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1 Introduction

One of the most important discoveries in mathematical physics during the
past 20 years is that of finite-dimensional attractors in mathematical models
for fluid dynamics. However, all the analysis breaks down as soon as one
wants to take random influences on the system under investigation in account.
In particular, when subjecting the system to additive white noise, there is no
chance that bounded subsets of the state space remain invariant. White noise
pushes the system out of every bounded set with probability one. The present
papet is an attempt to overcome this problem. We in fact do discover compact
invariant sets — however, they are not fixed, but they depend on chance, and
they move with time (in a coherent, “stationary” manner). Typically they leave
every bounded deterministic set. Still they are compact — in fact, often even
finite-dimensional — and they attract all bounded subsets of the state space.

The approach we use is that of random dynamical systems (RDS). By
taking an abstract, ergodic theoretical point of view, RDS cover some of the
most common classes of systems involving randomness and time evolution.
Amongst them are stochastic flows, random flows, and products of stationary
random maps. See Arnold [1]; for a survey on RDS see Arnold and Crauel [3].
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Since we want to apply the resuits to infinite-dimensional systems, we will
have to take care that the respective system does generate a stochastic flow. In
finite dimensions these questions are settled in a fairly satisfactory manner by
the theory of stochastic flows, see Elworthy [13] and Kunita [15] (also
included in Kunita [16]). A “stochastic flow” needs jointly continuous de-
pendence of the solutions of the SDE under consideration on time and initial
state outside some nullset. This often does not hold for infinite dimensions.
Some infinite dimensional systems do generate a stochastic flow, others do
not. For a survey on this field see Flandoli [14]. In our applications existence
of the flow has to be established in each individual case.

The paper is organized as follows. In Sect. 2 we recall the concept of
random dynamical system. In Sect. 3 we introduce the notions of Q-limit set,
random invariant set, absorbing set, and global attractor for a random
dynamical system. The main theorem of Sect. 3 establishes the existence of
a global attractor, which is a compact random invariant set. We then prove
that in a connected state space a global attractor must be connected itself. In
Sect. 4 we analyze some relations with the concept of flow-invariant measure,
and we prove that a global attractor always supports a Markov invariant
measure. Finally, in Sects. 57 we discuss three infinite dimensional examples:
a reaction-diffusion equation with additive noise and an abstract 2-dimen-
sional Navier—Stokes equation in both the multiplicative and the additive
noise case. Although the main conceptual line in proving the existence of
a global attractor is similar, these examples display remarkable differences at
the technical level. In particular, the analysis of the Navier—Stokes equation
with additive noise requires some non-trivial considerations. All the applica-
tions we present here address dissipative stochastic systems with a sort of
parabolic structure—roughly speaking such that their flows map bounded sets
into precompact sets. The main results of this paper can be applied to systems
with a hyperbolic structure along the lines of Temam [20]. This extension and
related examples will be treated in a forthcoming paper.

Attractors for deterministic systems are quite well investigated. Temam
[20] gives a comprehensive presentation (by which we have been inspired
throughout the work). In the deterministic case different concepts of attractor
have been introduced. The differences between them mainly concern speed of
convergence to the attractor, This amounts essentially to the question whether
certain points of the phase space are elements of the attractor. For stochastic
systems a greater variety of definitions is possible. Two of them, completely
different from the one of this paper, have been introduced previously. Brzez-
niak, Capinski and Flandoli [5], consider the £-limit set for ¢t — + oo of the
trajectories. Morimoto [18] and Schmalfu8 [19]f are concerned with attrac-
tors for the Markov semigroup generated by a stochastic differential equation.
In this paper we think of the attractor as a subset of the phase space (as in [5]),
instead of the space of probability measures. However, we define the attractor
as the Q-limit set at time ¢t = 0 of the trajectories “starting in bounded sets at
time t = — oo ” (roughly speaking). Equivalently, we detect a random subset
of the phase space which moves accordingly to the dynamics in a stationary
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manner, attracting all trajectories starting from deterministic or random L®
initial conditions. While the definition of [5] is of interests for systems with
real noise, the notion developed here is useful for the white noise case as well.

2 The basic set-up

Let {3:Q2 > Q},teT, T=R or T=1Z, be a family of measure preserving
transformations of a probability space (@, %, P) such that (t,w) > o is
measurable, 8o = id,and 9, = 3,0 I forallt,s € T. Thus (3.}, .4 is a flow, and
((Q, #,P), (9):cr) 1s a (measurable) dynamical system.

2.1 Definition Let T=R,IR*,Z or N. A random dynamical system (RDS) with
time T on a metric, complete and separable space (X,d) with Borel a-algebra
B over {3} on (2, F,P) is a measurable map

0:TxXxQ—->X
{t, x, ) > @(t,w)x
such that ¢(0, ) = id (identity on X) and
ot +5,0) = o(t, 9,0)° ¢ (s, ) (1)

for all t,s e T and for all w € Q, where ° means composition. A family of maps
o(t, ) satisfying (1) is called a cocycle, and (1) is the cocycle property.

An RDS is said to be continuous or differentiable if ¢(t,m): X — X is
continuous or differentiable, respectively, for all ¢ € T outside a P-nullset. In
the present paper we will be concerned solely with continuous or differentiable
RDS.

We often omit mentioning ((2, #, P), (.); r) in the following, speaking of
an RDS ¢.

We do not assume the maps ¢(t, w) to be invertible a priori. By the cocycle
property, ¢(t, w) is automatically invertible (for all ¢t € T and for P-almost all
w)if T=1R or Z. In fact, then ¢(t,w) * = ¢( — t, % w) for t € T. Instead of
assuming (1) for all w € Q it suffices to assume it for all w from a measurable
(8;)-invariant subset of full measure.

Note that we assume 9, to be defined for all t € R or Z, resp., even if ¢ is
not invertible.

For a comprehensive exposition on RDS see Arnold [1]. For a survey see
Arnold and Crauel [3].

3 Attraction and absorption

We need some notations. A set valued map K: Q — 2% taking values in the
closed subsets of X is said to be measurable if for each x & X the map
w > d(x, K(w)) is measurable, where d(4, B) = sup{inf{d(x,y):y € B} : x € 4}
for A,Be 2%, A,B # §; and d(x, B) = d({x}, B). Note that d(4, B) = 0 if and
only if 4 = B, so d is not a metric. A closed set valued measurable map
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K:Q — 2%¥ will be called a random closed set. (This coincides with the notion
of a measurable multifunction as used by Castaing and Valadier [6] Defini-
tion II1.10, p. 68.)

A random set K is said to be (strictly) @-forward invariant if

et,0)K(w) = K(&w) (¢t 0)K{®) = K(S,w)) forallt>0.
3.1 Definition Given a random set K, the set

QK,0) =)= ) | ot9-0)KS-.»)
Tz0tzT
is said to be the Q-limit set of K. By definition Qg(w) is closed.
(The usual notion “w-limit set” is likely to give rise to confusion. The notion
‘Q-limit set’ should not, even if 2 keeps on denoting the probability space.)

We may identify
Q(w) = {y € X: there exist t, » o and x, € K(9_,,0)

such that ¢(t,, -, w)x, — y}.

The 3-shift of an Q-limit set is
Qx(*)° 9 = QK, 9,w) = {y e X: there exist t, - co and
x, € K(8_, 1) such that ¢(t,, -, +.:0) Xy jay}, 2

The following lemma is proved along the same lines as the corresponding one
for deterministic systems, invoking continuity of ¢(t, w).

3.2 Lemma The Q-limit set of an arbitrary random set K is invariant.

Proof. Given ye Qg{w), there exist t, > oo and x,e€ K(3_,w) such that
y = limo(t,, $—,w)x,. For t > 0 thus

n—>w

ot )y = lim @(t + £, 9, 0)X,
= lim @(t + t,,3-;—, 3 0) Xy

= hm (p(fna g—fn‘gtw)xm

n— o0

where f,=t+1t,—> © and x,e K., 0)=K(@_.,9mw). Hence
o(t,w)y € k(%) by (2). O

Lemma 3.2 does not say anything about non-voidness of Q-limit sets.

3.3 Definition A random set A is said to attract another random set B if

P-almost surely
d(e(t,9-,w)B(3-,0), A(@)) —0.

The proof of the following Lemma is immediate from the 9,-invariance of P.
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3.4 Lemma If A attracts B then d(¢(t, w)B(w),A(S,w))—_)—»O in probability.

If a set A4 attracts another set B then any set A’ such that P-as. 4 = A’ also
attracts B.

3.5 Definition If K and B are random sets such that for P-almost all w there
exists a time tg(w) such that for all t = tz(w)

@(t,9-w)B(3-,0) = K(w)
then K is said to absorb B, and tg is called the absorption time.

The following result is concerned with properties of the Q-limit set 25 of a set
B which is absorbed by some compact set K.

3.6 Proposition Suppose K and B are random sets with K absorbing B, and K is
compact P-as. Then for P-almost all w
(1) 2p{(w) is nonvoid, and Qg(w) = K(w), hence it is compact.
(il) Qp(w) is strictly invariant.
(iii) 2p(w) attracts B.

Proof. First note that if (¢,), . is any sequence of times with ¢t,—— oo and

(by)new 18 any sequence with b, € B(9_, w), n € N, then for all n big enough
such that t, = t5(w) absorption implies ¢(t,, 3 -, )b, € K(w). Compactness of
K(w) entails existence of a convergent subsequence of (¢(t,, 3-, ®)b,),cw tO
some y € X.

(i) Using any sequences t, and b, with the properties of the preceeding
paragraph, the limit y = lim ¢(t,, 9 ,,w)b, satisfies y € 2p(w), so Qp(w) # §.
Furthermore,

Q@)= () U et9-0)B@E-,0) c K(w),
Tztplw) t2T
where t5(w) is the absorption time, hence Qg(w) is compact.
(i) Suppose y € Qp(%,0) for some s = 0. Then y = lim @(i,, 9, + )b, for
some sequence t, — oo and b, € B(3_, 4,w), hence "~

y = lim (s, w)p(t, — 5,8, +,@)b,. €)

For n big enough such that , — s = t3(w) absorption implies k,: = ¢(t, — s,
9, - )b € K(w), hence there is a convergent subsequence k,, converging to
some ue Qp(w). Continuity of ¢(f,w) implies y= @(s,w)u, hence
y € ¢(s,w)Q2g(w). We have proved Qp(9,0) = ¢(s, w)Qg(w) for all s >0, so
strict invariance follows together with Lemma 3.2.

(iii) If 2p(cw) would not attract B there were § > 0, a sequence t, — o, and
b, € B(3_, w), such that for all ne N

d(¢(tn7 ‘9—t,,w)bm ‘QB(U))) ; 5 (4)

But (¢(t,, 9 -, 0)b,), v has a convergent subsequence, converging to a limit in
Qg(w), which, by continuity of ¢(t, w), contradicts (4). []
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3.7 Remark Strict invariance of Qp follows even without assuming B to be
compactly absorbed as soon as ¢ is invertible (i.e., @(t,w)™ ! exists and is
continuous for all ¢t>0). In fact, if yeQp(9,0) for some s>0,
y = lim o(t,,3_, +®)b,, then also

n~*co

z = lim ¢(s,0) "L @(t,, -, +s0)b, = lim @(t, — 5,9, +s0)by,
exits, and z e Qg(w). Since y = @ (s, )z € (s, w) Qa(w) we obtain Qp(%;0) <
(s, ©) Qz(w), and again strict invariance follows together with Lemma 3.2.
The next result is concerned with the Q-limit set Q¢ of a compact set
K which absorbs some set B.

3.8 Proposition Suppose K and B are random sets such that K is compact P-a.s.
and absorbs B. Then P-almost surely Qg = Qg. In particular, Qx is nonvoid
P-a.s. (since Qg is nonvoid by Proposition 3.6 (i}), and Qg attracts B.

Proof. Suppose y € Qg(w). Then y = lim ¢(t,,3.,w)b, for some sequence
t, = ©, b,e B(§_,,0). neo
Fix T>0and put Ng =min{neN:t, =2 T + t5(3_rw)}. Then for alln = N,

o(ty, 3, )b, = o(T,3_rw)o(t, — T,3 — t,w)b,.

For n = N, we have t, — T = t5(9_r), hence k,:= ¢(t, — T,9_, w)b, =
q)(tn - T, ‘9—(t,,~T)‘9—Tw)bn € K(S_T(D), since
b, € B(3_, w) = B(8_¢,-1)9_rw). Consequently, for all n = N,

@(tn, 8-, 0)bn € P(T,3_7)K@-rw) = | 0t 9-0)K($,0),

t=T
which implies y € Qg(w). O
Note that under the conditions of Proposition 3.8 Q¢ need not be compact.

3.9 Definition Suppose ¢ is an RDS such that there exists a random compact
set o +— A(w) which satisfies the following conditions:

@) e, w)A(w) = AS,w) for all t >0

(i) A attracts every bounded deterministic set B ¢ X.

Then A is said to be a universally or globally attracting set for ¢.

3.10 Remarks (i) The notions ‘attraction’ and ‘absorption’ are very close. If
a compact K absorbs some B, then Q attracts B. On the other hand, if a set
A attracts some B, then every K containing an open neighbourhood of
A absorbs B- for instance, K = U,(A) for 6 > 0. In particular, if 4 attracts B,
then Qp = A.

(ii) Another way to define a globally attracting random set would impose
the stronger condition that every random bounded set is to be attracted
instead of the weaker condition that only nonrandom, deterministic sets are
attracted. These two notions are in general not equivalent. We chose this
definition since for our applications we can establish only the weaker require-
ment.
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(iii) A globally attracting set must contain every invariant set, so it need
not really be an attractor in an intuitive sense. For a discussion see Eckmann
and Ruelle [12] ILB, p. 623 (cf. also I1.D-F, pp. 624-627). Nevertheless we
shall speak in the following simply of attractors instead of attracting sets, and
call a globally attracting set a global attractor.

(iv) The notion of a global attractor is not a topological but a metric
concept.

The following theorem is the main result of this section.

3.11 Theorem Suppose ¢ is an RDS on a Polish space X, and suppose that

there exists a compact set w +— K(w) absorbing every bounded nonrandom set

B < X. Then the set _
Aw) = ) 25() )

BcX

is a global attractor for ¢. Furthermore, A is measurable with respect to F if T is

discrete, and it is measurable with respect to the completion of F (with respect to

P) if T is continuous.

Proof. For any bounded B — X we have Qp < K(P-a.s.) by Proposition
3.6(i), hence A is compact P-a.s. Since @ > | 5 - y Qp(w) is strictly invariant by
Proposition 3.6(ii), continuity of ¢ implies that A is invariant. Strict invari-
ance of A follows from compactness of 4.

To prove measurability, first note that for any x € X and any (nonrandom)
B = X the map (t,®) > d(x,¢(t,9_,0)B) = inf{d(x, p(t, }_,w)y): ye B} is
measurable by separability of X and continuity of ¢. For each 1 = 0

d(x, U go(t,.?L,co)B) = inf d(x, o(t, 9 _,w)B).
tzt tzt

If time T is discrete, measurability of Qg is immediate. For T continuous note

that for a ¢ R arbitrary

{w: ir>1fd(x,¢(t,9~,a))B) < a} = ma{(t,w): d{x, @(t,9_,w)B) < a,t Z 1},

where 7, denotes the canonical projection of Tx Q to Q. Measurability of
o= d(x, . ¢, 9_,0)B) with respect to the P-completion of & follows by
the projection theorem (see Castaing and Valadier [6] Theorem II1.23, p. 75).
Taking the intersection

ﬂ U ot 9_,0)B
t20tz<
over 7 from a countable unbounded set (e.g., T € N), Q5 is seen to be measur-
able. Since 4 can be obtained using only a countable number of B’s in (5), the
assertion is proved. [

In case t > @(t,8_,w) is continuous P-a.s. (hence separable), the attractor is
measurable without completion. For invertible random or stochastic flows
this holds, see Arnold [1].
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Concerning uniqueness of the global attractor we note that if 4’ is another
compact invariant set attracting all bounded sets, then Q < A’ by Remark
3.10(i), hence A = A’. Thus the attractor given by Theorem 3.11 is minimal
with respect to set inclusion.

In Theorem 3.11 we cannot proceed in exact analogy with the determinis-
tic case, where the Q-limit set 2y of the absorbing set can be taken to be the
attractor. In the present situation this does not work, since the random set
K need not absorb itself, so we cannot guarantee compactness of Q.

We conclude this section by showing that a global attractor in a connected
space is connected. We need a lemma.

3.12 Lemma Suppose A is a non-connected compact subset of a metric
space X.

(i) There exists oy such that for o £ oy the a-neighbourhood U, (A)=
{yeX:d(y,A) < a} of A is the disjoint union of two open non-empty sets.

(i) If oq is as in (i), then

inf{d(S,A): A < S, and S connected} = o.

Proof. (i) Since A is not connected there are open sets U,V < X such that
AcUUV, AnU# G, ANV # 0, and AnNUNV = §. Since AnU and ANV
are closed and disjoint,

1
fxo:=§inf{d(x,y): xeAnU, ye AnV} > 0.

For o S ap put G; = U (AnU) and G, = U,(ANV). Then G; "G, = §, and
U,(A) =U,((AnUYu(AnV)=U(ANnU)uU(ANnV)= G uG,.

(ii) Denote by U and V the two open disjoint and non-empty sets such
that U, (4) = ULV according to (i). Suppose S is connected and d(S, 4) < o,
then § = U, (4), hence S is contained either in U or in V, and so 4 is not
a subset of S. Thus if § is connected then A < § enforces d(S,4) = oo. [

3.13 Proposition Suppose ¢ is an RDS on a connected space X. If ¢ has
a global attractor A, then P-a.s. A is connected.

Proof. Since ¢(t,w)A(w) = A(Hw), either A is connected P-a.s., or A is not
connected P-as.

Assume that A4 is not connected P-a.s. Then there exists a number
@ > ag(w) such that the assertion of Lemma 3.12 is satisfied. Pick a bounded
connected set B such that P{4(w) < B} =1 — { for 0 < { < 3. Such B exists,
since for x € X arbitrary the map w — d(x, 4(w)) takes real values, so choos-
ing for B a ball around x with sufficiently large radius does.
Then

P{A(w) < o(t,9_,w)B} = P{A{w) = B} 21—,

and since ¢(t, 9_,w)B is connected this implies
P{d(p(t,9-,0)B, A(®)) Z aolw)} 2 1 —{ (6)
for all t = 0 by Lemma 3.12 (ii).
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On the other hand, d(¢(t, $-,w)B, A(w)) converges to zero P-a.s., so there
exists T such that

Plato(r.5 108 400) 5 Jou(o) | 21~ ¢ o)

Since (6) and (7) are contradictory, A must be connected P-a.s. [

4 Invariant measures on random sets

Let u.(+) be a transition probability from Q to X, i.e., y, is a Borel probability
measure on X and o +> u,(B) is measurable for every Borel set B <« X.
Denote by Prqy(X) the set of transition probabilities with . and v, identified if
P{w: p, # vy} =0.

Suppose u is a probability measure on X x Q with marginal P on Q. Then
for any p e Prp(X x Q) there is a disintegration u. € Pro{X) uniquely deter-
mined by

W(BXF)= [ p1(B)dP(w)
F

for all Be # and F € #. We will henceforth identify probability measures on
X x £ with marginal P with their disintegration w > .

4.1 Definition (i) An invariant measure for an RDS ¢ is a probability measure
on X x £ whose marginal on Q is P, and which is invariant under the flow &,:
X x> X xQ, (x,0)— (¢(t,0)x, %), for t = 0. The flow O,: te T, is called
the skew product flow induced by ¢.

(i) A probability measure u on X x Q with marginal P on Q is said to be
supported by a measurable random set wt> A(w), if u(d) =1, where
A= {(x,w): x€ A(w)} is the graph of the mapping o > A(w). Equivalent is:
P-as. p,(A(w)) = 1.

The proof of the following Lemma is completely straightforward, using
invertibility of {9,} (i.e., the fact that 9, is defined for all teZ or te R,
respectively). It is wrong if 9, is defined for ¢ = 0 only.

4.2 Lemma Suppose u is a probability measure on X x Q with marginal P on €,
and w +— p,, is its disintegration. Then the disintegration of O,y is

0= QL9 0)py_o = (@(t,+) p.)° I-{w).

Denote by Co(X) the set of functions f/: X xQ — R such that f(x,-) is
measurable for each x € X, (-, w) is continuous and bounded for each w € @,
and w — sup{|f(x,w)|: x € X} is integrable with respect to P, where two such
functions f'and g are identified if P{w:f (-, ) # g(-,w)} = 0 (measurable by
continuity of fand g together with separability of X).
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Define the narrow topology on Pro(X) to be the coarsest topology such that
pr [ flw)dulx,0) = p(f)

XxQ
is continuous for all fe C,(X). The skew product flow (,),. ; acts as a flow of
continuous transformations on Prg(X).

A subset I' of Pro(X) is said to be tight if nyI' = Pr(X) is tight, where nyx
denotes canonical projection from X x Q onto X. Thus I' is tight if for every
& > 0 there exists a compact K, < X such that y(K,xQ) =21 — ¢forall pe .
The following result is due to Valadier [21] Theorem 11, p. 162.

4.3 Theorem Suppose I' = Pry(X) is tight. Then

(i) I is relatively compact in Pry(X).

(i) I is relatively sequentially compact (i.e., if (W"),cw is a sequence in I, then
there exists a convergent subsequence (U™); ).

4.4 Corollary Let ¢ be an RDS, and suppose w — A(w) is a compact measur-
able forward invariant set for ¢. Then there exist invariant measures for ¢ which
are supported by A.

Proof. Put I' = {fi€ Pro(X): pp(A,) =1 P-as.}. Then I is tight and closed
(Crauel [91), hence compact by Theorem 4.3. Furthermore, I" is convex and
invariant under @,, r = 0. The assertion thus follows from the Markov-
Kakutani fixed point theorem (Dunford and Schwartz [11] Thm. V. 10.6, p.
456). [

Define two o-algebras corresponding to the future and the past, respectively,
by

Fr=clo— o %o),t20land F~ =c{w ¢(r,9_,w): 0 <1 St}

Then §, ' F+t «c F* forallt 20and §,'F~ < F~ forallt <0.
Note that for an invertible RDS ¢,# * coincides with a(w — @(1,w): T = 0)
and & ~ coincides with o(w — ¢(t,0)"*: 1 £ 0).

Provided the conditions of Theorem 3.11, it is immediate from the con-
struction of the attractor that it is measurable with respect to the past # ~
(since Qg is so for any nonrandom B).

4.5 Proposition Suppose w +— A(w) is a @-invariant compact set which is
measurable with respect to the past F ~ for an RDS ¢. Then there exist invariant
measures | supported by A such that also w — p,, is measurable with respect to

&

Proof. The set of all probability measure valued w +— p,, which are measur-
able with respect to an arbitrary sub-g-algebra of # form a closed subset of
L®(€; Pr(X)). This holds in particular for & ~. Furthermore, Lemma 4.2
yields that the set of # ~-measurable measures is invariant under the linear
continuous action induced by @,. The assertion follows as soon we have
established existence of & ~-measurable measures @ — y,, supported by 4.
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This follows by choosing a measurable selection w + x{w) € A(w) (Deimling
[10] Theorem 24.3, p. 307) and putting g, = dyy. [

Measures which are measurable with respect to the past are called Markov
measures. The reason for this notion comes from the fact that in case of
a stochastic flow these are precisely those flow-invariant measures which
correspond to invariant measures for the Markov semigroup induced by the
one-point motions of the flow, see Crauel [8]. We obtain

4.6 Corollary Under the conditions of the Proposition suppose in addition that
¢ is a RDS whose one-point motions form a Markov family, and such that F *
and &~ are independent. Then there exists an invariant measure p for the
associated Markov semigroup. Furthermore, the limit

to = lim (1,9 _;w)p 8

t— oo
exists P-as, p = f,ua,dP(w) = E(u,), and u is a Markov measure.

Proof. Let u be an invariant measure for ¢ supported by A4, such that o — g,
is # ~-measurable. Then p = E(u,) is an invariant measure for the Markov
semigroup by Crauel [8] Theorem 4.4 and 5.2.2. Assertion (8) follows from Le
Jan [17] Lemme 1, p. 112, or Crauel [7] Proposition 3.1 (the argument can
easily be seen to carry over to non-invertible RDS when replacing
o(—t,0)" by o(t,3_,w) for t 20) [

It should be emphasized that the Markov semigroup invariant measure
p from Corollary 4.6 does not have compact support in general. This need not
even be true if p,, 1s a random Dirac measure.

5 Reaction-diffusion equation with additive noise

5.1 Formulation

Let D < R” be a bounded open set with regular boundary éD. Denote by
4 the Laplacian in R”, and by f'a polynomial of the form

2p—1
fw= 3 au*, witha,,_, <0
k=0

for some positive integer p and real numbers aq, ... ,a,,-;. Consider the
following (reaction-diffusion type) stochastic partial differential equation in
D with additive noise:

du = Audt + f(u)dt + i idw(t),

! )
u=0 on 0D,
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where w;(t), 1 £ j < m, are independent two-sided Wiener processes (compare
Sect. 2) and ¢;: D —» R, 1 < j < m, will be specified below. We introduce the
following spaces and operators related to (9):

H=L?*{D);, V=H{D);, Z=L>*D), Z' =L®D),
where (2p) = z2%; and
A:D(4) < H - H,

where D(4) = {ue H*(D): u = 0 on 8D} and Au = Au, and finally F: Z — Z’,
F(u) = f(u). With these notations we assume that ¢; € D(A) and A¢; € Z’ (this
assumption may be relaxed according to Remark 5.1 below). Moreover, we
can rewrite equation (9) in the abstract form

du = Audt + F(u)dt + Y. ¢;dw;(t). (10)
j=1

We denote by (-,-> and |-| the inner product and norm in H, and by

{{-,+>> and |- | the inner product and norm in V = H3(D) = D(( — A)*/?),

defined as || x2|| = |( — A)2x|? for all x € H3(D) (hence ||x]| = { — Ax, x) for

all x e D(4)). By Rellich’s Theorem A~! is compact, and the embedding

V < H is compact. If /; is the first ecigenvalue of — A4, we have

Ix]1? = Ay lx]?

for all x € V. Let us further denote the norms in Z and Z' by ||+ ||z and || - ||z,
respectively. Concerning the boundedness of F in these spaces, note that by
the Young inequality

> |
abé—ar+ Ir_‘brz
r re’

which holds true for all a,b,¢ >0, re(1, c0), and r’ = =7, there exist two
constants ¢y, c, > 0 such that

[fW)| L cq|ul***+¢, foralluelR.
Hence, with ¢; = ¢,|D|Y®*P| we have
IF@z < col(ul?® Yz + s =collulZ? ™" +cs

forallue Z.
Let us study equation (10) by means of the classical change of variable

v(t) = u(t) — w(t),

where, for brevity, we write w(r) = Y7 ¢’w/(t). Formally, v(t) satisfies the
equation (which depends on a random parameter)

%=AU+F(M)+AW, (11)



Attractors for random dynamical systems 377

or the more explicit equation

do _

dt

By the same proof as that of Theorem 1.1, Chap. IIL, of Temam [20] one can
show that for P-almost every w € Q the following holds
(i) for all t, <TeR and all voe H there exists a unique solution

ve C([to, T); HYNL2(to, T;V)NL?*?([ty,T]; Z) of equation (12) with
v(to) = vo;

(i) if v, € V, the solution belongs to C([to, 0 ); V)NLE(ts, ©; D(A));

(iii) hence, for all vy e H, ve C([ty + &, 00 ); V)NL.(to + & 00 ; D(4)), for
every ¢ > 0;

(iv) denoting such a solution by o(t,®;tg,v5), the mapping
vg > v(t, w; ty,vy) is continuous for all ¢ = £,.

The proof proceeds by a priori estimates on Galerkin approximations of
the same form as those developed in the following subsections.
Having the mapping v, > v{t, ®;0,v,), one can define a stochastic flow
¢(t, w) by

Av + F(o + w) + Aw. (12)

o(t, 0)uy = v(t, w; 0, 1) + w(t, w). (13)

This will be called the stochastic flow associated with equation (9) (one can
show that the process ¢(z, w)u, is a solution of (9) in a suitable sense, but this
fact is not needed in the following).

5.1 Remark Let z(t) be the stationary solution of the Ornstein—Uhlenbeck
equation
dz = Azdt + dw(t).

The process z(t) is more regular than w(t) in the space variable. With some
additional technical details one can perform the following analysis using the
change of variable v(t) = u(t) — z(t) in place of v(t) = u(t) — w(t). The advant-
age is that less regularity conditions on ¢; have to be imposed. However, for
simplicity, we restrict our attention to the change of variable v(f) = u(t) — w(z).

5.2 Two preliminary inequalities
By definition of A and F, for all ue D(A)n Z we have
— CA(u — w(t)), Fu)) = — CAu, F(u)) + <Aw(t), Fu) )
—gAuf(u) +1{Aw(t)f(u)
:L{f'(u)Vu-Vu +]{Aw(t)f(u).
By the assumptions on the polynomial f its derivative is bounded from above,

ie.
)P forallreR (14)
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for some constant §. [This may be deduced either from the Young mequality
or from elementary considerations on the graph of f'.] Then
— (AW —w(®), Fw)> < Blull® + | Fw) |zl Aw(t)| -

S Blull® + e llulz? ™! + ca) [ Aw() | z-

< Bllul® + [ullZ? + pa(t, )
(by the Young inequality), where, for some constant c, > 0,

p1(t, @) = ca[[AwW) 7 + c3 || Aw(t) | 2-

has at most polynomial growth as t - — oo, for P-a.s. w € Q (by the law of
large numbers), and p; (¢, w) = 0. This is the first inequality we will need in the
following. Next, by arguments similar to those yielding (14), there are positive
constants d, and cs such that

f)r£ —6or?? +¢s forallre R (15)
Hence, for all u e Z,

(u—w(t), Fu)) = <u, F)) — (w(t), Fu)d = fuf (W) — [w(t)f ()

< = dollulZ? + cs|Dl + (er [l 777" + c3) [ w(®) |
d
< =S IlF + oDl + eolw@ZF + esll w1z

(by the Young inequality, for some constant cs > 0)
= —d]ullz? + p2(t;w)
with 6 = % and p,(t, ®) = ¢c5|D| + ¢ | w(t) || 32 + ¢5 || w(t)||z:, where p, has the
same properties as p; above. Summarizing these results we obtain

5.2 Lemma There exist two functions p;(t,) = 0, i = 1,2, with at most poly-
nomial growth as t > — oo for P-a.e. @ € Q, and there exist constants f,7 > 0,
and & > 0, such that

() for allue D(A)NZ
— (A — w(t, o), Fu)> < Blull® + yllulz” + p(t o) (16)
(i) forallueZ
Cu—w(t), Fu)> £ —dlullz” + pa(t, ). 17

When proving the existence of a compact absorbing set (which implies
existence of a global stochastic attractor) we shall only use these two inequali-
ties. Therefore, the proof and result of this section can be reformulated in
a more abstract form and applied to other equations or systems satisfying (16)
and (17). At the abstract level, this would need suitable assumptions to ensure
solvability of the abstract equations (10) and (11). In order not to overload the
presentation, we limit ourselves to the concrete problem (9).
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5.3 Absorption in H at time t = — 1

In the following computation w € Q is fixed; the results will hold P-a.s. Let
to < — 1 and ug € H be given, and let v be the solution of Eq. (12) for ¢ = ¢,
with v(tg) = uo — w(to) (denoted above by v(t, w; to, ue — w(ty, w)}). From (11)
we get

1d dv
Eglvlz = <v:z£> - “1)“2 + <U,F(u)> + <U>AW>
1 i
< —|v)? ~5|lu|l§"+p2(t,a))+~2— ol? +§|IWI|2
1
= —EHUH2 — ofullz” + ps(t, o),

where p;(t, w) = p,(t,w) + 3 |w]? has the same properties as p, and p, from
Lemma 5.2. Therefore

d 2 1 2 2p Ay 2

— — <

S+ 21012 + 28 ulZr < — S0l + 2ps(t ). s
By the Gronwall Lemma

-1
(= DI L e 310 + [ e 3192y (s, w)ds
to
< Qe 1wy |2 (19)
i Y

+ 272 w2 + [ em 2 T 2ps(s, w) ds.

Hence we have

5.3 Lemma There exists a random radius ry(w) > 0, such that for all p >0
there exists (a deterministic) £ — 1 such that the following holds P-a.s. For all
to <t and for all ug € H with |ug| < p, the solution v{t, w;tq, uy — w(ty, ®)) of
Eq. (12) over [to, o0), with v(to) = ug — wlto), satisfies the inequality

]U( - ].,CU, tO:”O - W(IOaw))lZ é r%(CO)

Of course one can deduce a similar absorption result for u( — 1) instead of
v( — 1) from this Lemma, but we will not need it in the following.

Proof. Put

-1
r2w) =2 +2 sup. e‘%‘_l_“’)[w(toﬂz + f e“%“l_s)2p3(s,w)ds;

o S -

— 0
this is finite P-a.s. since |w(to)|* and ps(s, w) have at most polynomial growth
for t, and s, respectively, tending to — oco. Given p > 0, choose 7 such that

4 ~
e -1 WH2 < |

for all 1y < . The claim then follows from (19). [
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5.4 Auxiliary estimates in [ — 1,0]
Integrating (18) over [ — 1,07 we have

-;—_f(:llv(S)IIzdS+25 _f(l)llu(S)H%"dsgv(— DI* + _f(:2ps(s,w)d5- (20)

Consequently, from Lemma 5.3 we immediately get

5.4 Lemma There exist two random variables ¢ (w) and c,(w) such that for all
p > Othere exists T £ — 1 such that the following holds P-a.s. For all ty, < T and
all ug € H with |ug| < p, the solution vlt,w;to,uo — w(to, w)) of Eq. (12) over
[to, 00), with v(ty) = ug — wl(ty), satisfies
0 0
S v@)[%ds < c(w), and [ |u(s)|77ds < ca(w),
-1 -1

where u(s) = v(s) + w(s).

5.5 Absorption in'V at time t =0
From (11) we also have

1d - dv _ 2
S=lol® = <Av, dt>— | Av]? = (v, F) — CAv, Aw)

1 1
< —|Aol® + Blull® + ylulz® + pi(t, 0) +§|Avl2 +51AWI2

1
= —EIAUIZ + Blull® +ylull® + pa(t, )

for some function p4(f, w) = 0 with the same properties as p; and p, from
Lemma 5.2. Integrating over an arbitrary interval [s, 0] we get

0
1) 12 £ o)1 + {28 u(0)]* + 2y |u(0) 2" + 2ps(0, )} do.
Integrating again in s over [ — 1,0] we finally have

0
o)) = _f1 lo(s)]|* ds

0
+ [ {4Bllv(@)I> + 4B1w(a)|* + 2y [u(0) | 2* + 2pa(o, w)} do.
-1

From Lemma 5.4 we readily have

5.5 Lemma There exists a random radius r,(w) such that for all p > 0 there
existsT £ — 1in such a way that the following holds P-a.s. For all t, < f and all
uo € H with |ug| < p denote by v(t, w;ty, g — W(to, w)) the solution of Eq. (12)
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over [tg, o) with v(ty)=ug— wlto), and put ult,w;ty,uy) = w(t,w)
+ v(t, w; by, ug — w(tg,)). Then

12(0, 03 to, o) | * < 13 ().

5.6 Compact Attractor and invariant measures

5.6 Theorem The stochastic flow associated with the reaction-diffusion equa-
tion with additive noise (9) has a compact stochastic attractor, in the sense of
Theorem 3.11.

Moreover, the Markov semigroup induced by the flow on H has an invariant
measure p. The associated flow-invariant Markov measure p on Hx Q (cf.
Corollary 4.6) has the property that its disintegration w — u,, is supported by
the attractor.

Proof. Recall that, in the language of the stochastic flow associated with
Eq. (9),
u(0= a; t07u0) = (p(tna'g—toa))u()'

Hence by Lemma 5.5 there exists a random ball in ¥V which absorbs the
bounded sets of H. Since V is compactly embedded in H, we have proved the
existence of a compact absorbing set. Therefore Theorem 3.11 applies to the
stochastic flow associated with Eq. (24).

The existence of an invariant Markov measure is a direct consequence of
Corollary 4.6, provided we know that the one-point motions associated with
the flow ¢(t, w) define a family of Markov processes. The proof of this fact is
classical, so that we only give the idea. As a general remark, we note that all
the properties used below for ¢(t,w)x can be easily proved using only the
definition of ¢(t, w)x in terms of v(¢) and w(t), without explicit reference to the
equation (9).

Let ¢, , be defined as in Sect. 2. Let &, be the g-algebra generated by
w(r) — w(s) for re[s,t], and let #, = F . Define the operators P, in the
space of bounded measurable functions over H as P.(f)(x) = E(f(o(t)x)). If
we show that

E(f(o(0)x)|F ) = Pr—()e(s)x)

for all 0 < s <t and all bounded continuous functions f over H, then clearly
@(t)x is a Markov process with transition semigroup P,. Since ¢(t,w)x =
@5, (@)@ (s, w)x, it is sufficient to show that for a generic square integrable
H-valued random variable #, measurable with respect to %, we have

E(f(@s,tn)lg;s) = Pt—s(f) ('1)

If 1 = x, a.s. for some x, € H, this is true because ¢, X, is F, -measurable,
hence independent of %,. Here we have used the fact that
P,_(f)(x) = E(f(@(t — 5)x)) = E(f(p,,x)) (since the coefficients of the
equation for @, ; are time independent, one can see that the H-valued random
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variables ¢, ,x and ¢(t — s)x have the same law). If y =Y, x;1,,, where
A; e F,, one can show that ¢, ,n =YY | 1,.0,,x; by this fact it is easy to
prove the claim also in this case. Finally, for a general # there exists a sequence
of n,, of the previous form which converges to 5 in L?(£; H) and almost surely.
By continuity of f one can pass to the limit, which completes the proof. [J

6 Navier-Stokes equations with multiplicative noise

6.1 Formulation

Let H be a real separable Hilbert space (inner product {-,- >, norm |-|), and
let A: D(A) =« H —» H be a selfadjoint strictly negative linear operator in H.
Denote by V the Hilbert space D(( — A4)Y/2), endowed with the norm
[x2] =|( — A)Y*x|* (= — {Ax,x) for x € D(A)). Identifying H with its dual
H', we can write V < H < V', with dense continuous injections. We assume
also that A~! is compact, whence the embedding V < H is compact. If 4, is
the first eigenvalue of — A, we have

x| = 41|

forall xeV.
Let B(u, v) be a bilinear continuous operator from VxV to V'. Suppose that
there exists a constant cg > 0 such that

(B(u,v),z) < cplul*|lu|*lvf*|v]*|z| (21)
forall u,v,zeV,
{Bu,v),vy =0 (22)
for all y,v eV, and
(B(u,v),z) < cplul*|Aul*|v] |z] (23)
foralueD(A),veV, and ze H.

Finally, let fe H and by, ... ,b,, € R be given. Under these hypotheses, con-
sider the stochastic evolution equation with Stratonovich multiplicative noise

du = {Au + B(u,u) + f }dt + Y, bjucdwi(t). (24)
j=1
This equation represents an abstract form of the stochastic Navier-Stokes
equation in two space dimensions, describing the motion of an incompressible
fluid in a bounded domain, with Dirichlet or periodic boundary conditions
{(see Temam [20] for details in the deterministic case).
Consider the process

a(t)=e WAL

It satisfies the Stratonovich equation

da(t) = — §1 bio(t) o dw;(t).
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Hence, formally, the process v(z), defined by the time change
v(t) = a(t)u(r),

satisfies the equation (which depends on a random parameter)

% = Av + «B(u,u) + af, (25)

or, in a more explicit form, the equation

%zAu%—a_lB(v,v)%—af. (26)
By the same proof as that of Theorem 2.1, Chapter II1, of Temam [20] one can
show that for P-almost every w € Q the following holds

@) for all toeR and for all vye H there exists a unique solution
ve C([ty, ©); HYNLE(to, 0 ; V) of equation (26) with v{te) = vo;

(i) if vo € V, the solution belongs to C([to, o0 ); V)NLE(ts, o0 ; D(A));

(iii) hence, for every & > 0, ve C([to + & 00 ), V)NLE(to + & o0 ; D(A4)),
for all v, € H;

(iv) denoting such solution by o(f,®;t4,0y), the mapping
vo > 0(t, ; tg, Vo) 1S continuous for all ¢ = t,.

The proof proceeds by a priori estimates on Galerkin approximations of
the same form as those developed in the following subsections.
Having the mapping v, — v(t, w;0,v,), one can define a stochastic flow

o(t,w) by
o(t, 0)uo = alt,w)” to(t, ®; 0, ug). 27

This will be called the stochastic flow associated with equation (24).

6.2 Absorption in H at time t = — 1

In the following computations w e Q is fixed; the results will hold P-almost
surely. Let 1, < — 1 and u, € H be given, and let v be the solution of Eq. (26)
for t = to, with v(t,) = a(te)u, (denoted above by v(t, w; tg, aty, w)ug)). From
(22) and (25) we get

Ld o [
24" T\ a

Hence there exists a constant ¢y, depending only on A, such that

~ llo]? + <v,aB(u,u) + af >

—loll* + (oaf > < — fv]l* + |v][af].

d A
707+ IvlP = =Sl + colof 1. (28)
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By the Gronwall Lemma

A -1 1
[o(— DI < e 710 g(to)uo)> + [ e F 1" ¢plafo) f12 do

to
-1
A
< &% {300 (to) luol? + col fI> [ €27 a(0)? do}. (29)
— o0
Now by standard arguments (using, e.g., the law of the iterated logarithm)

lim ! Y bwi(t)=0 P-as.
=)

t— —

It easily follows that o — e a(0)? is pathwise integrable over ( — oo,0].
Similarly,

€39 (6> >0 aso—> — oo P-as. (30)
Hence from (29) we have

6.1 Lemma There exists a random radius ri(w) > 0, depending only on A,
by, ..., by, and | f|, such that for all p > O there exists t{w) < — 1 such that the
Jollowing holds P-a.s. For all t, < t(w) and all ug € H with |uy| < p, the solution
v(t, w; tg, olte, witg) of Eq. (26) over [ty, 00), with v(ts) = alty)ug, satisfies the
inequality

lo( = 1, @5 to, a(to, @)uo)|* < 7§ (w).
Proof. Put

-1
i (@) = €2 {1 + colf? [ €27 a(0)?da),

which is finite P-a.s. by the above considerations. Given p > 0, by (30) there
exists t(w) such that

A
ez%a(ty)?p? £ 1

for all ¢y < t(w). The claim of the Lemma follows from (29). [

6.3 Auxiliary estimates in [ — 1,0]

From (28) we also have, by the Gronwall Lemma with ¢t e [ — 1,0] and by
integrating over [ — 1,0], respectively:

t
A A
[o(t)]2 £ e 2 Do — DI> + col f1* [ e3¢ (o)’ do,
-1

S o) 2ds £ Jo( = DI* + col f1? [ ols)*ds.

—1 -1
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Therefore, from Lemma 6.1 we deduce

6.2 Lemma There exist two random variables ¢, {(w) and c,{(w), depending only
on iy, by, ... by, and | f|, such that for all p > 0 there exists t{w) £ — 1 such
that the following holds P-a.s. For all t, < t(w) and all ug € H with |uy| £ p, the
solution v(t, w;te,a(to, w)uy) of Eq. (26) over [to, 00), with v(ty) = alte)u,,
satisfies
[v(t, w; 0, %(te, W)up)|* < ci(w) forallte[ —1,0]
0

f (s, w3 o, alto, w)uo) || > ds < cx(w).
1

Proof. Put
A o
c1(@) = e~ 72 (@) + ¢l fI [ e 2 Pa(5)*do,
Z1
0

e2(@) =13(@) + ol fI* [ als)ds,
-1

where r;{w) is from Lemma 6.1. Then, given p > 0, it is sufficient to choose the
same t(w) as in the proof of Lemma 6.1. [

6.4 Absorption in'V at time t =0

From (23) and (25) we further obtain

1d d
Slvir= —<Av,d—‘t’>§ ~ [ 40]? + | Ao| B(u, )] + | Av] 1o |

1
< =3 v + Bl + o

1
< — 5 1Avl? + cpalul | dul fu)® + |of |

It

1
=5 140l + ealul [ Av] lu o] +|af|®

lIA

1
=2 [ Aol + (cGlul? |ull®) 0] + af |2
Hence

d 2
' lvl* < Qezlul® [ull®) v)* + 2|af|?,
and for s < t we have

lo()11* = 1v@I1* + 21 f1? fa(0)*do +](2c§Iu(0)i2|lu(a) 1% (w(0) | *do.
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Applying the Gronwall Lemma over an arbitrary interval [s,0] = [ — 1,0]
we obtain ,

WO < effcﬂu(a)iﬂu(am:a{“U(S)”Z 2P foa(a)zdo‘}.

Integrating in s over the interval [ — 1,0] yields

2 2 fflclzf’“(ﬂ)[’\lu(a)||2da 0 , o

14O = [+(O)]> S e { f 1601+ 2157 f o do}_
B -1

61)

Here,
0 0
[ 1u(@)|*|u(@)|*de = sup «(t)™* sup [v(®)]* [ [lv(o)]*do.(32)
2 -1<1<0 -1=t50 ey

Hence we finally have

6.3 Lemma There exists a random radius ry(w), depending only on
A,by, ... by, and | f|, such that for all p > O there exists t(w) < — 1 such that
the following holds P-a.s. For all tq < t(w) and all ug € H with |ug| < p, let
v(t, w; to, a(ty, w)uy) be the solution of Eq. (26) over [tg, o), with
v(to) = alto)tio, and put u(t,w;ty, ug):= a(t, @)™ *v(t, w;ty, a(ty, ®)uo). Then

140, s to, o) 1> < 73 ().

Proof. Put
0

r3(w) = (c(a)) +2[f1? [ o) da) eEIP_y =, 5 o0 T

-1
with ¢(w) from the previous Lemma. Given p > 0, choose t(w) as in the proof
of Lemma 6.1. Then, by (32),

0
[ u(@)|? [u(o)]*do < Sup Od(t)_“C(w)z-
1 -1=rs

The assertion follows from (31).

6.5 Final result

6.4 Theorem The stochastic flow associated with the Navier-Stokes equation
with multiplicative noise (24) has a compact stochastic attractor, in the sense of
Theorem 3.11.

Moreover, the Markov semigroup induced by the flow on H has an invariant
measure p. The associated flow-invariant Markov measure p on HxQ (cf.
Corollary 4.6) has the property that its disintegration @ +— U, is supported by
the attractor.

The proof proceeds exactly as that of Theorem 5.6.
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7 Navier—Stokes equation with additive noise

7.1 Formulation

Let H A: D(A) <« H— H, V= D((— A)'?), and B(u,v): VxV — V' be the
spaces and operators introduced in the previous Section. Moreover, let fe H
and ¢4, ... ,¢, € H be given. Consider the equation

du = {Au + B(u,u) + f}dt + Y, ¢;dw(t). (33)
i=1
We assume that ¢, € D(4), 1 < k < m, and that there exists a constant § > 0
such that
[{B(u,¢pp),ud| £ Blu|* forallueV,k=1,...,m. (34)

Remark. For a concrete 2-dimensional Navier—Stokes equation in a bounded
domain D = R? we have

2 .
(B, pyud = Y fuia(d”‘)’

i,j=1D 0x;

u;dx.

In this case assumption (34) is satisfied provided the functions ¢, are
Lipschitz continuous in D.

Put w(t) = Y7 ¢;w;(t). If we follow the method employed for the reac-
tion-diffusion Eq. (9), based on the change of variable v = u — w, we end up
with the problem of finding estimates for {B(v(r), w(t)), v(t)> when analyzing
4| v(t)|. This yields a term which, roughly speaking, behaves like |v(£)|*w(t),
so that we cannot deduce any bound in H for |v(¢)|%. To overcome this
difficulty we introduce a different change of variable.

7.2 Auxiliary Ornstein—Uhlenbeck process

Let o > 0 be given; we shall impose condition (36) below on «. For each

k=1, ...,m,let z, be the stationary (ergodic) solution of the one-dimensional
equation

dzy = — azidt + dw(t);
sO

z,(t) = fle_"('"”dwk(s).

Putting z(t) = Y.7'= | ¢rzi(t) we have
dz = — azdt + dw(t).
Since the trajectories of z;, are P-a.s. continuous, and ¢, € D(A4), we have

~1S£?so {1z()]* + || z(2)||* + | 4z(t)|*} < 0 P-as. (35)
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We now choose « > 0 such that

4fmElz,0) <2, 39

where A, is the first ecigenvalue of — A. This is possible since
(E)z,(0)))* £ E|z,(0)|* = Var(z,(0)), and Var(z,(0)) - 0 as « > co. From
(36) and the Ergodic Theorem we obtain

lim ———— ! f 4B Z [z(s)|ds = 4pmE|z,(0)| £ < P-as.

to-’oo—‘l_to to =

Putting y(t) = — 4 + 48 Y i [z:(t)], we get

1 -1 A
lim T J y(s)ds < -7 P-as.

o~ — 00_1_0[0

From this fact and by stationarity of z, we finally obtain

. [ v(sds
lim e =0 P-as. (37
to— — o0
“ly(s)ds
sup ef"’ ’ |z(to)|> < o0 P-as. (38)
<=1
v(s) >
f e (1 + z,(0)* + zx(0)*|2;(0)|)do < 0 P-as. (39)

for all 1 < j, k < m. Indeed, note for instance that for t <0

t 0 1 9 t
Zk;) Zki) f ()d+Wk()
whence lim sz(t) = ( (P-a.s.), which implies (38) and (39).
t— ~

7.3 Stochastic flow

We now use the change of variable v(t) = u(t) — z(t). Then, formally, v satis-
fies the equation (which depends on a random parameter)

d
:5 — Av + B(u,u) + f + oz + Az, (40)
or, more explicitly,
d
d—’; = Av + B(v,0) + B(0,2) + B(z,0) + Bz, f + az + Az. (41

By the same proof as that of Theorem 2.1, Chap. IIL, of Temam [20] one can
show that (i)—(iv) as stated in Section 6.1 for the multiplicative case also hold
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under the present conditions. Thus there is a continuous mapping from H into
itself, vy > v(t, w; to,vg), Where v{t, w;ty, ) is the solution of equation (41)
with v(ty) = vo. We can now define a stochastic flow ¢(t, w) in H by putting

o(t, w)ue = v(t, w; 0, uy — z(0, w)) + z(t, w). 42)

This will be called the stochastic flow associated with the Navier—Stokes
Eq. (33) with additive noise.

7.4 Absorption in H at time t = — 1

In the following computations w € Q is fixed; the results will hold P-almost
surely. Let t, < — 1 and u, € H be given, and let v be the solution of Eq. (41)
for t=ty, with v(ty) =up — z(ty,w) (which was denoted above by
v(t, w; Lo, Uy — Z(to, ®))). From assumption (22) and from (40) we have

2L ol = — lol? = B 2> + Cfiod + Cazv) +(Azv)

< — [vll® + (B 2),up + | fl1v] + afz| [v] + 2] [lv].

By definition of z and assumption (34),

m

Blwzhuy = 3 (Bludhudz < flul® 3 |z
k=1

k=1
2Bl Y 2l + 2812 Yzl
k=1 K=1

Hence there exists a constant ¢ > 0 depending only on A, such that

1d, , 1 a m
— _ << — 2 2 2
571017+l ={ 2 +2ﬁk‘_;1!zkl}lvl +c|f1? + calz]

Tzl +2812P Y . 3)
k=1
Put

m

p(t) = clf1* + calz(t)]* + cliz(t) |1 + 2B1z()1* X |z(0)l;

k=1

and let y(t) be defined as in subsection 7.2. We have

d
5 [P = 9@ + 2p(0),

which implies

“y(s
7y

w12 <" @12 + [ wio)do (44)
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forallto <t <t Fort= —1andt=t, we get

“y(s)ds =1 riys)ds
lp(—1))? £ ef"’ ’ lo(to)l* + [ ef"y 2p(c)do
fo

1

ﬁ; b

fj‘v(s)ds

s)ds
L2 |uo|? + 2e |2(to)I?

-1 ! (s)ds
+ [ 0p(0)de. @5)

7.1 Lemma There exists a random radius r{(®w) >0, depending only on
A P15 «or » P, and | |, such that for all p > O there exists t{w) £ — 1 such that
the following holds P-a.s. For all ty < t(w) and all uy e H with |ug] < p, the
solution v(t,w;ty,ug — z(tg,w)) of Eq. (41) over [ty, o0), with v(ty) =
uy — z(to, ), satisfies the inequality

IU( - 1: w; thuO - Z(t07w))lz é r%(ﬂ))

Proof. Put

1

f; y(s)d

s -1 f‘y(s)ds
rHw)=2+2 sup e lz(to)* + [ € 2p(o)do,
tos—1 e

which is finite P-a.s. due to (38) and (39). Given p > 0, choose t{w) such that

“'y(s)ds
efro pz é 1

for all t, < t(w) (recall (37)). Then the assertion follows from (45). [

7.5 Auxiliary estimates in [ — 1,0]
Taking te [ — 1,0] and 7 = — 1 in (44) we have

s)ds

) Y rys)ds
o< =02+ [ (0o (46)
-1
Moreover, integrating (43) over [ — 1,0] we have

0 0 0
J lv@s)IPds £ [v(— 1> + < S/ V(S)ds>< Sup 0|v(t)|2> + [ 2p(0)do.
z - -127< 21

1 1 (47)
Therefore, from Lemma 7.1 we deduce

7.2 Lemma There exist two random variables c,(w) and c,(w), depending
only on Ay, @1, ... , Qs and | |, such that for all p > 0 there exists t(w) £ — 1
such that the following holds P-a.s. For all ty < t(w) and for all uo e H with
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luol £ p, the solution v(t, w; ty, 4o — z{ty, w)) of Eq. (41) over [y, 00), with
v(to) = uo — z(ty, ®), satisfies
|v(t, @;t0,tp — 2(to, w))|* S c1(@) forallte[ —1,0],
0

/ ” U(S: , tOs Ug — Z(t(bw)) HZdS é Cz(CU)-

1
Proof. Put
[l s ¢ /:y(s)ds

ci(w) =e riw)+ [ e
1

2p(o)do,

cr(w) = ri(w) {1 + foy(s)ds} + f02p(0')da,
21 21

with r;(w) as in Lemma 7.1. Then, given p > 0, it suffices to choose t(w) as in
the proof of that Lemma 7.1. [

7.6 Absorption in 'V at time t =0

From (40) we further get

1d dv
EE”UHZ = = <A0’E>

— |Av|* + (B(u,u), Av)> + {f, Av) + {oz, Av) + {Az, Av)
— | Av|® + cplul*|Aul?|u| |Av| + | f|[Av| + |oz| |Av| + | 4z] |

IA

Av)
< — 3lAvl? + 2cflul | dul Jul® + 2{1 1% +|azf? + | 2|},
With g( = q(2)) = 2{| f|* + |az|* + | Az|?} we obtain
1d 1
S 101> S = 1 vdcklul |l ul + 2e3iul Az] Jul? + q

< Bcglul*full®)[0]® + 8cklul® [ul> | 2|1 + 2c5lul |4z] [u® + g

By the Gronwall Lemma we get for s € [0,1]

® 16c5lu(s)i*|u(s) | *ds

0@ < &

Q
x [HU(S)H2 + [ {16ck(ul®[ul® 211 + 4czlul |Az] |lu]* + 261}610]
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Integrating in s over [0, 1] we obtain

0 0
||v(0)||2§[flllv(5)l|2d5+ S {16cq|ul®|ul?(z)*
- -1

f° 1665 u(s) 1 ds

+ dcglu| |Az| |u|? + 24} dtr]e (48)

Now we can prove

7.3 Lemma There exists a random radius r,(w), depending only on
Ay D1y oen s O, and | £, such that for all p > 0 there exists t(w) £ — 1 such that
the following holds P-a.s. For all to < t(w) and all uy e H with |uy| < p, let
v(t, w; to, g — z{ty,w)) be the solution of Eq. (41) over [to, o), with
v(to) = ug — z{te, w), and let u(t, w;ty, uo) = z(t, w) + v(t, w;to, uo — z(to, W)).
Then we have
140, w3 2o, o) > < 73 ().
Proof. Put
cs(w) =ci(w) +  sup 0IZ(t)iz,

-1zt

0
ca(®@) = ca() + [ 112(5)]12ds,
-1
es(@) = c1(@) +_sup_|z(0)l.

Given p > 0, choose t(w) as in the proof of Lemma 7.1. Then

0 0
S ()2 u(s)|?ds < 2¢3(0)2ca(w), and [ [u(s)][[u(s)]*ds < cs(@)2ea(®).
-1 -1
From (48) we conclude

u(©) 1% < 2[|2(0)|* + 2{ v(0) 1|
<21z + [Cz(a’) + 64cges(w)cs(@) _sup_ =) I

+ 8cges(w)ca(w)  sup  |Az(r)]
1150

0
+ f 2q(s)ds:lze64c§c3(w)c4(w)
-1

This gives an expression for r3(w), and completes the proof. [

7.7 Final result

7.4 Theorem The stochastic flow associated with the Navier—Stokes equation
with additive noise (33) has a compact stochastic attractor, in the sense of
Theorem 3.11.
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Moreover, the Markov semigroup induced by the flow on H has an invariant
measure p. The associated flow-invariant Markov measure p on HxQ (cf.
Corollary 4.6 ) has the property that its disintegration © +— i, is supported by
the attractor.

The proof proceeds as that of Theorem 5.6.
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