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Summary. We give several conditions on the estimator of efficient score function 
for estimating the parametric component of semiparametric models. A semipara- 
metric version of the one-step MLE using an estimator of efficient score function 
which fulfills the conditions is shown to converge to the normal distribution 
with minimum variance locally uniformly over a fairly large neighborhood 
around the assumed semiparametric model. Consequently, it is shown to be 
asymptotically minimax with bounded subconvex loss functions. A few examples 
are also considered. 

1. Introduction 

As powerful criteria for identifying good statistical methods, asymptotic mini- 
maxity and efficiency have been used widely in large sample theory. To avoid 
the confusion between these two notions in further discussion, let us clarify 
the distinction here. An estimator is called asymptotically minimax if its maxi- 
mum risk taken over all probability measures in some neighborhood of the 
assumed model is asymptotically best possible. On the other hand, an estimator 
is called asymptotically efficient if the distribution of the estimator converges 
weakly to the normal distribution with minimum variance along either fixed 
or contiguously contaminated underlying probability measures. 

In parametric problems the representation theorem of Hfijek (1970), and 
the asymptotic minimax theorems of H~jek (1972) and Le Cam (1972), provide 
a rather complete description of asymptotic efficient and asymptotic minimax 
estimation. More recently, representation theorems and asymptotic minimax 
theorems have been established for a variety of statistical problems including 
estimation of parametric or nonparametric components in semiparametric mod- 
els [-Begun et al. (1983)] and estimation of a distribution function [Beran (1977), 
Koshevnik and Levit (1976), Millar (1979)]. 

Many authors have discussed asymptotic efficient estimation in various par- 
ticular semiparametric models. Those include Weiss and Wolfowitz (1970), Wol- 
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fowitz (1974), van Eden (1970), Beran (1974, 1977, 1978), Stone (1975), Efron 
(1977), Tsiatis (1981), Bickel and Ritov (1987) and Park (1987). The construction 
of asymptotically efficient estimators in general semiparametric models have 
been discussed by Bickel (1982), Schick (1986, 1987) and Klaassen (1987). But 
notwithstanding the importance of the notion of asymptotic minimaxity, the 
construction of asymptotically minimax estimators has been rather neglected, 
especially in semiparametric models. A few works include Beran (1981), Fabian 
and Hannan (1982) and Millar (1984) among which the first treated parametric 
models and the third dealt Hilbert space parameters. 

Our present theme is asymptotic minimax estimation of parametric compo- 
nents in semiparametric models. Suppose f ( . ,  0, g) is our semiparametric density 
model where 0 and g are the parametric and nonparametric component respec- 
tively. We take a shrinking neighborhood (n-a/Z-rate) around fa/2 (., O, g), name- 
ly, {q: n 1/2 I]ql/Z-fa/21l <c} (ll" II is the usual L2(.) norm) which is essentially 
larger than the one considered in Begun et al. (1983). A special attention should 
be given here to the fact that our neighborhood is no longer contiguous. We 
show that a semiparametric version of the one-step MLE of Le Cam (1956, 1969), 
which uses an estimator of efficient score function satisfying a set of given condi- 
tions, converges to the normal distribution with minimum variance locally uni- 
formly over this enlarged neighborhood. Consequently, the estimator is seen 
to be asymptotically minimax with bounded subconvex loss functions. 

Our main result is in essence a semiparametric extension of the development 
in Beran (1981) for ordinary parametric models. Beran (1981) showed that adap- 
tively modified one-step MLEs are asymptotically minimax. Some of the condi- 
tions imposed on the estimators of score function in this paper correspond 
to some of the properties possessed by the constructed score function in Beran 
(1981). However, Beran (1981) considered neighborhoods which are full Hellinger 
balls of probabilities, while we treat Hellinger balls of densities defined with 
respect to a fixed sigma-finite measure, which are subsets of those considered 
in Beran (1981). 

Fabian and Hannan (1982) dealt the same problem in different mathematical 
formulation but they considered finite dimensional neighborhoods and treated 
only the cases in which adaptation is possible. 

This paper is organized as follows. In Sect. 2 we present an appropriate 
asymptotic minimax theorem. In Sect. 3 we give several conditions on the estima- 
tor of efficient score function [-see Begun et al. (1983) or Bickel et al. (1989) 
for definition] for asymptotic minimaxity of our estimator. A few examples 
are considered in Sect. 4 where we see how the conditions in Sect. 3 are satisfied 
and consequently establish asymptotically minimax estimators for those exam- 
ples. The proof of our main theorem is given in Sect. 5. 

2. Asymptotic minimax bound 

Suppose that Xa, ..., X, are i.i.d. 5~-valued random variables with density func- 
tion f = f ( ' ,  O, g) with respect to a o--finite measure/2 on the measurable space 
(~r, cg) where O ~ O c R  k and g e N c  the collection of all densities with respect 
to a cr-finite measure v on some measurable space (~, @). We will find the 
asymptotic minimax bound for estimating the parametric component 0 in the 
presence of the unknown nuisance parameter g. Our result in this section is 
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a variation of Theorem 3.2 in Begun et al. (1983), which is a special case of 
the general H~tjek-Le Cam-Millar asymptotic minimax theorem [-see Proposi- 
tion 2.1 of Millar (1979)]. Here we restate their conditions using the same nota- 
tions. 

Let 
,~=- {fl6L2(v): Iln1/Z(g1/2--gl/2)--fl[lv---',O as n--+oo 

for some sequence g, with all g, e f#}. 

Throughout  this paper we assume that N is a subspace of L 2 (v). Furthermore,  
we assume that for every sequence (0,, g,) such that [nl/2(O,-O)-h[--+O and 
Ilnl/2(gln/Z--gl/Z)--flHv--+O as n ~ o o ,  there exist a function po~L2(#) and a 
bounded linear operator A: LZ(v)--+L2(#) such that with f , = f ( . ,  0,, g,) 

(2.1) ][nl/2(f#/2-f*/2)-~]lu~O as n ~o o  

where ct = h Po + A ft. 
Let N, (f, c) be the set of all density functions q with respect to # such that 

IL n 1/2 (ql/2 _ f 1/2)I[ ~ <_ c. Let 

(2.2) O(q) = 0 + 4 I ,  1 ~ ~, (ql /2_fl /2)  dl~ 

where I,--4[l~*ll 2 and ~* is the orthogonal component  of Po to the nuisance 
parameter space {Aft: f ieN}.  Then by (2.1) 

(2.3) 0 ( f . )  = On+ o(n-  1/2) 

where f ,  is the same as in (2.1). The Eq. (2.3) tells us that O(q) plays a part 
in identifying the parametric component  of q. Hence if q is the underlying density, 
the loss should be a function of O,-O(q) where 0, is an estimate of 0. An 
interesting motivation of O(q) is illustrated in Beran (1981). 

Let l be a subconvex loss function [see Begun et al. (1983) for definition]. 
The following theorem gives an asymptotic minimax bound for estimating 0. 

Theorem 2.1. Under the assumption described above, 

lim l iminf inf  sup Eol(nl/2(O.--O(q)))>El(Z,) 
c-+o~ n On qeNn(f,c) 

where Z .  ,-~N(0, I ,  1) and Q is a probability measure having density q. 

Proof From Theorem 3.2 of Begun et al. (1983) 

lim lim infinf sup 
ca-+ oo n 0n Ihl-<cl 
c2-+m IlPllv<c2 

Ep, l(n 1/2 ( 0 . -  0,)) >_ El (Z . )  

where 0,, h and fl are the same as those in the condition described through 
(2.1) and P, is the corresponding probability measure for f ,  = f ( . ,  0,, g,). F rom 
(2.3) we can replace l(n1/2(O.-O.)) by l(nl/2(O,-O(f,))). Now observe that if 
]hi < c  1 and liflllv<e2, then Ibn1/2(f,1/z-f1/2)Ll,<c for some c>0 .  Hence we can 
replace f ,  with l h I< Cl and II fl II, < c2 by q in N, ( f  c). The theorem follows. 
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In view of Theorem 2.1, our aim in this paper is constructing 0. which satisfies 

(2.4) lim lim sup EQI(nl/Z(O,,-O(q)))>=EI(Z.). 
c ~ c o  n q G N n ( f , c )  

If we restrict I to be a bounded loss function, it suffices to find 0, such that 

(2.5) nl/2 (0 , -  O(q,))~ N (O, I ,  1) 

under the probability measure Q, having density q, for any sequence q,~N,l(f c) 
as discussed in (5.17) of Millar (1984) and at the end of the proof of Proposition 1 
in Beran (1981). In the next section, we will see how this goal can be achieved. 

Remark. For asymptotic minimaxity in Begun et al.'s sense, we need to construct 
0, such that 

(2.6) lim lira sup 
cl--,oo n Ihl_-<cl 
c 2 - ~  II/~l[ < c 2  

E,.  l(n 1/2 ( 0 , -  0,)) = El(Z,) .  

However, to show (2.6) we might still need to verify (2.5) since the maximizing 
density can only be said to belong to N,(f, c). 

3. Asymptotic minimax estimation 

3.1. Preliminary estimator 

First we need an initial estimator which is ~/n-consistent in a slightly different 
sense than usual, namely, we need an estimator 0. of 0 such that nl/2(0,~-0) 
is tight under any Q. where q,,~N,,(f c). Throughout this paper it is assume 
that such an estimator exists. M-estimation and minimum distance methods 
can be used to select an initial estimator, but considering Q." is not contiguous 
to P", it should be chosen more carefully than in the usual cases of contiguous 
contaminating density. The following examples illustrate how to construct an 
initial estimator. 

Example I (one sample location model). Suppose f = f ( . ,  O, g ) = g ( . - 0 )  where 
g is symmetric, OGR 1 and S(~2/g)d/~<oo (y is Lebesgue measure). Let O. be 
chosen so as to minimize 

h (0) -- max [ F. (x) + F. ((2 0 -- x) -) -- 1 [ 
x 

where F~ is the usual empirical distribution function on a random sample 
X t . . . . .  X.  from Q. with density q.. The consistency and ~/~-consistency of 
this estimator have been shown by Schuster and Narvarte (1973) and Rao et al. 
(1975) under the model density f But observing that 

(3.1) I[Fz~.-o--Foll~,~4 I l f . - fOlls~4(l l f . -  Q.Ils+ II Q . -  f0lls) 
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where /1" I1~ is the sup-norm over R, consistency under Q, follows directly from 
the continuity of the map O--*Fo and the identifiability of 0, namely, Fo, =Fo2 
implies 01 = 02. Similar argument on pp. 106-107 of Le Cam (1969) and the 
second inequality of (3.1) ensure that ] / ~ ( ~ , -  0) is tight under Q,. 

Example 2 (two sample shift model). Suppose that (X1, I71) . . . . .  (X,, Y,) are i.i.d. 
g(-) g ( . - 0 )  where OeR 1 and g is any unknown density function defined on 
R 1 with I(~2/g)d#< oe. If we define 0. to minimize 

h(O) = II F.(" - 0 ) -  G.Iis 

where F. and G. are the usual empirical distribution functions of X~'s and Yi's 
it can be shown that V~(0".-0) is tight under Q. using similar respectively, 

arguments as in Example 1. 

Example 3 (linear regression with symmetric errors). Suppose that 
(X1, Y1) . . . .  , (X,, Y,) are i.i.d, f ( - , . ,  0) where 

f(x, y, O)= g(y--Orw(x)) h(x), 

0 �9 R v, h is known with ~ [ w (x) ] 2 h (x) d x < oe, g is a unknown symmetric density 
function with S(~2/g)dp< oe. Let ~ be a bounded and antisymmetric function 
with a bounded positive first derivative. Let ~7, be the unique solution of 

?l 

~, wi(Xj)O(Yj-~r, w(Xj))=O l <i<=p, 
j = l  

where wi(') is the i th component of w(x). Then it is not so difficult to show 
that ]//-n(g.-0) is tight under Q., following Huber's arguments [pp. 805-806, 
Huber (1973)]. 

3.2. Asymptotic minimax estimator 

Let 

(3.2) 0 =O.+n-1 r*(Xj, 0,) 
j = l  

where g. is a discretized version of 0., /'* (x, 0) is a good estimator of l* (x, 0) 

=2~z*f-1/Z(x,O,g) and i . = n  -1 i r*/'*r(XJ, O.), and estimator of I . .  The 
j = l  

asymptotic behavior of 0. depend heavily on that of T*. We state several condi- 
tions which 1"* should satisfy in order that 0. defined in (3.2) satisfies (2.4), namely, 
be an asymptotically minimax estimator. Let {0.: n >  1} be any sequence such 
that [On-Ol-=O(n-1/2). 

(C1) nl/ZSt,(x, O.) f(x,  0., g) d#=oQ.(1) 
(C2) EQ.~I/'*(x, O.)--l*(x, O.)[Z f(x, 0., g)d#=o(1) .  
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Let ~ be a cross-validated estimator of l*, i.e., ~.*=I"* computed from 
X1, ..., X j - I , X j +  I , ..., Xn. 
(C3) ]~(x, O)-T*(x, O)]<=Mn=o(n-1/2),j=l . . . .  , n where M, is a constant. 

Although we can find l"* for which (C 3) is satisfied in most cases, particularly 
in our examples considered, the proof of the asymptotic minimaxity of 0, relies 
on the following set of weaker conditions than (C 3). 

(c3.1) y O.)12q.d =o(1) 
j=l 

(C3.2) n -1 ~ [/'*(Xj, O,)--~(Xj,  O,)[2=oQ,(1) 
j=l 

(C3.3) n -1/a i ~([*(x, O , ) -~ (x ,  O,))q, dl~=Oe.(1 ) 
j=l 

(C3.4) n -1/2 ~ (r*(Xj, On)--~j(Xj, 0,))=oQ,(1). 
j=l 

Some of the conditions described above are motivated from an interesting 
paper by Schick (1987) and they are similar to the conditions in his Lemma 3.1 
but Schick's lemma is for constructing asymptotically linear estimators and is 
useful when the underlying probability measure Q~ is contiguous to P". For 
more details see Schick (1987). We add two more conditions on 1"*. 

(C4) n -1/2 ~0  ~'*(x, 0) 5Nn-+0 

(C5) n-1/4lr*(x, O)]<L,--,O 

where N, and L, are constants. 

Remark. The conditions (C 1), (C2) and (C 5) correspond to the properties (3.14), 
(3.15) and (3.16) of the constructed score function in Beran (1981). 

Here is our main theorem. 

Theorem 3.1. I f  the conditions (C 1)-(C 5) are satisfied and I ,  = I ,  (0) is continuous 
as a function of  0 and the map O--*l* (x, O) is continuous for each x EY(, then 

nl/2(0,-- O(q,)) ~ N(O, 1,1) 

under Q,. 

Proof See Sect. 5. 

As we discussed it earlier in Sect. 2, the conclusion of Theorem 3.1 implies 
that 0, with t"* satisfying (C 1)-(C 5) is asymptotically minimax if the loss function 
is bounded and subconvex. 

As will become clearer in the proof of Theorem 3.1 [see (5.5) for example], 
the condition (C5) is essentially used for eliminating the effect due to model 
contamination, which can be done by adjusting the estimator according to the 
amount of contamination present. One unpleasant aspect of the condition (C5) 
is that it requires the estimator to be adjusted by a nonstochastic term (L,) 
regardless of the actual amount of contamination. This means that the estimator 
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breaks down for contaminated balls whose shrinking rates are slower than n-  1/2 
Furthermore,  in small sample cases, the estimator may fail to be adjusted appro- 
priately since the nonstochastic term confuses sample size with the amount  
of contamination present. 

Beran (1981), p. 99, also gives discussion of the above difficulty and suggests 
to use goodness-of-fit test statistics (instead of nonstochastic terms) to take the 
actual contamination into account for the estimator. But in our case, the use 
of the nonstochastic term appears to be rather crucial for the proof  of Theo- 
rem 3.1 in technical aspects. At the present time, the author does not know 
whether this is due to the nature of the estimator defined in (3.2) or inherent 
in the problem. Further research needs to be done on this. 

4. Examples (continued) 

In this section we will see how r* (-,-) can be constructed to satisfy the conditions 
(C 1)-(C5) in the examples considered in Sect. 3. 

4.1. Example 1 (continued) 

Note that l*(x, 0)= -~ /g (x -O)  and I .  = ~ (~2/g)d#. Define 

(4.1) ~,(x, O)=b,+n -1 b] 1 ~ K(b] l ( x -X j+O))  
j = l  

~* (x, 0) = - �89 (~/~ (x - 0, 0) - ~/~ ( 0 -  x, 0)) 

where b,~O, nb6,~ov and K is logistic density. Then 

(x, 0 )=  - 1 @ ~ j ( x -  0, 0 ) -  ~ j / ~ ( 0 - x ,  0)) 

where ~j (x, 0) = g (x, 0) - n-  1 b~- 1 K (b~- 1 (x - Xj + 0)). Now (C 1) is obviously sat- 
isfied and (C3) can be easily verified [-see Schick (1987)]. If we note that 

[r*(x, O)l<b~ 1 and ~-~ ['*(x, O) <Cb2 3 for some C, (C4) and (C5) are obvious. 

Let p,(x, O)=EQ,~(x, O)-b, and g,(x, O)=Ep~,(x, O)-b,. By the same method 
as in Schick (1987) we can show 

EQ. [ ~/~ (x, O) -- Pn (x, O)/(p n (x, O) + bn) l 2 ~ 4 n-1 b2 6..~0 

and by Biekel (1982) and Schick (1987) it has been shown that 

I (~,,(x, O)/(g,(x, O) + b , ) -  ~/g(x)) 2 g(x) dx--*O. 

Hence (C 2) is satisfied if we have 

(4.2) ~ , ( x ,  O)/(p,(x, O)+b,)-~,,(x, O)/(g,(x, O)+b,)) z g(x) dx~O, 

but the square term in (4.2) is bounded by B n- ~ b2 6 for some constant B > 0. 
Hence the conditions (C 1)-(C 5) are satisfied with/'* defined in (4.1). 
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4.2, Example 2 (continued) 

Observe that  l*(x,y,O)=-�89 and l.=�89 Now 
define 

~(x, 0)= �89 (x, o)+ ~2(x, o)) 

1 (x, O) = b. + n -  1 b.- 1 ~ K (b.- 1 (x - X j)), 
j = l  

where 

~2(x, O)=b,,+n -1 b21 ~ K(b21(x - Yj+O)), 
i = l  

K and b, are the same as in Example 1. Define 

r* (x, y, 0) = - ~ {~/~ ( y -  0) - ~/~ (x)}. 

With ~ and ~,j,a. defined in the same way as in Example  1, the condit ions (C 1)- 
(C5) can be verified. We omit  the proofs since they are essentially the same 
as those in Example  1. 

4.3. Example 3 (continued) 

The efficient score function for 0 is given by l*(x, y, 0)=  -w(x)~/g(y-Orw(x)).  
Define 

~(y, O)=b.+n -1 b21 ~ K(by~(Y - Yj+Orw(Xj))) 
j = l  

and 

~'* (x, y, 0) = - 1 w (x) (~/~ (y - 0 T W (X), 0) -- ~/~ (0 r W (X) -- y, 0)) I (I w (x)[ < C,) 

6 - 4  where b,~O, c,~oo, rib, c, ~oo and K is logistic density. Define ~j and 
in the same fashion as in Examples 1 and 2. N o w  (C 1) is obviously satisfied. 

Not ing  that  

I ~.* (x, y, O)-[*(x, y, 0)1 <=An -1 b2 3 c. 

I~*(x, y, O)l < Bb21c. 

_~ -2 2 "~*(x,y,O) <=Cb, c, 

for some A, B, C > 0 ,  (C3)-(C5) can be seen to be satisfied. Now for (C2) it 
suffices to show that  

(4.3) EQ. ~S [ w(x)12 [~,/~,(y, 0,) I(] w(x)] =< c,)--  ~/g(y)];  g(y) h(x) dy dx = o (1). 
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Since 5}w (x) l 2 h(x) d x < m and 5 (~2/g) d# < oo, (4.3) is satisfied if 

(4.4) EQ. ~ [~/~ (y, 0,) -- g/g (y)] 2 g (y) d y--+ 0. 

But (4.4) can be shown by the same way as in Example 1. 

Remark. In Example 3, c, is used for technical merit. In practice, for fixed sample 
size, one may take c, large enough to include every data point. A much more 
important issue here is the choice of bandwidth b,, since it is well-known that 
it has great influence on the performance of probability density function estima- 
tors and other related ones. For probability density function estimators, several 
data-driven bandwidth selection methods have been proposed. See Park and 
Marron (1990) or Hall et al. (1989), for example. However, for our examples 
discussed above those bandwidth selectors should not be used since the amounts 
of smoothing for different problems are different. Instead, data-based bootstrap 
methods as discussed in Park (1990) are recommended. 

5. Proof of Theorem 3.1 

Note  that w i t h / * =  I* (., 0) 

r*(X,.Oo)--O 
j=l 

- 2 I** a f l * f  */2 (ql/Zn _ f , / 2 )  d#~ 
% 

=n1/2{~. -1 .iI'~ "1 ~ ~*(Xj,~)--I'~l~'(x,~)qn(x)d] ..l} 
j=l 

+ nll2 g l {5 l'* (x, O~) q.(x) d # -  S F* (x, r f (x) d # 

- 2 ~ l* f , / z  (q~/2 _ f 112) d#} 

+ n 1/2 {1,1S/'* (x, O.) f (x) d# +(O.- 0)} 

+ 2 n 1/z ([,1 - I ,  1)~ 1.fl/2(q1/g_fl/2) d# 

=An+ B,+ C,+ Dn. 

We will show D, ,  C,, B , ~ 0  in Q",-probability and A,=~N(0, 1,1) under Q, 
in Lemmas 5.1-5.4, respectively. 

LemmaS.1 .  Under the conditions (C2), (C3.1), (C3.2) and (C5), Dn~O in 
Q,"-probability. 

Proof. Let S.(O)={x: {/*(x, 0)12<a.} where a,~oo, n-1/2a.~O and 
n-1/2a, L~Z~oo. By the argument in Le Cam (1960, 1969), it suffices to show 
that 

(5.1) n -1 ~ r*r*r(x~, 0,)-.I. 
j=l 
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in Q."-probability where {0.: n > l }  is any deterministic sequence such that 
nl/2[0.--0] = O(1). Using Chebyshev's inequality and n-1/2 a .~0 ,  we can show 

(5.2) n -1 ~ l*l *rtY OR) l* ,__j, Is,(o,)(X;)- ~ l*r(x,O,)q,(x)d# --'0 
j=  1 S,,(O,d 

in Q~-probability. And also 

(5.3) I 
Sn(On) 

1" 1" r(x, 0,) q,(x) d # ~ I .  

by the dominated convergence theorem, the continuity of 1 . = I . ( 0 )  and the 
map O~l*(x, O) for each x and the following 

I ~ l*I*r(x,O.)(q.(x)-f(x,O.,g))d#l 
S,~ ( O,~) 

= [ ~ l*/*r(x, O.)(ql/Z(x)+fl/2(x, 0., g))(qa/2(x)--fl/Z(x, 0., g)) d#1 
S~ (On) 

<= O(n- X/2) a --.O 

where [AI= (Z a2j) 112 if  A = (Au)k• k. 
i , j  

Furthermore, 

(5.4) n - 1 ~ F* r* r (X j, 0.) Is.co.)o (X) ~ 0 
j = l  

in Q."-probability since the expectation taken under Qn of the absolute value 
of each component in the left hand side of (5.4) is bounded by 

(5.5) nl/2 LZQ.(]l*(X,O.)]Z>an)<nl/Z L](Po.(ll*(X,O.)[Z>a,,)+O(n-~/2)) 

<= n I/2 L~. a~ 1 o (1 )+  L~ o ( 1 ) ~ o  

where Po. is the probability measure associated with the density f ( . ,  0n, g). Now 
using (C2), (C3.1), (C3.2) and (5.3), it is straightforward to arrive at 

(5.6) n -1 ~, (l"* r*r(xj, O.)Is.(o.)(Xj)-l*l*r(xj, o.)Is.(o.)(X))~O, (5.6) 
j = l  

in Q~-probability. Hence (5.1) follows from (5.2)-(5.4) and (5.6). 

Lemma 5.2. Under the conditions (C 1), (C2), (C3.1), (C3.2), (C4) and (C5), C , ~ 0  
in Q~,-probability. 

Proof By the same argument as in the proof of Lemma 5.1, it suffices to show 
that 

(5.7) nl/2 {I "[* (x, 0.) f (x) d# + • (0 . -  0)}-*0 
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in Q,"-probability for any sequence such that I0,-01=0(n-1/2) .  By (C1), (5.7) 
is equivalent to 

(5.8) nl /Z{~*(x ,O,) f (x)d#-~ '[*(x ,O,) f (x ,O, ,g)d#+[, (O,-O)}- -*O 

in Q~-probability. But the left hand side of (5.8) is equal to 

(5.9) n 1/2 ( L  (On --  O) - 2 ~ "[* (x, 0,) f t/2 (x)(f  1/z (x, 0,, g) - - f  1/2 (x)) d #) + oQ, (1) 

by (C5) and the fact that f ( ' ,  0,, g )~N,( f  c). Now by (C4) we can replace 0, 
in /'*(', 0,) by 0 and then by (C2) we can replace r*(., 0) by l*(-, 0) in the 
expression (5.9). Now (5.7) is obvious if we observe that 

10,--01-1 II f l /2(  �9 , 0,, g )_ f l /2  _(O _O)r poll ~ 0  

and 2 (/*(. ,  O)f 1/2, p T ) = I ,  and use Lemma 5.1. 

Lemma 5.3. Under the conditions (C2), (C3.1), (C3.2), (C4) and (C5), B,---,O in 
Q~-probability. 

Proof Again thanks to Le Cam (1960, 1969), it suffices to show that 

n 1/2 (~ ~, (X, On) q, (X) d # -- ~ ~ (x, 0,) f (x) d # - 2 ~ l* (x, O) f l/2 (ql/2 _ f 1/2) d #)--* 0 

in Q,"-probability. But by (C5) and the fact that q, e N , ( f  c) we only need to 
show that 

(5.10) n 1/2 (S ['~ (X, On) f l / 2  (qln/2 _f l /2)  d# ~ I* (x, O) fl/z (qln/2 __fl/Z) d #)~0  

in Q,"-probability. Now the euclidean norm of the left hand side of (5.10) is 
bounded by 

{S ]/'* (x, 0 , ) -  l* (x, O)]Zf(x) d # } 1/2 nl/2 II ql/2 _ f 1]2 II 

which goes to zero in Q,"-probability by (C2) and (C4). 

Lemma 5.4. Under the conditions (C 2)-(C 5). A,=~N(O, I ,  1) under Q,. 

Proof Let T, = {x: I/* (x, 0)[2 < b,} where b , ~  oo and n-  2/2 b ,~0.  Note that 

n 1/2 n - t  ~ I*(Xj, O)IT.(Xj)-  ~ l*(x,O)q,(x)d ~ g ( o , I , )  
\ j=  1 T~ 

under Q.. Hence it suffices to show that 

{ i (5.11) n 1/2 n -1 ~*(Xj, On)--n - t  ~ I*(Xi, O)IT.(Xj) 
j = l  j = l  

-- ~'[*(x, 0.) q.(x) dtz+ ~ l*(x, O) q.(x) d # ~ O  
Tn ) 
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in Q~-probability. We will use Schick's approach to show (5.11). First of all, 
by (C 3.3) and (C 3.4), (5.11) is equivalent to 

(5.12) n 1/2 ~ {~(Xj, On)-l*(Xj, O)Ir , (Xj ) -~(x ,O.)q , (x)d  # 
j = i  

+ I l*(x, O) qn(xld#}~O 
Tn 

in Q~-probability. Now the above term can be decomposed into two terms, 

namely, n -1/2 ~, En, and n - 1 / 2  ~ Fnj where 
j = l  j = l  

E.;=~(X;,  O.)Ir.(Xj)-l*(Xj, O)Ir.(X~)- y ~*(x, On)qn(x)d# 
T~ 

+ ~ l*(x, O) qn(x) d# 
Tn 

and 
F,j = (X j, 0n) (X j ) -  S (x, 0~ qn(x) a 

r~ 

Instead of showing n - 1 / 2  ~ Ens first we show / / - 1 / 2  ~ G, ;~0  where Gn; 
j = l  .i=1 

is defined as E,j except that ~ (.,.), is replaced by ~ (., .), the conditional expecta- 
tion of ~'*(-,') given X~ . . . .  , Xj_~, X~+a, ..., X,. Then we will show that latter 
implies the former. Observe that 

N o w  

(5.13) 

F/- 1/2 j__~ 1 2 ~,  EQ, G,j =n  -1 EQnlGnjl2+n-1 ~, r Ee~ Gnj G,k. 
j = l  j , k  

EQ. ]G,j[ 2 <2 EQ. ~ I~*(x, O,)--~*.(x, OR)12 G(x) d# 
Tn 

+4EQ, ~ IT*(x,O,)-r*(x,O)12q,(x)d# 
Tn 

+ 4 Ee, ~ 1 F* (x, O) -- I* (x, 0) 12 q~ (x) d #. 
Tn 

The first term of the right hand side of (5.13) is bounded by 2 Ee, ~ I/'*(x, 0,) 
T~ 

- ~ ( x ,  O,)]2q, d# by the property of conditional variances and the third term 
is bounded by 4Ee, S r~*(x,O)--l*(x,O)[2fdg+O(n-1/2)Ee,,[suplT*(x,O)[ 2 

T,~ x 

+b,]. Hence by (C2), (C3.1), (C4) and (C5), n -1 ~ E e ,  lanjlz-~0 in 
j = l  

Q~-probability. Now using the argument in Schick (1987) we can show that 

(5.14) n-1 ~ r tEQ. G.jG,kI<= gO.~ Y I~*(x, On)-~(x,O,)]Zq,,d# - 
j # k  j = l  Tn 
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But the right hand  side of  (5.14) goes to zero by (C3.1) and the proper ty  of  

condi t ional  variances. Hence we have shown that  n -1/2 ~ G,j~O in 
j=l 

Q,"-probability. N o w  it remains to show that  the above implies n-1/2 ~ E,j~O 
.i=1 

in Q",-probability. By (C3.1), Cauchy-Schwarz  inequali ty and the fact that  the 
right h a n d  side of  (5.14) goes to zero, we can see 

n -  1/2 ~ (0  (X j, 0,) I T , ( X j ) -  ~ (X j, 0,)IT,(X~))~O 
j=l 

in Q;-probabi l i ty  and  

/,/-1/2 i (S ~ ( x , O . ) q . d # - -  I ~(x,O.)q.d#)--*O 
j = 1 Tn Tn 

in Q~-probability, establishing n-1/z i E,j~O in Q~-probability. Similarly we 
j=l 

can show n -  1/2 ~ F . ~ 0  in Q."-probability. 
j=l 
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