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Summary. The sampling distribution of several commonly occurring statistics are 
known to be closer to the corresponding bootstrap distribution than the normal 
distribution, under some conditions on the moments and the smoothness of the 
population distribution. These conditional approximations are suggestive of the 
unconditional ones considered in this paper, though one cannot be derived from 
the other by elementary methods. In this paper, probabilistic bounds are provided 
for the deviation of the sampling distribution from the bootstrap distribution. The 
rate of convergence to one, of the probability that the bootstrap approximation 
outperforms the normal approximation, is obtained. These rates can be applied to 
obtain the L v bounds of Bhattacharya and Qumsiyeh (1989) under weaker condi- 
tions. The results apply to studentized versions of functions of multivariate means 
and thus cover a wide class of common statistics. As a consequence we also obtain 
approximations to percentiles of studentized means and their appropriate modifi- 
cations. The results indicate the accuracy of the bootstrap confidence intervals 
both in terms of the actual coverage probability achieved and also the limits of the 
confidence interval. 

1 Introduction 

The asymptotic accuracy of the bootstrap procedure has been studied by several 
authors. Under some regularity conditions (smoothness and moments), for several 
types of statistics, the difference between the bootstrap distribution (which is 
random) and the actual distribution is o(n-l/z) a.s. These results hold, for example, 
for the sample mean, t-statistic, quantiles and certain smooth functions of multi- 
variate sample means. See Bickel and Freedman (1981), Singh (1981), Babu and 
Singh (1984). However, all these results are a.s. results and there is no way of 
knowing if this improvement over the normal approximation (the latter being 
typically O(n-1/2)), holds with a probability approaching one at a fast rate. This 

* Research supported in part by NSA Grant MDA 904-90-H-1001 



302 A. Bose and G.J. Babu 

issue is specially relevant in confidence interval problems, where both the eventual 
coverage probability and the accuracy of the critical point are important. See Hall 
(1986) for a discussion of such problems. 

In this paper we study the probabilistic aspects of the bootstrap approximation. 
Let X, X1 . . . . .  Xn be ii.d. random vectors in IR m with distribution function F. Let 
K~ = K~(X1 . . . . .  X~) be a statistic and /-/n be the distribution function of 
K~-kn(F)  where {k,(F)} is a sequence of constants. Appropriate bootstrap 
version of H,  is denoted by H*.  Our main result states that under certain 
conditions on K,, k, and the moments and smoothness of F, 

(1.1) P(sup lH~(x)- H*(x)[ > ~nn-1/2) <= Cn-(l+?3, 

where e, ~ 0 is an appropriate sequence and 7 > 0 depends on the moment 
assumptions. Using Lemma 2.1 of Babu and Bose (1988) and (1.1), one can derive 
confidence intervals and estimates of associated errors like 

sup ]P(K, - k,(F) < H*-l(cO) - ~1 <= enn -1/2 + Cn -(l+~). 
0 _ < e < l  

We provide an estimate of e,. This leads to a better understanding of confidence 
intervals and coverage probability, The inequality (1,1) is obtained under strong 
non lattice (s.n.1.) assumption on the distribution F. The estimates are improved 
under additional moment conditions and Cramer's condition. The class of statistics 
to which our results are applicable include sample means and their smooth 
functions. Result (1.1) is not true when Xi's are lattice variables. This is clear from 
statement (1.7) of Singh (1981). 

Under stronger moment conditions than those assumed in deriving (1.1), Babu 
and Bose (1988) proved that 

(1.2) P (  sup lH,(x) - H*(x), >= Cn- l(logn)~) < Cn -1. 

This in turn shows that the coverage probability of the bootstrap critical point is 
accurate with error O(n-l( log n)~). Clearly (1.1) and (1.2) do not follow from each 
other but there is some similarity between the results. 

Abramovitch and Singh (1985) have shown that a statistic Kn can often be 
modified to obtain/<,  which satisfies sup [P(/<,, < x) - ~(x) l = O (n-1). Further if 

x 

/<* is an appropriate bootstrap version of /<, then sup l P ( / ( ~ < x ) -  
x 

P*(/(* < x) l = o(n- 1) a.s. We also extend our result (1.1) and provide probabilistic 
bounds for such modified statistics. For  instance we show that if Hn denotes the 
c.d.f, of a modified t-statistic and H* is the corresponding bootstrap version, then 
for 0 < t < 1, H * - I ( 0  - H21(t) = o(n -1) w.p. 1 -- O(n-(l+~)). 

Our results thus complement the a.s. results available in the literature and show 
that the chances of the bootstrap distribution outperforming the normal approxima- 
tion are very high. These results can be used to improve estimated confidence 
intervals. 

The original version of this paper was written in 1985. Subsequently we 
discovered that L p estimates for the difference between the bootstrap cumulative 
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distribution function (cdf) and the original cdf were obtained by Bhattacharya and 
Qumsiyeh (1989). Some of their results can be derived from the present work and be 
proved under weaker conditions. See Remarks 2.7 and 2.8. In one case requirement 
of moment of order s 2 is reduced to s ( s -  1) and in another, requirement of 
Cramer's condition is weakened to the distribution being merely strongly non 
lattice, thereby allowing some discrete distributions. 

The technical details of the proofs are given in the appendix. We make repeated 
use of the techniques of Bhattacharya and Ranga Rao (1976) in obtaining bounds 
for the difference between distribution functions and their Edgeworth expansions. 
The a.s. results mentioned earlier follow from our results but with additional 
assumptions. On the other hand, our probabilistic bounds cannot be obtained 
from the a.s. results. 

2 The main results 

In this section we will state the main results and sketch some of the proofs. Most of 
the notations used in the statements of the results are explained below. Additional 
notations used in the proofs are explained in the appendix. 

Let Xk, k > 1 be independent observations from a common cdf G on IR m and 
let F,  be the empirical distribution which puts mass 1In at each Xk, k = 1 . . . . .  n. 
Let G,(x) = Fn(x q- Xn) where ) f ,  = n-  1 ~ =  1 Xk. Let X ' i ,  i = 1, . . . , n (or 
X*, i = 1 , . . . ,  n in short) be i.i.d, from F,.  Let D denote the dispersion matrix of 
G and let V, denote the sample dispersion matrix. Whenever V, is positive definite, 
T. denotes a, matrix such that T, V21T' ,  = I. The distribution function of 
H-1/2 Enk= 1 ( X k  - -  EX1)  is denoted by Q, and Q* denotes the (conditional) distri- 
bution function of n-1/2 ~ =  1 (X~' - Jr.) given X1 . . . . .  X,. In general the pres- 
ence of (*) indicates that we are dealing with a bootstrap quantity. The sth absolute 
moment of X, EHX1 l[ ~ for s > 0 is denoted by p~, Xv = z~(G) denotes the v th 

= ~ = o  n-~/ZP~( - ~o,o; {X~}) is the usual signed cumulant of G and I[tn, s -  2 s-2 
measure associated with Edgeworth expansions (see Bhattacharya and Ranga Rao 
(1976), page 54, for a detailed discussion). For a real valued measurable function 
f on IR% let M s ( f ) = s u p [ f ( x ) l ( l +  Ilxll2) -1, w ( f e ,  x ) = s u p { I f ( z ) - f ( y ) l :  x 
Itx - YII < e and Ilz - x[I < e} and co~(lR") = sup{lf(x)l 'x~lRm}. To state our 
results, we define for s > 3, 

l s--2 t B , , , s = f f  d Q , , -  2 n - " /2P , ' ( - -~o , . : {Z . , } )  
r=O 

and its bootstrap version, 

Finally 

t 8--2 t n*,~ = ~ fd  * Z n - " / : e , (  " �9 Q .  - - ~ o , v .  {z~*}) r=O 
h . , s (a ,  ~) : E~(ll X l  fist( H X l  [I ~ ~ n l / 2 ) )  �9 
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The two standard assumptions needed in deriving Edgeworth expansions are 
strong non-lattice (s.n.1.) of G or that G satisfies Cramer's condition, 
lira supl!, ~ ~ ~ [d(t)l < 0 < 1, where d denotes the characteristic function of G. We 
of course get much stronger results in the latter case. 

Theorem 2.1 Let G be s.n.l., D be positive definite and P3+,~ < oo for some y > 3. 
Then 

P ( s u p  [Qn(D1/2x) - Q*(T~x)] > n-~/2s,) = 0(n-(1+'/)/4 ~ ( 2  +')) , 

provided nZ~.n2 - -  C(3 + 7 + 1)log n ~ oo. 
In particular it follows that for some e, ---, 0 and for some 6 > O, 

P ( s u p  [ Q , ( D 1 / 2 x ) - Q * ( T , x ) ] >  n-1/zen)<=C ~, n-(l+a) < oo. 
n = l  n=l 

Babu and Singh (1984) have shown that sup [Qn(D1/2x) - Q*(Tnx)I = o(n-1/2) a . s .  
x 

Theorem 2.1 provides an estimate of the rate of this convergence. Also note that the 
above theorem yields much more than the complete convergence of sup[ 

x 

Q,(D1/2x) - Q,(T,x)[. In fact it gives a r-quick limit result and may be useful in 
sequential confidence band estimation of the distribution function. See Babu and 
Singh (1982). See Theorem 2.6 for a similar result for studentized statistics. 

Theorem 2.1 can be derived from a more technical Theorem 2.2 given below, 
using moderate deviations results of Michel (1976). 

Theorem 2.2 Suppose G is s.n.l., D is positive definite and P3+~ < oo for some Y > O. 
Suppose f is a real valued bounded measurable function and (e,,) and (~,) are two 
sequences between 0 and 1 such that max(n262, ne 2/3) - C(3 + y + 1)logn ~ oo. 
Then 

< C[n-(3+~-l)/3en(3+~)/3 -+-(1 - -P(C 1 ~ II Z, II ~ c2)) 

+ P(p3(6.) >-_ c3) + P(p3(6.) > c48./~.) 

+ n-(3+~'-2)/4(~n(3+2~)/2~nl/2An, 3 + y ( G ,  On) ' ] .  [ ]  

The next theorem is an improvement on Theorem 2.2 under additional 
assumptions. 

Theorem 2.3 Suppose G satisfies Cramer's condition, D is positive definite and 
M~,( f )  < ~ for some s' <= s. (e,) and (6,) are sequences between 0 and 1 such that 
m a x ( n 2 6 2 , n ~ 2 . / s ) - C ( s + y +  1)logn--, oo and p~+~< oo for some s >  3 and 
y >_ O. Then, 
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s CIn-(S+'e-1)e2(s+~)/s + (1 - P(Ca <= IIT, II s C2)) 

+ P(p3(G,) >__ C3)+ P(p~(G,) > C4 e~) 

Jr n-(S+?- 2)/4 (~n(S+ 2"~)/ZSnl/2 An, s+,/(G, (~n) 1 �9 

The constants Ci's i= 1 , . . . ,  4 in Theorems 2.1, 2.2 and 2.3 can be chosen, and 
C depends on C~'s, 7, tl and G, and is independent o f f  [] 

Remark 2.4. Note that in the above theorems, the random errors of empirical 
Edgeworth expansion have been approximated by non random errors, except the 
modulus of continuity term. [] 

Remark 2.5. The bounds in Theorems 2.2 and 2.3 can be significantly simplified 
under additional conditions. In the following discussion, s has a value 3for Theorem 
2.2. If s + 7 > 4 then the second term in both the bounds can be dropped. Further if 
s + 7 > 6 then the first and the third terms can also be dropped. Finally if ~ > s, 
then the entire bound can be replaced by 

o(n-Y/S(gn/(~n)-(s+r)/*) Jr O(n-(s+~- 2)/4~Sn(S+ 2e)/2gni/2 An, s+r(G, an)), 

provided we also have 6,/~, = 0(1). The above simplifications can be achieved by 
using moderate  deviation results (Lemma A3) on II x l  II, [I x l  [I 2, II x~ II 3 and II x~ IlS 
We omit the details. [] 

3 Studentized statistics 

A version of Theorem 2.1 is true for studentized statistics. However, we will not 
state the result for studentized statistics in its most  general form to preserve clarity 
of exposition. [] 

Let H be a function from IR m to IR which is thrice continuously differentiable in 
a neighborhood of/~ -- E(Xi) and let l(z) denote the vector of first order partial 
derivatives of H evaluated at z. Suppose 2(.)  = (21(') . . . .  ,2g( ' ) )  is a continuous 
function from 1R m to lR 0 and v(.) is twice continuously differentiable real valued 
function on IR g. Define the studentized statistic 
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and let t*(X*, F.) be its bootstrap version, 

t*(X*, F,) = nl /2(H(X*) - H(R~)) /v(n  -1 k~=l 2(X*) ) .  

Further assume that 

v ( e F 2 ( x l ) )  = [ t ' ( ~ ) o ; ( u ) Y / ~  = a ,  

and v(EF 2(X*)) = [/ '(X,)V,I(X,)] 1/2 = a,. 

Let L(Xi)  be a linearly independent subcollection of (X,, 2(Xi)) with the property 
that all the elements of (Xi, 2(X~)) can be expressed as linear combinations of 
L(X~). 

Theorem 2.6 Let L(X1) be strong non-lattice and EI]L(X1)II 3+~ < ~ for some 

7 > 3. Then P(sup[Pr( t (X,F)  <-_ x) - P*( t*(X,F, )  <-_ x)l _>- n 1/2e~) = o(n -~l+a)) 
x 

for some e,-+O and 6 > O. [] 

The proof of this theorem uses Taylor expansion arguments given in the proof of 
Theorem 4 of Babu and Singh (1984), followed by an application of Theorem 2.1. 
We omit the details. In fact, one could also provide bounds for e, and b and extend 
the result to an s-term expansion along the lines of Theorem 2.3 under stronger 
conditions. 

Remark 2.7. We will now derive Theorem 2.1 of Bhattacharya and Qumsiyeh 
(1989) (henceforth referred as BQ) from Theorem 2.3. We will prove the result only 
for sample means whereas BQ work with studentized means. This case can also be 
dealt with, by using the Taylor expansion and obtaining three term Edgeworth 
expansions for t(X, F) and t*(X, F~) along the lines of proof of Theorem 2.3. 
Using s = 4 in Theorem 2.3, we get 

2 

Q * ( T , x ) -  ~ n -~/2 P*(y)cf(y)dy = op(n -1) 
r = 0  - -o0  

for some polynomials P*'s. Further, 

2 

Q.(Dlj2x) - Z n-rJ2 i 
I " = 0  --cO 

Thus it follows that 

P~(y)~b(y) dy = o(n- 1). 

n(Q,(D1/Zx) - Q*(T,x)) = n 1/2 i (Pt(Y) - P•(y))d2(y)dy 

+ i (Pz(Y) - P*(y))O(y)dy + op(n-1). 
- o o  

The coefficients involved in the polynomials are smooth functions of the moments. 
By CLT, nl/2(Pl(x ) - P*(x)) --, N(O, aZ(x)) where aZ(x)/O2(x) is a polynomial in x. 



Accuracy of the bootstrap approximation 307 

By SLLN, the second term in the right side of the above equality --+ 0 a.s. This 

shows that n(Q,(Ol/2x) - Q,(T,x)) ~ N(O, ag(x)). Note that we need E II Xl ]16 < oo 
to use the CLT since P1 involves the third moment. For  studentized statistics we 
need EIIXlll s since in that case P1 involves the fourth moment. [] 

Remark 2.8. Next we show how Proposition 3.1 of BQ follows from our results. 
Note that under Cramer's condition, 

Q H s-2n_r/2p~r (X) ) (2.1) P s p Q * ( x ) -  ~ >= n-(S-2)/28 n 
r = 0  

= o(n -(s-2)/2) for some e, ~ 0 provided P~(s-,) < oo. 

This follows by using moderate deviation bounds on the right side of Theorem 2.3. 
It is clear that the inequality (2.1) is the main fact needed in the proof of Proposition 
3.1 of BQ. The other auxiliary results needed in the proof are straightforward 
consequences of moderate deviation results. It may be pointed out that BQ need 
ps2 < oo. Our proof improves the result by proving it under the weaker assump- 
tion of ps(~_ 1) < oo. Also note that BQ need the Cramer's condition. For  the case 
s = 3, we do not need Cramer's condition but only s.n.1. Thus we can allow many 
discrete distributions. [] 

Modified statistics 

The order of errors can be improved by modifying the statistics as in Abramovitch 
and Singh (1985) (henceforth referred as AS). In principle this modification can be 
carried out for statistics admitting suitable Edgeworth expansions. Moreover as AS 
have pointed out, this modification can be carried out to as many steps as we please 
with corresponding reduction in error. To keep the discussion simple, we will deal 
with only one-step modified t statistic. In this discussion X~'s are assumed to be 
one-dimensional. Let 

t n = /,/1/2 ( ) (  n - -  E(Xl))/Sn, 

where 2 1 ~, (S  k . , ~ n ) 2  Sn .= ~l- -- . 
k = l  

Let t~, be the one-step modification of t, (see AS for a detailed discussion) given by 

t l ,  = t, + n - l S , ( X i -  Jf,)a (2t2 + 1)(6n~/Zs3)-~ . 

Under sufficient conditions on G, t l ,  has an expansion (uniformly in x) of the form 
(we omit the proofs), 

(2.2) P( t l ,  < x) = 49(x) + n - lp l (x )  + n-3/Zp2(x ) + 0(n-3/2). 
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A similar expansion holds for the bootstrap version t*, (by an appropriate 
strengthening of Theorem 2.2) and 

(2.3) P{sup[P*(t~;n < x) - ~(x) - n - l p T ( x  ) - n-3/2p~(x)[ > n-3/zen} 
x 

= o(n -(1+~ for some 6 > 0 and a , ~ 0 .  

From the above two equations it easily follows (as in Remark 2.7) that, 

(2.4) n3/2(t'(tl.  < x) - P*(t~'. __< x)) & N(O, o-~(x)), 

and 

(2.5) ~ e{suplP( t~ ,  < x) - P*( t% < x)l > n-le, ,} < ~ n -(~ +6)< oo, 
n = i  x n = I  

for some 6 > 0 and ~, ~ 0. 
Using formal Cornish-Fisher expansion, Johnson (1978) modified the t-statistic 

to eliminate the effect of population skewness. AS procedure, though different from 
Johnson's approach, gives essentially the same result when applied to the first step 
correction of Student's t-statistic considered above. The procedure developed by 
AS immediately suggests higher order corrections and makes the idea of these 
modifications clear mathematically. Our results (2.4) and (2.5) strengthen Theorem 
5 of AS. The modifications of t-statistic and the results of this section are useful in 
practice as the bootstrap of the modified t automatically corrects for skewness and 
other factors and gives a better approximation (2.5) than the bootstrap of t-statistic. 

Application to percentiles and confidence intervals 

Our results on direct Edgeworth expansions can be converted into results for 
percentiles. Some of these results are given below. Again, to keep the discussion 
simple, we do not give exact estimates for the o(- ) terms. To state the results, define 

Q,(x) = Qn(D1/ex), Q*(x) = Qn(T,x) , 

Hn(x) = P(tn < x), H*(x)  = P*( t*  =< x) ,  

Hl , (x )  = P ( t l ,  < x), and H~,(x) = P*( t l ,  < x) .  

Theorem 2.9 Fix t ~ (0, 1). Let  7 > O. 
a) I f  p6+~ < oo and X1 is s.n.l, then 

(2.6) ~ * - l ( t )  - ~-~( t )  = o(n 1/2)w.p. 1 - O(n-~l+o)). 

b) I f  pl2+~ < oo and (Xi, X~)  is s.n.l, then 

(2.7) /q* z(t) - H ; l ( t )  = o(n -~/~) w.p. 1 - O(n-~+~)) .  

c) I f  P24+v < oo and (X~, X~)  satisfies Cramer's condition then 

(2.8) H %- ~ (t) - B [1 (t) = o (n- t) w.p. 1 - O (n- ~1 + 6)). 
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In (2.6), (2.7), (2.8), ~ > 0 depends on 7. Further c~ > 0 if7 > 0 and o( . )  terms are all 
nonrandom quantities. [] 

Remark  2.10. Note that for the t-statistic little more than the existence of 12 
moments  are assumed in Theorem 2.9b). With some additional effort and messy 
arguments, it may be possible to reduce this requirement to existence of 6 moments. 
See Babu and Bai (1990) for results on Edgeworth expansions under minimal 
moment  conditions. Similar remarks apply to parts a) and c) of the theorem. Under 
stronger moment  conditions, the above theorem gives mathematically stronger 
forms of results given in Babu and Singh (1984) and Abramovitch and Singh (1985). 
With these extra conditions their results follow from ours. However, our results 
cannot be derived from theirs since those results are all a.s. results with no 
corresponding probability statements. [] 

Remark  2.11. We sketch below how our results may be applied to confidence 
interval problems. For  a general discussion on bootstrap confidence intervals, see 
Hall (1988). Suppose X~'s are real-valued with unknown mean # = E X I ,  for which 
a 100(1 - e)% confidence interval is desired. To keep the discussion simple, we will 
limit ourselves to a derivation of one sided confidence interval for a fixed c~, 
0 < c~ < 1. We will assume that conditions of Theorem 2.6, or more generally 
conditions for (2.5) and (2.8) to hold, are true. Recall that 

n~(J(, - #) /2 - # 
t, - - , say 

S n !J n 

t~, = t, + n--~#,(2t 2 + 1), where 

#, = Y . ( X i -  X,)3/(6ns3,). 

Using Theorem 2.6 and Lemma 2.1 of Babu and Bose (1988) and noting that the 
maximum jump of H ,  is o(n-~), 

IP(t.  < H * -  1(c0) - c~l = o(n-{), 
yielding 

P ( #  > ~ - v ,H*-l (oO) = o~ + o ( n - { ) .  

It  is interesting to note that AS derive such confidence intervals, correct up to 
o(n--~), but use the modified statistics t~, to do so. We may use t l ,  and improve as 
follows. Define 

t*~ = H 1% 1 (c0, 

b, t% n ~#n(1 + ,2 4 2, ,2  ` = - - *  2 t , ~ )  AV #2tl@~z(1 "1- VlctJ. 
n 

Consider the function 

q(x) = x + n-~#,(1 + 2x2). 

It  is easily seen that on the set I xl s en ~, e > 0, (small) t/ is a strictly increasing 
function w.p. 1 - 0(n-(1 + a~). Define A, = {]t%l < log n, 1#. I <= c, I tn I <---- en ~} where 
C is sufficiently large. Note that P ( A ~ ) =  0(n-(l+a)). On A,, t / (b , )=  t*~ + a,, 

3 
where a, = 0(n-2(log n)6), 
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Using this, it can be easily seen after some algebra that 

I P ( t .  < b n ) -  el = 0(n -(1+~ + I P ( H  *n(tln - an) < ~) - el. 

The second term above equals 

I P ( U l n ( t l , , )  < c~ + Hl , , ( t l n )  - H l n ( t l n  - -  an) - ( H ~ . ( t l n  --  an) --  H l n ( t l .  - -  an))I. 

Noting that sup[Hln(x) - H l n ( x  + 3)1 < C6 + o(n-1), and using Theorem 2.9, it 
x 

follows that, 
IP( tn  < b . ) -  el = o ( n - 1 ) .  

Hence 
P ( #  > Ft - vnbn) = e + o ( n - 1 ) .  

As is clear from the work of Hall (1986), the o ( n -  1 ) term, derived above cannot be 
uniform in e, 0 < e < 1. To derive bounds which hold uniformly in e, we proceed as 
follows. 

Define 
f*. = m a x ( - l o g  n, min(t*~, log n)) 

fin = t*~ n - ~ # . ( 1  + - ,2  4 - , z  - 2 t 1 ~ ) +  # , Z ( l + 2 t l ~ ) .  
n 

Proceeding as before, but using 

J~n = {[t*~[ < logn,[#,[ < c,[G[ < 21ogn} 

it can be shown that for some a > 0, 

sup [ e ( h ,  < t*~) - el = o ( n -  l( logn)U) . 
0<~<I 

We omit the details, which involve use of the moderate deviation result in Lemma 
A3, Theorem 2.9 and Lemma 2.1 of Babu and Bose (1988). This shows that 

sup ]P(# >/~ - v.bn)  - e[ = o ( n - l ( l o g n ) ~ )  . [] 
0<~<i 

P r o o f s  o f  the Theorems .  Theorem 2.9 is a consequence of Theorems 2.1, 2.3 and 
equations (2.2) and (2.4). Theorem 2.1 follows by using the bound in Remark 2.5 
and choosing (e,) and (6,) suitably. We omit the details. Theorem 2.6 is essentially 
a Taylor series argument together with Theorems 2.1 and 2.2. Thus it is enough to 
prove Theorems 2.2 and 2.3. We will prove Theorem 2.3 below. Proof  of Theorem 
2.2 is similar except that we have to use the second parts of Lemma A1 and A5 since 
the Cramer's condition is replaced by s.n.1. We omit the details. 

To prove Theorem 2.3, without loss of generality assume E X ~  = 0. Denote 
A*(6) = A., s(Gr., 6), A*(6) = A~(Gr~,  6), 0* = 0n(Gr~). (See appendix for the nota- 
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tions.) By Lemma A1 of appendix, on the set 

(2.9) n-(~-z)/Z A*(1) < l/(8m),O < Cl < 2r < A t  < C2 < ~ ,  

[B*,~[ < Cn-(~-z)/2A*(6)[1 + Ms, + Sw(f  ~ T21, 

exp ( -dn) ,  y) exp ( -y2/100)dy]  

(2.10) + C(1 + Ms, ) [ e x p ( -  dn) + n-(~-2)/ZA*(1)] 

+ C sup n~+mexp(dn)(O*) "-~ , 
0 < ~ < s + m + l  

for some d > 0 depending only on 0* given in (A.1). 
To prove the theorem, we need probabilistic bounds for A*(5), A*(1) and 0". 
Recall that C1 < 2T~ < At .  < C2. Note that 

(2.11) 0* = PG~.(IIXII >--_ n m )  + sup{lGT.,(t)l:(16p3(Gr.)) -1 < lltll < exp(dn)} 

= 01, + 02,, say. 

Fixing ~, 0 < ~ < 1/2, we have 

(2.12) P(OI" > u) = P (  n-1 k=~ ~" I(IIT,(Xk-- X.)H ~ nl/2) ~ 0~) 

< P ( n  -1 k=l~ I(llXk-- )(.11 > Cnl/2)>o:) 

_-< ~-~P(IlXk]I + 112.11 >_- Cn ~/2) 

_-< ~-~[P(IIXkH >- Cn ~/~) + P(]IX.II >_- 6nl/2)3. 

By Markov's inequality and Lemma A3 with 2 + 6 = s + 7, the right side of (2.12) 
is bounded by 

(2.13) Co~- l[n-(s+~)/Z An, s+r(C , G) + o(n-(3s+ 3r- 2)/2)3 

Since X~ satisfies Cramer's condition, by Lemma A5, 

(2.14) P(Oz, >= c~) < P(p3(G,) ~ C3) + o(n-(~+r-1)) . 

On the other hand, 

A*(6) < A.,~(G., C5) + Cfn -~ ~, [IX k -- )(.][~I([[Xk - )s < C0nl/2) 
k = l  

= A 1% + A ~ say. 
Thus 

+ P(ll:?. l[ --> C(~,/O,)~/s). 
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By the given condition, using Lemma A3, the second term is 

(2.16) o(n -(~+ ~- 1)(e,/8.)-(s+~)/s) . 

By Lemma A4 of appendix 

(2.17) P ( A  ~ => 8n) :-< 2Fl-(s+~- Z)/4 6n(S+ Zv)/2gn 1/2AJn,s+ 7(G, (~n) 

+ o(n -(~+~- 1)eff(~+~,)/s ) . 

Note that when lim sup 0, < l the last term in (2.10) is exponentially small. Hence 
n 

the theorem follows from (2.9), (2.10), (2.13), (2.15), (2.16) and (2.17). [] 

Appendix 

We first list all the notations. Then we state all the Lemmas we used to prove the 
main results. The proofs in most cases are either omitted or merely sketched. 

Suppose G is any distribution on IR", m > 1, (G may be random) and 
XI(G) = X i  = (X i l ,  . . . , X , , )  are i.i.d, observations on G. Let D(G) = D be the 
dispersion matrix of X1 which is assumed to be positive definite. Let 
~ = ( e l , . . . ,  era) denote a multi-index with e i > 0  as integers and let 

am #~(G) #~ = E ( X  ~) = E ( X ~  . . .  X lm). Let z~(G) be the c~ th cumulant of G. Sup- 
pose p s ( G ) =  EG[IX~[I s. Let P , ( - ~ o , v :  {Zv}) denote a signed measure whose 
density is a polynomial multiple of the N(0, V) density and the coefficients of the 
polynomial are specific functions of the cumulants {Zv}. See Bhattacharya and 
Ranga Rao (1976), page 54 for details. Let 

k 

~b,,k = E n-r/2 Pr(--q)o,v:  {Z~}) , 
r = O  

A,,s(G, 6) = A,(G,  c5) = A,(8) = EG(l lXl l l ' l ( l IX~l l  > ~5nl/2)) , 

and As(G , 8) = A(6) = c~EG(IIX 111.I([IX1 II < c5nl/2)) -}- An(D)" 

Suppose T is a positive definite matrix such that T D -  ~ T '  = I. 

Let S, = ~ (Xk -- E ( X , ) ) ,  G(t) = EGexp( i t 'X , ) ,  
k = l  

(A.1) O,(G,d) = 2PG(IIX~II ->_ n t/2) + sup{lG(t) l:(16p3(G)) -1 < IltlJ < exp(dn)} , 

c~,(S, ~l) = 2PG(lIXxll > n ~/2) + sup{Id(t) l :(16p3(G)) -~ < Iltll < ~-xn},  

F,(x)  = n -1 ~ I (Xk < X), and G,(x)  = F , ( x  + X',) , 
k = l  

where Js = n-1 ~ Xk. Let 
k = l  

Gr(x) = P ~ ( T X 1  <-_ x), Q,(x)  = PG(n-1/2S,  < x) . 
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For any square symmetric matrix A, 2A (respectively AA) = minimum (resp. max.) 
eigenvalue of A. Recall that for f :  IR" ~ IR, 

where 

M,.(f) = sup(1 + Llxll-~)1 f (x ) l  and 

w(f,e,x)  = sup{If(z) -f(Y)l "z, y ~ B(x, e)}, 

B(x, e) = {y: Ily - xll < 5} . 

Let C~, denote generic constants. Their dependence on other quantities will be clear 
from the context. 

Our first Lemma is the key Lemma used to prove the main results. The first part 
of the Lemma is a modified version of Theorem 20.1 of Bhattacharya and Ranga 
Rao (1976) (see page 208) and the second part is a modification of their Theorem 
20.8 (see page 218). 

Lemma A1 Let X ~ . . . . .  X ,  be i.i.d, with EX  x = O, p,+ y < ~ for some s > 3, ~ > 0. 
Whenever n -(~-2)/2 A,(1) < 1/(8m), and 0 < C1 < 2T < AT < C2 < oo, then we 
have 

Q }) ~fd ,, - ~ n-"/zP~(-@o,D:{Z,~ <= Cn-(S-2)/2A(GT, 6) 
r = O  

[ l  + Ms( f )  + , ~ ( f ~  T - l ,  exp( -dn) ,y )exp( -y2 / lOO)dy]  

+ (t + MA [ e x p ( -  dn) + n-(~-2)/ZA~(t)] 

+ C sup n s+mexp(dn)(O.(GT))" ~. 
O~<a~<s+m+l 

The constant C depends on C1, C2, S, m and d and is independent of G. 
I f  f is a bounded function, then 

I ~fd(Q, - ~,, 1)[ < Cn-1/ZA3(GT, 6) 

+ C sup n,.+l(~.(Gr, q))n-~ 
O < a _ < m + l  

+ Cn-1/2A.,3(1) 

The constant C depends on C1, C2, m and ~l. [] 

Proof The result follows by carefully keeping track of all the bounds appearing in 
the proof of Theorem 20.1 and 20.8 of Bhattacharya and Ranga Rao (1976). We 
also need to use a lemma of Sweeting (1977) given below for bounded f, and its 
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modification given in Babu and Singh (1984) for f with M ~ ( f ) <  oo. These 
Lemmas replace the convolution Lemma used by Bhattacharya and Ranga Rao 
(1976) to prove their theorems. [] 

Let K be a kernel on IR m such that e = K(l[xl] __< 1) > 3/4. L e t f  be a measurable 
function on IR" bounded by 1. Let K,(x) = K(ex). 

Lemma A2 (T.J. Sweeting) We have 

ISfd(P - Q)I <-_ 21IK.1;2.-~ , ( P  - Q)II + 2/n + 2K(Ilxll > n~/~ -~) 

+ sup ~o)(f  x - y, 2r/n-1/2)dQ(y) . 
Ilxll < 2(logn)" ~/* 

[] 

(A.2) 

and 

(a.3) 

The truncated moment  A, appearing in Lemma A1 can be controlled by the 
following Lemma. 

Lemma A4 Let  Xi ,  i > 1 be i.i.d, with EX~ = 0 and Ps+y < oo for some 7 > O. For 
all positive sequences (~,) and (~5,) between 0 and 1 such that ne 2/~ - C(s + y + 1) 
log n ~ oo and n~ 2 - C(s + y + 1) log n-~  oo, we have 

P(A, ,s(F, ,  6,) > e,) < 2n- (S+~-  2)/'~ (~n(S+ 2~)/282 UzAe, s+v(G, (~n) , 

P(A,,~(G,, ft,) > e,) < the bound above + o(n-(S+~- l)e#(s+~)/s) . 

Proof  Define p, = P(I[XI[[ > 6n a/z) 

P ( A n ' s ( F " ' 5 ) > ~ n ) = P (  ~= ' 'Xk ' '~I( ' 'xk ' l>=~Snl/a)>=nen)k 1 

= (1 - -  pn) n-k e IlXj [l~l(llXj II > 6nl/2) 
k = 1  j 

__> ne~, [[Xj[] > finl/2, j = 1 . . . . .  k )  

(A.4) __< 1 - p,),-kpk/ap1/2 IIXjlI~I([IXjH ~ 6 g n l / 2 )  ~ na n , 
k j = l  

[] 

While dealing with the bootstrap expansions, the terms appearing on the right side 
of Lemma A1 are random. The random moment  terms are controlled by the 
following Lemma due to Michel (1976). 

Lemma A3 Let (Zi), i > 1 be i.i.d, mean zero random variables with EIZ~] z+p < o0 
for some fl > O. For any sequence t, > 0 such that tz, - (fl + 1) log n ~ co, we have 
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 otethat (: 
j=l  

(A.5) < (n~,,)- :kA,,,s (G, 3) 

<= (nen)- l k(6n:/2) -(~+~) A,,,~+ ?,( G, g)) . 

Further ,  

(A.6) 

and 

k= 1 l~ k p .  (1 - -  p . ) . - k  < 2npl/2 

p,, < (gm:/2)-(~+:') An,~+~,(G, ~) 

(A.2) now follows from (A.4), (A.5) and (A.6). 
To  prove (A.3), note  that  

(1.7) A,(G,, 26) < CllJ(nll * + CA, , ( f  ,,, 6) + C n - :  ~ II)(,II*I(IIX, II > 6n:/2).  
k=l 

By Lemma A3 and fl = s + 7 - 2, IIX~IL = Zi, we have 

(A.8) P(H)~, II ~ > Ce,) = o(n -(~+'- :)e2(~+')/s), 

and 

(A.9) P(IIX,[I ~ O,n 1/2) = o(n-(3s+3r-2)/2(~n(S+?)). 

However ,  by the condit ions on 6,, the bound  in (A.9) is dominated  by the bound  in 
(1.8). Thus the second part  of the Lemma follows by using (A.7), (A.8) and 
(1.2). [] 

The characteristic function terms appearing in Lemma A1 are controlled by the 
following Lemma.  

Lemma A5 (i) I f  0 < c~ < 1, 6 = ~2/300m and G satisfies Cramer's condition and 
p~+~ < to for some 7 > 0 then 

P (  sup , f f~(t)I<=c~)=o(n-(S+~-:)) .  
0 < c < iltll < exp(n6) 

(ii) I f  G is non lattice, p,+~ < oo for some ? > 0 then for any tl > 0 

P (  sup ,/~,(t), > ~ )  = o (n - (~+ ' - : ) ) .  [] 
0<CN Ilt]l __<r/ 

The proofs follow by modifying arguments given in the proof  of Lemma 2 of 
Babu and Singh (1984). 
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