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1 Introduction 

One of the most important  discoveries in mathematical physics during the 
past 20 years is that of finite-dimensional attractors in mathematical models 
for fluid dynamics. However, all the analysis breaks down as soon as one 
wants to take random influences on the system under investigation in account. 
In particular, when subjecting the system to additive white noise, there is no 
chance that bounded subsets of the state space remain invariant. White noise 
pushes the system out of every bounded set with probability one. The present 
paper is an attempt to overcome this problem. We in fact do discover compact 
invariant sets - however, they are not fixed, but they depend on chance, and 
they move with time (in a coherent, "stationary" manner). Typically they leave 
every bounded deterministic set. Still they are compact - in fact, often even 
finite-dimensional - and they attract all bounded subsets of the state space. 

The approach we use is that of random dynamical systems (RDS). By 
taking an abstract, ergodic theoretical point of view, RDS cover some of the 
most common classes of systems involving randomness and time evolution. 
Amongst them are stochastic flows, random flows, and products of stationary 
random maps. See Arnold [1]; for a survey on RDS see Arnold and Crauel [3]. 
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Since we want to apply the results to infinite-dimensional systems, we will 
have to take care that the respective system does generate a stochastic flow. In 
finite dimensions these questions are settled in a fairly satisfactory manner by 
the theory of stochastic flows, see Elworthy [13] and Kunita [15] (also 
included in Kunita [16]). A "stochastic flow" needs jointly continuous de- 
pendence of the solutions of the SDE under consideration on time and initial 
state outside some nullset. This often does not hold for infinite dimensions. 
Some infinite dimensional systems do generate a stochastic flow, others do 
not. For  a survey on this field see Flandoli [14]. In our applications existence 
of the flow has to be established in each individual case. 

The paper is organized as follows. In Sect. 2 we recall the concept of 
random dynamical system. In Sect. 3 we introduce the notions of O-limit set, 
random invariant set, absorbing set, and global attractor for a random 
dynamical system. The main theorem of Sect. 3 establishes the existence of 
a global attractor, which is a compact random invariant set. We then prove 
that in a connected state space a global attractor must be connected itself. In 
Sect. 4 we analyze some relations with the concept of flow-invariant measure, 
and we prove that a global attractor always supports a Markov invariant 
measure. Finally, in Sects. 5-7 we discuss three infinite dimensional examples: 
a reaction-diffusion equation with additive noise and an abstract 2-dimen- 
sional Navier-Stokes equation in both the multiplicative and the additive 
noise case. Although the main conceptual line in proving the existence of 
a global attractor is similar, these examples display remarkable differences at 
the technical level. In particular, the analysis of the Navier-Stokes equation 
with additive noise requires some non-trivial considerations. All the applica- 
tions we present here address dissipative stochastic systems with a sort of 
parabolic structure-roughly speaking such that their flows map bounded sets 
into precompact sets. The main results of this paper can be applied to systems 
with a hyperbolic structure along the lines of Temam [20]. This extension and 
related examples will be treated in a forthcoming paper. 

Attractors for deterministic systems are quite well investigated. Temam 
[20] gives a comprehensive presentation (by which we have been inspired 
throughout the work). In the deterministic case different concepts of attractor 
have been introduced. The differences between them mainly concern speed of 
convergence to the attractor. This amounts essentially to the question whether 
certain points of the phase space are elements of the attractor. For  stochastic 
systems a greater variety of definitions is possible. Two of them, completely 
different from the one of this paper, have been introduced previously. Brzez- 
niak, Capinski and Flandoli [5], consider the O-limit set for t ~ + oo of the 
trajectories. Morimoto [18] and Schmalfug [19]f are concerned with attrac- 
tors for the Markov semigroup generated by a stochastic differential equation. 
In this paper we think of the attractor as a subset of the phase space (as in [5]), 
instead of the space of probability measures. However, we define the attractor 
as the O-limit set at time t = 0 of the trajectories "starting in bounded sets at 
time t -- - oo" (roughly speaking). Equivalently, we detect a random subset 
of the phase space which moves accordingly to the dynamics in a stationary 
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manner ,  a t t rac t ing all t rajectories s tar t ing f rom determinist ic or  r a n d o m  L ~ 
initial condit ions.  While  the definit ion of [-5] is of  interests for systems with 
real noise, the no t ion  developed here is useful for the white noise case as well. 

2 The basic set-up 

Let  {0,: (2 --. ~2}, t s T, T = IR or  T = 2~, be a family of  measure  preserving 
t rans format ions  of  a p robabi l i ty  space (~, ~-, P)  such tha t  (t, c o ) ~  0tco is 
measurable ,  0o = id, and  Ot+s = 0t ~ 0s for all t, s ~ T. Thus  (Ot)t~o is a flow, and  
((f2, Y-, P), (0t)t~ r) is a (measurable)  dynamica l  system. 

2.1 Definition Let T = IR, IR +, Z or N. A random dynamical system (RDS) with 
time T on a metric, complete and separable space (X, d) with Borel a-algebra 

over  {Or} on (f2, ~ ,  P) is a measurable map 

qo : T x X x g2 -~ X 

(t, x, co) ~ ~o(t, co)x 

such that ~o(0, co) = id (identity on X)  and 

~o(t + s, co) = ~o(t, Osco)o ~o(s, co) (1) 

for all t,s e T and for all co e f2, where o means composition. A family of maps 
(p(t, co) satisfying (1) is called a cocycle, and (1)  is the cocycle property. 

An R D S  is said to be continuous or differentiable if ~o(t, co): X ~ X is 
con t inuous  or  differentiable, respectively, for all e ~ T outside a P-nullset.  In 
the present  pape r  we will be concerned solely with cont inuous  or differentiable 
RDS.  

We often omi t  ment ion ing  ((f2, ~ ,  P), (0t)t ~ T) in the following, speaking of 
an R D S  q~. 

We do not  assume the maps  cp(t, co) to be invertible a priori. By the cocycle 
proper ty ,  (p(t, co) is au tomat ica l ly  invertible (for all t ~ T and  for P -a lmos t  all 
co) if T = IR or 7Z. In  fact, then cp(t, co)- 1 = ~0( - t, 0tco) for t e T. Ins tead  of 
assuming (1) for all co ~ f2 it suffices to assume it for all co f rom a measurab le  
(0t)t-invariant subset  of  full measure.  

N o t e  tha t  we assume 0~ to be defined for all t e IR or ~,  resp., even if {p is 
not  invertible. 

F o r  a comprehens ive  exposi t ion on RDS see Arnold  [1]. Fo r  a survey see 
Arnold  and Crauel  [3]. 

3 Attraction and absorption 

We need some notat ions.  A set valued m a p  K :  (2 --+ 2 x taking values in the 
closed subsets of  X is said to be measurable if for each x ~ X the m a p  
co ~ d(x, K(co)) is measurable ,  where d(A, B) = sup {inf{d(x, y): y ~ B} : x e A} 
for A,B e 2 x, A ,B  r 0; and  d(x,B) = d({x},B). Note  tha t  d(A,B) = 0 if and  
only if A ~ B, so d is not  a metric. A closed set valued measurab le  m a p  
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K" f2 ~ 2 x will be called a random closed set. (This coincides with the notion 
of a measurable multifunction as used by Castaing and Valadier [6] Defini- 
tion III.10, p. 68.) 
A random set K is said to be (strictly) p-forward invariant if 

(p(t, co)K(co) c K(Otco ) (qo(t, co)K(co) = K(O,co)) for all t > 0. 

3.1 Definition Given a random set K, the set 

f2(K, co) = f2~(co) = (~ U ~p(t,O_,co)K(O_,co) 
T > O t > _ T  

is said to be the f2-1imit set of K. By definition f2K(CO) is closed. 
(The usual notion "co-limit set" is likely to give rise to confusion. The notion 
'g2-1imit set' should not, even if f2 keeps on denoting the probability space.) 

We may identify 

I2K(CO ) = {y ~ X: there exist t. ~ oo and x, ~ K(O_~.co) 

such that q~(t,, O-,.co)x, ,+~ y}. 

The 0-shift of an Q-limit set is 

f&(.  )o Of = f2(K, 0tco) = {y e X: there exist t, ~ oo and 

xn e K(O_t.+tco) such that q)(t,, O_t,+,co)x, ~-2~y }. (2) 

The following lemma is proved along the same lines as the corresponding one 
for deterministic systems, invoking continuity of ~o(t, co). 

3.2 Lemma The ~2-1imit set of an arbitrary random set K is invariant. 

Proof Given y E OK(co), there exist t,--* oo and x, ~ K(O_,co) such that 
y = limq)(tn, O_tco)x,. For  t > 0 thus 

n - - *  oo 

~o(t, co)y = lim 
B--~  oo 

= lim 

= lim 
n---~ oo 

where f, = t + t, ~ oo and Hence 
q)(t, co)y ~ f2K(Otco) by (2). [] 

Lemma 3.2 does not say anything 

3.3 Definition A random set A is 
P-almost surely 

d(q)(t, O_,co)B(O_,co), A (co)) 7 ~ 0 .  

q~(t + t,, O-t co)x, 

rp(t + t,,O_~_t.O,co)x, 

~o(r,, O_~o O, co) x,, 

x ,  e K(O_t co) = K(O_~ Otco). 

about non-voidness of ~2-1imit sets. 

said to a t t r a c t  another random set B if 

The proof  of the following Lemma is immediate from the O,-invariance of P. 
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3.4 L e m m a  I f  A attracts B then d(q)(t, co)B(co), A ( 8 t o ) ) - - ~ O  in probability. 
n--~ oo 

If a set A attracts another  set B then any set A' such that P-a.s. A c A' also 
attracts B. 

3.5 Definition I f  K and B are random sets such that for P-ahnost all co there 
exists a time tn(co) such that for all t >__ tn(co) 

qo(t, O_tco)B(O_to)) c K(co) 

then K is said to absorb B, and tn is called the absorption time. 

The  following result is concerned with propert ies of the ~2-1imit set f2n of a set 
B which is absorbed by some compact  set K. 

3.6 Proposit ion Suppose K and B are random sets with K absorbing B, and K is 
compact P-as. Then for P-almost all co 

(i) Qn(co) is nonvoid, and (2n(co) c K(co), hence it is compact. 
(ii) OR(o) is strictly invariant. 

(iii) f2n(co ) attracts B. 

Proof First  note  that  if (t,,), ~ ~ is any sequence of times with t , - - ~  ~ and 
n---~ oo 

(b,),+N is any sequence with b, e B(O_~co), n e N,  then for all n big enough 
such that  t, > tn(co) absorpt ion  implies q)(t,, O-t.co)bn e K(co). Compactness  of 
K(co) entails existence of a convergent  subsequence of (cp(t,, 0_t,  co)b,), ~ N to 
some y e X. 
(i) Using any sequences t, and b, with the propert ies of the preceeding 
paragraph,  the limit y = lim ~o(t,, O-tco)b, satisfies y e OR(co), so O R ( o ) #  0. 
Fur thermore ,  

f2n(co) c ~ ~ ~o(t,O_tco)B(~_tco) c K(co), 
T >= t~((o) t > T 

where ts(co) is the absorp t ion  time, hence ~Jn(co) is compact .  
(ii) Suppose y z fln(0sco) for some s > 0. Then y = lira (p(t,,~-t.+sco)b, for 
some sequence t~ ~ ~ and bn r B(~-,o+Sco), hence "-+~ 

y = lim ~p(s, co)(p(t, - s,~_t.++~)b~. (3) 
n---~ oo 

For  n big enough such that  t, - s > tn(co) absorpt ion implies k, :=  ~p(t, - s, 
~_(,,_+))b, E K(co), hence there is a convergent  subsequence k,, converging to 
some uefln(co) .  Cont inui ty  of (p(t, co) implies y = ( p ( s ,  co)u, hence 
y ~ ~0(s, co)~Jn(o). We have proved ~Jn(Gco) ~ ~p(s, co)~Jn(co) for all s > 0, so 
strict invariance follows together  with L e m m a  3.2. 
(iii) If Qn(co) would not  at t ract  B there were g > 0, a sequence t, ~ ~ ,  and 
b~ ~ B(3_,oco), such that  for all n z N 

d(~o(t,, 8 - t  co)b,, ~2n(co) ) >= 5. (4) 

But (~o (t~, ,9_toco) bn), ~ ~ has a convergent  subsequence, converging to a limit in 
OR(co), which, by continui ty of ~o(t, co), contradicts  (4). [ ]  
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3.7 Remark Strict invariance 
compactly absorbed as soon 
continuous for all t > 0 ) .  
y = lim q~(t., O_t.+~o~)b., then 

n - - ~  co  

z = lira q~(s,o~)-lcp(t., 
n---~ oo 

exits, and z e O~(o~). Since y = 

of OB follows even without assuming B to be 
as cp is invertible (i.e., ~0(t,~o) -1 exists and is 
In fact, if y ef2B(8~e)) for some s > 0 ,  
also 

8 - t . + s m ) b .  = l i m  ~o(t. - s ,O-t .+~co)b.  

cp(s, m)z e ~o(s, co)On(c-) we obtain OB(Osco) c 
q~(s, co) O~(co), and again strict invariance follows together with Lemma 3.2. 

The next result is concerned with the O-limit set Or  of a compact  set 
K which absorbs some set B. 

3.8 Proposition Suppose K and B are random sets such that K is compact P-a.s. 
and absorbs B. Then P-almost surely OB c OK. In particular, Or is nonvoid 
P-a.s. (since Y2B is nonvoid by Proposition 3.6 (i)), and f2r attracts B. 

Proof. Suppose y e OB(co). Then y = lim ~o(t,,O_t, co)b, for some sequence 
t,, ~ oe, b, e B(0_t, co). "- '~ 
Fix T > 0 and put No = min{n e N:  t, > T + tB(0_ TO0)}. Then for all n ____ No 

~o(t,, 9_,  o))b, = r 3_ TO))(p(tn -- T, 0 -- t, co)b,. 

For  n >= No we have t, - T > tB(uq_rO)), hence k, := cp(t, - T ,8_ t .m)b ,  = 
q) (t, - T, 8 _ (,._ r )8-  r O)) b, e K (8_ r CO), since 
b, ~ B(0_ t, to) = B(8_ (,._ T) 8 - T ( D ) '  Consequently, for all n > No 

q)(tn, g_t  oJ)b, E q)(T,g-TCO)K(8- TO)) c ~ (p(t, 8_tco)K(g_tog), 
t > T  

which implies y e OK(c0). []  

Note  that under the conditions of Proposit ion 3.8 f2K need not be compact.  

3.9 Definition Suppose cp is an RDS  such that there exists a random compact 
set o) ~-~ A(r which satisfies the following conditions: 
(i) cp(t,o))A(r = A(StoJ) for all t > 0 
(ii) A attracts every bounded deterministic set B c X .  
Then A is said to be a u n i v e r s a l l y  or globally attracting set for q~. 

3.10 Remarks (i) The notions 'at traction'  and 'absorpt ion '  are very close. If 
a compact  K absorbs some B, then OK attracts B. On the other hand, if a set 
A attracts some B, then every K containing an open neighbourhood of 
A absorbs B -  for instance, K = Uo(A) for fi > 0. In particular, if A attracts B, 
then O~ c A. 

(ii) Another way to define a globally attracting random set would impose 
the stronger condition that every random bounded set is to be attracted 
instead of the weaker condition that  only nonrandom, deterministic sets are 
attracted. These two notions are in general not equivalent. We chose this 
definition since for our applications we can establish only the weaker require- 
ment. 
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(iii) A globally attracting set must contain every invariant set, so it need 
not really be an attractor in an intuitive sense. For a discussion see Eckmann 
and Ruelle [12] II.B, p. 623 (cf. also II.D-F, pp. 624-627). Nevertheless we 
shall speak in the following simply of attractors instead of attracting sets, and 
call a globally attracting set a global attractor. 

(iv) The notion of a global attractor is not a topological but a metric 
concept. 

The following theorem is the main result of this section. 

3.11 Theorem Suppose qo is an RDS on a Polish space X, and suppose that 
there exists a compact set co v-~ K(co) absorbing every bounded nonrandom set 
B c X. Then the set 

A(co) = U QB(co) (5) 
B c X  

is a global attractor for ~o. Furthermore, A is measurable with respect to ~ if T is 
discrete, and it is measurable with respect to the completion of ~ (with respect to 
P) if T is continuous. 

Proof. For any bounded B c X we have K2B c K(P-a.s.) by Proposition 
3.6(i), hence A is compact P-a.s. Since co ~ ~B c x f2~(~) is strictly invariant by 
Proposition 3.6(ii), continuity of ~o implies that A is invariant. Strict invari- 
ance of A follows from compactness of A. 
To prove measurability, first note that for any x e X and any (nonrandom) 
B c X the map (t, co) ~-~ d(x, (o(t, ~-to))B) = inf{d(x, ~0(t, ~_,co)y): y ~ B} is 
measurable by separability of X and continuity of ~0. For e a c h ,  __> 0 

d (  x' > ~ q)(t '~-tc~ = inf d(x' q)(t' >--~ 

If time T is discrete, measurability of QB is immediate. For T continuous note 
that for a e IR arbitrary 

{co: ,_->~infd(x'~~176 a} = 7z~{ (t, co): d(x, cp( t ,~_tco)B)<a, t>~},  

where roe denotes the canonical projection of T x f2 to f2. Measurability of 
o3 ~ d(x, Ut >=~ ~o(t, 8_te))B) with respect to the P-completion o f f f  follows by 
the projection theorem (see Castaing and Valadier [61 Theorem IIL23, p. 75). 
Taking the intersection 

over z from a countable unbounded set (e.g., ~ ~ N), t'2 B is seen to be measur- 
able. Since A can be obtained using only a countable number of B's in (5), the 
assertion is proved. [] 

In case t ~ ~o(t, O-tco) is continuous P-a.s. (hence separable), the attractor is 
measurable without completion. For invertible random or stochastic flows 
this holds, see Arnold [1]. 
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Concerning uniqueness of the global attractor we note that if A' is another 
compact invariant set attracting all bounded sets, then ~B c A' by Remark 
3.100), hence A c A'. Thus the attractor given by Theorem 3.11 is minimal 
with respect to set inclusion. 

In Theorem 3.11 we cannot proceed in exact analogy with the determinis- 
tic case, where the D-limit set f2K of the absorbing set can be taken to be the 
attractor. In the present situation this does not work, since the random set 
K need not absorb itself, so we cannot guarantee compactness of OK. 

We conclude this section by showing that a global attractor in a connected 
space is connected. We need a lemma. 

3.12 Lemma Suppose A is a non-connected compact subset of a metric 
space X. 

(i) There exists c~ o such that for ~ <= ao the ~-neighbourhood U,(A)= 
{y e X: d(y, A) < ~} of A is the disjoint union of two open non-empty sets. 

(ii) I f  ~o is as in (i), then 

inf{d(S,A)" A c S, and S connected} > C~o. 

Proof. (i) Since A is not connected there are open sets U, V c X such that 
A c U u  V, A n U  r O, A n  V r O, and A n U  n V = r Since A n U  and A n  V 
are closed and disjoint, 

1 inf{d(x,y): x e  A n U ,  y e A n V }  > O. 

For  ~ =< C~o put G1 = U=(A~U) and G2 = U~(Ac~V). Then G1 riG2 = 0, and 
U~(A) = U~((A~U)u(Ac~ V)) = U~(AnU)uU~(Ac~ V) = GI wG2. 

(ii) Denote by U and V the two open disjoint and non-empty sets such 
that U~o(A) = U u V according to (i). Suppose S is connected and d(S, A) < C~o, 
then S ~ U~o(A), hence S is contained either in U or in V, and so A is not 
a subset of S. Thus if S is connected then A c S enforces d(S, A) > c%. [] 

3.13 Proposition Suppose (p is an RDS on a connected space X. I f  q~ has 
a global attractor A, then P-a.s. A is connected. 

Proof Since q)(t, co)A(c0) = A(gtco), either A is connected P-a.s., or A is not 
connected P-a.s. 

Assume that A is not connected P-a.s. Then there exists a number 
co ~ Co(co) such that the assertion of Lemma 3.12 is satisfied. Pick a bounded 
connected set B such that P{A(co) c B} _-> 1 - ~ for 0 < ~ < �89 Such B exists, 
since for x e X arbitrary the map c0 ~ d(x, A(co)) takes real values, so choos- 
ing for B a ball around x with sufficiently large radius does. 
Then 

P{A(co) c cp(t,~_tco)B} = P{A(co) ~ B} __> 1 -- ~, 

and since (p(t,~_tco)B is connected this implies 

P{d(qo(t,O_tco)B, A(co)) > C~o(co)} => 1 -- ~ (6) 

for all t => 0 by Lemma 3.12 (ii). 
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On the other hand, d(qo(t,O_tco)B,A(co)) converges to zero P-a.s., so there 
exists T such that 

P d(~o(T, 8_rco)B,A(co))  <~C~o(co => 1 - ~. (7) 

Since (6) and (7) are contradictory, A must be connected P-a.s. [N 

4 Invariant measures on random sets 

Let #.(. ) be a transition probability from g2 to X, i.e., #~ is a Borel probability 
measure on X and co ~ #o,(B) is measurable for every Borel set B c X. 
Denote by Pra(X) the set of transition probabilities with #. and v. identified if 
P{co: p~o v a vo} = 0. 

Suppose # is a probability measure on X x f2 with marginal P on f2. Then 
for any # ~ Prp(X  x f2) there is a disintegration #. ~ Pra(X)  uniquely deter- 
mined by 

#(B x F) = f#~o(B)dP(co) 
r 

for all B e ~ and F e f t .  We will henceforth identify probability measures on 
X x f2 with marginal P with their disintegration co ~ / ~ .  

4.1 Definition (i) An invariant measure for  an R D S  ~o is a probability measure 
on X x f2 whose marginal on f2 is P, and which is invariant under the f low Ot : 
X x f2 ~ X x f2, (x, co) ~-~ ((p(t, co)x, Otco),for t > O. The f low Ot : t ~ T, is called 
the skew product flow induced by ~o. 

(ii) A probability measure # on X x (2 with marginal P on f2 is said to be 
supported by a measurable random set co~--~A(co), /f # (A )=  1, where 
A = {(x, co): x e A(co)} is the graph of  the mapping co ~ A(co). Equivalent is: 
P-a.s. #o,(A(co)) = 1. 

The proof  of the following Lemma is completely straightforward, using 
invertibility of {~,} (i.e., the fact that Ot is defined for all t ~ ;g or t ~ IR, 
respectively). It is wrong if Ot is defined for t > 0 only. 

4.2 Lemma Suppose # is a probability measure on X x Y2 with marginal P on f2, 
and co ~-+ #o~ is its disintegration. Then the disintegration o f  0 , #  is 

co ~ ~o(t, ~-tco)#~_+~ = (~ ( t , .  ) # .)o ~_t(co). 

Denote by Ca(X) the set of functions f :  X x f2 ~ 1R such that f (x , . )  is 
measurable for each x e X , f ( . ,  co) is continuous and bounded for each co e f2, 
and co ~ sup{ I f (x ,  co) l: x e X} is integrable with respect to P, where two such 
funct ionsf  and g are identified if P{co : f ( . ,  co) # g( . ,  co)} = 0 (measurable by 
continuity o f f  and g together with separability of X). 
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Define the narrow topology on Pr~(X) to be the coarsest topology such that 

~ f f (x ,  ~) d~(x, ~o) = # ( f )  
X• 

is continuous for a l l f e  CQ(X). The skew product flow (Ot)~ r acts as a flow of 
continuous transformations on Pr~(X). 

A subset F of PrQ(X) is said to be tight if nxF = Pr(X)  is tight, where nx 
denotes canonical projection from X x f / o n t o  X. Thus Y is tight if for every 

> 0 there exists a compact  K~ ~ X such that kt(K~ • Q) > 1 - ~ for all # ~ F. 
The following result is due to Valadier [-21] Theorem 11, p. 162. 

4.3 Theorem Suppose Y c Pr~(X) is tight. Then 
(i) F is relatively compact in Pra(X). 

(ii) F is relatively sequentially compact (i.e., if (#".),~N is a sequence in F, then 
there exists a convergent subsequence (Iz".+)k~). 

4.4 Corollary Let q~ be an RDS, and suppose ~ ~ A(to) is a compact measur- 
able forward invariant set for q~. Then there exist invariant measures for q~ which 
are supported by A. 

Proof Put F = {/1 E Pr~(X): /~(A~)  = 1 P-a.s.}. Then F is tight and closed 
(Crauel [-9]), hence compact  by Theorem 4.3. Furthermore,  iv is convex and 
invariant under Or, t > 0. The assertion thus follows from the Markov-  
Kakutani  fixed point theorem (Dunford and Schwartz [11] Thin. V. 10.6, p. 
456). [ ]  

Define two o--algebras corresponding to the future and the past, respectively, 
by 

~ +  = a{o) ~ q~(%0t~o): ~, t > 0} and ~ -  = a{co ~ r 0 < �9 < t}. 

Then 0C 1 y + ~ ~- + for all t > 0 and 0~- 1 .~  - ~ y - for all t < 0. 
Note  that for an invertible RDS ~p,.~ + coincides with a(o~ ~ ~p(z, o~): z > 0) 
and ~ - -  coincides with a(c0 ~ r  z < 0). 

Provided the conditions of Theorem 3.11, it is immediate from the con- 
struction of the at tractor that it is measurable with respect to the past ~ -  
(since t2~ is so for any nonrandom B). 

4.5 Proposition Suppose co w+ A(~o) is a cp-invariant compact set which is 
measurable with respect to the past ~ , for an RDS ~p. Then there exist invariant 
measures # supported by A such that also ~o ~-~ #~ is measurable with respect to 
~ - ,  

Proof The set of all probabili ty measure valued ~o ~ ~t~ which are measur- 
able with respect to an arbitrary sub-~7-atgebra of ~ form a closed subset of 
L~~ Pr(X)). This holds in particular for ~ - - .  Furthermore,  Lemma 4.2 
yields that the set of Y --measurable  measures is invariant under the linear 
continuous action induced by Or. The assertion follows as soon we have 
established existence of ~ - - m e a s u r a b t e  measures ~o ~-~ #,~ supported by A. 
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This follows by choosing a measurable selection o) ~ x{co) a A(co) (Deimling 
[10] Theorem 24.3, p. 307) and putting #co = 6x(~o). []  

Measures which are measurable with respect to the past are called Markov 
measures. The reason for this notion comes from the fact that in case of 
a stochastic flow these are precisely those flow-invariant measures which 
correspond to invariant measures for the Markov semigroup induced by the 
one-point motions of the flow, see Crauel [8]. We obtain 

4.6 Corollary Under the conditions of the Proposition suppose in addition that 
q) is a RDS whose one-point motions form a Markov family, and such that ~ + 
and ~ -  are independent. Then there exists an invariant measure p for the 
associated Markov semigroup. Furthermore, the limit 

#o, = lim (0(t, 0_tco)p (8) 
t--+ oO 

exists P-a.s., p = f#~,dP(oo) = E(#.),  and # is a Markov measure. 

Proof Let # be an invariant measure for cp supported by A, such that co ~ #o, 
is i f - -measurable .  Then p = E(#.)  is an invariant measure for the Markov 
semigroup by Crauel [8] Theorem 4.4 and 5.2.2. Assertion (8) follows from Le 
Jan [17] Lemme 1, p. 112, or Crauel E7] Proposition 3.1 (the argument can 
easily be seen to carry over to non-invertible RDS when replacing 
~o( -- t, co)-1 by q~(t, O-too) for t > 0.) []  

It should be emphasized that the Markov semigroup invariant measure 
p from Corollary 4.6 does not have compact support in general. This need not 
even be true if #~ is a random Dirac measure. 

5 Reaction-diffusion equation with additive noise 

5.1 Formulation 

Let D c IR" be a bounded open set with regular boundary 0D. Denote by 
A the Laplacian in IR", and by f a polynomial of the form 

2 p - 1  

f (u) = ~ aku k, w i t h a 2 p _ l < 0  
k = 0  

for some positive integer p and real numbers ao, . . . ,a2p-1.  Consider the 
following (reaction-diffusion type) stochastic partial differential equation in 
D with additive noise: 

I du = Audt + f (u)dt  + ~ (oflwj(t), 
j = l  

u = 0 on OD, 
(9) 
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where wj(t), 1 < j < m, are independent  two-sided Wiener processes (compare 
Sect. 2) and ~bj: D ~ IR, 1 = j < m, will be specified below. We introduce the 
following spaces and opera tors  related to (9): 

V = Hol(D); Z = L2p(D), Z '  = L(2P)'(D), = L ~(D); 

where (2p)' = 2p . 2p-~, and 

A: D(A) c H o H, 

where D(A) = {u e H2(D): u = 0 on #D} and Au = Au, and finally F: Z ~ Z' ,  
F(u) = f(u).  With these nota t ions  we assume that  q~j e D(A) and AqSj e Z '  (this 
assumption may  be relaxed according to Remark  5.1 below). Moreover ,  we 
can rewrite equat ion (9) in the abstract  form 

du = A u d t  + F(u)dt + ~ dpflwj(t). (10) 
j= l  

We denote  by ( . , . )  and ].] the inner p roduc t  and no rm in H, and by 
( ( . , . ) )  and ]]. II the inner p roduc t  and no rm in V = H~(D) = D(( - A)a/2), 
defined as I] x2 I] = I( - A) 1/2x] 2 for all x e Hlo(D) (hence ][ x II = ( - Ax,  x )  for 
all x e D(A)). By Rellich's Theorem A -1 is compact ,  and the embedding 
V = H is compact .  If 21 is the first eigenvalue of - A, we have 

IIX]l 2 ~ /~l]XI 2 

for all x e V. Let  us further denote  the norms in Z and Z '  by II" [Iz and [1" IJz,, 
respectively. Concerning the boundedness  of F in these spaces, note  that  by 
the Young inequali ty 

1 ab <_ _s ar + ,, b r,, 
r t ' ~  T 

which holds true for all a, b,s > 0, r ~  (1, oe ), and r ' =  ~-~i, there exist two 
constants  cl ,  c2 > 0 such that  

If(u)[ =<_ cllul 2p-a + c 2  for all u e l R .  

Hence, with c3 = c2 I DI x/(2p)', we have 

IlF(u)llz, < cl  II(lulZP- t)llz, + c3 = ct [lul[~ p-1 + c3 

for all u e Z. 
Let  us s tudy equat ion (10) by means of the classical change of variable 

v(t) = u(t) -- w(t), 

where, for brevity, we write w(t)  = ~i% t ~bJwJ(t) �9 Formally,  v(t) satisfies the 
equat ion (which depends on a r andom parameter)  

dv 
- -  = A v  + F ( u )  + A w ,  (11) 
dt 
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or the more explicit equation 

dv 
dt Av + F(v + w) + Aw.  (12) 

By the same proof as that of Theorem 1.1, Chap. III, of Temam [20] one can 
show that for P-almost every co e f2 the following holds 

(i) for all to < T~ IR and all Vo e H there exists a unique solution 
v e  C([to, T ) ; H ) n L 2 ( t o , T ; V ) n L ~ P ( [ t o ,  T ] ; Z )  of equation (12) with 
V(to) = Vo; 

(ii) if Vo ~ V, the solution belongs to C([to, oo ); V)c~L~c(to, oo; D(A)); 
nLloc(to + e, oo ; D(A)), for (iii) hence, for all vo e H, v e C([to + 5, oo ); V) 2 

every ~ > 0; 
(iv) denoting such a solution by v(t, cO;to,Vo), the mapping 

vo ~ v(t, co; to, Vo) is continuous for all t > to. 
The proof  proceeds by a priori estimates on Galerkin approximations of 

the same form as those developed in the following subsections. 
Having the mapping Vo ~-* v(t, co;O, vo), one can define a stochastic flow 
q~(t, co) by 

(p(t, co)Uo = v(t, co;O, uo) + w(t, co). (13) 

This will be called the stochastic flow associated with equation (9) (one can 
show that the process (p(t, co)uo is a solution of(9) in a suitable sense, but this 
fact is not needed in the following). 

5.1 Remark Let z(t)  be the stationary solution of the Ornstein-Uhlenbeck 
equation 

dz = Azd t  + dw(t). 

The process z(t)  is more regular than w(t) in the space variable. With some 
additional technical details one can perform the following analysis using the 
change of variable v(t) = u(t) - z(t) in place of v(t) = u(t) - w(t). The advant- 
age is that less regularity conditions on ~bk have to be imposed. However, for 
simplicity, we restrict our attention to the change of variable v(t) = u(t) - w(t). 

5.2 Two preliminary inequalities 

By definition of A and F, for all u ~ D(A)c~Z we have 

-- ~A(u - w(t)), F(u) )  = - ~Au, F(u) )  + ~Aw(t ) ,F(u)~ 

- f Auf(u) + f dw(t)f(u) 
D D 

= f f ' ( u ) V u "  Vu + f Aw( t ) f (u ) .  
D D 

By the assumptions on the polynomial f its derivative is bounded from above, 
i.e. 

f ' ( r )  <= t~ for all r E 1R (14) 
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for some constant ft. [-This may be deduced either from the Young inequality 
or from elementary considerations on the graph o f f ' . ]  Then 

- ( h ( u  - w( t ) ) ,F (u ) )  </~llull 2 + IIF(u)llzllZw(t)llz,  

< flllul[ 2 + (cx Ilull 2p -1  + c3)llZw(t)llz,  

_-< Bllull 2 + I]ull~ p + px(t ,  co) 

(by the Young inequality), where, for some constant c4 > 0, 

pl(t, co) = c4 tl Aw(t)Ifz2, p + c3 II hw(t)IIz, 

has at most polynomial growth as t ~ - oo, for P-a.s. co ~ f2 (by the law of 
large numbers), and pl(t ,  co) > O. This is the first inequality we will need in the 
following. Next, by arguments similar to those yielding (14), there are positive 
constants fi0 and c5 such that 

f ( r ) r  < - •o r2p 4- c 5 for all r ~ IR (15) 

Hence, for all u ~ Z, 

(u  - w(t), F(u) )  = ( u , F ( u ) )  - ( w ( t ) , F ( u ) )  = f uf(u)  - f w ( t ) f ( u )  
D D 

_-< - ~o l lu l l z  2~ + csIOl + (cl I lullz 2~-~  + c3)llw(t)llz, 

< go 
- 5 -  II u Ilz 2~ + c5 I Ol + c6 II w(t)II ~,P + c3 II w(t)IIz, 

(by the Young inequality, for some constant c6 > 0) 

= - 611ullz 2~ + p2(t ,  co) 

with 6 = ~ and Pz (t, co) = c 5 [ D I + c6 II w ( t ) II ~e + c 3 II w (t) II z,, where p z has the 
same properties as pl above. Summarizing these results we obtain 

5.2 Lemma There exist two functions pi(t, co) > O, i = 1, 2, with at most poly- 
nomial 9rowth as t ~ - oo for  P-a.e. co ~ f2, and there exist  constants fl, 7 > O, 
and 6 > O, such that 

(i) for  all u ~ D(A)c~Z 

- ( Z ( u  - w ( t ,  co)),F(u)) ____/~tlull 2 +T[]ulJ2zP+px(t, co); (16) 

(ii) for  all u E Z 

(u  - w(t),  F ( u ) )  < - 6 II u II z 2~ + pz(t, 09). (17) 

When proving the existence of a compact absorbing set (which implies 
existence of a global stochastic attractor) we shall only use these two inequali- 
ties. Therefore, the proof and result of this section can be reformulated in 
a more abstract form and applied to other equations or systems satisfying (16) 
and (17). At the abstract level, this would need suitable assumptions to ensure 
solvability of the abstract equations (10) and (11). In order not to overload the 
presentation, we limit ourselves to the concrete problem (9). 
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5.3 Absorption in H at time t = - 1 

In  the following c o m p u t a t i o n  co e f2 is fixed; the results will hold P-a.s. Let  
to < - 1 and  u0 e H be given, and let v be the solut ion of Eq. (12) for t > to, 
with v(to) = Uo - w(to) (denoted above  by v(t, ~o; to, Uo - o9(to, co))). F r o m  (11) 
we get 

l d  

2 dt 
- - I v l  2 = v , ~  - I l v l l  2 + @,f(u)> + (v, Aw) 

1 1 
<= - IfvH 2 - a ]lull 2p + pN(t, o9) q- ~ Ilvl] z -k ~ Nwll 2 

1 
-< - - I l v l l  2 - ~ l lu l l z  2~ + p3(t, og), 
- 2 

where p3(t, o9) = p2(t, o9) + �89 IIw]l 2 has the same propert ies  as Pl and  P2 f rom 
L e m m a  5.2. Therefore  

d 2 1 21 ~lvl +2 Ilvll2+2allultz2~<= - - - - Iv lg+2pa( t 'og) '2  (18) 

By the Gronwa l l  L e m m a  

- 1  _-q-t 
Iv( - 1)12 < e -@(-1- t~  2 + f e -~(-1-S~2p3(s, o9)ds 

to 

< 2e-@(-1-t~ 2 (19) 

- 1  

+ 2e-@r 2 + f e@(-1-S)2p3(s, co)ds. 
- c o  

Hence  we have 

5.3 L e m m a  There exists a random radius rl(og) > 0, such that for  all p > 0 
there exists (a deterministic) f <= - 1 such that the followin9 holds P-a.s. For all 
to <= f and for  all Uo e H with luol <= p, the solution v(t, og;to,Uo - W(to,CO)) o f  
Eq. (12) over [to, oo ), with v(to) = uo - W(to), satisfies the inequality 

Iv( - 1,og;to,Uo - W(to,@)l 2 < r2(o9). 

Of  course  one can deduce a similar absorp t ion  result for u( - 1) instead of 
v( - 1) f rom this Lemma ,  but  we will not  need it in the following. 

Proo f  Put  
- 1  

r2(o9) = 2 + 2 sup e-@(-1-t~ 2 + f e-@(-*-*}2p3(s, og)ds; 
t o <  - 1  _ c o  

this is finite P-a.s. since I W(to)[ 2 and  P3 (s, co) have at  mos t  po lynomia l  g rowth  
for to and  s, respectively, tending to - ~ .  Given  p > 0, choose f such that  

e - ~ ( - 1 - t ~  p 2 < 1 

for all to =< L The  claim then follows f rom (19). [ ]  
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5.4 Auxiliary estimates in [ -  1, O] 

Integrating (18) over [ - 1, O] we have 

1 o o o 

f IIv(s)ll2ds + 26 f Ilu(s)ll~"ds <= Iv( - 1)12 + f 2p3(s, co)ds. (20) 
- -1 -i -i 

Consequently,  f rom Lemma 5.3 we immediately get 

5.4 Lemma There exist two random variables cl (co) and c2(co) such that for all 
p > 0 there exists F < - 1 such that thefollowin9 holds P-a.s. For all to < Fand 
all Uo ~ H with luol < p, the solution v(t, co; to,Uo -W( to ,  co)) of Eq. (12) over 
[to, co ), with V(to) = Uo - W(to), satisfies 

0 0 

f [Iv(s)llids < ca(co), and f Ilu(s)ll~Pds < c2(co), 
- 1  - 1  

where u(s) = v(s) + w(s). 

5.5 Absorption in V at time t = 0 

F r o m  (11) we also have 

l d  
2 dt IIv II z = 

< 

< 
= 

l A r d y \  -- \ ' d t /  = - l A y [ 2  - (Av, F(u)) - (Av, Aw)  

- I A v l  2 +//l[ull z + 71lUllz 2p + pl(t, eo)+ ~lAvl 2 + l i A w ] 2  

~[Av[ z +/~llull 2 + ~llull 2 + p4(t, co) 

for some function p4(t, co) ~ 0 with the same properties as Pl and P2 from 
Lemma 5.2. Integrating over an arbitrary interval I-s, O] we get 

0 

[I v(o)II 2 < l[ v(s)II 2 + f {2//11 u(a)II 2 ._]_ 2y I[ U(O')I[ Z 2p + 2p4(a, 09)} do'. 
$ 

Integrating again in s over [ - 1, 0] we finally have 

0 

II v(0)[I 2 _< f I] v(s)II 2 as 
- 1  

0 

+ f {4//II v(a)II 2 + 4//I1 w(~r)II 2 + 2~ II u(G)II z 2p + 2p,(,r, co)} do-. 
- 1  

From Lemma 5.4 we readily have 

5.5 L e m m a  There exists a random radius r2(co) such that for all p > 0 there 
exists f < - 1 in such a way that the followin9 holds P-a.s. For all to < f and all 
Uo ~ H with luol < p denote by v(t, co;to,Uo - W(to,~O)) the solution of Eq. (12) 
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over [to, oc) with V(to)=Uo-W(to),  and put 
+ v(t, co; to, Uo - W(to, co)). Then 

II u(0, co; to, Uo)tl 2 =< r~(co). 

381 

u(t, co; to, Uo) = w(t, co) 

5.6 Compact Attractor and invariant measures 

5.6 Theorem The stochastic flow associated with the reaction-diffusion equa- 
tion with additive noise (9) has a compact stochastic attractor, in the sense of 
Theorem 3.11. 

Moreover, the Markov semigroup induced by the flow on H has an invariant 
measure p. The associated flow-invariant Markov measure # on H x f2 (cf. 
Corollary 4.6) has the property that its disintegration co ~ #o, is supported by 
the attractor. 

Proof. Recall that, in the language of the stochastic flow associated with 
Eq. (9), 

u(0, co; to, Uo) = ~o(t,, O_toco)Uo. 

Hence by Lemma 5.5 there exists a random ball in V which absorbs the 
bounded sets of H. Since V is compactly embedded in H, we have proved the 
existence of a compact absorbing set. Therefore Theorem 3.11 applies to the 
stochastic flow associated with Eq. (24). 

The existence of an invariant Markov measure is a direct consequence of 
Corollary 4.6, provided we know that the one-point motions associated with 
the flow ~0(t, co) define a family of Markov processes. The proof of this fact is 
classical, so that we only give the idea. As a general remark, we note that all 
the properties used below for ~o(t, co)x can be easily proved using only the 
definition of ~0(t, co)x in terms of v(t) and w(t), without explicit reference to the 
equation (9). 

Let cp,,, be defined as in Sect. 2. Let ~-s,, be the a-algebra generated by 
w(r) - w(s) for r e Is, t], and let Yt  = ~,~o.t. Define the operators Pt in the 
space of bounded measurable functions over H as Pt( f ) (x)  = E(f(cp(t)x)). If 
we show that 

E(f(~o(t)x)l~s)  = Pt-s(f)(q~(s)x) 

for all 0 < s _< t and all bounded continuous func t ionsfover  H, then clearly 
cp(t)x is a Markov process with transition semigroup P,. Since r co)x = 
q0~,,(co)r co)x, it is sufficient to show that for a generic square integrabte 
H-valued random variable r/, measurable with respect to J~ ,  we have 

E(f(cp,.~q)l~-s) = Pt-s ( f )  (rl). 

If 11 = xo a.s. for some xo e H, this is true because q~,txo is 2s,t-measurable, 
hence independent of o~. Here we have used the fact that 
Pt - s ( f ) ( x )  = E ( f ( q o ( t -  s )x ) )= E(f(cps,,x)) (since the coefficients of the 
equation for Cps,t are time independent, one can see that the H-valued random 
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variables q)s,tx and (p( t -  s)x have the same law). If t / =  Y~=l xilA,, where 
Aie  ff~, one can show that (P~,tq = Y,7=1 1A~gs,tX~; by this fact it is easy to 
prove the claim also in this case. Finally, for a general t/there exists a sequence 
of q, of the previous form which converges to t/in L 2 (g2; H) and almost surely. 
By continuity of f one can pass to the limit, which completes the proof. [] 

6 Navier~Stokes equations with multiplieative noise 

6.1 Formulation 

Let H be a real separable Hilbert space (inner product ( . , . ) ,  norm 1. [), and 
let A : D(A) c H ~ H be a selfadjoint strictly negative linear operator in H. 
Denote by V the Hilbert space D ( ( -  A)l/z), endowed with the norm 
][ X 2 [[ = [( - -  A ) I / Z x [  2 ( = - -  (Ax, x)  for x ~ D(A)). Identifying H with its dual 
H',  we can write V c H ~ V', with dense continuous injections. We assume 
also that A-1 is compact, whence the embedding V ~ H is compact. If 21 is 
the first eigenvalue of - A, we have 

Ilxll 2 > , h l x l  2 

for all x e V. 
Let B(u, v) be a bilinear continuous operator from Vx V to V'. Suppose that 
there exists a constant cB > 0 such that 

(B(u,v),z) <= cBIuI~IIuII~IvI~IIv]I~I]zI] 
for all u,v,z ~ V, 

for all u, v ~ V, and 

<B(u, v), v )  = 0 

(21) 

(22) 

(23) (B(u,v),z) <= cB[u[&lAul&llvll Izl 

for all u e D (A), v e V, and z s H. 
Finally, l e t f E  H and bl, . . . ,  b,, e IR be given. Under these hypotheses, con- 
sider the stochastic evolution equation with Stratonovich multiplicative noise 

du = {Au + B(u,u) + f } d t  + ~ bjuodwj(t). (24) 
j = l  

This equation represents an abstract form of the stochastic Navier-Stokes 
equation in two space dimensions, describing the motion of an incompressible 
fluid in a bounded domain, with Dirichlet or periodic boundary conditions 
(see Temam [20] for details in the deterministic case). 
Consider the process 

~(t) = e -F'~'':~bj~(O. 

It satisfies the Stratonovich equation 

&t(t) = -- ~ bj~(t) o dwj(t). 
j = l  
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Hence, formally, the process v(t), defined by the time change 

v ( t )  = ~ ( t ) u ( t ) ,  

satisfies the equation (which depends on a random parameter) 

dv 
dt Av + eB(u, u) + ~f, (25) 

or, in a more explicit form, the equation 

dv 
d-t = Av + ~- lB(v ,v )  + c~f. (26) 

By the same proof as that of Theorem 2.1, Chapter III, of Temam [20] one can 
show that for P-almost every co ~ f2 the following holds 

(i) for all to e IR and for all Vo e H there exists a unique solution 
v ~ C([to, or); H)c~LZo~(to, ov ;V) of equation (26) with V(to) = Vo; 

(ii) if Vo ~ V, the solution belongs to C([to, cc ); V)c~L(oc(to, cc ; D(A)); 
(iii) hence, for every e > 0, ve  C([to + e, c~); V)nL]oc(to + e, oe ;D(A)), 

for all Vo e H; 
(iv) denoting such solution by v(t, co; to, Vo), the mapping 

Vo ~ v(t, co; to,Vo) is continuous for all t > to. 
The proof proceeds by a priori estimates on Galerkin approximations of 

the same form as those developed in the following subsections. 
Having the mapping Vo ~-~ v(t, co;0, vo), one can define a stochastic flow 
(p(t, co) by 

(p(t, co)Uo = c~(t, co)- t v(t, co; 0, Uo). (27) 

This will be called the stochastic flow associated with equation (24). 

6.2 Absorption in H at time t = - 1 

In the following computations co ~ f2 is fixed; the results will hold P-almost 
surely. Let to < - 1 and Uo ~ H be given, and let v be the solution of Eq. (26) 
for t > to, with V(to) = ~(to)Uo (denoted above by v(t, co; to, ~(to, co)u0)). From 
(22) and (25) we get 

l d 2 1 d v  ) 2 ~ [ v l  = v,~- = - Ilvl[ 2 + (v,o~B(u,u) + o~f> 

= -- []vl[ 2 + (v,o~f) < -- Hv]l 2 + Ivll~fl. 

Hence there exists a constant Co, depending only on 21, such that 

dlvl + Irvll 2_-< - 5 - I v  +Col~fl 2. (28) 



384 H. Crauel, F. Flandoli 

By the Gronwall  Lemma 

- 1  

Iv( - 1)r z < e-@(-1-t~ z + f e-~(-1-~)  Col~(~r)fle &r 
to 

- 1  
)~1 21 2 2 < e~-{e~-'o~(to) luol + colfl  2 f e~-'c~(o')2dff}. (29) 

- -00 

Now by s tandard arguments (using, e.g., the law of the iterated logarithm) 

l im bjwj(t) = 0 P-a.s. 
t - o o t j =  I 

It easily follows that  o - ~  e}~7(a)  2 is pathwise integrable over ( -  co ,0]. 
Similarly, 

e}  "e(a)  2 ~ 0  aso---,  - co P-a.s. (30) 

Hence from (29) we have 

6.1 Lemma There exists a random radius r l (cn)> 0, dependin9 only on 21, 
b,, ... , bin, and I/l, such that for all p > 0 there exists t(~o) <_ - 1 such that the 
followin9 holds P-a.s. For all to ~ t(co) and all uo e H with [uo[ <-_ p, the solution 
v( t, co; to, e(to, oo)uo) of Eq. (26)  over [to, co ), with v(to) = e(to)Uo, satisfies the 
inequality 

Iv( - 1,cO;to, a(to,~O)Uo)[ z < r~go). 

Proof Put  

- 1  

rf(co) = e~{1 + Col f [  2 f e@'~((r)2d~7}, 
- o o  

which is finite P-a.s. by the above considerations. Given p > 0, by (30) there 
exists t(co) such that  

e~t~ p 2 = < 1 

for all to _-< t(co). The claim of the Lemma follows from (29). [] 

6.3 Auxiliary estimates in [- -- 1, 0] 

F rom (28) we also have, by the Gronwall  Lemma with t e [ - 1, 0] and by 
integrating over [ -  1,0], respectively: 

Iv(t)l 2 < e- •"+l ) lv  ( _ 1)l z + colf l  2 f e-@(t-a)o~(ff)2d(r, 
- 1  

0 0 

f IFv(s)H2ds < Iv( - 1)l 2 + col f[  z f O;(S) 2ds. 
- 1  - i  
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The re fo re ,  f r o m  L e m m a  6.1 we  d e d u c e  

6.2 L e m m a  There exist two random variables c l (co) and c2(co), depending only 
on 2 t , b l ,  ... ,b,,, and [f] ,  such that for all p > 0 there exists t(co) < - 1 such 
that the following holds P-a.s. For all to <= t(co) and all Uo ~ H with [Uo[ <= p, the 
solution v(t, 6o; to, ~(to,co)Uo) of Eq. (26)  over [ to,  ~ ) ,  with V(to) = e(to)Uo, 
satisfies 

]v(t, cO; to, ~(to, co)Uo)l 2 < cl (co) 

0 

f II v(s, co; to, ~(to, cO)Uo)112 ds < c2(~o). 
- 1  

Proof P u t  

for all t e [ - 1, 0] 

t 

ca(co) = e-~('+l)r~(co) + Col f [  2 f e-@(*-~)a(a)2da, 
- 1  

0 

C2((D ) = F2((D) + c 0 ] f [  2 f O~(S) 2ds, 
- 1  

w h e r e  rl(co) is f r o m  L e m m a  6.1. Then ,  g iven  p > 0, it is sufficient to  c h o o s e  the  
s a m e  t(co) as in the  p r o o f  of  L e m m a  6.1. [ ]  

6.4 Absorption in V at time t = 0 

F r o m  (23) a n d  (25) we fu r the r  o b t a i n  

l d / 
~ d t l t v l l 2  = - Av, <-_ - I A v l  2 + IAvl I~B(u,u)l + IAvt t~fl 

1 
< _ _ IAvl 2 + [~.B(u,u)l 2 + I~f l  2 
= 2 

1 

2 
IAvl z + c~c~2lu[ IAul Hull 2 + I~f[  2 

- - - I A v l  2 + cBlul iAvl ]lull ]lvli + Ic~fl 2 

H e n c e  

<_ _ !  iAvi ~ + (c~lui~lluN~)llvll~ + i~fl~. 
- 4 

d 
d t  ]1 v I[ 2 =< (2c~[u] z IF u I] 2)]] v]l 2 + 2 [ a f [  2, 

a n d  for  s < t we h a v e  

t t 

[I v(t)If 2 < U v(s)H 2 + 2 j f l  2 f~(o . )2  da + f(2c~lu(r 2 II u(a)N 2)rl (v(o-)[[ 2 da. 
s 



386 H. Crauel, F. Flandoli 

Applying the Gronwall Lemma over an arbitrary interval [s, 0] c [ - 1, 0] 
we obtain 

Nv(O)"2 < ef~176 '[v(s)'[2 + 2'f[2 ~(cr )Zd~}  

Integrating in s over the interval [ - 1, 0] yields 

u o, 

(31) 

Here, 

0 0 

f iu(a)12llu(a)ll2da<= sup g(t) -4 sup Iv(t) lzf l lv(cr)l lZ&r.(32) 
- 1  - l _ < t _ < o  - l ~ t _ < o  - 1  

Hence we finally have 

6.3 Lemma There exists a random radius r2(co),, depending only on 
21, bl . . . . .  bin, and If I, such that for all p > 0 there exists t(co) < - 1 such that 
the following holds P-a.s. For all to < t(co) and all uoe H with luol _-__ o, let 
v(t, co;to,~(to,co)uo) be the solution of Eq. (26)  over [to, m), with 
V(to) = c~(to)uo, and put u(t, co; to, Uo):= e(t, co)- 1 v(t, co; to, e(to, co)Uo). Then 

Ilu(O, co;to,uo)ll 2 < r~(co). 

Proof Put 

with c(co) from the previous Lemma. Given p > 0, choose t(co) as in the proof 
of Lemma 6.1. Then, by (32), 

0 

f lu(~)l 2 Ilu(a)ll 2 &  __< sup 0~(t)-4"c(co) 2. 
- 1  - 1 - < t < 0  

The assertion follows from (31). [] 

6.5 Final result 

6.4 Theorem The stochastic flow associated with the Navier-Stokes equation 
with multiplicative noise (24)  has a compact stochastic attractor, in the sense of 
Theorem 3.11. 

Moreover, the Markov semigroup induced by the flow on H has an invariant 
measure p. The associated flow-invariant Markov measure # on H x f2 (cf 
Corollary 4.6) has the property that its disintegration co w-~ #o~ is supported by 
the attractor. 

The proof proceeds exactly as that of Theorem 5.6. 
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7 Navier~Stokes equation with additive noise 

7.1 Formulation 

Let H,A:  D(A) c H ~ H, V = D(( -- A)I/z), and B(u,v): V x  V ~ V' be the 
spaces and  opera to r s  in t roduced  in the previous Section. Moreover ,  l e t f e  H 
and q~l, ... , qSm ~ H be given. Consider  the equat ion  

du = {Au + B(u,u) + f } &  + ~ Ojdwj(t). (33) 
j = l  

We assume tha t  ~bk ~ D(A), 1 < k <_ m, and that  there exists a cons tan t  fl > 0 
such tha t  

I(B(u,(~k),u)l<__~lul 2 f o r a l l u ~ V , k = l , . . . , m .  (34) 

Remark. F o r  a concrete  2-dimensional  Nav i e r -S tokes  equat ion  in a bounded  
doma in  D ~ IR 2 we have 

(B(u, 4)k),u) = ~ fu~ a(4)k)J ujdx 
~.j= 1 D Oxi " 

In  this case a s sumpt ion  (34) is satisfied provided  the functions q~k are 
Lipschitz  cont inuous  in D. 

Pu t  w(t) = 2i~__ 1 4jwj(t). If  we follow the me thod  employed  for the reac- 
t ion-diffusion Eq. (9), based  on the change of variable v = u - w, we end up 
with the p rob l em of finding est imates for (B(v(t), w(t)), v( t ) )  when analyzing 
a~[ v(t)! 2. This yields a t e rm which, roughly  speaking,  behaves like Iv(t)1 z w(t), 
so tha t  we canno t  deduce any b o u n d  in H for Iv(t)[ 2. To overcome this 
difficulty we in t roduce a different change of variable. 

7.2 Auxiliary Ornstein-Uhlenbeck process 

Let c~ > 0 be given; we shall impose  condi t ion (36) below on e. F o r  each 
k = 1, ... , m, let Zk be the s ta t ionary  (ergodic) solut ion of the one-dimensional  
equa t ion  

d z  k = - o~z k dt + dwk(t); 
SO 

zk(t) = f e-~'-S~dwk(s). 
- o o  

Put t ing  z(t) = Zg~= 1 4)kZk(t) we have 

dz = - ~zdt + dw(t). 

Since the trajectories of  zk are P-a.s. cont inuous,  and  Ok ~ D(A), we have 

sup {[z(t)l 2 + [hz(t)ll 2 + IAz(t)l 2} < c~ P-a.s. (35) 
- - 1 N t _ < 0  
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We now choose ~ > 0 such tha t  

4fimElzl(O)[ <= ~ ,  (36) 

where 21 is the first eigenvalue of - A .  This is possible since 
(Erzl(0)])2 < Elzl(0)] 2 =  Var(zl(0)),  and  Var(zl(0))--* 0 as c~ ~ oo. F r o m  
(36) and  the Ergodic  T h e o r e m  we obta in  

1 - i ~ 21 
to-~-~olim _ 1 - to f 4fi ,., lzk(s)lds = 4fimElzl(O)[ <= ~ P-a.s. 

to k =  1 

Put t ing  7 (0  -- - -~ + 4fl ~=11zg( t ) l ,  we get 

1 - 1  21 
lira f 7(s)ds < - -  P-a.s. 

~ o - ' - ~ o  - -  1 - -  t o  to = 4 

F r o m  this fact and  by s ta t ionar i ty  of  Zk we finally ob ta in  

f - ~ ~,(s)ds 

lira e ~~ = 0  P-a.s. 
t o - *  - oo 

f - 1 ~ (s)  ds  

sup e ~'~ lZ(to)] z < oo e-a.s.  
t o <  - -  1 

* f; ' , ( ,)d,  
e (1 + zk(G) z + zk@21zAG)l)d~ < oo 

- o o  

for all 1 < j, k < m. Indeed,  note  for instance tha t  for t < 0 

zk(t) z~(0) 1 o wk(t) 
- -  - - -  ~ f z k ( s )  d s  + - - ,  

t t t t t 

whence l im Zk(t) = 0 (P-a.s.), which implies (38) and  (39). 
t - +  - -oO t 

(37) 

(38) 

P-a.s. (39) 

7.3 Stochastic f l o w  

We now use the change of var iable  v(t)  = u( t )  - z(t) .  Then,  formally,  v satis- 
fies the equa t ion  (which depends on a r a n d o m  parameter )  

dv 
- -  = A v  + B(u ,u)  + f + az + A z ,  (40) 
dt 

or, more  explicitly, 

d l )  
- -  = Av  + B(v,v)  + B(v , z )  + B(z ,v )  + B ( z , z ) f  + c~z + Az .  
dt 

(41) 

By the same p roo f  as tha t  of  T h e o r e m  2.1, Chap.  I I I ,  of  T e m a m  [20] one can 
show tha t  (i)-(iv) as s tated in Section 6.1 for the mult ipl icat ive case also hold 
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under the present conditions. Thus there is a continuous mapping from H into 
itself, vo F-, v(t, co; to, vo), where v(t, co; to, vo) is the solution of equation (41) 
with v(to) = vo. We can now define a stochastic flow (p(t, co) in H by putting 

(o(t, co)Uo = v(t, co; O, Uo - z(O, co)) + z(t, co). (42) 

This will be called the stochastic flow associated with the Navier-Stokes 
Eq. (33) with additive noise. 

7.4 Absorpt ion in H at time t = - 1 

In the following computations co e f2 is fixed; the results will hold P-almost 
surely. Let to _<- - 1 and Uo e H be given, and let v be the solution of Eq. (41) 
for t>-_to, with V ( t o ) = U o - Z ( t o , c o )  (which was denoted above by 
v(t, co; to, Uo - z(to,  co))). From assumption (22) and from (40) we have 

l d  
2 dt lVl2 -- - Ilvll = - (B(u,u),z) + ( f ,v> + <~z,v> + ( A z ,  v )  

_-< - Ilvll = + (B(u,z),u) + Ifl  Ivl + ~[zl Ivl + llzll ItvII. 

By definition of z and assumption (34), 

k = l  k = l  

2pa<  + 2 tzl  lz l 
k = l  k = l  

Hence there exists a constant c > 0 depending only on )~t such that 

Put 

1, 1 { } 
5 ~ l v l  +~l lvt l  z <  - 7 +  Izkl Iv l2+cl f l=+c<zl  2 

= 

+ cltzJl = + 2BIzl 2 ~ Izkl. 
k = l  

p(t) = clf l  2 + c<z(t)l z + clEz(t)H 2 + 2fllz(t)l 2 k Iz,(t)l, 
k = l  

and let y(t) be defined as in subsection 7.2. We have 

d 
dt [v(t)[2 --< Y(t)[v(t)[2 4- 2p(t), 

which implies 

Iv(t)l z <= ef"7(s)aSlv('(:)[2 -t- ) efJT{*~2p(~r)d~ 
tO 

(43) 

(44) 
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for  all to -< z < t. F o r  t = - 1 a n d  -c = to we get  

f - t T ( s ) d s  - 1 f ~ ( s ) d s  

IV( --  1)12 ~ e ~'~ [V(to)[ 2 + f e ~" 2p(a)&r 
to 

- f - ~ ~ , ( s )  d s  

<= 2ef'o~'(~a~lUo[2 + 2e J'~ [Z(to)[ e 

+ -y f'~(s)ds 
e ~ 2p(~r)&r. (45) 

- o o  

7.1 L e m m a  There exists a random radius rl(~o) > O, depending only on 
21, r . . . . .  era, and I f  l, such that for all p > 0 there exists t(o) < - 1 such that 
the following holds P-a.s. For all to < t(co) and all Uo ~ H with ]Uo[ < p, the 
solution v(t,~O;to,Uo-Z(to,CO)) of Eq. (41)  over [to, oe), with V(to)= 
Uo - Z(to, o)), satisfies the inequality 

Iv( - 1, o ;  to,Uo - z(t0,co))l 2 _-< r~(o) .  

Proof P u t  

f - l T ( s ) d s  ^ - 1 

r2(co) = 2 + 2 sup e J'~ [z(to)[ ~ + f eJJ(~)d~zp(cOdG 
f '  

to < - 1  - o o  

which  is finite P-a.s.  due  to  (38) a n d  (39). G iven  p > 0, c h o o s e  t(co) such tha t  

f - ~ ~,(s)ds 
eJ,O p2 <= 1 

for all to < t (~)  (recall (37)). T h e n  the asser t ion  fol lows f r o m  (45). [ ]  

7.5 Auxiliary estimates in [ - 1, 0]  

T a k i n g  t e [ - 1, 0]  a n d  z = - 1 in (44) we have  

Iv(t)] 2 < ef'-d(s)aSlv ( - 1)1 / + f ef"~(s)a~2p(a)da. (46) 
--1 

M o r e o v e r ,  in tegra t ing  (43) over  [ - 1, 0]  we have  

[[v(s)llZds <= Iv( - 1)] 2 + ?(s)ds sup Iv(t)l 2 + f 2p(cr)dcr. 
- 1  - l _ < t _ < O  - 1  

(47) 

Therefore ,  f r o m  L e m m a  7.1 we deduce  

7.2 L e m m a  There exist two random variables Cl ( (D  ) and cz(co), depending 
only on 2 1 , r  ... , r  and If[ ,  such that for all p > 0 there exists t(oJ) <__ - 1 
such that the following holds P-a.s. For all to < t(m) and for all uo ~ H with 
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lUo[ < P, the solution v(t, eo; to, U o -  Z(to,V))) of  Eq. (41) over [to, oo), with 
v(to) = Uo - Z(to, co), satisfies 

Proof Put  

[v(t, co;to,Uo --  Z(to,co))l 2 ~ cl(co) for all t ~  [ - 1,0],  

0 

f II v(s, co; to, U o  - -  z(to, co))I/2as ~ c2(co). 
- 1  

C1(0,) ) = ef'-~r(~)a~rf(co) + / efJ~(~)a~2p(~r)d~r, 
- 1  

c2(co) = r~(co) 1 + y(s)ds + f 2p(G)do', 
- 1  

with rl(co) as in L e m m a  7.1. Then, given p > 0, it suffices to choose t(co) as in 
the p roof  of that  L e m m a  7.1. [ ]  

7.6 Absorption in V at time t = 0 

F r o m  (40) we further get 

Avr 

~} l lv l l  2 = -  Av,~7 

= - l A y [  2 -q- (B(u,u),Aw) + (f ,  Av)  + (c~z, Av)  + (Az, Av)  

< - [ A v l  2 + cBlul~lAu[~llu[I IAvl + [f l  IAvl + I~zl IAvl + IAzI[ 

1 2 112 + [~zl 2 + <_<_ ~[Av[ + 2c~lu[ [Au[ ][u + 2 { [ f ]  2 [Az[2}. 

With q( = q(t)) = 2{I f ]  2 + I~z[ 2 + [Azl 2 } we obtain 

2dtl d ilvllZ < - 5  [1 AvlZ4c~[ulZllull2l]u]I 2 + 2c~]u[lAzl [lull z + q 

<(8c4 lu l  zHull2)llvll 2 + 8c~]ulillu]12llzl[ 2 + 2c~lul IAzl [Iull 2 + q 

By the Gronwal l  L e m m a  we get for s ~ [0, 1] 

f o  16c~lu(s)l 2 [I u (s) ]l 2 ds 

/I v(o)112 __< e~ 

E o 1 x Ilv(s)l[ 2 + f {16c4lul2ltullZ[[zl[ 2 + 4c2lu[ IAzl [lull 2 + 2q}d~r 
s 
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Integrating in s over [0, 1] we obtain 

11v(O)112 < I l l  [jv(s)[12ds + -1 / {16C41U12[lUl12[lZl[2 

+ 4c 2 [u] [Az[ 11 u 112 + 2q} da I e f~ 16c~tu(s)1211u(s)llzds. (48) 

Now we can prove 

7.3 L e m m a  There exists a random radius r2(co), depending only on 
21, (ol . . . .  , ~Pm, and Ifl ,  such that for all p > 0 there exists t(co) < - 1 such that 
the followin9 holds P-a.s. For all to < t(co) and all Uo ~ H with ]Uol < p, let 
v(t, co;to,Uo-Z(to,co)) be the solution of Eq. (41)  over [to, oo), with 
V(to) = Uo - z(to, co), and let u(t, co; to, Uo) = z(t, co) + v(t, co; to, Uo - Z(to, co)). 
Then we have 

II u(O, ~', to, Uo)II 2 ~ r~(co). 
Proof Put  

c3(o2) = cl(co) + sup  Iz(t)l 2, 
- l _ < t _ < 0  

0 

c4(co) = c2(co) + f II z(s)II 2ds, 
- 1  

cs(co) = cl(co) ~ + sup Iz(t)l- 
- l _ < t _ < 0  

Given p > 0, choose t(co) as in the proof  of Lemma 7.1. Then 

0 0 

f lu(s) l 2 II u(s) II 2ds < 2c3 (co)2c4(co), and  f lu(s) l I[ u(s) II 2ds ~ C5 (09) 2C4 (09). 
- 1  - 1  

From (48) we conclude 

II u(0)ll 2 _-< 2flz(0)ll 2 + 2tl v(0)ll 2 

< 211z(0)ll 2 + Ic2(@ + 64c~c3(co)c,(co) -l<_,~_oSUp IIz(t)ll 2 

+8c~c5(@c4(@ sup IAz(t)l 
- l _ < t _ < O  

0 "~- /1 2q(s)ds] 2e64c4c3(c~176 

This gives an expression for r~(co), and completes the proof. []  

7.7 Final result 

7.4 Theorem The stochastic flow associated with the Navier-Stokes equation 
with additive noise (33)  has a compact stochastic attractor, in the sense of 
Theorem 3.11. 
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Moreover, the Markov semigrou p induced by the flow on H has an invariant 
measure p. The associated flow-invariant Markov measure t~ on H x f2 (c f  
Corollary 4.6) has the property that its disintegration co ~ 1~ is supported by 
the attractor. 

The p roo f  proceeds as that  of  Theorem 5.6. 
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