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Summary. We study the thermodynamic properties o f  the Hopfield model o f  
an autoassociative memory. I f  N denotes the number o f  neurons and M(N) the 
number o f  stored pattems, we prove the following results: I f  M ,[ 0 as N T cx), 
then there exists an infinite number of  infinite volume Gibbs measures for all 
temperatures T < 1 concentrated on spin configurations that have overlap with 
exactly one specific pattern. Moreover, the measures induced on the overlap 
parameters are Dirac measures concentrated on a single point and the Gibbs 
measures on spin configurations are products of  Bernoulli measures. I f  M ~ --+ ~, 
as N T oc for e small enough, we show that for temperatures T smaller than 
some T(~) < 1, the induced measures can have support only on a disjoint 
union of  balls around the previous points, but we cannot construct the infinite 
volume measures through convergent sequences of  measures. 
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1 Introduction 

Disordered spin systems are one o f  the topics o f  highest current interest 
in mathematical statistical mechanics. Generally speaking, depending on the 
particular types o f  models, the effects o f  disorder may be either weak, in the 
sense that the model can be reasonably well approximated by a ordered one, 
or strong, in the sense that genuinely new phenomena appear that are pertinent 
to randomness. Prototypical systems of  the latter kind are spin glasses, and 
in particular their low-temperature properties. While on the heuristic level a 
rather coherent theory has been developed at least for a mean field version, the 
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Sherrington-Kirkpatrick model [SK] (for a review see [M]), from a mathemat- 
ical point of view these models are extremely difficult to analyse and virtually 
no results are know, even on the mean field level. In order to progress in the 
understanding of such models, it is highly desirable to have a class of models 
that intermediate between simple 'almost ordered' models and spin glasses and 
that are amenable at least in part to a rigorous analysis. Such models are in 
fact provided by what is commonly known as the Hopfietd model [Ho], and 
their analysis has attracted increasing attention of mathematical physicists over 
the last years. 

Let us describe this model. We set A - - { 1 , . . . , N }  and 5~A ----- {--1, 1} N 
the space of functions a : A  ~ {-1 ,  1}. We call a a spin configurat ion on 
A. We shall write 5 e = -{ -1 ,  1} • for the space of half infinite sequences 
equipped with the product topology of the discrete topology on { -1 ,  1 }. We 
denote by MA and ~ the corresponding Borel sigma algebras. We will define a 
random Hamiltonian function on the spaces ~ A  as follows. Let (f2, ~ ,  IP) be 
an abstract probability space. Let ~ --- {~/~}~,~N be a two-parameter family of 
independent, identically distributed random variables on this space such that 
IP(~ = 1 ) =  IP(~ = - 1 ) =  ipt~tyl~l For a given non-decreasing integer val- 2 " 
ued function M : N -+ N we denote by f i n  the sub-sigma algebra generated 
by the random variables J'~"~0--<~--<M(N) We will occasionally denote this sub- I.~i Jl<i<_N . 
family of random variables by ~lU. The Hopfield Hamiltonian on Sa is then 
given by 

] M(N) 

HN[0J] (~  2N(i,j)EA• A ~  k ~=IE ~(O))~'(~ �9 (l .1) 

Note that of course Hu[og](a) is ~N-measurable. In (1.1) we have made all 
dependences on the random parameter co explicit. In the sequel we will drop 
this whenever no confusion may arise. 

The Hopfield model has in fact been proposed in the context of neural net- 
works as a model for autoassoeiative memory. The interpretation of the above 
objects in this context is the following: A is a (completely connected) set of N 
neurons, each of which can be in two states, § 1 or - 1. An element of 5~A then 
describes the state of the neural network. The M families of random variables 
{~}ieA are thus M randomly chosen states of the network, called "patterns'.  
Functioning of the memory is interpreted (see e.g. [A]) in that a Markovian 
time evolution set up in such a way that its invariant measure is a Gibbs state 1 
of the Hamiltonian (1.1) should have a long time behaviour that allows to 
discern whether the initial condition was close to one of the patterns or not. 
This phenomenon is clearly related to the question of breaking of ergodicity in 
the infinite volume limit (i.e. in the limit as N T c~) of this system and thus 
to the existence and nature of the infinite volume Gibbs states associated to 
the Hopfield Hamiltonian. Thermodynamic properties of this model have thus 
a direct interpretation in the neural context. 

1 We follow common practice and use the terms Gibbs state and Gibbs measure 
synonymously 
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The properties of this model depend crucially on the choice of the function 
M(N). If  M(N) ---_ 1, it is trivially equivalent to the Curie-Weiss ferromagnet 
by a simple change of variables. If  M(N) remains bounded, rather standard 
methods can still be applied to give a complete characterization of the Gibbs 
measures that in fact show the desired features of a perfect memory below 
the critical temperature [AGS1,H]. We would like to point out here that this 
case had previously been treated extensively and with mathematical rigor in 
papers by Pastur and Figotin in 1977 [FP1,FP2]. These remarkable articles 
which appear to have been fallen largely to oblivion are by the way to our 
knowledge the first in which the models like (1.1) have been proposed as 
simplified models of spin glasses. 

For unbounded M the situation becomes more complicated, and the results 
will depend on the allowed rate of growth. Koch and Piasko [KP] and Gayrard 
[G] have proven that essentially the same results as for bounded M can be 

InN For faster growth rates, no rigorous results on the proven if M(N) < TUff" 
Gibbs states are available, but heuristic results indicate that the memory should 
function properly as long as M(N)< aN, for small enough e. This idea is also 
supported by rigorous results of Newman IN] and Koml6s and Paturi [KPa] on 
the structure of the local minima of the Hamiltonian. It is also believed that the 
precise structure of the Gibbs states in this regime is already fairly complicated 
and will depend on the precise growth properties o fM(N)  [AGS2]. I fM(N)  > 
ecN, it is expected that the picture changes qualitatively completely. In fact, the 
faster M(N) is allowed to grow, the more the model resembles a spin glass, 

1 M since the effective couplings J/j =- ~ u = l  ~ converge to i.i.d. Gaussian 

r.v.'s as M T oo. It is in this sense that the Hopfield model provides a family 
of models intermediating between ferromagnets and spin glasses. 

M Recently, Shcherbina and Tirozzi [ST] have proven that if ~ ~ 0 as N T ec, 
the free energy of this model converges in probability to the free energy of 
the Curie-Weiss model (see e.g. [E] for mathematical results concerning this 
model). Later, Koch [K] has obtained interesting upper and lower bounds on 
the expectation of the free energy that imply in particular the convergence of 
this quantity to the free energy of the Curie-Weiss model as N I" ec under the 
condition that M(N)/N ,L 0 (without hypothesis on the speed). As has been 
noted already in [BG], his proof can easily be modified to yield the P-almost 
sure convergence of the free energy under this hypothesis, the proof being 
considerably simpler than the one in [ST]. 

The purpose of the present paper is to provide a complete analysis of the 
Gibbs states of the Hopfield model under the same hypothesis on M. We 
will also give a somewhat weaker result on the Gibbs measures in the regime 
M(N) = 0~N, with c~<a0, for some (ridiculously) small ~0. To give a precise 
formulation of our results, let us fix our notations. 
For t /E N, we denote by ~f~,h[o~] the random probability measure on 
(5"A,N(~A)) that assigns to each a E SPA the mass 

1 (--/~HN[co](a) ~hi~eA~(e3)ai) (1.2) (#~,/~,h[co](a) -- Zun,/~,h[CO] exp 
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where Z~3,h[O) ] is a normalizing factor usually called partition function. The 
quantity 

f~,/~,h[CO ] _ _ 1  lnZ~#~[co] (1.3) 
/~N 

is called the free energy. Note that all these quantities are ~N-measurable (we 
always assume that M ( N ) >  q). The parameter fl is the inverse temperature and 
h is called a magnetic fieM aligned on the pattern f n, and f#~N3,h[o9] is called 
a finite volume Gibbs state with magnetic field. An important observation is 
that the value of  the measure ff~,/Lh[co](o-) does depend on a only through the 
quantities 

1 N 
m~[co] (a ) -  ~7~-]~/~[e)]o-i,/t = 1,... ,M (1.4) 

zv i=1 

called overlap parameters, since the Hamiltonian may be written in the form 

M 
HN[O)](a) = - N  ~ (m~[og](a) ) 2 . (1.5) 

#=1 

This suggests to define the random map 

~//N[ (D] : ~ A  ~ ]RM 

0- -'-+ ~N[ (D] (0" )  ----- (mlEco](a),... ,mM[co](a)) (1 .6 )  

and the measures ~v3,h[co] on (IRM, y)(IRM)) that are induced by ff~3,h[og] 
through the map /gN[CO], i.e. 

~v3,h[co] ~_ ~/Lh[og] o JdN[O)] -1 (1.7) 

In fact, these induced measures determine the original measures uniquely, since 

1 
(ff~q, fl,h[ fO](0") = , ,1 r...1--1r , / ,  rr..l(--'~'~ " ~ f l h  [(D](~/~N[O)](G))  

#t/eNLt~' j t.JCeNLtUJkO ]J ' , 
(1.8) 

while on the other hand, as will become evident, the induced measures are 
"less random" in some sense and thus easier to control. (E.g., if  M = 1, the 
induced measures are entirely deterministic and the dependence on the random 
parameter is only through the map M). Note that of course for fixed N, d//N[CO] 
takes only values in the set { - 1 , - 1  + ~ , - 1  + 4 . . . . .  1 - ~, 1} M and ~nN3,h[CO ] 
is an atomic measure concentrated on this set. 

We want to study our model in the limit as N T co, and are primarily 
interested in the case where M is unbounded. We therefore want to work 
on the measure space (JR N, ~(IRN)), with IR N understood to be the space of  
infinite sequences equipped with the product topology of the euclidean topology 
of IR. For notational simplicity we will identify the measures SN3,h[C9 ] with 
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their extensions to IR N obtained by tensoring them with the Dirac-measure 
concentrated at 0. 
Before we formulate our theorems, some general remarks on Gibbs states in 
mean field models need to be made. As is well known, as opposed to 'normal '  
models of  statistical mechanics, there is no neat characterization of  infinite 
volume Gibbs states as solutions of  the DLR-equations (see e.g. [Ge]) and 
therefore they can only be constructed as limit points of  sequences of  finite 
volume measures. To ensure convergence and to lift degeneracies, that is ' to 
pick out its extremal measures', it is customary to add 'magnetic fields' which 
are taken to zero after the infinite volume limit is performed. This was also the 
reason for defining the measures in (1.2). As we also want to know whether 
we have found all such measures, we have to give a more precise definition 
of  what we shall mean by a limiting Gibbs measure for a Hamiltonian H.  To 
do this, let f : N --~ IR be a bounded real-valued function. For such a function 
we define the measures 

fg~)[a)](a)  ------ Z~v,~,h[o) ] 1  exp ( - - f lHN[CO](a ) - - f i i~  f ia i )  (1.10) 

where f i  denotes the value of  f at site i. The measures defined in (1.2) are 
of  course particular examples where f i  = h~/~[co]. We denote by .~N3[Ce](f) the 
corresponding induced measures. 

We wilt say that f#/~[co] (resp. ~ [ c o ] )  is a limiting Gibbs measure (resp. 
limiting induced measure) for the Hamiltonian H ,  if  there exists a sequence of  
integers Nt tending to infinity as l T cxz and a sequence of  functions f(k) such 
that [If(k)[]~ ]. 0 as k Y co, such that 

respectively 

(6p[co] = w - lim lim ~(f(k))~ k$~o lToo ~/~vl [coj (1.11) 

~ [co ]  = w -  lim lim ~ ( f ( k ) ) r  1 (1.12) 
kT~ ZTc~ ~ / ~  lc~ 

(We use the symbol w - lim to denote the weak limits o f  probability measures).  
Note that both the sequences Nt and f(~) may be random variables depending 
strongly on # (and in general at least one o f  them will have to be random for 
the limits to exist). 

With these notions, we are ready to announce our first Theorem: 

Theorem 1 Assume that M is non-decreasing and satisfies limNT~ M(N) N - -  O .  

Let a+(fl) denote the largest (resp. smallest) solution of a = tanh(fla). Then, 
for all fl>O, 

(i) 
w - lira lim ~Rh[C0] = IP - almost surely (1.13) 

h--+O-4- N T oo '*" ~S a:l- (fl)e~ , 

where the limits are understood in the sense of weak convergence of probabil- 
ity distributions," 6a+(~)e~ denotes the Dirac-measure concentrated on a:k(fl)e ~ 
and e" is the *l-th unit vector in IR N. 
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(ii) Moreover, any limiting induced measure for the Hamiltonian (1.1) is a 
convex combination o f  the measures in (1.13) 

Remark. Note that for f l<  1,a+(fl) = a - ( f l )  = 0 so that in this case there is a 
unique limiting measure. For fl > 1, the measures for different ~/and different 
signs of  h are all distinct and by the second statement of  the theorem can 
reasonably be seen as the extremal measures. Note however that here as in 
general for mean field models, not all convex combinations of  the extremal 
measures are themselves limiting measures. 

We believe that our condition on M is the weakest possible under which 
the conclusions of  Theorem 1 can hold. 
Our next theorem will be concerned with the case where limNT~ M > 0. For 
6 > 0, we will write a((5, fl) for the largest solution of the equation 

(sa = tanh(fla) (1.14) 

We denote by II �9 I I the Ea-norm on IR N. Given that l imu;~  M(N) N - -  ~ '  w e  

set, for fixed fl, 

B~ ~) ~ {x ~ lR~ l l lx-  sa(1 - 2 v ~ , / ~ ) e ~ l l  < p }  

Finally, we put 

(1.15) 

Bp -- U B(p v~) (1.16) 
(v,s)EN • {-- 1,+1} 

With this notation we can announce our second theorem 
; ~  M ( N )  Theorem 2 There exists Cr > 0 such that i f  I r a , - - 7 - =  ~, with cr 

then, for  all fl > 1 + 3v/~, i f  p2 > C(a(1 - 2x/~,fl))3/2~V8[ In ~[1/4, for  almost 
a l l  (D~ 

lim ~:v&h=o[OJ](Bp)= 1 (1.17) 
NToo 

Remark. Theorem 2 suggests of  course that there should exist limiting Gibbs 
n(s'v)" in the case cr we have states with support in just one of the balls ~p , 

constructed these as limits by adding a small magnetic field. Unfortunately, if  
> 0, we have not been able to do this, and the construction of the limiting 

measures remains an interesting open problem. However, Theorem 2 excludes 
in particular that any of the so-called mixed states (which have been shown 
to be associated to local minima of the Hamiltonian; see [AGS, N, KPa]) give 
rise to Gibbs states in this regime of parameters. 

Remark. From the properties of  the solutions of  equation (1.14) (in particular 
a((5, fl) ~ (fl - (5) for fl - 6 small) it follows that the set Bp, with the minimal 
allowed value of p inserted is a union of disjoint balls as long as fi > 1 F  1--c~ 1/4 " 

Note that the power 1/4 in this equation may not be optimal; indeed it is 
expected from the heuristic analysis of  Amit et al. [AGS2] that for fl > I-~------~ 

the model should show 'perfect memory' ,  i.e disjoint Gibbs states for each 
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1 is the paramagnetic phase where uniqueness of pattern. The region /3 < 

the Gibbs state is expected to hold. For rigorous results on this domain see 
[ScT]. The more complicated region in-between is what Amit et al. call a spin 
glass phase. 

Remark. In [BG] the analogue of Theorem 1 for the dilute Hopfield model 
~nN and that the dilution rate, has been proved under the hypothesis that M < 

p(N), satisfies p(N)N T ec. As has already been pointed out in [BG], the 
M fact that here we have proven Theorem 1 under the weaker hypothesis N ~ 0 

implies that the conclusions of  Theorem 1 hold for the dilute model under the 
conditions p(N)N T oe and p(-~  ; 0. 

An obvious question that remains is of course that of the nature of  the 
limiting Gibbs measures as measures on the spin-space, i.e. on (S, N). In mean 
field models one is used to the fact that these are product measures, and under 
the hypothesis of  Theorem 1 this is indeed the case here: 

Theorem 3 Under the assumptions and with the notation of Theorem 1, 

w -  lim lim ~ ~h[~o] = B~, a ( ~ [ c o ] , P - a l m o s t  surely (1.18) 
h---~-I-O N T o o  ~'~" 

where Bg[co] denotes the product measure on { -1 ,  1 }N with the marginal mea- 
sure on ai given by the Bernoulli measure on { -1 ,  1} with mean ~Ta. 

Remark. Theorem 3 is all but a corollary of  Theorem 1, and follows, as 
we will see with very little work from the estimates we will use to prove 
Theorem 1. The crucial point that is needed to obtain the product structure of  
the limiting Gibbs measures is that the limiting induced measures are degenerate 
(i.e. concentrated on a single point). It is an interesting question whether this 
property does or does not extend to small but finite values of e. We should 
like to mention that factorization of the limiting measures is also tied to the so- 
called 'self-averaging' of  the Edwards-Anderson parameter (the spatial average 
of  the square of  the Gibbsian expectation of  the ~ri) and thus, via recent work 
of Pastur, Shcherbina and Tirozzi [PST] to the validity of  the so-called 'replica 
symmetric solutions' of  [AGS]. We do not want to enter into any details here 
but refer the interested reader to [PST]. 

Under the assumption that M(N) is bounded, the statement of Theorem 3 
has previously been obtained by Comets [Co]. 

The remainder of this article is organized as follows. In the next section 
we will introduce a smooth version of the induced measure for finite N that 
wilt converge to the same limit as Q but will be easier to treat using Laplace's 
method. We will write an explicit expression for the density of  this measure 
in the form exp (-flN@(x))/Z for an explicitly given random function @. In 
Sect. 3 we analyse the structure of  the global minima of this function, and in 
Section 4 we use these results to prove the theorems. An appendix contains 
the proof of  a bound on eigenvalues of  a certain random matrix that is used 
frequently. 
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II Some technical preparations 

To prove the theorems announced in Section 1 we will introduce a smooth 
version of  the induced measures by convoluting Q with a Gaussian measure. 
We denote as usual by JVM(/~, a )  the Gaussian measure on ]R M with mean 
# and variance a. We will also identify this measure with the measure on 
IR N obtained by tensoring it with the Dirac-measure concentrated at zero. We 
define 

~,/~,h [cO] -- ~A/'M(N)( he ~, [fiN] - 111 ) "1~ ~qN, fl,h [(D] (2.1) 

(In the physics literature, this is known as the Hubbard-Stratonovich trans- 

formation [HS]). The point here is that since JV'M(N)(he", [flN]-l~)-~+(50 as 
N T oc, and h --+ 0, the convergence properties of  ~,p,h[m] are the same as 

~*/ 

those of  ~,/~,h[co], i.e. we see immediately that 

Lemma 2.1 

w - lim lim ~RhfCO],,. ~ -  = W -- lim lim ~N,/~,h[CO]__ 
h..._+ONTo o ,v, h---+ON'~oo 

(2.2) 

provided that one o f  the two weak limits exists. 

A slightly sharper result will be used to prove Theorem 2. 

On the other hand, ~ , / ~ [ c o ] ( ~ ' )  is absolutely continuous (as a measure on 

]R M) and we get an explicit expression for its density. 

Lemma 2.2 Let  Q~x,~,h[a)](x) denote the density o f  .~N,#,h[Co] w.r.t. Lebesgue- 
measure on IR M. Then 

exp(- fiN~)~N,13,h [CO](X)) 
Q~N, I3,h[oJ](x ) = f dMx exp(-- flN~)~U,~,h[~O](X ) ) (2.3) 

where 

1 1 N 
r ) = -~(x -- he",x - he n) - ~ ~=1 In cosh(fl(~(co)x)~) (2.4) 

Remark. In (2.4) and in the sequel we introduced some convenient short-hand 
notations: (.,.) stands for the inner product in IR M and ~ is regarded as a linear 
map from IR M to ]R N (i.e. as an M by N matrix) when acting on a vector 
x E IR M (that is, (~(oo)x)i = ~ x ~ ) .  We will also write i t for the transpose 

of  this matrix. 

Proof  To prove the lemma, just note that for any d E NORM), 

.AfM(N)(he '7, [fiN] -1 ) "k" ~ , L h  [co] (d )  

= fdMyA/'M(N)(he '7, [fiN] -1 )(ag - y)..@~,h[Co](y) 
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1 
= ~ ~ JUM(N)( hetl, [fiN] -I  ) (~ / - -  ~/~N[(j)](ff))(ff~N, fl,h[(D](ff) 

z., ~ESPN 

1 fiN M/2 M (--fl-~-~(X ~ N [ 0 ) ] ( 0 " ) h e ' 1 )  2) xex  
aCSPN 
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1 ( f l N ~  M/2 M 1 
- ZN"3,h[co I \ - ~ n J  f d  x ~ ( x ) ~ - #  

x ~ exp - (x; - m~v[co](a ) - h6~)  2 
crCS~ 

x exp m~v[o)](a)) 2 + fihm~N[e)](a 

• 2-~a~N exp(fi~x#~'(cO)ffi)\ #=1 i=1 

_ 1 ( ~ N ~ M / Z f d M x l l d ( x )  
ZN~,/~,h[CO] \ 2~ J 

x exp - (x ~ _ h6~n)2 + ~ In cosh fi ~/~(co)x ~ 
i=I 

(2.5) 

Taking into account that ~ is a probability measure to express Z as an integral, 
we arrive at the form claimed in Lemma 2.2. 

Note that the functional form (2.3) of the density Q with the explicit large 
parameter N in the exponent suggests naturally that the limiting measure will 
be concentrated at the minima of the function ~b. The main difficulty we have to 
deal with here is that the dimension of the domain of ~bu tends to infinity with 
N, if M ( N )  tends to infinity. Otherwise, i.e. if M is bounded, by the strong 
law of large numbers (SLLN) in Banach spaces ([LT], page 178), ~3~[co] 
converges a.s. to the non-random, N-independent function 

1 1 
-~(x - he",x - he ~) - -zlE in cosh(fi(~x)l ) 
Z P 

and the analysis of the limiting measures is a standard exercise in the applica- 
tion of Laplace's method of saddle point integration (see e.g. [AGS1]). In the 
cases we are interested in, the SLLN cannot be applied (and actually fails), 
and the analysis of the structure of the minima of the random function ~ is 
the main problem that we will have to solve in the next section. 
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We remark here that the weak convergence of the infinite dimensional mea- 
sures is of course equivalent to the weak convergence of the finite dimensional 
marginals they induce on i r e  for all k < c~ (see e.g. Billingsley [Bi], page 
30). Thus we denote by ~rk the natural projection re, : ]R N --+ Ilk and by 

~N3,h[02] ~ ~N,~,h[ c~ o zc~ -t (2.6) 

the marginals induced on ( l l  k, ~ ( i lk ) ) .  Note that for M(N)>k, these marginals 
are always absolutely continuous, and their densities are obtained from those 
given in Lemma 2.2 simply by integrating over the coordinates x ~ with 
M > # > k. Thus to prove Theorems 1 and 2, we have just to prove the analo- 

gous statements for the finite dimensional measures ~),~,h[02] for all finite k. 

It will turn out useful to rewrite the function ~3 ,h  in a somewhat different 

-~ (x  - form. Namely, for arbitrarily chosen 6, adding and subtracting a term 2 

he~, (-~r - he~)), (recall that ~t stands for the transpose of the M • N-matrix N ~ 

4, that is ~t~ is the M • M-matrix whose elements are (~t~)~ = z_.~i=l i i J 
we get that 

~r,/j,h[02](x) = qN,6[Og](X -- he n) + 7t~r,/~,h,6102](~(02)x) + - -  
6h 2 
2 (2.7) 

where 

qN,6102](x) ~ l (X, [~ -- 6 ~t(02-)~( (02) ] X) 

and hu~3,h,~[02 ] is a function from ]R N to I l  that is simply given by 

1 N 

(2.8) 

(2.9) 

with 
_ 1  ~bt~,h,6(y ) =_ fiY-~ -fi in cosh(fly) - 6hy (2.10) 

The point here is to choose the parameter 6 in such a way that the quadratic 
form q~,6102] is positive definite with probability tending to one, and to use 

n the fact that ~PN3,h,6 is a very simple function whose minima are realized for 
just those z whose components are the minima of the functions qS/~,hr The 

difficult problem that remains (and that will be studied in the next section) is 
of course to find those x that are mapped to these z by the random mapping 4. 
Before turning to this, let us note that already now we can extract an interesting 
result on the free energy of the Hopfield model. Namely, if we define the finite 
volume free energy (we set the external field to zero for convenience) 

1 fN, fl [02] ~ - -  ~-~ In Z)v3,h=o [02] (2.1 1) 

it is easy to prove the following 
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P r o p o s i t i o n  2.3 Set 96(~) =- minye~ q~/~,6 and ~ =_ limNTo~ M(iv) Then for all N " 

1 and for  P-almost all co, fl>O and for  all 3 < 

gr(fl) + -f~ ln(6 - 2x/~( 1 - 3)) <-- NT~lim inf fN,~[O9] <--_ NT~lim sup fN,~[OJ] <= go(r) 

(2.12) 

In particular, i f  c~ = O, the free energy converges almost surely and 
lim f N,~[o)] = go(r) which equals the free energy of  the Curie-Weiss model. 

NToe 

Remark. The idea of the proof of this proposition, and in particular to write q~ 
in the form (2.7) is originally due to Koch [K]. He actually proved (2.12) with 
fN,~[Co] replaced by IEfN,~, but it is very easy to get rid of the expectation, 
as has already been shown in [BG]. In the case ~ = 0, a result similar to 
Proposition 2.3 has also been given by Shcherbina and Tirozzi [ST]; in fact, 
they prove convergence of the free energy in probability, with bounds that 
are too weak to conclude almost sure convergence. Although their proof can 
certainly be improved to yield a.s. convergence, its main drawback is that it is 
unnecessarily complicated. 

In fact, the proof of Proposition 2.3 is immediate once we know that qN,~ is 
1 positive definite for 3 < ~ ,  with probability sufficiently close to one. This 

information is contained in the following theorem on maximal eigenvalues of 
random matrices. 

T h e o r e m  2.4 Assume that ~ are i.i.d, random variables satisfying ]E~ = 
0 and lE(~f)k< 1, for  all k > 1. Let B denote the M x M-matrix whose 
elements are 

1 N 
B ~  - -  (1 3 - -  ~ ~ 

- ~,V)N~i ~i 
Then, for any c>O, M <=N and for N sufficiently large 

(2.13) 

lP(I IBII > C~(2 + v/~) + eN -U6 lnN)<=NN -c/'/~(2+v~) (2.14) 

w h e r e  o~ z M .  

This theorem will be used again in the next section, and we will give a 
simple proof in an appendix. The proof of Proposition 2.3 with the help of 
Theorem 2.4 is left as an exercise (or see [BG]). 

In the remainder of this section we state some properties of the function 
~,~,h,6[co]. They follow in fact from the following lemma on the function 

qSt~,h,,~: 

Lemma 2.5 The function ~b~,h,6 " ]R ---, IR has the following properties." 
(i) For all r, 6 and h, q~,-h,~(Y) = ~bL1~,6(-y) for  all y E 1R. 
(ii) Assume that h>O and let a (6,fl, h) denote the largest solution of  the 
equation 3 ( y -  h ) =  tanh(fly) (the case h<O follows by applying (i)), Then 
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(ii.1) I f  0 < [3<=~5, for  all h>O, ~#,h,~ has a unique minimum at y = 
a(6, fl, h). a(c~, fl, h) is a continuous function of  h and limh-~o a(6,/~, h) = O. 

(ii.2) I f  fl > 6, h > 0 and h sufficiently small, then (o~,6 has two lo- 
cal minima, but a unique 91obal minimum which is taken on at the point 
a(~, ~, h) > O. 

(ii.3) I f  6 < fl < oe and h = 0, then qS#,h=0,6 has two 9lobal minima 
denoted by a+ (6, fl), which are the strictly positive and negative solutions 
of  6 y = t a n h ( / ~ y ) .  Moreover, a - ( 6 , / ? ) = - a + ( 6 , / 3 )  and lim a(6 ,~ ,h )=  

h---*O+ 
a+(6,fi). Note also that a+(6,~) ~ +1/c5, as ~ T ~ .  
(iii) For f l>~ and h>O sufficiently small, there exist strictly positive 
constants, cx~ > c+(6,~,h)>c-(6,[3,h)  > O, such that for all y E ~ ,  

c-(6,~,h) 
C~ ~,h,6( y ) - ~nf  O B,h,6( Y ) > 

= 2 
inf  (y  - yo) 2 (2.15) 

YO C { -- a( f ,~,h ),a( 6,~,h ) } 

and 
c + ( ~  h) 

@~,h,~(Y) --  iynf  C~13,h,6(y ) <= 2 (y - a(f, fl, h)) 2 (2.16) 

(iv) For all 6+ and fl > 6+, h > 0 small enouoh there exists a finite constant 
c3 > 0 such that for  all 6_ < 6+, 

inf C~,h,6+(y) -- i n f  O~,h,6_(y) < Ifi+ -- ~-Ic3a(c~-,fl, h) (2.17) 
y e n  ~--- 

The proof  of  this lemma is of  course just a standard exercise in real analysis. 
For 6 = 1 it can be found e.g. in the book by Ellis [E]; the modifications 
necessary to accommodate 6 ~ 1 are trivial; note in particular that a( f ,~ ,h)  = 
a(1, fl/6, hb)/6. 
Let us define the sets 

a N ( a )  --  {z ~ a N : Vizi ~ { - a , a } }  (2.1S) 

Taking into account the definition of  keN&a, h given by (2.9) we immediately 
have the following 

Corollary 2.6 With the notation from Lemma 2.5 we have that 
(i) For all I<~7_<_M(N) and for all h > 0, has a ~ ~,/~,6,h unique global 
minimum which is realized for 

z = a(f, fl, h)~ n (2.19) 

(ii) I f  h = O, then ~,#,6,h=o takes on its absolute minimum for all points 

z E gN(a+(~,/~)) .  
(iii) For all h>O and for fl > 6, we have that 

7t~&6,h(z ) - inf ~b~,h,a(y) < c+(6'fl'h)l[z - a(a, fl, h)~[l 2 (2.20) 
y~n~ = 2N 

and 



Gibbs states of the Hopfield model 

c-(6,~,h) 
~r,/~,a,h(Z)- ~nf  q~/Lh,a(y) >= 2N inf Itz - ~II 2 

~ESN(a(6,~,h)) 
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(2.21) 

The lower bound (2.21) will be used in the next section to obtain probabilistic 
bounds on the minima of the function ~. 

III The global minima of the function q~ 

The present section contains the central estimates of this paper. In particular we 
will localize the positions of the absolute minima of our function ~,~,h[co] and 
control its behaviour near them. All these results will hold with probability 
tending to one fast enough. To simplify our notation, we will drop in this 
section the arguments co in all random functions, as well as indices referring 
to the system size N, whenever no confusion may arise. In particular, we will 
write simply ~ for the matrix ~lN. 

From the results of the preceeding section, in particular Corollary 2.6, it is 
clear that the minima of this function should be near those points x ~ IR M 
for which ~x E g(a), where a = a(6,~,h). Of course, we can immediately 
identify 2M such points, namely x (~,s) - s a ( & l  . . . . .  &~,-.. ,6vM)~ IRM, with 
v c { 1 . . . . .  M} and s E { -  1, + 1 }. The first result of this section is that if M/N 
is sufficiently small, all possible solutions must be very close to these. The 
precise formulation of this statement is the following 

Proposition 3.1 For p >->_0, define the set 

~ ;  =- {x  E IRM " inf l]x-- > P} " 

Given a, 0 < a < 1, there exists strictly positive constants ~0, Co, Cl, and c2 such 

that i f  -~ <= c~ o, then for all e <= eo and p2 >_= a 2 c, (-~ log - ~ )  1/4 

l P ( i n f  inf 1 12 ) ( - N c 2 ~ l o g - - ~ ) / ~  1 2 8 ' ' / 4 ' ) + p ( N )  \xc~pz~e(a)-~]l~x-z[ < e < exp 

(3.1) 
o o  where p (N)  is such that ~N=IP(N)  < oe. 

In particular, i f  limNT~ ~ = 0, there exists strictly positive constants ~0 and 
Cl such that i f  O < e<=eo and p2 > a3/2c,(elog 12s)V4 then 7 

I P ( i n f  inf 1 ) \~c.~oz~e(a)~lldx-zll  2 < e i.o. = 0. (3.2) 

Proof. The first step in the proof of (3.1) consists in getting an a priori esti- 
mate on the modulus of those x for which the event considered may possibly 
occur. Here we will make use of Theorem 2.4. Note first that by the Schwarz 
inequality, II~x-zl l  2 < aN implies that, since Ilzll  = a v ~ ,  



342 A. Bovier et al. 

- v~__<--~N II~xll <a  + V~. a (3.3) 
I 

,Sy Theorem 2.4, we may choose r*(M,N) = 2~/r~ + -~ + O(N -1/6 l n N )  such 

that on a subset ~r C 12, satisfying IP(agN)> 1 - - /3(N)  with y~,/3(N) < co, 
N 

- ~ <__r*(M,N). (3.4) 

Therefore, (3.3) implies that if  to E agN, then the event in (2.1) can only be 
realized for x satisfying 

a - V/7 a + v/e (3.5) 
1~/i-4-7 --< Ilxll < ,/1 _ r  ~ 

Define 

= < Ilxll _-< ~ j  (3.6) 

and set ~ , p  = ~ n ~p.  By the above argument, we may conclude that 

I P (  inf  inf  1 ) x ~ z ~ ( a )  ~ t l ~ x  - zll  2 < 

�9 ( iof l lj x z l12  < 
\xE~p,~ zEg(a) IV 

Although in the left hand side of  (3.7) we have considerably reduced the 
range of  x-values we need to control, the fact that we need to control an 
event for a continuous set of  points x still poses a problem. The idea to over- 
come this difficulty is to regard the inequality I I~x-z l l  2 < eN as a set of  
N approximate equations and to use the first [TN] of  them to fix x up to 
a small error. Thus, given 2 E]0, 1] we decompose the M x N matrix ~ into 
a n M  x [TN] matrix ~, (~/~ - {~;i E {1 . . . . .  [TN]},/t C { 1 , . . . , M } )  and a n M  x 

~' "" { 1 , . . . , N  [ T N ] } , # E { 1 , . . . , M } ) . U s -  (N - [TN]) matrix _~, (_~/~ = ~i+[yg],l e 
ing Theorem 2.4 just as before, we see that we may choose r*(M,7 N) = 
2 M +_(~+O(N-1/61nN) and r*(M, (1-7)N)=2 +O_TzTW+ 

O(N -1/6 lnN) ,  such that on a subset f2 D ar D ~r satisfying IP(~e'N)> 1 -- 
/3(N) with }~ND(N) < oo we have 

1 -  7-# <=r*(M, TU) 

11 ( 1 - - 7 ) N  <r*(M,(1  - 7)N) (3.8) 

Let us also define 

g ( a ) =  {z E 1R[YN] : Vi E {1 . . . . .  [TN]},z, E { - a , a } } ,  

__~(a)~ {2 E ]R N-[TN] : gi C {1, . . .  ,N - [TN]},zi E { - a , a } }  
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With this notation we get that 

l P ( i n f  inf 1 ) 

]I? U inf II~x-ell 2 < aN 
x E ~ ' p , ,  I.~E~(a) 

fq~l zc-~(~)inf I lgx- z__ll2 < , ~N) + !3(N) 

iE~(a) x p,e 

O~l ~-~-g(a)inf ll~x-z It 2 _  <aN},affN)+D(N). 

(3.9) 

and so 

II~&tl ~ll~(xo + & ) - e l l  + lie- ~xoll ~2~,/-~. (3.10) 
On the other hand, on ~r we have that 

II~-~Nll2 -- @x, ~T~ 6 x~ ~[1c5X[[2(1-r*(M, TN)). 7N x) 

Therefore, on aft'N, (3.10) implies 

ll&][2 < 4e 
= 7(1 - r*(M, yN)) =- ~ (3.12) 

IP (xU~,,~ {ll~x-ell2 < aN}n / ~-c~-(a)~inf IlCx_ - z _ l ? <  aN} ,~N) 

{ll~(xo + 6x) -e l l  2 < aN} <]P U e 
6x x \ : 0 ~- x E ,  ,p,e 

M{ ~_Eg(a)inf I]~(xo+6x)-z_112<_ ~N},S~rN) 

=<IP( inf inf [[~(Xo+6x)-z__,[2 < aN.~C~v) &:xo+&E~p.jq I&ll 2 ~g z~_e(a) �9 

(3.11) 

Given i E g(a) let us choose x0 =x0(Z)E Np,~ such that II~x0-Z[t 2 < aN. 
Notice that if such an x0 does not exist, then the set {Ux~,oll~x-Slt 2 < 
aN} is empty. By construction, x0(e) is a random variable which is a(~)- 
measurable. We will now show that all points x that verify I]~x- ell 2 < aN 
are close to xo. Set x =_ xo(e) + 6x. using the Schwarz inequality, we see that 
if [[~x-ell 2 < aN and t[~xo -ell 2 < aN, then 
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=<lP(\~es I]_~xo-z]12 < 2N~,~N) (3.13) 

where in the last line we have used that on the set ~N,  if [[_~(x0 + f ix ) -  
ztl 2-<eN and II•x]l 2 " ~  are satisfied, 

2 

,,~_xo - z_][2 <- (v/-~ + V/g( l - 7)N( l + r*(M,(1- y)N))) 

<_2N[g + g(1 - 7)N(1 + r*(M, (1 - y)N))] 

4(1 - y)(1 + r*(M,(1 - 7 )N))  
= 2Ne 1 + 7(1 - r*(M, TN)) (3.14) 

=- 2Ne~. 
To estimate the last line in (3.13) we will use the following elementary obser- 
vation: 

Lemma 3.2 If (Y~-)/K=I is a family of positive random variables and C > 2 
then 

{1Ki~=lYi<e}C {#{i;Yi<Ce}> ( 1 - 1 )  K } (3.15) 

Using this Lemma for C to be chosen later, we get 

( inf II~Xo - z ll 2 < 2Neg,~fU~ IP 
k~a_g(~) - / 

_-<~ U N CIZI>(I_.b )N(~_,>,~, [ {l( ~-x~ )* - al2 < 2Cef'} 

u {,(~_xo),+al2<2Cef}]) (3.16) 

< ((1  - y)N~ __<2Ce~} = (1 - 7 ) }  ) [w({l~x0), - a?  

U {[(_~x0) 1 -b a[ 2 ~2Cg])})] (1-y)(1-+)N 

where in the last step, we have used that, for any subset I of { 1 , . . . , N -  
[TN]}, given ~, the random variables (({_Xo)i)ici form a family of independent 
identically distributed random variables. This is true given ~, since x0 is a 
random variable which is o'(~)-measurable by construction. Thus we are left 
to bound the probability in the right hand side of (3.16). Let us state this as a 
Lemma: 

Lemma 3.3 There exists v --= v(g,a,7, C, M) > 0  such that: 

]P ({](_~xo)l-al 2 <2Cg,} U {l(,_Xo)l +al2~2Ce,})<=exp (_I (~ -2~)) 
(3.17) 
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where ~' = ~ .  

Proo f  Without loss o f  generality we can assume that xo =- (x~)~l  satisfies: 

xo 1 _>_Xo 2 >  .. .  >x~0 =>0. This follows since xo is ~r(~)-measurable and since for 
any i E {1, . . .  , N  - [7N]} the random variables t-it~MJ~=l that appear in (~xo)i_ = 

u=l~i ~o are independent Moreover given xo, the random variables (~xo)i 
v "m ~lx~l G i v e n 0  < for i E { t , . . .  , N  - [yN]} have the same distribution as z_~u=l~i ~ o i. 

v < 1, we define the ~r(~)-measurable random variable, t, by 

{ ' } t ~ sup s > 0 : ~ ( x g ) 2 < _ - a 2 ( 1  - v 2) (3.18) 
#=1 

i f  such a t exists. To ensure the existence of  t we will have to impose conditions 
on our parameters, which we derive now. Obviously, t exists i f  and only if 
(x1)2__<a2(1 - v 2 ) .  Since xo E ~p,~, 

p2 __< Ilxo - xCa'a)ll 2= ( g  - a)  2 + ~ (xg) 2 
kt->2 

= a N - 2 x ~ a  + II2oll 2 (3.19) 
<= - 2ax~ + a 2 + a2(1 + g) 

I+ 
where we have set 1 + g = fz~ (M~V) �9 Solving this inequality for x~, we see 
that this condition is certainly satisfied if 

p2>a2 [ 1 -  2 V / 1 -  u2-[ - i -}-el.  (3.20) 

Let us now show that i f  (3.20) holds, then 

+ g  (3.21) x~ +1 < a  2 

Obviously, under our assumptions 

t+l 
(t -~ 1 )(X~ -kl )2 ~_ E (X0 ~ )2 ~ I lX0 I I 2 =< a 2( 1 + ~) (3.22) 

#=1 

and since (3.20) implies that t > 1, (3.21) follows. 
We assume from now on (3.20) and define the random variables 

t 

[z=l 

x0 ~1 (3.23) 
#=t+2 
. t+l ~t+l 

Zt  ~- "% g l " 

It follows from (3,23) and the definition of  t that these random variables satisfy 



346 A. Bovier et al. 

IEX•< a2(1 - v 2) 

IEY 2 <-_a2(g + v 2) (3.24) 

IZt]<a~/1 + 

It remains to estimate 

IP(Xt + let + Zt E [ - a  - e ' , - a  + e'] U [a - e ' , a  + e']) 

with e ~ -  2 ~ .  Let us introduce the random (a(~)-measurable)  intervals 
I + -- [a - x~ +1 - e', a - x~ +1 + ~'1 and I -  - [ - a  - x~ +1 - e', - a  - x~ +1 + e']. 

Notice that since ~]+l,Xt and Yt are symmetric random variables we have: 

IP(Xt + Yt + Zt E [-a - et ,-a + ~'] U [a - t',a + e']) = ]P(Xt + Yt E I -  U I + ) .  
(3.25) 

By conditioning on the events {X~ _>_0, Yt > 0}, {Xt _>_0, Yt <_-0}, {X~ < 0, Yt __<0} 
and {Xt < 0, Yt > 0} and using the trivial upper bound 1 for the conditional 
expectations in the first three cases we obtain: 

lP(Xt + Yt E I -  U I+)<= ~{3 + IP(Xt + Yt E I -  U I+IXt < O, Yt > 0)} 

= 4  + IP(X,+YtcZ+lxt  < o ,  Yt > 0 )  

+ 4IP(Xt + Yt E 1-]Xt < O, Yt > 0) (3.26) 

where we have chosen e ~ small enough in order that I + n I -  = ~. The expo- 
nential Markov inequality and (3.24) yield the bound 

F(x,  + Y, EI+l X, < 0,rt > O)<__IP(Y, > a-x'o +1 -~'lrt  > O) 

( (1 - + 
_<_2exp 5( TN j 

(3.27) 

Because the Xt are symmetric r.v. 's, the Chebyshev inequality can be used to 
get the bound 

n~(x~ + r', E I-Ix~ < 0,Y, > 0) 

( 1  - v2)a 2 (3.28) <=tP(Xt < - a - x t o  +1 q-etlXt < 0)_< ( a - ~ t )  2 . 

I f  finally v is chosen such that 

2 e x p ( - - ( 1 - v / ( l + g ) / 2 - e ' / a ) 2 )  < 1 2 ( g +  v 2 ) = 2 (a v22-2- 8;) 2 (3.29) 

and if  e ~ is small enough, combining (3.27) and (3.28) we arrive at 
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I P ( X t + Y t E I - U I + ) < I - ~  - 2  < exp 
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( - -~  ( ~ -  2 ~ ) ) ( 3 . 3 0 )  

which proves the Lemma. (} 

We now continue the proof of the proposition. Inserting the bound from Lemma 
2.3 into (3.16) it follows that 

IP inf inf l [ l c x - z l l  2 < ~,dN) 
xCNp,e zCg(a) .!V 

<2rN ({11- 77}N)ex p ( - ~  ( ~ - 2 ~ - )  ( I - y ) ( 1 - 1 ) N ) +  • N )  

< exp ( N  [yln2 + (1 - 7) ( l l n C  + C @ l n ~ _  1)  

~ ( ~ - - 2 ~ - ) ( 1 - T ) ( 1 - C ) ] ) + / 3 ( N )  (3.31) 

where the factor 2 ~N takes into account the sum over ~, and in the last line 
we have made use of Stirling's formula [Ro] to bound the binomial coefficient. 
We want show that under the conditions on e and p stated in the proposition, 
we can choose the parameters C, 7 and v such that the coefficient of N in the 
exponent in the last line of (3.31) is negative. Obviously, this requires first of 

V 2 __ 2 ~' all that T a be positive and sufficiently large. It is thus reasonable to fix 
v 2 = 8e'/a. Given this choice, we then choose 7 and C such that the positive 
terms in the exponential are balanced by, say, one half of the negative terms. 

256 �9 _ 128 and v2 It is easy to verify that this is true with C = 7 - log  7 -  7 = gg, so that 
with this choice we get 

l P ( i n f  inf 1 ) \xENo,ez6g(a)~ll~X--Zll 2 < 8,,5~N ~=e-xvZ/64"~ [)(N). (3.32) 

Recalling that e' still depends on ~ and C, we obtain as explicit relation between 
v and e, for our choices 

a 2 v 8  / / 2 2 2 e  a2 ~ 1/4 

e - 222 In 12~ or v 2 = \ { ~ y -  In ,~15e/ (3.33) 
V2 

where the constants 21 have not to be taken too seriously. To conclude the 
proof, we only have to verify that under the hypothesis on p and e stated 
with these choices Eqs. (3.20) and (3.29) are satisfied. To make the analysis 
of these conditions transparent, we will assume and use that c~ and e/a 2 are 
small compared to one and keep only the leading terms in these quantities. 
This means that in particular g (defined after (3.19)) is approximately given 
by 

g ~ 2 + 2 . (3.34) 
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Using this, inserting (3.34) into (3.20) we get the final bound on p as 

[(222/3 a2 ) 1/4 V~] 
p2>a2 [ \  a2 l n 2 - ~  + 2  . (3.35) 

Proceeding in the same way with (3.29), one finds that it is satisfied if 

1 ~ ( '222E a2 ~ 1/4 ~")  ( 1 ) 2 
In~-  \ ( - - ~ - l n 2 1 5 e  j + 4  < 1 - ~  (3.36) 

This gives in general an upper bound on e, and if ell0 also seems to imply 
a lower bound on e. This is, however, only due to our choice of  v 2 which 
was done as to allow e to be as large as possible and it is easy to verify that 
Proposition 3.1 really holds for all e<e0,  where c0 is determined by (3.36). 
However, as we will see later, in our applications e will have to be taken 
larger than v/~, (3.36) will in particular be the reason for an upper bound on 
admissible values of e. This ends the proof of  Proposition 3.1. 

Proposition 3.1 will be used directly in the next section to prove our main 
theorems. 

IV Proof of the Theorems 

In this chapter we will prove the theorems announced in Section I using the 
results obtained in the last two sections. Our strategy is to first prove the 
analogues of Theorems 1 and 2 for the measures ~. Statement (i) of Theorem 
1 then follows by Lemma 2.1, while Theorem 2 will be the issue of a short 
computation, with statement (ii) of Theorem 1 essentially a simple Corollary. 
Finally we will proof Theorem 3. We find it convenient to work with the 

Laplace transforms of the finite dimensional marginals of the measures ~3 ,h  

which we denote by ~.W~,~[co](t), i.e. 

2"e~v,~,h [co] (t) = fdkxe("X)Q~,h[col(x) 
Nt 

= f dMxe(t'~kX)Q~N3,h[co](x ) . (4.1) 
IRM 

Recall that a+(fl) denotes the largest solution of a = tanh(fia) and 7~k : IR N ~ �9 
IR ~ is the projection on the first k coordinates: x--+ nk (x )=  (Xl,...,xk). 
Throughout this section we will write r* =--r*(M,N) for the upper bound on 

[1~- ~11 on dN (see (3.4)). Also we will write ~7 shorthand for a(6,fl, h), 
unless we want to point explicitly to the dependence of this quantity on the 
parameters. 

Proposition 4.1 Under the hypothesis of  Theorem 1, Vq E N, Vk C N and 
Vt E IR k, for almost all a) we have 
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lim lira ~,~h[CO](t)  = e a+(~)(t'~ke"). (4.2) 
h.L0 N T o e  

To prove the Proposition 4.1 we need the following lemma which in fact 
provides all the crucial estimates needed to prove our theorems. 

Lemma 4.2 For almost all co, for all but a finite number of indices N we 
hal)e 

(i) V(v,s) r (r/, 1) 
O<=~N&h[CO](B~ 's)) <=e -elan (4.3) 

where 

~1 = h 6 - p ( Z h + 4 ] 6 - h [ r * ) + P 2 ( Z h + ( 1  +r*)c+(~5,fi, h)) (4.4) 

and c + = c+(6, fl, h) is the same constant as in Lemma 2.5. 
(ii) Let M, p and c be such that the hypothesis of  Theorem 1 are satisfied. 

I_M_ 
Set 6 . . . . . . .  N andeS+- 1 Then, Vt E IR k 

l + r *  l - - r *  " 

0 <= f dMxe(t'~kX)Q~N&h[CO](x ) <= e-~Ne2eh(t'~ke")e-~ 2flflM 
NO 

where 

[t 
c2 = ~ec-(6_, f i ,  h ) -g3a(6_, f i ,  h)2r* - - -  

(4.5) 

M + r*))] 
2fi-N ln(c (6+,fl, h)(1 + 

(4.6) 

with ~3 > 0 a constant related to the constant c3 in Lemma 2.5. c-  is the 
same as in Lemma 2.5. 

An immediate consequence of the lermrm is the following 

Corollary 4.3, For almost all co, for all but a finite number of  indices N, 

1 -  (2M-1)e--dl~N--e--d2~N<=~nN&h[Oo](B(~"))<=l (4.7) 

We now give the proofs of Proposition 4.1 and of Theorem 2, assuming Lemma 
4.2. The proof of  the lemma will be given after that. 

Proof of  the Proposition 4.1. We consider the case fl > 1; the case/~ < 1 is 
much simpler and will be left to the reader. Since we assume that -~ l 0, this 
implies that for all N large enough, fl > 6+. Let us write 

where 

_-- z c + Ez(v,   (4 .8 )  
(v~s) 

I (v's) =-- f dmxe(t'~kX)Q~,fl,h[CO](x ) (4.9) 
B(~,s ) 
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and 
I c = f dMxe(t'~kX)Q~N,~,h[CO](x ). (4.10) 

Since for x S(; I(t,  kx) -  ke )l _-< Pl It112, 

e-P[Itll2+s~(t'rckeV).~ ~l rB(V'S)'L<I(V'S)<ePllt]12+sa(t'~keV)~ o.(B(~'~)~ (4.11) N, fl,hk p ) =  = ~lv,p,n~ p J" 

Therefore, using (4.3) we get 

I(V,s) < e-el~N ePllt112 ~ eSa(t,,S) 
(v,O#(~,l) (v,s)#(n,1) 

< 2Me-el~Ne(P+a) l It112 (4.12) 

For U, we have of  course the bound given by (4.5). 
Finally, using Corollary 4.3 and the bounds (4.11), 

e-plltll2ea(t,~gen)(1 - 2 M e  -#lt~u - e-?2flN) <=I(rt'l) <=ePlltl[2ea(t'~ken). (4.13) 

From these bounds we see that the proposition will be proven if we can choose 
our parameters such that 71 and 72 are sufficiently large while at the same time 
P ==- PN tends to zero. Let us first consider ?e. It is reasonable to fix 

e ==- eN = 3~3 a(f_, f l ,  h) r* (4.14) 

in which case c2 >a(6_,~,h)?3r*. At the same time, the hypothesis of Propo- 
sition 4.1 are satisfied if we choose p - Px as 

~Cl /'~ - a(6_, ~, h) "~ 1/4 
~OC3c_((~_,f l ,  h)  ) (r*) l/4 (In r* c4) 1/42 p2 m=a3/2(~_, h) 

L 

+ r'a1~2(6_, fl, h)] = a3/20 ((r*)1/4[ In r ' l )  (4.15) 

which tends to zero as desired. Finally, since pN tends to zero, for N large 
enough, c1 ~ �89 h) > 0. From these observations, (4.2) now follows im- 
mediately. (} 

Proof  o f  Theorem 2. We show first that the conclusion of Theorem 2 holds 
for the measures ~N,#,h=O. To do this, all we have to do is to show that, almost 

surely, ~N, fl,h=O[(D](~p) .L O, as N ~" ec, for suitably chosen p. For this we can 
of  course simply use the bound (4.5) from Lemma 4.2, with h and t set to 
zero. That is, we must estimate the minimal p for which e -I~Ne2 tends to zero. 
Following the same arguments as in the proof of Proposition 4.1 we see that 
this p can be chosen as 

p2 = Ca3/2((~+, fi)O~l/8 [ In c~[ 1/4 (4.16) 

for some positive constant C, if c~ is sufficiently small and fl > 6+ + c~ (this 
condition on/~ is needed in order for the term ~ ln(c+(6+,fl, h) in (4.6) to be 

1 negligible). We recall that 6+ - 1-2v~ ~ 1 + 2v~.  
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To extend this result to the original measures ~N,~,h=0, we use the fact that the 
Gaussian measures X ( 0 ,  ~ )  is in the limit N j" oc concentrated on a ball of  

M radius O(cQ, if lira sup N = ~. Namely, having established that 

~N, fl(Bp) ~ ] -- e -cu  ( 4 . 1 7 )  

we define 
Bp -- {x E ]RN[ dist(x, B p ) ~ }  (4.18) 

and by the definition of .~, we have thus 

1 -- e -cN ~ ~N, fi(Bo) 

= \-2-~J f dMxll{xenp}(x) f e-~llx-mIt2~s'i3(dm) 
]R M N M 

= ( N)M/2 e- llx-mll \-~--~j f dMx~{~ce,}(x) f (4.19) 
NM ]R M 

x [n{ilx_mllZ~}(m ) + ll{llx_mll>~}(m)]~N,/3(dm ) 
= I + I I  

where I a n d / /  refer to the two summands with the respective characteristic 
functions. We will see that the first term is what we want, while the second is 
small; in fact 

II < \ ~  flU~ M/2 f dMx f e-@~llx-'~ll2e-@(1-~)llx-mll2~{llx-mll>~}(m)'~u,~(dm) 
NM IR M 

<e-~NT~2/2 \ ~ j f dMx f e-~d-')llx-mll2~N3(dm) 

=e--flN)'a2/2[li~)~lM/2 

<= e -NT~z/4 (4.20) 

for small enough 7. Note that we assume fl > 1. I f  lira -~ = 0, this argument 
has to be modified slightly by replacing c~ in (4.18) by a suitably chosen 
e(M,N). We leave the details to the reader. 
To deal with the term I ,  we use that 

(pN  Mj2 
I = \ 27z f dMx f e-~llxllZll{x+m~Bp}(x)~{llx]i<=~}(m)~:v'13(dm) / NM ~.M 

( [3N'~ M/2 e_~llxl 2 
\'2-~ /I f dMx f [ ~{,nC~p}(m)~N, fl(drn) 

IR M IR m 

= ..~(/~p) (4.21) 

Since/~p c Bp+~, this implies 
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~N3(Bp+=) > 1 - e - f lNTa2/4 - -  e -~r (4.22) 

and since ~ is much smaller than the p from (4.16) this implies immediately 
Theorem 2 for .~. <> 

P r o o f  o f  Theorem 1. Since (i) of Theorem 1 follows immediately from Propo- 
sition 4.1 and Lemma 2.1, to complete the proof of Theorem 1 we only have 
to verify statement (ii). But this is essentially a special case of  Theorem 2. 
Since under its assumptions M / N  ~ O, we can choose, according to (4.16), p N- 
dependent and tending to zero as N goes to infinity. Thus Theorem 2 implies 
for such M that limNT~ ~ N ,  f l , h=o(BpN ) :  1, IP - almost surely. Remembering 
the definition of limiting induced measures in Sect. 1, we require the slightly 
stronger statement that 

lim lim . ,~(f~(BpN ) = l ,  ]P - almost  s u r e l y .  
Ilfll~$ONTc~ "~ 

(4.23) 

To show this, one introduces as above for the general f-dependent measures 

the corresponding functions (f) �9 N3(Z). The point is that these are uniformly con- 
tinuous in f .  In fact a simple computation shows that they even satisfy 

(f) ONS(z) -- ONS(z) ------- Ilfll " (4.24) 

From this (4.23) is obtained easily by the same estimates as before. <> 

Theorems 1 and 2 are now proven up to the proof of  Lemma 4.2 which we 
present now: 

P r o o f  o f  L e m m a  4.2. Let us recall that 

6h 2 
�9 ~,/~a~[09](x) = qN,6109](x -- he n) + T~3,h,~[09](r + 

We choose 5--=5N-- 1 , with r* l+r* as in Sect. 3, so that, for o9 E ~r the 
quadratic form qg,~[09] is positive definite. In the rest of the proof all statements 
concerning random variables will be understood to hold for 09 c t iN. Let us 
first prove part (i). Recalling the definition of T (2.9,10), it is easy to see that 

r = ~},fl~h[o)](x) + h(x, (se v - e'~)) . (4.25) 

Using this observation we may write 

(4.26) 
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To get an upper bound on this term, notice first that V(v,s) r (t/, 1) and Vx C 
B (oV , s) 

h(gz - 2p) < h(x, (se v - e ~ ) ) < h(8 + 2p). (4.27) 

On the other hand, writing x - she ~ = x - s [ te  ~ + s(~t - h)C, the quadratic term 
can be written as 

qN,6(X - -  she v) = q N , 6 (  ( ~t - -  h )e v) + qN,6(X --  scte v) 

+ ( s ( d -  h)eV, [ " -  6 ~ - ]  ( x -  sgte~)) 

1 _ 
= ~ ( a  - h)2(1 - c5)§ (4.28) 

where 

, R , < ( @ + p , d - h , )  1 1 - ~ -  < _ < ( ~ + p l ~ - h , ) ( 2 r * )  (4.29) 

Using this bound in the numerator and denominator of (4.25), we get 

.~  o, [o91(B(~,~) ~ < e--BNh(g--2p)t~N(plff--hl4r*) ~:(v,s) (4.30) 
lv,p,nt- J', p .." ~ ~ ~: 

where 

_: ;"  J exp (- 
fB(Y )dMxexp ( _  flNT~N&h,6(:X)) . (4.31) 

TO estimate the last quantity, we change coordinates in the integrals in the 
numerator and denominator to x ~ = x - sde v and x r = x - ~e ~, respectively. 
Moreover, we will use that 

6h 
T N,~,sh,6( ~X ) = T N,~,h=O,O( ~X ) + ~ ( S ~ , ~X ) . (4.32) 

Let B ~ denote the ball of radius p centered the origin. We may then write 

j(v,s) = 

f odMxexp ( - f lN { TN,~,5(5~" + r - Sh (e", r162 "['~ ~ N ) j )  

N o w  

cSh (eV ,~ -x )  <fih(l+r*)l lx][ 2 

while Corollary 2.6 implies that 

(4.33) 

(4~ 
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c+O,/~,h) 
I~N,/~,a(sK~ ~ + ix) -- 7JN,#,,~(K~ 'I + ~x)l < N 

<=c+(6,fl, h)(a + r * ) l l x l l  z 

II~xll 2 

(4.35) 

Inserting these two bounds in (4.33) and, using that in the domain of integration 
[tx][ <p ,  we get 

j(v,s) =< exp(flN(1 + r*)pZ[c+(f, fi, h) + 26h]) (4.36) 

and so finally 

- p2(1 + p*)(c+(f, fl, h) + 26h)}) (4.37) 

which proves part (i) of Lemma 4.2. 
Let us now prove part (ii). We have to estimate 

f dMxe(t"k~)exp (--fiN~N,#~,h,6[OJ](X) ) 
f aMxe(t"kX)Q~u,~,h[~](X) = aP 

~p f dMx exp (--flN+~m,~,h,6[oJ](x)) 
IR M 

(4.38) 

We treat the numerator and denominator in (4.38) separately. In particular, we 
will use a different choice for & in each of them. Consider first the denominator. 
Here we choose f = &+ such that q~,6+ is strictly negative, which will be the 
case if &+ 1 This gives 

- -  l - - F *  " 

f dMx exp (--~N~qN,~,h,6[CO](X)) 
~.M 

= f d i x e x p ( - ~ N  {qN,6+(x-hen)+ 7t~,/~,h,6+(~x))) 
IRM 

~M 

>e -~x~~ f dMxexp t--pxv ~ gt x -- 

NM 

where we have used (2.20) from Corollary 2.6 and where we have set 

~Oo(6) -- inf ~,h,6(Y). 
yC~ 

1-~N with We now turn to the numerator in (4.38). Here we choose f = &_ = l-r* 
ZN > 0 to be chosen later. This choice implies that qx,6_(x)>L~-[[x[[2. Using 
this time the bound (2.21) from Corollary 2.6, this yields 
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f dMxe(Z'~l~X)exp (--13N~,~,h,~[o.~](x)) 

=e-~N~~ f dMxe(t,~kX)exp(--flN{qN,,~(x-- he'l) 
N'p 

+ 

<=e-BNeo(~,- ) f dMxe (t'~kx) exp ( - B N  { ~-I1 x - he,  It 2 
r 

+ c-(~_,fl, ~CgN(cT)inf II x-  112}) 

< e-~Neo(~,_ )e-eNd-(a_ ,~,h)/2 f dMxe(t,~kx) exp ( -~N ~-]lx - he ~ II 2) 
IRM 

(4.40) 

where in the last line we have made use of the bound (3.1) from Proposition 
3.1. To do this, we assume that the hypothesis of this proposition are satisfied. 
In particular, e depends of course on p. Also, (4.40) holds on a subset ~r C f2 
whose complement has a probability that was bounded in (3.1). This estimate 
and the first Borel-Cantelli lemma will imply that the bounds we are proving 
are true for P-almost all co and for all but a finite number of values of N. 
Combining these two bounds, we arrive at 

f dMxe (t,~k x ) Q~,h [co] (x) 
odp 

1 
G exp(-~N{iptstyle-~ec-(&_, ]3, h) - (~Oo(f+) - q)o(fi- ))}) 

f dMxe (t'~x) exp (-,SN~-ltx - he~l 12) 
N.M 

• f d M x e x p ( _ f l N @ (  1 +r*)llxll2 ) (4.41) 
IR M 

X LIC+((~+'fl'h)(l'cN +r*)] M/2 

x exp h(t, ~ke n) + 

Using point (iv) of Lemma 2.5, we see that 

(~o0(&+) - Cpo(6_ ))<c3a(&_,~,h)(6+ - 6_ ) 
c3a(6_,fl, h)2r* + "ON(1 -- r*) 

1 - ( r * )  2 

<~3a(6_,~,h)(2r* + ~N). 

(4.42) 

Thus, 
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f dMxe(t"eX)Q~N3,h[co](x)~ exp (h(t, rc/ce rt) + 2~Tw) 
~p 

(4.43) 

M is a reasonable choice (we exclude From this expression we see that ZN = 
the trivial case M bounded where we would of  course choose a larger ZN); it 

M it can be neglected in the first exponential means in particular that for small 
in (4.43) (on the expense o f  slightly enlarging the constant E3). This yields 
(4.5) and concludes the proof  of  Lemma 4.2. 0 

Finally, we come to the 

Proof of Theorem 3. What we have to do here is to show that the marginals 
o f  the Gibbs measure on any cylinder generated by a finite subset o f  the spin- 
variables converge to a product measure as stated. Thus we select a finite subset 
V C N and let d C ~ v  denote a cylinder event. O f  course, without restriction 
of  generality we can assume that A is the event d = {cri = si, Vi E V}. We 
will assume in the sequel that N is so large that V c {1 . . . . .  N}. We denote 
by V * the complement  of  V in {1 . . . .  ,N}.  Then 

1 1 
ff~,,a,h (d) -Z~3, h 2 N Z l id(a) 

aE~N 

8 E Gi~jJij =]- 2-~ E 17iGjJij ~- ~ E fTi~jJij • exp 
2-'-N i,jGV i,jGV c ieV,/eV ~ 

+ hfl~ ~ai + hfl ~ ] a i ~  (4.44) 
iEY iEV ]1 

v 'M r  In terms of  the ' local where we have used the abbreviation &j = z_-~=l i j .  
1 ~-~ Y~O" overlaps '  m~(~r) = ~z..~iEv~i i, this can be re-expressed in the form 

1 / [V[ 2 1 flh[V[mnv(Sv) ) " exp   W- llmv(sv)ll 2 + 
N, fl,h 

• Gvc ~Csevc exp(flN'{ �89 

+~]~J[(mv(sv),mvc(avc))}) (4.45) 

Ivct2 and h ' -=  N Here N ' --= N hq-Tq. Of  course the distinction between N,N r and 

[V c] is completely irrelevant in the limit N T c~. Now 
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~V c CS~gc 

= Jd xe--r-~ "~ 
k 2 ~ J  

1 ~ (fiN'(mw(Gv~),(x+ ~ ]) 21vr ~ exp ,~_,mv(sv)+h'en)/ X 
~ryc C5~ c 

2 2 ~ ]  
1 

x 21w--~ ~ exp(flN'(mv~(~w),x)) 
ave C-~VC 

= exp k -~ - - i l lmv( sv ) l [  2 - Bh I V l@(sv) -  ~Nh 2~ \5 -~]  

{R~T' I~'I- 

1 fl(~X)i}) (4.46) 

Thus 

~Gs,.(d) -- 

f d M x e x p l ~ N t [ g [  / I_}[[X _ h/er/] 1 } )  T-~(x, mv(crv)) + fiN 12 + ?7  ~ In cosh/~(~x)i 
crvCS@ iEV c 

(4.47) 

Now the integrals in (4.47) are exactly those we had to deal with in the proof 
of Proposition 4.1 (excepting trivial modifications) and a re-nm of that proof 
shows that, ]P-almost surely, 

r I  e~a(~)r 
lim lim {r iEv 
h---+ONToe 2 I] e&(~)r 

avC~CgviEV 

Ja(B)~Tsi 
= I ]  2 cosh/~a(~) (4.48) 

iEV 

which gives, together with the fact that a(fl) = tanh fla(fl) gives the statement 
of Theorem 3. <><> 

Remark. It is interesting to notice that in the proof of Theorem 3 the measures 
enter directly and not the actual induced measures 9. 
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Appendix 

In this appendix we present a proof of Theorem 2.4 on the eigenvalues of the 
matrix ~t~, namely 

Theorem 2.4 Assume that i f  are i.i.d, random variables satisfying leaf = 
0 and lE(~f) k < 1, for all k > 1. Let B denote the M x M-matrix whose 
elements are 

N 
Buy =-- (1 - 6 ~ l v " ~ v  (A.1) 

# , v ]  ~ r  Z...~ ~ i  '=i 
~v i = 1  

Then, for any z>O,M < N  and for N sufficiently large 

 '(IIBII > x/~(2+x/~)+zN-1/61nU)<= NN-z/v~(2+v~) (A.2) 

where cr = ~.  

Remark. It may be noted that (A.2) implies, in particular that, for all e>0 ,  

IP([IB[] > v/~(2 + x/~)(1 + c))<4Ne -cN1/6. (A.2') 

Remark. Note that the conditions on ~ are satisfied for symmetric Bernoulli 
variables. Up to trivial rescaling, they accommodate also all bounded centered 
r.v.'s. In the special case of symmetric Bernoulli variables, (A.2) holds with 
N 1/6 replaced by N 1/4 everywhere. 

In [BG] we have proven a related result for the matrix A = B + L namely 

that I[All _-<e 2 ~  with large probability. The proof of the present, somewhat 
sharper result uses the same techniques and some of the combinatorial facts 
that are proven there. The general strategy follows that of Ffiredi and Komlos 
[FK]. 

The main ingredient is a bound on the expectation of the trace of high 
powers of B. It reads 

Lemma A.1 
k <=N 1/6, 

Let B be the matrix defined in Theorem 2.4. Then, for all 

lEtrB k < CN[v~(2 § v~)] k+l (A.3) 

Remark. Similar results have been given by Koch [K] and by Tirozzi and 
Shcherbina [TS]. We present an independent proof here. 

Proof (of Lemma A.1) First we write, with +/~ = {1, . . . ,M} and +A~ = 
{1,...,N) 

1 
lEtrB k Nk ~ ~ ]E (~o~x~. t  .. ~ k - t ~ o  "~ (A.4) 

z -  \ io io i l  �9 i k _ l  i k _ l  ] . 
PO.-,#k -- 1 E d l  io,,,.,i k _ I G Y 

V l t t # # l - - 1  

We think of the two sums as sums over sequences (#0, . . . ,#k- i )  c j / k ,  etc. 
For such a sequence we will denote by 
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{(#0 , . . . ,#k- l )}  ---= {t E ~[13o<_l<_k-ls.t.#1 = t} (a.5) 

the set of  different values the sequence runs through. We may then arrange 
the sums in (A.4) in such a way as to first sum over all possible subsets 
F1 C ~ and F2 C J~  and then over all sequences for which the values run 
through exactly these subsets. Moreover, these stuns will not depend on the 
exact subsets F1, F2, but only on their cardinalities. Thus 

where 

Ek,r,s ~ 

EtrB~ = N-7 2 ~ ek, r~ 
r=l  s=l 

(A.6) 

2 2 ]E(~ 'u0~/~l~ /~ l ' ' '~ /~k- i~  ~0 ) ( A . 7 )  
\ io io il tk--1 ~k--I 

(~,...,~zk_ 1 )CJa:k (i0,..,ik_l)C~k 
{(#0,...,/Zk _ 1 )} = { 1,...,r } ((io,...,ik_l)}={1,...,s} 

Vl#lSL#l--1 

where the combinatorial factors in (A.6) count the number of  subsets of  given 
cardinality. Note that Ek,r,s does not depend on M or N. 

To estimate these last quantities, we think of the sums in (A.7) in a slightly 
different way. Let us denote by fYr,~ the complete bipartite graph with vertex 
sets labelled by N = {1 , . . . , r}  and 5 e -= {1' . . . .  ,s'} (here the prime indicate 
that the points in the two sets are understood to be distinct), i.e. the graph with 
vertex set ~ U 5 e and edge set N x 5 ~. Associating with each ~f appearing in 
the expectation in (A.7) an edge (i, #) of  fr each term in the sum (A.7) 
corresponds to a walk, co, of length 2k on this bipartite graph (i.e. a sequence 
of edges linking alternately the sets R and S) with the property that each 
vertex of f#r,~ is visited at least once. Moreover, it is clear that any walk which 
passes over any given edge of fqr,s exactly once will give a zero contribution 
as the expectation of the corresponding product of  ~f vanishes by assumption 
on the distribution of the ~. Finally, the constraint #t r # l - i  in the first sum 
forbids that a walk after arriving at a point i E 5 e from a point # c r returns 

immediately to the same point #. We denote by ~k( r , s )  the set of  walks that 
give a non-zero contribution. By our assumptions, we have that 

Ek,~,~ < l~Uk(r, s)[. (A.8) 

The only new feature compared to the proof in [BG] is now the constraint on 
the walk not to return along itself after visiting a point in S. As a main effect, 
this introduces a constraint on the admissible values r and s for given k as we 

will see now. Let co~ be a walk in CKk(r,s). Then the set of  edges in ~q~,~ over 
which cok passes form a connected, bipartite graph on ~ • 5 e which we will 
denote Gk. Let (db . . . ,dr )  and (cb.. . ,c~) denote the co-ordination numbers 
of  the vertices of  Gk in the sets R and S, respectively. Due to the constraint 
on the walk these numbers must satisfy 

dt__>l and e l>2 .  (A.9) 

On the other hand, if  L denotes the number of  edges in Gk, then we have the 
following relation: 
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On the other hand, 

which combine to 
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S r 

~ c l  = ~ d l  = L > r  + s -  1. (A.10) 
/=1 1=1 

6' F 

~-~ci>2s, ~ d l > r ,  L<=k (A.11) 
l=1 l=1 

2s<k, r < k  and r + s -  l <k. (A.12) 

Let us now first consider the case where r .1. s -  1 = k. We will moreover 
assume, for notational simplicity, that k is even. Then it is clear that the graph 
Gk is in fact a bipartite tree. In [BG] it was proven that 

L e m m a  A.2 Let tk be a bipartite tree on ~ • 5 e with k = r ,1, s - 1. Then the 
number, W(tk), of  walks co on tk starting in 1R and passing through each edge 
o f  tk exactly twice times the number o f  such trees with given coordination 
numbers is given by 

W(Cl . . . . .  dr) = k ( r -  1 ) ! ( s -  1)! (A.13) 

r ~ ~ i = l C i  Using this result and noting that for any bipartite tree ~ - ~ i = l d i  s = 

r - t - s -  1, we get immediately that 

I~/r = ~ ~ k ( r -  1 ) ! ( s -  1)! 
d i ,'",dr >= 1 c 1 ,,,,,r >= 2 
F S 

~ i = l  di=r+s--1 ~ '~ i=i  ci=r+s--1 

-- ( r + s l 2 )  1 

We will see that this is in fact the dominant tenn. 
Let us now turn to the case where r .1. s - 1 < k. In this case we follow Ffiredi 
and Komlos [FK] in associating to each walk co in fCk(r,s) a code sequence 
consisting of  k signs + ,  k signs - and 2(k - r - s .1. 1 ) labels (x, y )  E ~ • 5 ~ 
in the following way: Following the walk, we label an edge passed by the walk 
1, i f  the walk arrives at a point not previously visited. We put a label - i f  the 
walk passes an edge for the second time that had previously been labelled .1.; 
in all other cases we call the step a ' jump '  and put a label (x, y), with x the 
starting and y the endpoint o f  the jump. It is clear that the edges labelled .1. 
form a bipartite tree. The important observation here is that i f  we are given the 
order in which the sites are visited by the walk and the code sequence, then it 
is possible to reconstruct the walk. For, at any given time step, i f  our label is 
+ ,  we have to go to the next site; if  the label is (x, y),  we go from x to y and 
if  it is - ,  we go in the direction of  the starting point o f  the next jump along 
the existing +-edges.  Thus counting the number of  possible code-sequences 
amounts to counting the number of  walks. To do this, we first fix the times 
and labels o f  the jumps. Quite clearly, there are no more than 

possibilities ( i f  the random variables ~mu are symmetric and not only centered, 
the factor (sr )  2(k-~-~+l) may be replaced by (2rs) k-~-s+l, since all jumps,  that 

k - s - 1 
(A.14) 

J s - - 1  
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occurs, use a given edge an even number of  times. This implies the slightly 
sharper result mentioned in the remark following Theorem 2.4). Then, observe 
that the sequence o f  -t--labels together with the order in which the walk visits 
the sites for the first time correspond exactly to a walk o5 of  length 2(r  + s - 1), 
and we can use Lemma A. 1 to count these walks. The only remaining problem 
is to sum over the possible coordination numbers o f  the trees associated to the 
walks o5. Now it is easy to convince oneself that any site in 5 e that is not 
a starting point o f  a jump can have coordination number one. Moreover, it is 
clear that the number o f  jumps from 5 ~ to N is equal to half  the total number 
o f  jumps. Setting l = k -  r -  s + 1, we see therefore that the sum over the 
coordination numbers in 5 ~ yields a factor that is bounded by 

1 =  ~ l = l r + l - 2  ) / \  
Cl,...,Cs_l> 2 Cl,...,Cs> 1 \ 1 

Cs_ M ....... >__1 ~ = 1  ci = r + l - 1 
S 

~ i =  1 ei=r+s -- 1 

(a .16)  

where o f  course we assume l<s (and replace l by s in (A.16) otherwise). 
Putting these observations together we arrive at 

IJTFk(r,s)lK=(r q-s--1)![rs]2(k-r-s+l) ( k - S -  l ) 
s - - t  (A.17) 

Now put 

Our aim is to bound (A.18) uniformly in the allowed values of  r and s for 
suitably chosen k. 

It is easy to see that if  k 6 <_ N, the terms with s + r - 1 = k dominate to 
such extent that the sum over all other choices o f  r + s can be bounded by 
twice these terms, i.e. 

SN~,k,r,s~ 2 ~ SN~k,r~= 2~-~ N k! r -  2 
r+s_-<k+1 - r+s=k+l ' s=l k + l - r  k + l - r  

(A.19) 

This last sum is finally bounded by k/2 times its maximal term. Using 
Sterling's formula one finds that this maximum is taken for r = 7k, where 

l+x/~ = 2 + ~ ,  for N large, and that the maximal value is given by ~Nk+l[~/~(2 + 

v/~)] k (where ct = M/N). 
Lemma A.1 follows immediately from these bounds. 

Proof (of  Theorem 2.4) Theorem 2.4 follows from Lemma A.1 by a sim- 
ple application o f  the Tchebychev inequality. Namely, since the matrix B is 
symmetric, we have that 
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n'(llBII > x/ (2 + + zN -1/6 InN) 
< ]P(tr(B k) > (V'~(2 + v'~) + zN-1/6 InN) k) 

< IEtr(Bk) 

= (v~( 2 + V ~)  + zN-1/6 lnN)k" 

Inserting the bound from Lemma A.1 
simple algebra. 0(~ 

(A.20) 

into (A.20) yields (A.2) after some 
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