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Summary. Estimation theory for the variances of the offspring and immigration 
distributions in a simple branching process with immigration is developed, anal- 
ogous to the estimation theory for the means given by Wei and Winnicki (1990). 
Conditional and weighted conditional least squares estimators are considered 
and their asymptotic properties for the full range of parameters are studied. 
Nonexistence of consistent estimators in the critical case is established, which 
complements analogous result of Wei and Winnicki for the supercritical case. 

1. Introduction 

We will consider the simple branching process with immigration, {X.}, defined 
by 

X n -  l 

x.= Z 
j = l  

where {~,,j}, n =  1, 2, ..., j = 1, 2 . . . .  , and {~/,}, n = 1, 2, ..., are two independent 
families of No-valued, i.i.d, random variables. The initial value Xo has an arbi- 
trary distribution on N o. The distribution of ~,,j is called the offspring distribu- 
tion and the distribution of t/, is called the immigration distribution. These 
are assumed to be nondegenerate. Let E(~.,j)=m, var (~ . , j )=a  2, E(t / . )=2,  
var (q.) = b 2. We refer the reader to Athreya and Ney (1972) for basic properties 
of the process {X.}. 

Problems of statistical estimation of parameters of the process {X.} were 
considered by a number of authors. The well-known tr ichotomy m <  1, m =  1, 
m >  1 forced earlier authors to restrict attention to one of the cases m <  1 or 
m > 1. Recently, Wei and Winnicki (1990) considered the problem of estimating 
the means m and 2 when the range of m is unknown. The estimators considered 
by Wei and Winnicki are the conditional least squares and the weighted condi- 
tional least squares estimators. They examined the asymptotic properties of 
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these estimators showing that the weighted conditional least squares estimators 
are superior to the ordinary conditional least squares estimators. 

In this paper we consider an analogous problem for the variances 0.2 and 
b 2. The problem is interesting in its own right, but it is also an important 
complement to the work of Wei and Winnicki in that the limiting distributions 
of the estimators for m and 2 depend on 0.2 and b 2. Hence, to use their estimators 
tfi, and ~', in practice would require estimating the variances 0 .2 and b 2. 

The problem of estimating the variance 0.2 has been first considered by 
Heyde (1974). Under the assumption that the process is supercritical (m> 1), 

1 , 
he proved that the estimator n k~ ~= [(Xk+l--NnXk)2/Xk], where rhn=X,+l/X,, 

is strongly consistent and asymptotically normal. 
Yanev and Tchoukova-Dantcheva (1980) considered the problem of estimat- 

ing 0.2 and b 2 in the subcritical case (m< 1). They proposed the estimators 

(1.1) ^2 k = l  
a n -  

Y (Xk-Xn) 2 
k = l  

(1.2) ~nn k = l  

n f (Xk-~.) 2 
k = l  

n 

where X,= n ~" Xk, Uk=Xk--mXk-1--2. If m and )~ are not known, they pro- 
k = l  

posed to use Ok=Xk--rhnXk_l--.~, instead of Uk in (1.1) and (1.2), where th n 
and ~n are the estimators of the offspring and immigration distribution means 
given by Heyde and Seneta (1972). Under certain moment assumptions, Yanev 
and Tchoukova-Dantcheva stated the asymptotic properties of the estimators 
d, 2 and ~ ,  including consistency and asymptotic normality. 

^2 and ~ are the conditional least squares estima- Notice that the estimators 0.n 
tors [in the sense of Klimko and Nelson (1978) or Wei and Winnicki (1990)3. 
To see it, we first suppose that m and 2 are known. Then write 

(1.3) U~=a2 Xk_l + b2 + Vk 

and treat the above equation as a stochastic regression equation with the un- 
known coefficients 0 .2 and b 2 and a martingale difference "error"  term Vk. The 
least squares estimators based on Eq. (1.3) are given by (1.1) and (1.2). 

Now observe that in the critical and supercritical cases the "error"  term 
Vk in the stochastic regression equation (1.3) is strongty heteroscedastic, as can 
be seen by computing v ar (Vk) = E (R (X k_ 1)) = O (E (Xk z_ 1)), where 

R(X)= 2a4 X2 +(a4 + 4~r2 ba- 30.4)X + c'*-b 4, 
O 4 = E ((~n.  i - - / . /1)4) ,  C 4 ~-- E ((~], - -  ~ ) 4 ) .  



Branching process with immigration 79 

This suggests that a weighted conditional least squares approach [Nelson (1980); 
Wei and Winnicki (1990)] may be useful. 

We then consider the transformed equation 

(1.4) ) 1 
Xk+l'-[-~l Xk_l-t-1 { Xk_l+l" 

In the stochastic regression equation (1.4) the "error" term Vk/(Xk-t + 1) satisfies 

E(xkgk+l ~k - 1) = 0  

and assuming 4 E(~n,i)< oo and E(*/~)< o% 

) ) \ \ X k - I + I  ~k- t  =(Xk_l+ l )2  <a4--tr4+c4--b4+4cr2b2<~ 

Furthermore, if Xk ~ o% 

E((~k_Vk+ 1)2 ~ k - 1 ) ~ 2 a 4 '  

Hence, the variances of the "error" terms would approximately be homogeneous. 
The weighted conditional least squares estimators resulting from Eq. (1.4) are 

i 1 ~ U 2 ~ 1 ~ U 2 

(1.5) -2_k= l (Xk-1+1)  2 k = l X k - l + 1  k = ~ X k - t + l k = ~ ( X k - i + l )  2 
(Tn 

(1.6) 

/'l 2 ( X k _ 1 + 1 ) 2  X k _ i + l  k=l 1 

b'2=k=a Xk-1 +1 2 (Xk- l - [ -  1)2 k=l (Xk-j- +1) 2 k=X Xk-1 +1 

n Z (xk_1+1)2 +1 k=l k i 

Here ~'2 = 52 + c~., where c~. is the least squares estimator of q = o -2 - b 2. 
2 2 Estimators 5. and b'. 2 can be used if m and 2 are known. Otherwise we 

2 2 2 2 2 would use 6. and ~2 which are obtained from 5. and ~.: by replacing Ui with 
U2=Xk--fflnXk-1--L in (1.5) and (1.6). 

The first part of this paper is devoted to examining asymptotic properties 
of the above estimators. Our methods are extensions of those of Wei and Win- 
nicki (1990). In Sect. 2 a number of preliminary asymptotic results is given, 
mostly concerning the critical case. In particular, using the theory of weak con- 
vergence in function spaces, we prove some nonstandard limit theorems for 
martingale functionals of the branching process. In Sect. 3 we give limit theorems 
for the statistics of the branching process. We show that the conditional least 
squares estimator ~2 is consistent only if m__< 1, while b~, is consistent only if 
m< 1. On the other hand, ~,~2 is consistent for all m and b ~2 is consistent only 
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if m < l  or m = l  and 22_--<0 -2. Rates of convergence in the form of limiting 
distribution results are also considered. 

The second part of the paper is devoted to the question of existence of 
consistent estimators for b 2 in the case m =  1, 22>0- 2. It is known that there 
is no consistent estimator for b 2 if m>  1. In fact, Wei and Winnicki (1990) 
showed that in the case of the supercritical branching process with immigration 
the only parameters that have consistent estimators are the mean m and the 
variance 0-2 of the offspring distribution. In view of the exponential growth 
of X, and the stationary rate of immigration, this result may be not surprising. 
In particular, no parameters of the immigration distribution can be estimated 
consistently in the supercritical case. The situation is more complicated in the 
critical case, where we know that 2 has a consistent estimator. In Theorem 4.5 
we prove a general result that the only parameters of the critical, transient 
branching process with immigration which may have consistent estimators are 
the first four moments of the offspring distribution and the mean of the immigra- 
tion distribution. It is worth pointing out that in the traditional statistical setup 
of independent, identically distributed observations the issues of estimability 
of parameters do not arise if only all the parameters are identifiable. In statistical 
inference for stochastic processes these issues are crucial and the example of 
the branching process with immigration discussed in this paper shows that a 
careful analysis may be required. 

2. Preliminary results 

Our analysis of asymptotic behavior of the statistics of the branching process 
with immigration will be facilitated by establishing asymptotic properties of 
several key functionals of the process and then showing that our statistics can 
be expressed in terms of these functionals. 

In this section we will carry out the first part of the above plan. We will 
concentrate on the critical case, which turns out to be the most complicated 
o n e .  

We will need the following extension of a result of Strasser (1986). Using 
Strasser's notation, we consider a sequence of filtrations (~'~,k, k > 0}, n = 1, 2 . . . . .  
and double sequences {X,k, k > 0} and { Y,k, k > 0} of ~k-adapted,  integrable 
random variables. Let v,(t), 0 < t < 0% be stopping times for the filtration {Y,k}, 
n =  1, 2, ..., such that z, is a.s. right continuous, No-valued, nondecreasing and 
taking all values between zero and r,(t) for all t>0 .  We will assume that the 
random variables {X,k} and { Y,k} satisfy the condition 

~. (t) 

(2.1) Z E(lZ,kllEIZ,kl>e]lg,,k-1) ~" ,0  
k = l  

for all e > 0, t > 0, with {Z,k} = {X,k} as well as {Z,k} = { Y~k}. Define 

k 

S,k= Y', X,~, S,(t)=S .... (~), 
j = 0  

k 

T,k= Y~ Y, j ,  T,(t)= T,,~,(,). 
j = 0  
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Proposition 2.1. Assume that { Y,k, k >__ 0} is a martingale difference sequence with 
respect to {Y,k} for each n = 1, 2, .... Assume further that the common distributions 
of (S,(t), T,(t)) converge to the common distribution of a pair of continuous pro- 
cesses (S(t), T(t)), where T(t) is a local martingale. Then for any H6lder continuous 
function qo : R ~ R with exponent ~ > O, the distributions of the processes 

E ftg(Sn, k -  1) Ynk 
k = l  

converge to the distribution of the process 

t 

dT. 
0 

The proof of Proposition 2.1 is similar to the proof of Theorem (1.7) in 
Strasser (1986). 

As a corollary to Proposition 2.1 we can prove Proposition 2.2 below, which 
generalizes Theorem (1.12) of Strasser (1986). 

Consider a third ~,k-adapted double sequence {Z,k, k__> 0} satisfying condi- 
k 

tion (2.1) and let Ink= E Znk' I , ( t )= l  .. . .  (t). 
j=O 

Proposition 2.2. Assume that { Y,k, k >= 1} is a martingale difference sequence with 
respect to {~k} for each n = 1, 2, ... and that the processes S,(t) are stochastically 
uniformly bounded (i.e. tim limsup P(sup IS,(t)l >a)=0).  Assume further that the 

a---r ~ n---~ cx3 t 

common distributions of (l~(t), T~(t)) converge to the distribution of a pair of contin- 

uous processes (I(t), T(t)), where T(t) is a local martingale and l(t) = i ~(s) dA(s) 
0 

for a T-adapted continuous process of bounded variation A(t) and a continuous 
function ~ (t). I f  for a H61der continuous function ~o: R ~ R with exponent c~ >__ �89 

S , ( t )=I , ( t )+ ~ q)(Sn,  k _ l )  Ynk ,  n = l ,  2, ..., 
k = l  

then the distributions of S,(t) converge to the distribution of the process S(t) 
satisfying the equation 

t 

(2.2) s(t)= i O(s)dA(s)+ S  o(S)dT. 
0 0 

For the branching process with immigrating, {X,}, consider Y,(t)=Xt,t~/n , 
t>0.  Then Y,~D + [0, oo), where D + [0, oo) is the space of nonnegative, right- 
continuous functions having left limits. Wei and Winnicki (1989) proved a weak 
convergence result for Y,(t). In Proposition 2.3 below we formulate an equivalent 
form of that result. Its proof is an example of an application of Proposition 2.2 
and is omitted. 
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Proposit ion 2.3. I f  m = 1, 0 -2 "~ GO and b 2 < o% then the distributions of I1, converge 
weakly to the distribution of the solution of the equation 

dY ( t )=2d t  + a l f ~ d W ( t ) ,  

Y(o) = o, 

where W(t) is a standard Brownian motion. 

Let Vk = Uk 2 -- a2 Xk-  1 -- b2 and define 

[n t] 
T.(t) = Z U~ 

[nt] Vk 

v.(t)=~:~Z o21/~(xk_~+l ) 

We will need the following lemma. 

Lemma 2.4. I f  m= 1, E(~4,i) < Go and E(q4)<  ~ ,  then 

(T,(t), V,(t))~(W(t),  B(t)) (weakly in D2[0, c~)), 

where W and B are independent Brownian motions. 

Proof We will first show that  

(2.3) T,(t) --. W(t) (weakly in D [-0, oo)). 

Let  Y.k = Uk/((r ] / ~  X ] ~ k -  1 "~- 1). W e  h a v e  

[nt] [nt] r Xk_ z _+_b 2 1, > t, 
(2.4) Z E(u I ~ -  l) = kZ 1 

O'2 (Sk_ l  + 1) n k= l  = 

where we used the easily verified fact that  

(2.5) -1 "- 1 n ~ ( X k + l ) - ~  P ,0 ,  
k=0 

for any c~ > 0. Fur thermore ,  we claim that  

[nt] 
(2.6) ~ E[Y~I[ IY ,  k I > e ] [ ~ - I ]  

k=l  

To prove (2.6) we observe that  

us i + 1) ~ ,  IN(0, 1)] 2, 
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where N(0, 1) denotes a unit normal random variable [Heyde and Seneta (1971)] 
and 

E [U2/(02 (Xk-1 + 1))J ----E [(02 Xk-1 + be)/( 02 (Xk-1 + 1))] ~ 1 

(since Xk ~ 00). 

It follows that U2/(02 (X k_ 1 -~- 1)) is uniformly integrable and so 

E[U2/(02(Xk_ 1 + i ) ) I [ [ U k [ / ( a ~  + 1)> e V~J]--" 0. 

This proves (2.5) and by Theorem 3.2 of Helland (1982), (2.3) follows. The same 
method of proof can be used to show that 

V,(t)->B(t) (weakly in D[0, oo)). 

To apply Theorem 3.3 of Helland (1982) it remains to show that 

E't1E( U k . Vk ) P  
(2.7) k=12 \o i~V(Xk_l_[_X ) 02 V2~n(Xk_ l _[_ X) ~k-1 >0 foral l  t > 0 .  

Now, 

E[(Xk_Xk_a_2)3lo%_l]  E{ vk 
\o ]/~ ]//(Xk -1 + 1) O 2 ] / ~ ( X k  -1 + 11 n o a (Xk-1  + 1) 3/2 

= 1  X k_ 1E(r 3 + E(q , -2 )  3 
n 03 (Xk - 1 q- 1) 3/2 ' 

SO (2.7) follows by (2.5). 

Remark 2.5. Notice that Lemma 2.4 remains valid in the supercritical case 
(m> 1). The same proof works except that in order to obtain convergence of 
1 

(Xk- 1 + 1)- ~ for c~ > 0 we use the fact that 
/'/ k= 1 

(2.8) X, /m ' -~Z  a.s. where 0 < Z < o o ,  

[Seneta (1970)]. 

Remark 2.6. It follows from Proposition 2.3 and Lemma 2.4 that Y and B are 
independent processes and so 

(2.9) (Y,(t), V,(t))~(Y(t), B(t)) (weakly in D2[0, oo)). 

Lemma 2.7. I f  m = 1, o 2 < co and b 2 < 0% then 

(2.10) -1 ~ Uk ~ , Y(1 ) -2 ,  
nk= 1 
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and 
n 1 1 

(2.11) n ~ ~=lXk-1Uk ,a  ~ y3/2(t)dW(t). 
k =  0 

J. Winnicki 

Proof Clearly, (2.10) holds by Proposition 2.2. Moreover, by Proposition 2.3, 
(Y,(t), T,(t))~ (Y(t), T(t)) weakly in D 2 [0, oo). By Proposition 2.1, 

L 1 X k - ,  Uk > a ~ y3/2 (t) d W(t). t].2 Z Uk:O" [Sn, k -113/2 Y~ _ _ L  d 
k = k=l nk }'12 k = L  0 

Similarly, with the aid of Proposition 2.1 and Remark 2.6 we obtain the 
following lemma. 

Lemma 2.8. I f  m = 1, ~4 E(g,,i)< oo and E(t/~) < ~ ,  then 

1 d 
(2.12) ]/~a2/,/3/2 k = l  Vk ' oS Y(t) dB(t) 

and 

(2.13) ~/262n s/2 k=lXk-1 Vk d , 0 ~ y2(t)dB(t)" 

Remark 2.9. The distribution of the limit in (2.12) is a mixture of a unit normal 

random variable and y2(t)dt) , while the limit in (2.13) is a mixture of 

a unit normal a n d ( i  y4(t) dt) 1/2. 

In the study of weighted conditional least squares estimators we will also 

need to consider ~ Uk ~ Uk ~ Vk and 
k=, X k - l + l '  k = l  ( Xk-lq-1)2'  k=l X k - l + l  

v~ 
~ (Xk-l'4-1) 2. 

k = l  

Lemma 2.10. Assume that m = 1, a 2 < oo and b 2 < o0. Then 
(a) 

k=l X k - l + l = ~  k 1 X k - l + l  a.s. for any a>-.2 

(b) I f  ~ < 1, then 

(2.15) k=l ( X k - l + l )  2 = ~  k 1 (Xk-7+l)  a.s. forany  ~ > 1 .  
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(c) If  z > 1, then 

(2.16) ~ Uk 
k = i (Xk - 1 -1- 1) 2 

converges almost surely to a finite limit. 

Proof Relations (2.14) and (2.15) follow from the strong law for martingales 
[-Theorem 2.18 in Hall and Heyde (1980)]. We will only prove (2.14), since the 
proof of (2.15) is analogous. 

Note  that Uk/(Xk- 1 + 1) is a martingale difference with respect to { 4 }  and 

O 1 0 + 

Also notice that 

1 
(2.17) )., ~ ~ a.s. 

k=l  X k - l +  1 

[-Wei and Winnicki (1989)]. Since e > �89 

j~= I X j_I  ..~_ 1 k_~ ~_ l 1 k = l  
a.s. 

This completes the proof of (2.14). 
To prove (2.16) we will apply the local martingale convergence theorem [Theo- 

rem 2.17 in Hall and Heyde (1980)] to the martingale ~ Uk/(Xk-1 + 1) z. 

It suffices to show that k = i 

k~=l E (Xk_l_kl)2] ~k-i = k ~  1 ( X k _ l + l ) 4  <0(3. 

Turning to 

ma 2.4 that 

But this is an immediate consequence of Lemma 2.13 of Wei and Winnicki 
(1989). 

Vk/(Xk-x + 1) and ~ VpJ(Xk-1 + 1) 2, it is clear from Lem- 
k = l  k= l  

Vk a ,N(0,  2a4). 1 ~ X k - t + l  
V/n k = l  

Let z=22/cr z. The following lemma gives the order 
v. 

~ (Xk-l+l)  2" k = l  

Lemma 2.11. Assume that m =  1, E(~,4 i)< Go and E(t/4)< oe. 

of magnitude of 
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(a) I f  z < 1, then 

(2.18) 

(b) I f  z < 1, then 

Vk 
(Xk-x + 1) 2 = o(1/~) a.s. k=l 

J. Winnicki 

1 1 
(2.21) k= l -k E x k_ l + < oO. 

In the case Xo=0,  (2.21) follows by a result of Pakes (1975), cf. Theorem 10, 
who showed that 

r  -~) 
j=l 

and 
P(X ,  =0[Xo =0)=  O(n-~). 

The general case follows by noticing that 

E 1 1 
( X k _ - l + l ) ~ E ( - x k f ~ l + l  Xo----0), k = l ,  2, .... 

The next lemma summarizes the asymptotic properties of 
1 

k=l X k - l + l  

needed in the context of the present paper. Various parts of this lemma are 
proved in Wei and Winnicki (1989) (see also Pakes (1975), Theorem 10). 

Lemma 2.12. Assume that m= 1, b 2 ~ oO and E(~2,i log + ~,,i) < oo. 

which is implied by 

Vk 1 2 
(2.19) k=l~' (Xk_ I --}- 1)2 =O(k__~l (Xk_~q_ 1 ) ) a.s. 

(c) I f  z > 1, then 

converges almost surely to a finite limit. (2.20) (Xk-1 -I- 1) 2 k=l 

Proof The proofs of (2.19) and (2.20) are analogous to the proofs of (2.15) 
and (2.16). Relation (2.18) will be established by another application of the strong 
law for martingales. It is enough to show that 

1 E{ {. ~ ) 20z" ) __~1 1 R(Xk-1) 
--  -k \~(Xk_1..[_1)2 ~k-1 =k k (Xk_l-[-1) 4 < 0 0  a.s., 

k=l 
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(a) I f  z > 1, then 

(2.22) i - o ( n  ~) 
1 

k = l  X k - l - k - 1  
a.s. f o r  any ~ > O. 

(b) I f  z < 1, then 

(2.23) i 1 
k= 1 X k -  1 + 1 -- 01"(hi -~) 

and 

1 )  
(2.24) 1 = O ( X k -  + 1) 2 a.s. 

k = l  X k - l q - 1  k 1 1 

In developing the estimation theory for the variances a z and b 2 without 
assuming that m and 2 are known, we will need to estimate them. We will 
use the conditional weighted least squares estimators rh, and 2",. Consequently, 
to prove asymptotic properties of the estimators for o .2 and b 2 we will need 
the rates of convergence of rh, and 2",. 

Lemma 2.13. I f  m = 1, a 2 < oo and b 2 < o0, then 
(a) 

(2.25) r h , -  m = Op(n-  x) 

(b) 

1 
1 fo r  any ~ < - -  (2.26) 2",-- 2 = oe X k -  1 + 1 2" 

k 

P r o o f  Relation (2.25) is a consequence of the asymptotic distribution result 
for rh, of Wei and Winnicki (1990) (see also Wei and Winnicki (1989), Corol- 
lary 2.3). 

To prove (2.26) we notice that in the proof of Theorem 2.5 of Wei and Winnicki 
(1990) it is essentially shown that 

(2.27) ~ , - 2 = 0  e X k _ l + l  Xk_l_k  - + O e  ~ X k _ t + l  
1 k = l  / \ ~ , k =  1 

and so (2.26) is a consequence of (2.17) and Lemma 2.10. 

3. Limit theorems for estimators of the variances in the branching process 

We will first consider the subcritical case. Under the assumption that a2<  oo 
and bE< az, by Remark 2.9 of Wei and Winnicki (1989), we may assume that 
{X,} is stationary. We denote by X a random variable with the stationary 
distribution of the process. 
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Proposition 3.1. I f  m < l ,  0"2<0(3 and b2<00 then (~2---+G2 and ~nn--~b 2 a.s. I f ,  
in addition, E(r 4, i) < o0 and E(tl~) < 0% then 

where 

and 

~/~(da_a2, ~ _ b 2 ) ,  d ,N(0, q)-IXqY-~), 

S [E(R(X)X 2) E(R(X)X)~ 
= ~ E (R (X) X) E (R (X)) ] 

(3.1) 

and 

\ e (x) 

Proof. The strong consistency result is most easily established by an application 
of the ergodic theorem. We have 

1 X~_I U~ ~E[X~(a2X+b2) ] a.s. 
n k = l  

(3.2) 1 - -  X~_ 1 --* E(X ~) a . s .  
n k =  1 

(e = 0, 1, 2), which yields d2 ~ o.2 a.s. and ~ ~ b 2 a.s. 
The asymptotic distribution of an ~2 and ~ is established by an application 

of the martingale central limit theorem. We can write 

(3.3) *2 z ( a , - a , ~ - b 2 )  ' =  k : l  k=l k-1 

i x k _ ,  n 
k = l  k = l  

Proceeding as in the proof of Theorem 3.1 in Wei and Winnicki (1990), we 
obtain 

) Xk- 1 1  Vk, Vk ~ N (0, 22). 
k k = l  

This together with (3.2) and (3.3) completes the proof. 

Remark 3.2. Using the methods of Quine (1976) we can express the moments 
of the stationary distribution in terms of the moments of the offspring and 
immigration distributions. Set 

2 
# = l - m  

1 
v - 1 - m 2 [b2 + # a2] 

1 
7= l ~  [E(tln- 2)3 + #E(~n,i-m)3 + 3mo.2v] 

1 6 -  1_m4 {c4-3b4 + #[a4-  30-4] + 4mvE(~n, i-m)3 +6m2 a27 + 3o.Zv). 
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Then 

E X  =# 

EX  2 = • _1_ #2 

E X 3 = 7 + 3 # v + #  3 

E X 4 = a +  3v2 + 4 # y + 6 # 2 v +  # 4. 

Without assuming the knowledge of m and 2 we consider the estimators 

[.9~)e'~ n ,  ffn~2 = k= 1 k= 1 k= 1 

n X k -  1 - -  X k -  1 

k = l  

and 

( 3 . 5 )  ~ n  k = l  k = l  k = t  k : l  

n Xk -- 1 - -  X k  -- 1 

k = l  k 1 

where Ok = X k -  rh, Xk-1--/~, and rh, and ,~, are consistent estimators for m and 
2 [see Wei and Winnicki (1990)]. If rh, and ,~, are the estimators of Heyde 
and Seneta (1972), then (3.4) and (3.5) are the estimators considered by Yanev 
and Tchoukova-Dantcheva (1980). In the subcritical case the asymptotic results 
are the same for both interpretations of rh, and ,~,. 

Theorem 3.3. I f  m < 1, o "2 < 0o and b 2 < o(3, then ~2 __+ 0.2 a.s., and ~ --+ b 2 a.s. 
I f  in addition, E(r i) < oo and E(rl4,) < 0% then 

~/~(~2_a2 ' ~ _ b 2 ) ,  d ,N(0, ~b-~Z~'-a).  

Proof We have 

O- n - -  O" n , - -  
k = l  k = l  

~ Xk-~ n 
k = l  

- 1  

k = l  

EO?- U27 
k = l  

It is enough to show that 

- X _l[Of- 
n k = l  

(3.6) a.s. 
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and 

(3.7) Vn ~ = 1 

for a = 0 and e = 1. 
But 

X~-I~U2-U2]=2(rhn -m) ~ ~"k-Va+l ~ X~-I Uk 
k=l k=l k=l 

+ (rfi, -- m) [(r~,-- m) + (L -- 2)] ~ X~, + 
k=l 

+ ( L  -- ~) [-(~n -- m) q- ( L  -- ,~)] ~ X ~ _ l .  
k=l 

Thus (3.6) follows from (3.1), (3.2) and strong consistency of rh, and ~,, while 
for (3.7) we only have to note that ~/n(nS,-m, ,~,-2) d ~N, where N has a 
multivariate normal distribution [Wei and Winnicki (1990); Klimko and Nelson 
(1978)1. 

The above methods can also be used to derive asymptotic properties of 
the weighted conditional least squares estimators, which are summarized in 
the following theorem. The proof is omitted. 

Theorem 3.4. I f  re<l,  a2 < O0 and bZ< oo, then 

(3.8) ~2 ~ a2, ~z ~ b 2 a.s. 

I f  in addition 4 E(~,,i)< oe and E(t/~)< o% then 

(3.9) [ /n (~2-a2 ,  br2-b2) ' ~ , N(O, ~ r J - l s l / / ' - l ) ,  

where 

and 

*= 
E x  1 t X + I  E X + I  

E X E 1 
\ ~2~13 2 (X+l) 2) 

(~ a(x) E R(X)3\ 
(X + 1) 2 (x + 1) 

(X+l? (X+l) / 
~2 and ~ .  The same statements hold with a,'2 and br2, replaced by G 

We will now turn to the critical case. Here we will assume rh ,= r~  and 
L:L. 
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Theorem 3.5. I f  m = 1, 4 E(~,,i)< oo and E(q4)< 0% then 

1 /~n  (0~_o.2) d ,L (3.10) V 2 o .  ~ 

and 

(3.11) 1 / "  ~'2 d (o. .  - o -2) , L ,  V ~  

where 
1 1 1 

I Y2(t) dB(t)-- f Y(t) dt ~ Y(t) dB(t) 
g O  o o 

Y2(t) t i t -  ~ g(t) dt 
0 x o  

Proof Notice that 

~.1~, o~ ~,~, ~-(i ~ 4 ~o a . s .  

We write 

[~ 1~:~ 
]//~(~2 #z)=]//~(rh _m) 2 k=aXk-1Uk--(rh.--m)~ k=~ 

n 2 Xk-1 ~ Uk_(rh_m)  1 
k = l  k = l  n k 

I~ (if)~] " Xk-  1 1 k: l  X 2 - 1 7  ~ - k  1 

It is now easily seen by Lemmas 2.7 and 2.13 above and Corollary 2.3 of Wei 
and Winnicki (1989) that 

(3.13) ] / ~ ( ~ _ # 2 )  P ,0 

and it is enough to establish (3.10). But 

= k = l  k = l  

[ ~  ~ )7 ~ �9 x~ ~ ( ~ E x ~  
k \ n  k = l  

so an application of Lemma 2.8 completes the proof. 
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Remark 3.6. The limiting random variable L can be seen to have the distribution 
of a mixture of a unit normal random variable and 

{ff[ i ]2[ i  (1 \2]-2 )�89 
0 \0 

Remark 3.7. Theorem 3.5 implies that 

(3.14) d, z P ,o -2 and ~2 P >a2. 

This was established under the assumption of finiteness of fourth moments. 

Using truncation arguments it can be shown that ~ X~_I Vk=O(n 2+~) a.s. 
k=l 

(c~=0, 1), holds under the weaker assumption that o-2< oe and b2< ~ .  Hence, 
(3.14) holds if only a2< oo and b2< o0. 

Theorem 3.8. I f  m= 1, E(~4, i)< o(3 and E(r/4) < oo. Then 

i i i I 

y2(t) dt ~ Y(t) dB(t)-- ~ Y(t)dt ~ y2(t) dB(t) 
(3.15) - - 1  ( ~ _ b  2) a o o o o 

1 )2 
0 XO 

Proof Write 

1 ( ~ - b 2 ) =  X~_ 1 v ~ - ~  x~_~ ,7 ~ x~_~ 
l ~ k =  1 k=l k=l 

1 X~_ 1 n 2  X k  - 1 
k = l  k=l 

and apply Lemma 2.8 as in the proof of Theorem 3.5, 

Remark 3.9. The limiting random variable in (3.15) has the distribution of a 
mixture t/-N(0, 1) where 

{i [i C 02] ; rl = y2 (s) y2 (t) d r -  So Y(t) d t Y(s) y2 (t) d t -  Y(t) d ds . 

It is quite clear that for any c>O, P(Y(s)=c for all s t [0 ,  l J )=0.  It follows 
that P(t /= 0) = 0. Hence, 

(3.16) I~-b2l~s ~ ,  

i.e. b~ is not a consistent estimator. It can also be shown, reasoning as in the 
proof of (3.13), that ~ , - ~ = O e ( 1 ) ,  and it follows from (3.16) that ~ is not 
a consistent estimator. 
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Somewhat surprisingly, the limit law in the analogue of Theorem 3.5 for 
the weighted conditional least squares estimators is standard normal. 

T h e o r e m  3.10. If m= 1, E(~4, i)< oo and E(t/,4) < o% then 

(3.17) (G,-a2) d ,N(0, 1) 

and 

(3.18) 

Proof. We write 

(3.19) 

where 

and 

~'2 (~ _~ )  d , N(O, 1) 

~2 2 A . - - B  n 
O" n - -  (7" - -  

1 - C , '  

A = I  ~ _ Vk 
n k=l Xk - l - I - l '  

" 1 ~ Vk / (  ~ 1 ) 
Bn=k~=l= Xk- l ' l -1  k=l (Xk-1"-}-1)2 nk 1 (Xk-l"-[-1)2 

C, - n E �9 ~= Xk- ,  + 1 (Xk- + 1) 2 k 1 k = l  1 

To establish (3.17) notice that by Lemma 2.4, 

(3.20) ~/~A, d , N(0, 2(74), 

while, using Lemma2.11 and Lemma2.12, it is elementary to show that 
l / n B ,  P , 0 a n d  C .  P , 0. To establish (3.18) it is enough to show that 

(3.21) ] / ~ ( ~ - - 6  2) V,O. 

We have 

(3.22) 62 _ 62 _ D, -- E. 
1--C. ' 

where 
n 

D = !  E O~-U~ 
nk=t X k - l + l  
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and 

E"=k}-"l X k - l + l  k=l k=~ " : E 

J. Winnicki 

We only have to show that 

(3.23) ~/-s e , 0  

and 

(3.24) ~/nE, e ~ 0. 

For (3.23), we write 

(3.25) ] / n D , = ~ n n { 2 ( r f i , - m ) ~  Xk-1 " Uk k=l x ~ - 7  q21 Uk+2('~--'~)kY' 1= X k - ~ + l  

+ (~.  -- m) E(r~. - m) + (L  - .~)3 
Xk 

k=l X k - l + l  

1} 
+ (L  - ~) [(~.  - m) + (L  - ~)] E x k - ,  + 1 " 

k = l  

Now apply Lemmas 2.7, 2.10, 2.12 and 2.13. The proof of (3.24) is similar. 

Remark 3.11. Relations (3.17) and (3.18) imply that # 2 and o,=z are (weakly) consis- 
tent estimators. Assuming only that 

(3.26) E(~Z, ilog + ~,,i)<oo and b2<oo,  

the relation C, e ,0 remains valid. Furthermore, using truncation arguments, 

it can be shown that A. v ,0 and ~ Vk/(Xk_l+l)=ov(n ~) for any e>0 .  This 
k = l  

shows that assumption (3.26) is sufficient to prove consistency of o-,.~2 Similarly, 
a,~2 is consistent under (3.26) only, since the proof of (3.21) does not require 
higher moment assumptions. 

Theorem 3.12. Assume that m =  1, 2 2 < a  2, 4 E(~,,, i) < ov and E(rl4~) < oo. Then 

(3.27) b~Z e ,b 2 

and 

(3.28) b~ 2 V ,b 2 

Proof 

~ _ b 2 _ F , - G ,  
1-c . '  
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where 

and 

k = l  Xk- l "Jr l  k = l  (Xk - l "~ - l )2 / \  k = l  ( X k - l " ~ l ) 2  

Xk- ,  Vk n ~ 1 
G,, = (Xk- 1 + 1) 2 Xk-  1 + 1 (Xk -  1 + 1) z ' 

k = l  k = l  k = l  

To obtain (3.27), apply Lemmas 2.11 and 2.12 as in the proof of Theorem 3.10. 
The proof of (3.28) relies on the relation ~ z _  ~'2 P ~ 0, which is analogous to 
(3.21). Details are omitted. 

Remark 3.13. If m =  1 and 22>0.  2, then b', z and ~2 are not consistent estimators. 
This can be checked directly, but is also implied by a more general fact that 
in this case no consistent estimator of b 2 exists (cf. Sect. 4). 

Remark 3.14. The limiting distributions of 52 and ~z in the case m = 1 and 22 < 0.2 
are not known. 

To complete our study of the conditional least squares estimators we need 
to consider the supercritical case. We will first formulate a lemma closely related 
to Theorem 3.5 of Wei and Winnicki (1989). 

Lemma 3.15. I f  m > 1, 0 .2 < (30 and b 2 < oo, then 

a m - 1  -k 2 
(3.29) X k - 1  ~ - -  m ~k 

k= 1 k= 1 m k=O 

and 

(3.30) X k -  1 U 2 2 a , m 2 - 1  2k m- ~, Xk-x -m~--- k=o 
k = l  k= 

where {~k, k - 0 ,  1 . . . .  } are i.i.d. N(O, 1) random variables. 

The proof  of Lemma 3.15 can be carried out using the methods of the last 
mentioned paper. 

Theorem 3.16. I f  m >  1, o-2< oo and b2< o% then ~2 and ~ are not consistent 
estimators. 

Proo f  By (2.8), m -("- i )  ~ X k _ l ~ m Z / ( m - - 1 )  a.s. and m -2("- i)  Xk_12 
/ = 1  / = 1  

--~ m 2 Z 2 / ( m  2 -  1) a.s. Together with Lemma 3.15, this implies that 

^2 a m2--1 2_,'~" m - 2 k ~  2 
0.n ) m T - -  

k=O 

and the limit is clearly a nondegenerate random variable. 
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Using similar methods we obtain inconsistency of ~z, but this also follows 
from a more general fact that if m > 1, then no parameters of the immigration 
distribution have consistent estimators [Wei and Winnicki (1990)]. 

Remark 3.17. It can be shown, using Lemma 3.15 as above and the properties 
of rh, and ~, [cf. Wei and Winnicki (1990)] that ~2 is not a consistent estimator. 

The last two theorems in this section give the asymptotic properties of the 
weighted conditional least squares estimators in the supercritical case. 

Theorem 3.18. I f  m > l ,  a2 < ~ and b2 < c~, then 

(3.31) ~2 (7 n ~ ~72 a.s. 

I f  in addition, E(~,4/) < ~ and E(q4) < 0% then 

~ 2 @  ~2 d (3.32) (o-,,-0 -2) ,N(0,  1). 

Proof We will use (3.19). Since under the assumption m >  1 

(3.33) ~ (Xk- 1 + i)-~ < 
k=l 

for any ~ > 0  (cf. Remark 2.5), it follows by the local martingale convergence 

Vk converges theorem (Hall and Heyde (1980), Theorem 2.17) that (Xk- 1 nt- 1) 2 
k=l 

almost surely. Hence 

(3.34) ~nB,  ~ 0 a.s. and C, ~ 0 a.s. 

An application of the strong law for martingales (Hall and Heyde (1980), Theo- 
rem 2.18) shows that A, ~ 0 a.s., which completes the proof of (3.31). 

Remark 2.5 implies that ~/~A, d ~N(0, 2(r4), which together with (3.34) gives 

(3.32). 
22 To prove a corresponding theorem for or, we need a lemma characterizing 

the almost sure order of magnitude or ~ ' , -2  and r ~ . - m  in the supercritical 
case. 

Lemma 3.19. I f  m > 1, a2<  oo and be<  0% then 

(3.35) fft ,--m=O logn (Xk-t + 1 a.s. 
k 1 

and 

(3.36) 7~,--2= O(1) a.s. 
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Proof. It is shown in the proof of Theorem 2.2 of Wei and Winnicki (1990) 
that 

,) rhn-m=O Xk_~+l +O(1) a.s. 
k k 

By Theorem 4 of Heyde and Leslie (1971), 

(3.37) Uk = 0 Xk- 1 + 1) log = O (Xk- ~ + 1 a.s. 
k = l  k I 1 

Hence (3.35) follows. 
Similarly, using the proof of Theorem 2.5 of Wei and Winnicki (1990) and (3.37) 
it can be seen that 

1 + 1)+o(1) a.s. Uk 1/k: ~ Xk-x ~n --  ~ = O (k~= l X k _ l -- }- 

B u t  by (3.33) and the local martingale convergence theorem, 

(3.38) ~ Uk converges almost surely to a finite limit. 
k = l  Xk-1 q-1 

This completes the proof of (3.36). 

Theorem 3.20. If m > 1, 0-2 < oo and b 2 < 0% then 

(3.39) ~2 0-2 an ~ a.s. 

If, in addition, E(~ , i )<  oo and E(t/~)< 0% then 

~ 2 2 ~  z2 d (3.40) (o-n - 0-2) , N(O, 1). 

Proof. By Theorem 3.18, it is enough to show 

(3.41) ~ ( ~ - 6 ~ ) - - + 0  a.s. 

Using (3.22), we only have to prove that l / ~ D n ~ 0  a.s. and ~ E n  ~ 0  a.s. But 
under the present assumption these relations are easily verified using Lem- 
ma 3.18, (3.33), (3.37) and (3.38). 

Remark 3.21. As already mentioned in the proof of Theorem 3.16, there does 
not exist a consistent estimator for b 2 if m > 1. 

4. Nonexistence of  consistent estimators in the critical case 

In this section we will show that with the exception of the first four moments 
of the offspring distribution and the mean of the immigration distribution, no 
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parameters of the critical, transient branching process with immigration may 
have consistent estimators. 

Our approach follows Wei and Winnicki (1990). Consider a time homoge- 
neous Markov chain X,  on a countable state space ~ Its probability measure 
P is determined by an initial distribution p and a transition probability function 
p. We will assume that p can be any probability function on 5 ~ and that p e n  
where ~ is a given family of transition probability functions on ~ We will 
write P=(p,  p). Let O(p) be a parameter of the transition function, i.e. 0: ~--* O, 
where O is a metric space with a metric d. We will say that 0 admits a consistent 
estimator if there exists a sequence of random variables O, such that for each 
neN,  O, is measurable with respect to a(Xo . . . . .  X,) and d(O,, 0(p)) P ~ 0 for 
any P = (p, p), p e ~. 

The following necessary condition for existence of a consistent estimator 
was given by Wei and Winnieki (1990). 

Proposition 4.1. I f  there exists a consistent estimator O, for O, then 

,o +, q (X k + a I Xk) 
(4.1) y[ p ( X k + l l X k ) , ~ O  a . s . - - ( p , p )  

k=no  

for any noe N o and p, q e ~  such that O(p)~-O(q). 

Now suppose that {X,} is a critical transient branching process with immi- 
gration, i.e. we assume that m = l  and 2 2 > a  2. We will use subscripts Ee(X), 
suppp (X) etc. to denote expectation, support and other parameters of the distri- 
bution of a random variable X under the probability measure P. 

Let hp=max  {heNo: P(~, , i=  u(mod h))= 1 for some u eNo} be the span of 
the offspring distribution under P and let up =rain  {ueNo: P( r  u(mod he) ) 
= 1} be the corresponding offset. 

For  re{0, ..., hp-1} ,  let 

Te(r) = ~ P(th=r+ihp) ,  
i = 0  

Ue (r) = ~" (r + i he) P (tl 1 = r + i he), 
i = 0  

Vp (r) = ~" (r + i hp) 2 p (t/1 = r + i hp). 
i = 0  

Also denote k Ee(~,,i) by ee, g, Ee(tlk,) by flP, k ( k = l ,  2 . . . .  ) and let me=el,,1, 
@ = eP, 2 -  m2, 2e = tip, 1, be z = fie, 2 -  2~. We are now ready to formulate a basic 
asymptotic expansion of the transition function of {X,}. 

Lemma 4.2. Consider two pairs P = (p, p) and Q = (3, q) of initial and transition 
probability functions of a branching process with immigration {X,}. Assume that 
~e, 7, c~0,7< ~ ,  fie, 5, flo, 5 < ~ ,  me=too 1, 22e>a~ ,  220>o" ~. 

i f  

(4.2) suppe (X,) _~ supp a (X,) 
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for all sufficiently large n, then 

e - �89 ( X n  + 1 - X n ) 2 / ( t Y Q V X ~ ) 2  

(4.3) q(Xn+l I Xn) = he (2 rca~ X,) -~ 

where 

M e ( X . ,  X.+ I) a.s. -- P, 

M Q ( X . , X . + O  = Te(r.)(1 + ~ 1 v(A.)) 
v=lX~n/2gQ' 

,o , ,  / 
+ Ue(r") a~ ~ X .  6c~! 2 aQ 

1 --2 -- _ / ( logX. )7 \  

r. = (X. + ~ - u e Xn) (rood hQ), 

X . + I - - X .  
An-  cr Q l ~ n  ' 

and 0 { X.) v denotes terms of the order of (log X.) v \ ~ ]  X3/2 a .s . - -P ,  which depend 

on q, while go_,~ are polynomials of degree 3v with coefficients depending on 
1 { 7e , j+  l_ 

j=l kjW \c~+22)/2 (j + 2)!] ' where 

the summation is carried over all non-negative integer solutions of the equation 
k 1 + 2 k2 +. . .  + v k~ = v, s = ks + k2 q-... -1- kv, Hv are the Hermite polynomials of 
order v and 7e. j is the cumulant of order j of ~., i under Q; in particular, 

gQ, ~ (x) = ~ (x 3 - 3 x), 

) g Q , 2 ( X ) = ( ~ _  } O~Q, 4-- 3c<~,2_~ 
\ / z  ~Q, 2 24 c~, 2 ] (X6 - -  14x4+ 39x2 -- 12). 

Proof Notice that the assumption mp =mQ = 1 implies up= uQ= O. For any leNo 
and n = k h e + r ,  where k~No and TQ(r)>0, we have 

(4.4) q(n[l )=Q ~ l , j + t l t = k h Q + r  
i 

= Q ~ l , j = ( k - i ) h a  Q(t l~=ihe+r).  
/=0 j 

Using asymptotic expansion in local limit theorem [cf. Petrov (1975)], 

, / ~ V I  = ~ , 
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w h e r e c p ( x ) = ~ e - ~ - ,  x ih~ 1 < c =/~ and c is a constant which does 

not depend on l and i. Here o(,) is a generic notation for 'terms of smaller 
order', which depend only on q. Similarly, O (.) is a generic notation for 'terms 
of the order'. Subscripts oa('), o2('), ... etc. will be added when several o or 
O terms appear in the same equation. By (4.4), 

q(nll)= Li=o crevlhQ~-cp(Xk-~)( 1+~=15 ~1 gQ,~(Xk_i))Q(th=ihQ+r)+O(~) 

> aQ~ll cp(A) TQ(r) 1 +  ~7~-ge,~(A) 

he ( 5 1  ) 
aQ]/~ cp(A) 1 + ~  I= i~/2 gQ,~(A) i=k+l~ Q(th=ih(2+r) 

+ L ~ [q)(Xk-'l--~o(A)] Q(rh =iho_+r) 
i=O o-(2]// 

he 1 [  ] 
+i=oL aQV~ 1~ ~~ l(Xk-i)--q~(A)ge, l(A) Q(tll=iho.+r) 

,=1 a~Vlt ~=2 U2 g~'~(xk-3 

- (p(A) 7F~- gQ, ~(A ) Q(th=ihQ+r)+O , 
v=2 

n-1 
where A - 

O'Q ~ " 

SinceflQ, 5<~,Li~Q(ql=i)=o(kls~_~),O<c~<5. Hence, 
i = k  

(4.5) i~Q(th =ihQ+r)=o , 0_<o~_<5. 
i=k+ l  

Using a five term Taylor expansion, 

cp(xk-i)--cp(A)=cP(A)lA rl~l (ihQ+r)+21~e ll (AZ-1)(ihQ+r)2 

1 1 -t 6~ l 3/2 H3(A)(ih~ + 

cp(Oi)Hs(Oi)(iho+r) 5 1 
q 120cr~ 15/2' 

where Oi is a point between Xk-i and A. 

} 24a~ 12 H4(A)(ihe+r)4 
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It follows that 

: [go(Xk-i)--go(A)J Q(th=ihQ+r) ho, 
i=o (yo,Vl 

- aQ~-l ho" go(A) {A @1 Uo.(r)+2@Q 1(A2_1)Vo,(r) 

1 1 k 

q 6a~ I a/2 Ha(A) ~ (ihQ+r)a Q(q* =iho'+r) 
i = 1  

1 1 k 
24a~ l 2 H4(A) i=1Z (iho,+r)4Q(ql =ihQ+r) 

+A 1~ ~ (iho-+r)Q(tll=iho,+r) 
O ' Q ] ~  i = k + l  

1 1 2 
+ 2 ~ a ~ - ( A - l )  ~ (iho,+r)ZQ(~h=iho,+r)}+O(;), 

i = k + l  

where we used the fact that for any polynomial g, 

(4.6) sup Ig(x)l go(x)< o o .  
- c o < x <  oo 

Using the assumption ~o,,k < 0% k= 1, ..., 7 and (4.5) we obtain 

k 

(4.7) i~o ~ [p (xk - /) -- go (A)] Q(t/1 : iho, + r) 

h o , { A 1 ] / / _ l l 2 ~  e 1 1  --ao,~- I go(A) Uo'(r)+ I(A2--1)VQ(r)q 6a~ 13/2 H3(A)01(1) 

q 24a~1121H4(A)O2(1)+~lA~176 

Similarly, 

(4.8) ho, 1 [go(Xk_i)go-,l(xk_i)_go(A)go-,l(A)]Q(rh=iho.+r) 

- -  ho" ~ o ( A ) ~ _  I (A4-6A2+3) UQ(r)+ I1/2 gl(A)03(1) 
a Q ~ll I (2, 

+ ~  gz(A) --6A 2 , 

where gl and g2 are polynomials of order 5 and 6, respectively, whose coefficients 
depend on the moments %, 1, -.., %, 7. 
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Finally, 

(4.9) 

J. Winnicki 

hQ F [q~(xk_, ) ~ ~-1 go,,(x~-i)-q~(A) ~ 2s ~Tyge,~(A)]Q(fll=ihQ+r)l 
i=10"QVIL v = l  

he :aQ~ll ~~162 ' 

where g3 and g4 are polynomials of order 7 and 10, respectively. 
By (4.4)-(4.9), 

(4.10) 1 

aQVI v = l  , 

(1+!1)(,7) + ~  1 Ve(r)(A2_ l)+ 1 u2 ge,~(A) 04 

+[~l A + l (Ag-6A2 + 3)]~ ~--Z)+ l (A2-1)O6(~--3) 

+7~7~gs(A)Ov(1)+~g6(A)Os(1 ) +0 , 

where gs and g6 are polynomials of degree 7 and 10, respectively. 
Thus, by (4.2), 

q(X.+ IX.)-[fe~a~X~ e k,atr.) 1+ 

+Ue(r,,) [ A, + 1 %.3 (A4_6A2+3)] 
[ao. ~ X. 6~l,~ae 

~-VQ(I~n) ~ n ( A 2 - - 1 ) - - ~  - 1-{--v21= XVn/~gQ, v(~n) 0 

+ I ~  +1~( A4 --6A2 + 3)] ~ ( ~ - 1 )  

+ (A,2-- 1) o +~723/2 gs(A,) Ov (1) 
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To complete the proof, we observe that by Lemma 2.14 and Theorem 2.15 
of Wei and Winnicki (1989), 

X, + 1/X, ~ 1 a . s .  - P ,  

Xn + 1 -- Xn __ 0 ( ~ g  Xn) a.s. -- P, (4.11) 

and 

e 

X2 = 1 /~ ,  O a.s. - P .  

Remark 4.3. If the span h e of the offspring distribution divides the span of 
the immigration distribution under Q, then TQ(r,)= 1 a.s.-Q. Under the assump- 
tion (4.2) the above relations hold also a.s.-P. 

Corollary 4.4. Suppose that, in addition to the assumptions of Lemma 4.2, the 
span of the offspring distribution divides the span of the immigration distribution 
under both P and Q, that hQ > hp and that 

(4.12) a~=@, .~Q:,~p, ~Q, 3 = O~p, 3, ~Q, 4:~P,  4. 

Then there exists an integer valued random variable N such that 

(4.13) Jim I~ p ~ k ~ t ~  >0  a.s. --P. 
k=N 

Proof Clearly, Lemma 4.2 remains valid when Q = P. It follows that 

N=inf{n:  p(Xk+I [Xk) q(Xk+l IXk)>0 for all k>n} 

is finite a.s.-P. Notice that by Remark 4.3 and (4.3) 

5 1 
(4.14) Mq(Xk, Xk+ 1 ) :  i + ~ X~l~ gQ, v(Ak)) 

v = l  

+ [  A k 4 ae, 3 1 (A•__6A 2+3)]20 
kaeVX k 6a~!2 ao Xk 

-2- ~/(lOgXk):\ 1 1 " 1)(b~+zQ)+O[- ~ -) --P. + 2 ~  ~ ( A ~ - -  a.s. 

2 2 Since aQ = ae, it is enough to show that 

N+. MQ(Xk,  Xk + 1) 
l im y, Me(Xk, Xk+l)>O a . s . - P .  

k=N 

(The limit in (4.13) is infinity if h o > he). 



104 J. Winnicki 

Hence it is sufficient to show that the series 

~" { M~ 1) converges a.s. - P  
(4.15) k~N \ M ~ k ~  Xk+ 1) 

and 

(4.16) ~ (MQ(Xk, Xk+l) )2 
k=N\Me(Xk, Xk+l ) 1 <o0 a . s . - -P .  

By (4.11), (4.12), (4.14) and 
c~e, 1, .-., ~e, 4 we have 

the fact that gQ, 1 and gQ,2 depend only on 

(4.17) MQ(X~,Xk+I) 1= 2a~ 
Me(Xk, Xk+ 1) 

b~-bap 1 .. _[(logXk)9\ 
" -) 

(log Xk) 3/2 

Using (4.11) it follows that 

MQ(Xk, Xk+l)  lOgXk 2 
a.s. - P .  

Hence, (4.16) obtains by Lemma 2.13 of Wei and Winnicki (1989). The same 
~ (log Xk) 9 

result implies that v3/2 < oe a.s.-P and it remains to show that 
k=N ~'~-k 

(4.18) 
2k (A~- 1) 

_ _ / ( l o g  Xk)3/=\ 
k:N 1-I-U[ X1/2 ) 

converges a.s.-P. Using (4.11) again, it is easy to see that we only have to show 
o0 

convergence of 2 1 (A 2 _  1). Now, 
k=N Xk 

[Z-k z : l'tl oz-~] be --I-- •v 
J aPAk 

SO 

(4.19) EPIC(A2--1) 1o~] converges a.s. --P. 

Furthermore, 

~[w-~ (d~- 1) (4.20) Ep 
II_et k 

222}  bp + 2el ~ 1 
_ ~ z  ~*k = 0  
~Tp X k J 
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so by the local martingale convergence theorem (Hall and Heyde (1980), Theo- 
rem 2.17) the martingale 

(4.21) ~ (A~-I )  ~ converges a.s. - P .  
k=N ( ~ p X k  (1 

oo 
f 1 2 From (4.19) and (4.21) we conclude the convergence o y, v - ( A k -  1) and Cor- 

k=N ~Xk ollary 4.4 is proved. 
The following result on nonexistence of consistent estimators for the parame- 

ters of the branching process with immigration is an immediate consequence 
of Proposition 4.1 and Corollary 4.4. 

Theorem 4.5. Consider the class ~=~(0 ;1 ,  0;2, 0;3, 0;4, "~, h, v) of transition func- 
tions corresponding to branching processes with immigration satisfying the assump- 
tions of Lemma 4.2, such that the span of the offspring distribution divides the 
span of the immigration distribution, having common span h of the offspring 
distribution, common offset v of the immigration distribution, common first four 
moments 0;1, ..., 0;4 of the offspring distribution and common mean 2 of the im- 
migration distribution. Then no parameter of the critical, transient branching pro- 
tess with immigration which takes at least two values on ~ has a consistent 
estimator. 

Remark 4.6. Theorem 4.5 shows that the only parameters of the critical, transient 
branching process with immigration that may have consistent estimators are 
the span h of the offspring distribution, offset v of the immigration distribution, 
the first four moments 0;1 . . . .  ,0;4 of the offspring distribution, the mean 2 of 
the immigration distribution and functions of 0;1, --., 0;4, 2, h, v. In order to show 
that the lattice parameters h and v do not have consistent estimators in general, 
we notice that the conclusion of Corollary 4.4 holds also under the following 
assumptions: 

(1) The assumptions of Lemma 4.2 
(2) (4.12) 
(3) h a Ta(r.) = he Tp(r.), h a Ua(r.) = hp Up(r,) a.s. - P. 

Essentially the same proof works. The relation (4.17) now reads 

. .  _/(lOgXk)9\ Va(r.)--Vp(r~) 1 ( d 2 _ l ) + O [ .  ~ka/2 -) 
MQ(Xk, Xk+ 1) 1 -- 2a~ Xk 

/(log xk)3J2] 

and we find that a.s. - P convergence of the series 

(A 2 - 1) 
k = N X k  
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has to be establ ished.  This  follows, as in the p r o o f  of C o r o l l a r y  4.4, by  an appl ica-  
t ion of  the mar t inga le  convergence  theorem,  bu t  we have  to not ice  tha t  

e [ Vo (rk)- V,(,'k) ] co, P 
L 2 2 ,  CrQ X k 

where  cQ, p = E [(V e ( t / , ) -  Ve(rl,))~/~] and  s imi lar ly  ad jus t  the p r o o f  of  (4.20). 
I t  is easy to cons t ruc t  examples  of  pa i rs  of  p r o b a b i l i t y  measures  P, Q satisfy- 

ing the a s sumpt ions  (1)-(3) and  such tha t  h e 4= hp and  v e 4= re .  
Let  s u p p e ( ~ , . i ) = { 0 ,  2, 4 . . . .  }, suppp (~ , , i )={0 ,  1, 2, ...}, Q ( q , = l ) = � 8 8  Q(r/, 

= 2 ) = � 8 9  Q(t/, = 3) = �88  P (q ,  = 0 ) =  1, P( t / ,  = 2) = 1. 

Then  supp e (X,) = suppp (X,)  for all n > 1, h e = 2, v e = 1, T e (0) = �89 T e (1) = �89 
Ue(0 ) = 1, Uo(1 ) = 1, hp= 1, Vp = 0 ,  Te(O ) = 1, Ue(O)= 1. 

Acknowledgement. I would like to thank Professor C.Z. Wei for suggesting this topic to me 
and for providing several important ideas used in this paper. 
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