the equality 

2 i = e t e 2 ~ * 2 !  ~), t > 0 ,  i = l , . . . , m .  
Consequently,  

: 2 1 ' ' "  *2,.  : e t e [ l * " '  , e t e ~ , , , ~ l ' ) , ' "  , 2 ~  ) 

= e  (21 �9 . . . .  �9 21  t ) , - - .  �9 

=e te#*2(~  ) * . . . . 2 ~  ), t > 0  

showing that  Q slE(#). 
Fo r  vi �9 Vi, i = 1 . . . . .  m, we have, by (v), 

lim e~e'vi = 0 ,  
t-+CO 

which implies 
l i m e t e v = 0 ,  v � 9  
t-+co 

[] 

50perator-semistable operator L6vy's measures 

This section is devoted to characterizations of full operator-semistable oper- 
a tor  L6vy's measures. The first one is given in terms of some decomposabil i ty  
properties. 
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Theorem 16 Let # be a full probability measure on V. # is an (a, A)-quasi-decompos- 
able operator L~vy's measure if and only if for each t > O, decomposition (2) holds 
with some Q ~ IE_ (#) and #~ being a full (a, A)-quasi-decomposable measure on V. 

Proof. Assume that # is (a, A)-quasi-decomposable and operator L6vy's. According 
to Theorem 15, there exists QalE_(/~) such that AQ = QA. We have 

#~ = e t a #  a �9 # ~  = e t a ( A # ,  6 ( h ) )  �9 #~ 

= etO-A#. #~ * 6(etCh) 
and 

A# �9 6(h) = A(eta# �9 #t) * O(h) = Acre# �9 A#,  �9 O(h) 

= etQA# * Apt * 6(h) . 

Taking into account relation (1) and the inequality/~(v) # 0, we get 

#~ = A#t * 6(h - etch),  

which shows that #t, is (a, A)-quasi-decomposable. The fullness of #~ is a conse- 
quence of Theorem 9. 

Conversely, let in (2) Q~IE_(#) and #t be (a, A)-quasi-decomposable. Ob- 
viously, # is an operator L6vy's measure. Since lim~_~ ~ e ~e = 0, we can find to such 
that 11 e t~ [1 < 1. Put B = e t~ p = #,o. Then 

# = B # * p  

and p is (a, A)-quasi-decomposable. The (a, A)-quasi-decomposability of # follows 
exactly as in the proof of Lemma 13, lines from formula (10) to (11). [] 

Now, we are going to characterize full operator-semistable operator L6vy's 
measures in terms of the characteristic functions. 

For  a non-singular linear operator A with norm less than one, denote 

Za -= {vE g: llv[I < 1} c~ {v~ r :  [lA-lvl[ > 1} 

= {v6 V: IIv[/ =< 1} -- A({v6  V: I lv l l  _-< 1}). 

Theorem 17 Let # be a full probability measure on V. # is an operator-semistable 
operator L~vy's measure if  and only if  its characteristic function has the form 

(12) ~(v) = exp fi(m, v) - �89 (Dr, v) 
k .  

+ ~ a-n , ~Iei(~,e'QA~ 1 i(v'etO'A"u) ]dtT(du) } 
. = - ~o z ~  ~ w o 1 + II e teA"u tl 2 ' 

where m ~ V, 0 < a < 1, V is decomposable as 

V = U |  

such that U and W are linear subspaces of  V invariant with respect to A and Q, 7 is 
a finite Borel measure on ZA c~ W, and the linear operators D, A, Q~ satisfy: 
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(i) D is non-negative and such that 

D ( U ) =  U, D(W)={0} ,  a D =  ADA*, QD + DQ* <__O; 

(ii) A is non-singular and such that 

IIA/I < 1, o-(AIU) c {~a;:lc~l 2 = a},  

~(AI W) ~ {~e~: l~l 2 < a } ,  

where ~ stands for the spectrum of the operator in question; 
(iii) a(Q) c { a e ~ : R e a  < 0}; 
(iv) A O = QA. 

Proof. Assume that # is operator-semistable and operator L6vy's. According to [3; 
Theorem], # is (a, A)-quasi-decomposable with some 0 < a < 1 and a non-singular 
linear operator A which, by [6; Remark 1.1], may be chosen such that ]l AII < 1. 
Furthermore, there are decompositions 

V = U |  /~ = v , 2 ,  

such that U and W are A-invariant, a(AIU) c { a s C :  ]el 2 = a}, 
a(AI W) c {aeC:[c~l 2 < a}, and v is an (a, A)-quasi-decomposable Gaussian 
measure concentrated on U and full there, 2 is an (a, A)-quasi-decomposable purely 
Poissonian measure concentrated on W and full there. Denoting by P the projec- 
tion on U along W, and by T the projection on W along U, we see that 

v=Pl~,  2 =  Tl~, 

so P, T~ lD(/z); in particular, we infer, by Proposition 12, that v] U as well as 21W 
are operator L6vy's measures. 

For  simplicity of notation, regard v and 2 as measures on U and IV, respect- 
ively. Then v = Ira1, D1,0], 2 = I r a 2 ,  0 ,  M 2 ]  , where ml s V, D1 is a non-singular 
covariance operator on U, m2e W, and M2 is a L6vy spectral measure on 
Wo = W -  {0}. Put 

At  = AIU, A 2 =  A I W .  

By [7; Lemma 1.1], we have 

aD1 -- A1D1A*, aM2 = AzM2 �9 

On account of Theorem t5, there are operators Q1 e lE_ (v), Qe e lE_ (2) such that 

AIQ1 = Q1A1, A2Q2 = Q2Ae �9 

Moreover, by virtue of [14; Theorem 7.1], Qz satisfies 

QaD1 + DIQ* < 0 . 

Consider now the measure 2. According to [14; Theorem 7.1, formula (7.7)], the 
formula 

oo 

(13) ~ f (u )M(du )=  ~ ~ f(e'O2u)dtN(du) 
Wo Wo 0 
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Ilull  2 
for every continuous function f such that If(u)l _-< c 1 + I[ u [r 2' establishes a one- 

to-one correspondence between the L6vy spectral measure M of an operator L6vy's 
measure and a Borel measure N with the property Swo log(1 + I[ u ][2)N(du) < 00. 
Thus we have 

09 

f(u)(aM2)(du) = ~ j f(etO~u)dt(aN)(du), 
W o  W o  0 

and, since A2Q 2 = QzA2, also 

0990 

f(u)(A2M2)(du) = ~ f(A2u)M(du) = ~ ~ f(AaetQ2u)dtN(du) 
W o  W o  W o  0 

09 09 

= ~ ~f(etO2A2u)dtN(du)= ~ ~f(etO2u)dt(A2N)(du). 
W o  0 W o  0 

The relation aM2 = AzM2 yields 

(14) aN = A2N . 

By virtue of [6; Theorem 1.2], N has the form 

(15) N(E)= ~ a"7(A"2EC~ZA2), E6~(Wo), 
n = - - o o  

where ? is a finite Borel measure on ZA2 = ZA ~ W. Consequently, formula (13) 
becomes 

oo 

(16) S f(u)M(du)= a-" ~ ~ f(et~ 
WO n = - ~  Z A c ~ W  0 

Now, putting 

D = D ~ O 0 ,  Q = Q ~ Q Q 2 ,  M ( E ) = M z ( E n W ) ,  EeN(Vo) ,  

we easily verify that D, A and Q satisfy all the conditions (i)-(iv). Moreover, 
returning to v and 2 as measures on V, we have 

and 
9(v) = exp {i(ml, v) -- �89 (Dr, v)} 

s v)+ VoS Iei(~'u) -- 1 1 +i(v'U)llu[] 21 M(du) } 

= exp 
t l = - - 0 9  Z A c ~  W 0 

1 + Ile*OA"ull 2 
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since M is concentrated on Wo and e~eA[ W =  etQ2A2 . The equality 

p(v)  = ~(v)s 

yields formula (12) with m = ml + m2. 
To prove the converse implication, assume that for / i  formula (12) holds with 

operators D, A and Q satisfying (i)-(iv). 
Define measure N by (15). According to [6; Theorem 1.1], N is a L6vy spectral 

measure on Wo satisfying (14); moreover, by [6; Lemma 3.2 and Theorem 3.1], 
there exists an e > 0 such that 

It  follows that 

]l v ]J'N(dv) < oo. 
Ilvil > 1 

log(1 + ]LvLl2)N(dv) < c~,  
[[vil > 1 

and since N is a L6vy spectral measure, we get 

log(1 + [Iv[[2)N(dv) < o0. 
Wo 

By virtue of [14; Theorem 7.1], M defined by (13) is a L6vy spectral measure of 
some operator L6vy's measure on W, moreover, the commutat ion property 
A z Q 2  = Q2A2 with A2 and Q2 as in the first part  of the proof, yields, as before, 

If we write 
a M  = A 2 M .  

grl = t ~  1 "~- 1~2~ grl 1 C V ~  m 2 ~  W ,  

and put it -- [m2, 0, M ]  with M regarded as a measure on Vo, then we shall get that 
it is an (a, A)-quasi-decomposable measure concentrated on W and such that 

2 = etQ2.2t, t > 0 , 

where 2~ is concentrated on W. Accordingly, putting v = I-m1, D, 0], we get, by 
condition (i), that v is an (a, A)-quasi-decomposable Gaussian measure concen- 
trated on U such that 

v = etQv * v ,  t > 0 ,  

where v~ is concentrated on U. Since # = v * 2, we infer that kt is (a, A)-quasi- 
decomposable and satisfies (2) with ktt= 2t* v ,  which finishes the proof. [] 

Our final aim is to describe the operator-semistable operator L6vy's measures 
as distributions of some stochastic integrals. To this end, let us recall that for 
# formula (2) holds with Q ~IE_(#) if and only if # is the distribution of the 
stochastic integral J'o etQdZ(t) where ( Z ( t ) : t  > 0) is a homogeneous process with 
independent increments such that E log(1 + ][Z(1)II) < ~ .  
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Moreover, if/~ = [m, D, M]  and 5e(z(1)) = In, B, N] (Y stands for the distri- 
bution), then 

(17) S I  Qetev Qet% ldtN(dv) 
n = - Qm + ~ i + Ilet%l[ 2 1 + [Ivll 2 

Vo 0 

(is) B = - (QD + DQ*), D = ~ etQBetO*dt, 
0 

(19) 
oo 

f(u)M(du) = ~ ~ f(etOu)dtN(du) 
Vo Vo 0 

[I U II 2 A l s o  putting for each continuous function f such that l f(u)l < C 1 + 1{ u ]~l 2" 

O(u) = i(~, u) - �89 (Bu, u) + 5 [r ~ 
Vo 

- 1  i(u, v) IN(dr) 
1 + rlvll 2 

we have 

(20) /2(u) = exp ~ 0(r 
0 

(cf. I-4, 10, 11, 15, 16] for these facts as well as for the definition of the stochastic 
integral). 

Theorem 18 Let # be full. # is an operator-semistable operator LOvy's measure if and 
only if there exist 0 < a < 1, linear operators A, Q on V with the properties N A [1 < 1, 
a(Q) c {c~ ~ II?'re ~ < 0}, AQ = QA, such that 

(21) # = 5~ ( S etedZ(t)) 

where (Z(t) ' t  > O) is a homogeneous process with independent increments and the 
distribution of Z(1) is (a, A)-quasi-decomposable. 

Proof First, let us observe that if 5e(Z(1)) is (a,A)-quasi-decomposable, 
then on account of [6; Theorem 3.1], EHZ(1)[[~< oo for some e > 0, thus 
E log(1 + Jr Z(1))JP) < ~ and the integral 5o etQdZ(t) exists. 

Assume now that for # (21) holds with a, A, Q and Z(t) as in the assumption of 
the theorem. Let Lf(Z(1)) = [n, D, N], ~b = ~ .  Then q5 = exp 0; moreover, 
since 5~(Z(1)) is (a, A)-quasi-decomposable, we have 

which yields 
[~b(u)]" = ei(h'")~b(A *, u),  

aO(u ) = i(h, u) + O(A*u) . 
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Taking into account formula (20), we get 

co oo 
[ki(u)]" = exp S aO(ete*u) dt = exp S [i(h, ere*u) 

O 0 

+O(A*e~~ i(h''u)+~O(e~e*A*u)du 

=ei<h"u)fi(A*u) (h ' - -SetO'hdt)  

which means that/~ is (a, A)-quasi-decomposable, thus operator-semistable. As was 
remarked earlier,/~ is also an operator L6vy's measure. 

Conversely, let # be an operator-semistable operator L~vy's measure. Then 
# is (a, A)-quasi-decomposable with 0 < a < 1 and II A II < 1, and, according to 
Theorem 15, there is Q~IE_(#) such that AQ.-= QA. Let # = [m,D,M]. In the 
proof of Theorem 17 it was shown that for M formula (19) holds with a L~vy 
spectral measure N satisfying aN = AN. 

Define n and B by formulae (17), (18), respectively, and let (Z(t):t > O) 
be a homogeneous process with independent increments such that 5e(Z(t))= 
[tn, tB, tN]. Then E log(1 + ]1Z(1)[[) < ~ because ~llull _-> l log (1 + I[ u [I)N(du) < oo 
(cf. [4-1), so there exists the stochastic integral 5o etedZ(t) - Let v be the distribution 
of this integral. We have, by virtue of formulae (17), (18), (19), (20), 

~(u) = exp ~ ~'(et~ = exp { i ~ (n' o 

l~(Bet~*u, et~*u)dt+S ~ [ei(e'Q',,~} _ 1 
2 0  0 Vo 

i(etQ*u, v) 7 . . . . .  ) f 1 
; +  l~Tigjlvtou)clt; = e x p  , i ( m ' u ) - ~ ( D u ' u )  

i(u, e'%) 7 . . . . . .  ] . , t 

O Vo 1 7~eZ~vll2Jlvtflu)clt; 

{ 1 [ 
= exp i(m, u) -- ~ (Du, u) + vo 5 el<" ~) -- 1 1 + Ilvll 2 M(dv) 

= ~ ( u ) ,  

which shows that # = ~ ( ~ o  etQdZ(t)) �9 Also, since/~ is (a, A)-quasi-decomposable 
and AQ = QA, we get 

aB = -[Q(aD) + (aD)Q*] = --(QADA* + ADA*Q*) 

= -A (QD + DQ*)A* = ABA* 

which, together with the equality aN = AN, implies that ~-~(Z(1)) = In, B, N]  is 
(a, A)-quasi-decomposable, proving the theorem. [] 
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Now, identify V as IR d, and put 

Y(s) = i etQdZ(t) , s > 0 .  
0 

If  we let Go denote the generator  of the process (Z(t) : t > 0), i.e. 

d 1 d 
k~= BikDiDkf (x )  (Go f)(x) = i=1 ~ aiD, f(x)  - ~ i, =1 

+ f ( x  + y) - f ( x )  - 1 + Ily[] 2 
d i = 1  

where Dz stands for the partial derivative with respect to the i-th coordinate,  [Big ] is 
a positive definite matrix and a~ ~ IR, then (Y(s):s > 0) is a M a r k o v  process with 
generator  G of the form 

d 

(22) G = Go + ~ QikXkDi , 
i,k=l 

where [Qik] is the matrix of the operator  (2 (cf. [10, 11, 16J). 
A Markov  process with generator  as above is called a process of Ornstein- 

Uhlenbeck type. Taking into account  the relation 

et(2dZ(t) = lira i et~ 
0 s~az 0 

we get 

Corollary 19 Let # be full. fl is an operator-semistabIe operator L~vy's measure if and 
only if there exist 0 < a < 1, linear operators A, Q with the properties 
[I AII < 1, ~(Q) ~ {~ e r  re c~ < 0}, AQ = QA, such that l~ is the limit distribution of 
a process ofOrnstein-Uhlenbeck type generated by generator G ofform (22), where Go 
is the generator of a homogeneous process with independent increments associated 
with an (a, A)-quasi-decomposable probability measure. 

6 Appendix 

In this section, we characterize the set of limit points of a compact  semigroup of 
linear operators acting in V. Let Q be a linear opera tor  on V and let 
Go = {ete:t  > 0} be a semigroup such that supt>_ o [re re [[ < oc. Put  ~ = ~ o .  
Then ~3 is a compact  abelian semigroup of linear operators on V. Let IH denote the 
set of the limit points at infinity of 113o, i.e. T~ IH if and only if there is a sequence 
t, --. ~ such that  T = lim,_~ ~ e t-Q. We have 

~3 = q~o u lI-I. 

Take an arbitrary R~(13o, R = e  s~ and T~IH, 
R T e  IH, which means that 

RlI-I c IH . 

T = l i m , ~  e t"Q. Obviously,  



340 A. Luczak 

References 

1. Bellman, R.: Introduction to matrix analysis. New York Toronto London: McGraw-Hill 1960 
2. Hensz, E., Jajte, R.: On a class of limit laws. Teor. Veroyatn. Primen. 23, 215-221 (1978) 
3. Jajte, R.: Semi-stable probability measures on IR N. Stud. Math. 61, 29-39 (1977) 
4. Jurek, Z.: An integral representation of operator-self-decomposable random variables. Bull. 

Pol. Acad. Sci., Math. 30, 385-393 (1982) 
5. Krengel, U.: Ergodic theorems. Berlin New York: Walter de Gruyter 1985 
6. Luczak, A.: Operator semi-stable probability measures on IR u. Colloq. Math. 45, 287-300 

(1981); Corrigenda to Operator semi-stable probability measure on IR u. Colloq. Math. 52, 
167-169 (1987) 

7. Luczak, A.: On some subclasses of operator semi-stable and operator L~vy's measures on N N. 
In: Ko~egnik, J., (eds) Trans. Tenth Prague Conf. Information Theory, Statist. Decission 
Funct. and Random Processes, pp. 145-154. Prague: Academia Prague 1988 

8. Luczak, A.: Elliptical symmetry and independent marginals of operator L6vy's measures. 
(preprint) 

9. Parthasarathy, K.R.: Probability measures on metric spaces. New York: Academic Press 1967 
10. Sato, K., Yamazato, M.: Stationary processes of Ornstein-Uhlenbeck type. In: It6, K., 

Prokhorov, J.V. (eds.) Probability theory and mathematical statistics IV, USRR-Japan 
Symposium (Lect. Notes Math., vol. 1021, pp. 541-551) Berlin Heidelberg New York: 
Springer 1983 

11. Sato, K., Yamazato, M.: Operator-self-decomposable distributions as limit distributions of 
processes of Ornstein-Uhlenbeck type. Stochastic Processes Appl. 17, 73-100 (1984) 

12. Sharpe, M.: Operator-stable probability distributions on vector groups. Trans. Am. Math. 
Soc. 136, 51-65 (1969) 

13. Stoer, J., Witzgall, C.: Convexity and optimization in finite dimensions I. Berlin Heidelberg 
New York: Springer 1970 

14 Urbanik, K.: L~vy's probability measures on Euclidean spaces. Stud. Math. 44, 119 148 (1972) 
15. Wolfe, S.J.: A characterization of certain stochastic integrals. Stochastic Processes Appl. 12, 

136-145 (1982) 
16. Yamazato, M.: OL distributions on Euclidean spaces. Teor. Veroyatn. Primen. 29, 3-18 

(1984) 


