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Summary. The analogue of Strassen's functional law of the iterated logarithm 
is known for many Gaussian processes which have suitable scaling properties, 
and here we establish rates at which this convergence takes place. We provide 
a new proof  of the best upper bound for the convergence to f by suitably 
normalized Brownian motion, and then continue with this method to get similar 
bounds for the Brownian sheet and other self-similar Gaussian processes. The 
previous method, which produced these results for Brownian motion in ~1,  
was highly dependent on many special properties unavailable when dealing 
with other Gaussian processes. 

1. Introduction 

Let {W(t): 0_<_t< oo} denote standard Brownian motion in ~1.  If C[0, 1] den- 
otes the continuous functions on [0, 1], and 

(1.1) ~ =  g(s)ds, O<_t<_l: ~ g2(s)ds<=l , 
0 

then X is a compact, convex, symmetric subset of C[0, 1] such that with 
probability one the random sequence given by 

(1.2) tl .(t)=W(nt)/(2nLzn) 1/2 ( 0 < t < l ) ,  

converges to and clusters throughout  ~ in the uniform norm. This is Strassen's 
functional LIL for Brownian motion, and in [1, 2, 5, 7] the rate at which 
this convergence and clustering takes place is examined. 
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Prior to [5], the best convergence rates to ~ were due to K. Grill in [7], 
and assert that with probability one 

(1.3) l imsup inf [[f--tlnll(Lzn)~={~ e < 2 / 3  
n r  , ~ > 2 /3 .  

Here rlfl l= sup rf(t)l, L2x=L(Lx) where L x =m ax (1 ,  logex), and LkX 
O _ < t ~ < l  

=L(Lk_lX) for k>3 .  
If A~_C[O, 1], A~={g~C[0,  1]: inf IFg-fJl <e}, and en=-(Lzn)-~, then the 

f ~A  

two statements in (1.3) are equivalent to 

(1.4) P(qn s S(( ~" eventually) = 1 (c~ < 2/3), 

and 

(1.5) P(r/nr X~" i.o.) = 1 (e>2/3).  

More precisely, (1.4) indicates an upper bound for the convergence of {Tn} to 
• ,  and (1.5) provides a lower bound. Here we will only consider analogues 
of the upper bound result as in (1.4). The paper [5] presented results related 
to (1.5), but at present (1.5) is the best uniform lower bound available. 

Using a construction of Grill appearing in [7], the main result of [5] demon- 
strated that for Brownian motion in IR1 and en = ~(L3 n/L2n) 2/3, there is a ~ > 0 
sufficiently large such that 

(1.6) P(q, ~,~" eventually)= 1. 

The construction of Grill depended on the fact that Brownian motion in IR a 
has the strong Markov property, stationary independent increments, and also 
several other crucial properties (see (2.2) to (2.5) of [5]). Hence the method 
to establish (1.6) does not apply to other common Gaussian processes. 

The main theoretical tool of this paper is contained in Theorem 2.1. This 
result makes use of Borell's inequality for Gaussian measures [3], and can be 
viewed as a quantification of the elegant argument employed by Talagrand 
in [14]. To state and prove Theorem 2.1 we need some notation which is given 
at the beginning of Sect. 2. The various applications to specific Gaussian pro- 
cesses are contained in Sects. 3 and 4. 

We write a, ~ bn if lim an/b, = 1, and a, ~ bn if 0 < lim an/bn <= lim a,/bn < oo. 
n n n 

2. T h e  bas i c  l imi t  t h e o r e m  

Let B denote a real separable Banach space with norm II" [I and topological 
dual B*. If # is a mean zero Gaussian measure on B, then it is well known 
that there is a unique Hilbert space H u ~ B such that p is determined by consider- 
ing the pair (B, Hu) as an abstract Wiener space (see [8]). 
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The limit set K in our results will always be the unit ball of Hu for an 
appropriately chosen mean-zero Gaussian measure p. Lemma 2.1 in [11] or 
1-6] presents a construction of H u along with various properties of the relation- 
ship between Hu and B. In particular, we will use the continuous linear operators 

d 

(2.1) / / d ( x ) = ~  ~k(X) SC~ k and Qd(x)=x--Hd(x ) (d>=l) 
k = l  

taking B into B. Here {~k: k > l }  is a sequence in B* orthonormal in L2(#), 
{S~k: k> 1) is a CONS in H,~_B defined by the Bochner integral 

S~k= ~ x~k(x) d~(x), 
B 

and when restricted to Hu, Ha and Qd are orthogonal projections onto their 
ranges. Furthermore,  if X is a B-valued random vector with # =  ~ ( X )  a mean 
zero Gaussian measure, then it is well known that lim II Qd(X) II = 0 with probabil- 

d ity one, 

(2.2) EI] Qa(X)lb $0 as d]" 0% 

and Ha(x) and Qa(X) are independent centered Gaussian random vectors. 

Theorem 2.1. Let X, X 1, X2 . . . .  be a sequence of identically distributed centered 
Gaussian random vectors with values in B. Let Qd (d> 1) be the linear operators 
of(2.1), K the unit ball of H u where # =  ~ (X) ,  and 

(2.3) F = sup II x I[. 
x E K  

Let {d.} be a sequence of integers such that 

(2.4) d, > inf {m > 1 : E II Q~ X ll/m <= (rE2 n)/(2 Ln) 1/2}, 

and for 7 > 0 let 

(2.5) e. = (7 d, L 2 n)/Ln. 

Then for 7 > 3 F  

(2.6) P(X,/(2 Ln) 1/2 E K ~" eventually) = 1. 

Remark. The proof  shows e, = o((Ln)-1/2) is always possible in (2.6). 

Remark. The constant 3 F is clearly not best possible, and was chosen for nota- 
tional convenience. 

Proof It is clear from the definition of e, in (2.5) that it suffices to prove (2.6) 
when equality holds in (2.4). Let U = { x :  IlxII < 1} and set 

(2.7) p, = P(X/(2Ln) 1/2 CK + 3 e, FU) 
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where K, F, and ~, are as above. Since the sequence X, X~, X z . . . .  is identically 
distributed we have by the Borel-Cantelli lemma that  

P (X,/(2 Ln) ~/2 s K3 r~. eventually) = 1 (2.8) 

provided 

o~ 
(2.9) ~ p, < oo. 

n = l  

Thus if we can verify (2.9) for all 7 > 1 in the definition of e,, then (2.8) holds, 
and this will yield (2.6) whenever ~>  3F. Hence it suffices to prove (2.9) for 
7 > l .  

Since K ___ 2 FU we first observe that  

(2.10) p.<=P(X/(2Ln)a/2(~(I+e,)K+e, FU)<P(IId.(X)(ib,  K) 

+ P(He. (X) s b, K, X/(2 Ln) a/z r (1 + e,) K + g, F U) 

where b, = (2 Ln) */2 (1 + e,), and then that  

(2.11) P ( IIe. (X)sb .K,  X S b .K + (2 Ln) ~/2 e. r u )  

< P(H He,,(X) I/n. < b,,, Qe,,(X)~(2Ln)l/aen FU 

+ ( b2 -- II IId.(g)Jl 2.) 1/2 Qd.(K)). 

To verify (2.1t) assume He,~(x)sb.K, write x=FIe.(x)+Qe (x), and assume that  
Qn.(x) = (2Ln) 1/2 g. Fu + (b 2 - I[ FIe.(x)ll 2)~/2 Qe.(k) for some"us U and ksK .  Then 

x =k+(2Ln)l/2e.  Fu (2.12) 

where 

(2.13) k = / / e .  (x) + (b. z - [I He.(x)[I zn.) 1/z Qd.(k) sHu 

because / / e . :  B ~ H .  and Qd,,: H.--.  H. .  Furthermore,  the or thogonal i ty  of the 
projections /7~. and Qe. on H .  wi th  [I fIe.(x) ll . .  < b. and II Qe.(k) l[ H. < 1 (since 
ksK)  implies 

(2.14) II ~ 2 k II ~.  = II//d~ (X)11 g .  + (b. 2 -- II/-/e. (x)II 2.) II Qe. (k)II 2 .  < bE, 

and thus (2.12) and (2.14) together imply 

(2.15) x=~+(2Ln)t/zg~ F u s b . K  +(2Ln)l/ze. FU. 

Hence Ha.(x) e b . K  and x ~b. K + (2 Ln) ~/~ e. FU together imply Ha. (x) s b. K and 
Qa. (x) ~ (2 Ln) 1/2 e. F S + (bZ. - [p He. (x) l[ 2 ) , /2  Qe. (K), so (2.11) holds. 

Thus (2.10) and (2.11) imply 

(2.16) P. < P(ll/-/d. (X)II H. > b.) 
+ P(lllle.(X) ll~ <b.,  Qa.(X)q~(2Ln)l/2e. FU 
+ (b 2 -- [l He,,(X)ll 2.) 1/2 Qa,,(K)), 
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with X Gauss ian  making  1-1d.(X) and Qe.(x) independent .  N o w  for ~ > 1, Chebys- 
hev's inequality,  (2.5), and (2.4) imply that  

(2.17) P(Qa,(X)r r u ) = P ( l l  Qa.(X)]l >(2Ln)I/Ze, F) 

< E [I Qa.(X) II/(Fe,,(2Ln) 1/2) 

E II !2e~ (Ln) 1/2 
- d, 21/ZyF(L2 n) < 1/2. 

Hence by Borell 's inequali ty [3] we have for any number  a, 0 < a < b 2, that  

(2.18) P (Qe. (X) (~ (2 Ln) ~/2 e, F U + (b 2 - a) 1/2 Qe. (K)) 

< 1 - ~((b 2 - a)1/2), 

and by the independence of Hd. (X) and Qe,(X) we thus have by (2.11) that  

(2.19) P(tld.(X)~b.K, XCb.K +(2Ln)I/2~.FU) 
=< E (I (l[/-/e. (X) l] n .  --< b.) ( 1 - ~b ((b 2 _ I I Ha.  (X) ll ";2 ~1/2 ,,.~ 

In (2.18) and (2.19) �9 denotes the distr ibution function of a N(0, 1) r a n d o m  
variable, and by combining (2.16) and (2.19) we thus have 

(2.20) p,  < P (]] Ha, +, (X)II n ,  > b,) 

provided 7 > 1. 
Now P ( t l r I ~ . + ~ ( X ) l l H > b . ) = p ( g 2 +  ... +g2o+~>b.~) where g l ,  g2, - - ,  are 

i.i.d. N(0, 1). Fur thermore ,  (2.4) and E [Qm(X)]I $0 as m ~ oo (see (2.2)) implies 
that  

d,=o((Ln)l/Z/Lzn), 

and hence e, = o((Ln)-t/2) with b , =  (2Ln)1/2(1 + e,) implies d, = o(b,). N o w  stan- 
dard  calculus estimates imply that  if ga, g2, - - "  are i.i.d. N(0, 1) and d = o ( x  2) 
as x - + m ,  then as x--,  0% d--+ oo 

(2.21) p(g2 + . . .  + g~ > x 2 ) ~ (2 z d ) -  ~/2 exp { - x 2 / 2  + (d/2 - 1) log(x 2 e/(d- 2)}. 

Thus applying (2.21) to (2.20) with d,=o(b.),  we get for y > 1 and n sufficiently 
large that  

(2.22) p, ~ (tin)- 1/2 exp { -- b2/2 + d, L 2 n} 

(tin) - 1/2 exp { - Ln - 2 Ln e, + d, L 2 n} 

= (d,)-  1/2 exp { - Ln - 27 d, L 2 rl q- d n L 2 n} 

< n - l ( d , )  -1/2 e x p { - T d .  Lzn} 

<n -1 e x p { - T L 2 n  }. 

Thus  for 7 > 1 we get f p. < oo and the theorem is proved.  
n = l  
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3. Some upper bounds for rates in the LIL for Brownian motion 
and the Brownian sheet 

To apply Theorem 2.1 we need only choose {d,} such that (2.4) holds. Hence 
we need some knowledge of the sequences {e~: k = l }  and {Sek: k > l }  used 
for the operators He of (2.1). 

Part I: Brownian motion in ~P 

Let W= { W(t): 0 < t < 1} be standard Brownian motion in NP having continuous 
sample paths on [0, 1]. The linear mapping of a vector in R p to i tsj  th coordinate 
(with respect to the canonical basis) is denoted by 2j for j =  1, ..., p. Since W 
has continuous paths, we set B=Cp[0 ,  1], the space of lRV-valued continuous 
functions on [0, 1], and consider two norms on B, namely 

(3.1) Ilfll = sup 12jof(t)[ 2 
O_<t_<l 

and 

(3.2) Ilfll2 = 12j~ 
j o 

Of course, B is not complete in I[" [[ 2, but this does not cause difficulties. 
The limit set in Strassen's LIL for lRP-valued Brownian motion is 

(3.3) {i } ~ ' , =  g(s)ds, O<_t<<_l:g:[O, 1]~",l[g[[2<=l , 

and we consider the open unit balls 

(3.4) U={feCp[O, 1]: ]lfll < 1} 

(3.5) g={f6Cp[O, 1]: Ilfllz < 1}. 

Then, when using the sup-norm I1" [I, 

and for the inner product norm I1" II 2, 

The upper bounds for the rate of convergence in Strassen's LIL for NP-valued 
Brownian motion are given in our next theorem. When p = 1 and the sup-norm 
is used, this result was obtained in [-5] by entirely different methods. 

Theorem 3.1. Let { W(t): 0 =< t < oe } be standard ]RP-valued Brownian motion with 
continuous sample paths, and define 

~1,(t)=W(nt)/(2nL2n) 1/z ( 0 < t <  1). 
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Then, the following hold: 
(A) I f  U is as in (3.4) and e, = 7(La n/L2 n) 2/3, then for ? > 0 sufficiently large 

(3.6) P (~l, ~ ~ + e, U eventually) = 1. 

(B) I f  V is as in (3.5) and an=T(g3n)l/3/(gzn) 2/3, then for ? > 0  sufficiently 
large 

(3.7) P (tl, e )Up + ~, V eventually) = 1. 

The first step of the proof is to establish the following proposition. 

Propos i t ion  3.1. I f  W, W1, W 2 ,  . . .  are standard lRP-valued Brownian motions with 
sample paths in Cp [0, 1], then the following hold: 

(A) I f  ~, = 7 (L2 n/Ln) 2t3, then for 7 > 0 sufficiently large 

(3.8) P(W,/(2Ln) 1/2 e ~ p  + e, U eventually) = 1. 

(B) I f  e, = 2 (L2 n)l/a/(Ln) 2/3, then for ? > 0 sufficiently large 

(3.9) P ( 141,/(2 Ln) 1/2 ~ ~ + e, V eventually) = 1. 

Proof of Proposition 3.1-A. The process {W(t): 0_<t<_l} can be expressed as 
a uniformly convergent random series on [0, 1] as follows: 

W(t) = (bl (t) . . . .  , bp(t)) (3.10) 

where, for j = 1, ..., p, 

(3.11) bj(t)= y '  ~" gi, k. qSk.(t). 
n = 0 k ~ f ( n )  

In (3.11) {gj.k~:j= I, ..., p, k~F(n), n__>0} consists of independent N(0, 1) random 
variables, and the following hold: 

(3.12) V(O) = {0}, 

r(n)= {1,2 . . . .  , 2  "-1 } (n__> 1), 

4~k.(t)= ~ A . ( s )d s  (kEr(n),n>O), 
0 

where 

and for keF(n) and n >  1 

foo(S)= 1 ( O < s <  1), 

2 ( . -  1)/2 

fk.(s) = - 2 ("- 1)/2 

0 

( 2 k - 2 )  2 - " < = t < ( 2 k - 1 ) 2 - "  

( 2 k -  1) 2-"_<_t <(2k) 2-"  

otherwise. 

That the series arising from (3.10) and (3.11) converges uniformly to lRP-valued 
Brownian motion on [0, 1] is obvious once one knows that (3.11) converges 
uniformly to standard Brownian motion in ~1  for each j = 1, ..., p. This, how- 
ever, is a well known fact, and [1] and [13] contain a nice discussion of this 
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as well as material applying to the Brownian sheet. Furthermore, once the pro- 
cess is defined, standard properties of stochastic integrals allow us to represent 
the independent N(0, 1) random variables {gj,k,} as 

1 

(3.13) gj, k, = ~ fk, (S) d bj(s). 
0 

Henceforth we make this identification and define, for h~C[O, 1], the linear 
functionals 

1 

(3.14) c%(h)= ~fk,(s) dh(s) (ker(n) ,n>O).  
0 

Then, for j =  1, ..., p, k~F(n), and n>0,  

(3.15) ek,O 2 j (W)= gj, k,. 

Since S f = E ( W f ( W ) )  for eachfsB* (see Lemma 2.1 of [11] for details), standard 
properties of stochastic integrals easily imply that 

(3.16) S ( e k . O 2 j ) ( t  ) = (ok,(t) ( j= i, . . . ,  p, ker (n) ,  n >0). 

The reader should also notice that the so called Schauder functions 4k,(t) are 
piecewise linear, continuous, non-negative, and have non-overlapping support 
for different kEF(n). Furthermore, 

(3.17) sup [r k=0, n = 0  
0_<t_< 1 2 -("+l)/z k e F (n ) , n> l .  

Thus we can write (3.11) in the form 

oo 

(3.18) b j ( ' )=  ~ ~, C~k,O2j(W) S(ek, o2j(')) 
n = 0 k e F ( n )  

for j = l  . . . .  , p, and letting ej (l<j=<p) denote the standard basis for IR P we 
have 

(3.19) p ,) 

To express (3.19) in terms of a single index d as in (2.1) we order the sequence 
{ek, o2j: j =  1, . . . ,  p, ksF(n), n >0} lexicographically by the triples (j, n, k). That 
is, (Jx, nl, k0<(J2,  n2, k2) i f jx<J2,  or jx=J2 and nx<n2, or j~=j2,  nx=n2, 
and kl < k2. Then l i d (W ) is the sum of the first d terms of (3.19) in this ordering. 
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Combining (3.15), (3.16), and (3.19) we see that for p 2m< d < p 2 m+ 1, Jensen's 
inequality implies 

(3.20) El[W--r4(W)ll<EIIW--rlp2m(W)l[ 

= E  j~=l(n~_mk~f(n) O~knO*~j(W)S(O~knO,~j))ej 

< ~ Ell ~ o:k,,o2j(W)S(~k,o;9)ejll 
j = 1 n = m keF(n) 

< ~, 2 -("+ 1)/2E( sup [C~k.O2i(W)l ) 
j = 1 n = m keF(n) 

by (3.16), (3.17), and the disjoint supports for C~k ., k~F(n). 

~ C p  ~, 2-(n+t)/2(log2n) 1/2 
n=m 

p((1 g 2 ) 2-")  a/2 < C 2 o m = 

where C is an absolute constant such that 

E( sup Igjl)<C(Ln) 1/2 
l<_j<n 

for all n >  1 and (gj:j> 1) i.i.d. N(0, 1), a n d  

~ 2 -(~+ 1)/2 (10g 2~) ~/2 < C ((log 2 m) 2-m) ~/2. 
n=m 

Thus from (3.20) we have for all d sufficiently large that 

E I[ W--IZd(W)II <_~2C2p 3/2 (~)1/2 .  (3.21) 

Hence for (2.4) we may choose d, as a large constant multiple of the solution 
of 

d - i (~d) 1/2 = L2 n/(Ln)l/2. 

Thus 
d. ~ ((Ln)/(L 2 n)) 1/3, 

and solving for e. in (2.5) we see it is possible to take 

e n = ~ (L2 n/Ln) 2/3 

for y > 0 sufficiently large. Applying Theorem 2.1 now yields Proposition 3.1-A. 



56 V. Goodman  and J. Kuelbs 

Proof of Proposition 3.1-B. Let 2j and ej be as in the proof of part A, and 
assume 

(3.22) 7n(t)= 2~/2 Sin((2n+l)rct/2) (0_-<t<l,n>0).  
~ ( 2 n + l )  

For h in C[0, 1] we define the linear functionals 

1 

con (h) = ~ 7'n (S) d h (s) (n_> 0). 
o 

Then elementary properties of stochastic integrals imply {7,o2j(W): n>O, j 
= 1 . . . . .  p} are i.i.d. N(0, 1) and 

S(c~o2j)(t)=~(t) (0<t__< 1, n>0).  

As a result of [10, p. 126] the series 

o9 

j = l  

represents lRP-valued Brownian motion and converges uniformly on [0, 1]. 
Hence we can write 

(3.23) W(t)=j~lQ~=o~,O2j(W)X(~,o2j)(t))e~ (0<t=<l), 

and to express the series (3.23) in terms of a single index d as in (2.1), we 
order the pairs {(j, n): j =  1, ..., p, n>0} lexicographically. That is, (Jl, h i )<  (Jz, 
n2) if j r < j 2  or j2=j2 and n~ <n2. Then Ha(W) is the sum of the first d terms 
of (3.23) with respect to this ordering. 

Thus for 

pm<=d<p(m+ l), 

Jensen's inequality and the orthogonality of the sequence {Sa~o,~j: n>0} with 
respect to Lebesgue measure implies that for all m____ 2 

(3.24) EI[ W--Ha WII ~ <_g I[ W -  ~p,,,(w)ll 

n = r n  0 

=p ~, 4/(rc2(2n+ l) 2) 
n m m  

<= ( 4 p2 /rc2)/ d. 
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Hence for (2.4) we may choose d. as a large constant multiple of the solution 
of 

d - i d -  a/2 = L2 n/(Ln) l/2. 

Thus 
d, ~ (Ln)1/3/(L 2 n) 2/3, 

and solving for e, in (2.5) we see it is possible to take 

gn = 7 (L2 n)l/3/(Ln) 2/3 

for y > 0 sufficiently large. Applying Theorem 2.1 now yields Proposition 3.1-B. 

Completion of the proof of Theorem 3.1. Let n, = exp {r/(Lr) 2} for r > 1 and set 

(3.25) IV,= W(n,(.))/n~/z (r> 1). 

Then Proposition 3.1,A implies 

(3.26) P(W~/(2 Lr)I/2 ~ Xp +/~(L2 r/Lr) 2/3 U eventually) = 1 

for /~>0 sufficiently large. Furthermore, sup ]]f]l = 1 and 
fe~p 

(3.27) 11 -- (Lr) 1/z (L 2 n~)- 1/z I ~ L 2 r/Lr, 

so (3.25), (3.26), and (3.27) together imply 

(3.28) P (r/,r ~ ~(p + 2//(L2 r/Lr) 2/3 U eventually) = 1. 

The verification of (3.6) is completed with the following lemma by taking 7 > 3/~. 

Lemma 3.1. Let nr = exp { r/(Lr) 2 }, Jr -- 2/~ (L2 r/Lr)2/3 (/~ > 0), and d (n) = (2 n L 2 n) 1/2. 
If(3.28) holds, then 

P (~l, ~ ~ + 3 fl (L 3 n/L 2 n)2/3 U eventually) = 1. 

The proof of Lemma 3.1 is exactly that of Lemma 3.1 in [5]. We indicate 
a brief outline for the sake of completeness. Further details can be found in 
[5]. The reader should note that the proof involves a simple rescaling, and 
henceforth we refer to Lemma 3.1, and related results, as rescaling lemmas. 

Proof of Lemma 3.1. Let I ( r )= [-n, nr+ 2]- If (3.28) holds, then there exists h r ~  
such that 

(3.29) I[q . . . .  -hrLI <6r+1. 

For nsI(r), set 

(3.30) g(t)=hr(nt/nr+l) ( 0 < t < l ) .  

Then ge J:p, and g depends on r, but we supress that. Furthermore, for neI(r) 

(3.31) II ~ . -  g II = II g -  W(n(. )/d(nr + 1)II 

+ II(W(n('))/d(n))(1 -d(n)/d(nr+ 1))11- 
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Now by rescaling and (3.29) 

(3.32) [I g -  W(n(.))/d(n,+ 1)11 <~r+ a. 

Furthermore,  the classical LIL for i.i.d. N(0, 1) random variables and rescaling 
implies that for all r sufficiently large 

(333) II qn(1 - d(n)/d(nr+ 1))rl < 211 - d(n)/d(n~+ 1)1. 

If n~I(r), then for large r 

(3.34) I1 -d(n)/d(nr+ 1)1 _-< 2/(Lr) 2, 

and by combining (3.31), (3.32), (3.33), and (3.34) we obtain for large r and 
all nsI(r)  that 

II 7 o - g  I[ -_< ~ +  1 +4/(Lr) 2 <en. 

Since g e ~  this completes the proof  of Lemma 3.1. 
Thus Theorem 3.1-A is proved and the proof of part B is exactly the same 

if Id" II is replaced by I1" II 2. Thus Theorem 3.1 is established. 

Part II: The Brownian sheet 

Let B = C ( [ 0 ,  1] p) denote the Banach space of real continuous functions on 
the p-dimensional unit cube Q = [0, 1] p, endowed with the sup-norm 

(3.35) II f II = sup If(t) l- 
t eQ 

Then the p-parameter Brownian sheet {W(t): teQ} is a mean zero Gaussian 
process with sample paths in B determined by the covariance function 

(3.36) E(W(s) W(t)) = min(sl,  t 1) '"  min (s~, tp) 

for s = (sl, ..., sp) and t = (tl, ..., tp). Furthermore,  since the paths are continuous 
and the variance function is zero at any point t = (t~, ..., tp) where some tj = O, 
if follows that W( t )=0  for such t. The papers [1] and El3] contain further 
details regarding the Brownian sheet, and are excellent references for our pur- 
poses. 

Our upper bounds for rates of convergence in the functional LIL for the 
Brownian sheet are contained in the next two theorems. 

Theorem 3.2. Let W, W1, W2 . . . .  be Brownian sheets on Q = [-0, 1] p with continuous 
sample paths, and let 

~ = { f ( t ) =  ~ g(s)ds, t~Q: ~ g 2 ( s ) d s < l }  
EO,t] (2 

where [0, t] = [0, t t ]  x ... x [0, tp] for t = (tl . . . . .  tp). I f  U = { I t  C(Q): Ilfl[ < 1} 
and e, = y(L2 n) p- 1/3/(Ln)2/3, then the following hold: 
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(A) For ? > 0 sufficiently large 

(3.37) P(VV,/(2 Ln) 1/2 s J{" + e, U eventually) = 1. 

(B) I f  {W(t):  t>0}  is a continuous Brownian sheet on [0, o0)P, 

(3.38) t/,(t) = W(nt) / (2nPL2n) t/z te l0 ,  1] p, 

and e, = 7 (L3 n) p-  1/3/(L2 n) 2/3 then for  7 > 0 sufficiently large 

(3.39) P(rI,~JY ~ + ~ U eventually)= 1. 

If we use the unit ball in L 2 (Q) rather than the sup-norm ball U, the following 
improvement of (3.39) is available when p -- 2. The cases p __> 3 can also be studied, 
but we do not do that here. 

T h e o r e m  3.3. Let  { W(t): t > 0} be a continuous Brownian sheet on [-0, o0)2, 

(3.40) r l , ( t )=W(nt ) / (2nZL2n)  ~/2 (te[O, o0) 2, 

and let 

(3.41) e, = 7 L 3 n/(Lz n) 2/3. 

Then, for  7 > 0 sufficiently large, 

P(q, e Y  + ~, V eventually) = 1 (3.42) 

where 

(3.43) V = { f s C ( [ O ,  1]2): [[fllz=( ~ f z ( t ) d t ) ~ / 2 < l } ,  
[0, 11 z 

and g f  is as in Theorem 3.2 with p = 2. 

Proo f  o f  Theorem 3.2-A. Let {fk,:  keF(n) ,  n>0} and {~bk,: ksF(n) ,  n>0} denote 
the Haar  and Schauder functions, respectively, defined in (3.12). The set D den- 
otes all p-tuples n=(n~ . . . .  , np) where nx, . . . ,  n v are non-negative integers, and 
for neD we define 

[ n l = n l +  . . .  + n  v.  

For each neD, define 

r ( n ) =  {(kl . . . . .  kp): kl er(nO . . . .  , k p e r ( n v ) }  

where F(-) is as in (3.12) for a single integer. If k = ( k l  . . . .  , kv)~F(n) and t~Q, 
define, using the notation of (3.12) 

p 

(3 .44)  f k n ( t )  = ~ I  fkjnj(tJ) 
j = l  
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and 

p 

(3.45) ~bk,(t)= I~ q~k~,j(tj). 
j = l  

Then the support of ~k.  is the same as that offu . ,  and for fixed nED these 
supports are disjoint as k varies over F(n). Furthermore, for k~F(n) 

(3.46) Ipfk.l[=exp l o g 2 - ~  (nj--1)I(nj>O)/2 <21"1/2 
j = l  

and 

p 
(3.47) I /~, l l  =< I~ {2-<"J+l)/ZI(nj>O)+I(nj=O)} <2-1nl/2. 

j = l  

Letting {gk.: keF(n), neD} denote an i.i.d, sequence of N(0, 1) random variables, 
the series 

(3.48) ~ 2 2 gkn ~kn(t)  
r=O Inl =r ksF(n) 

converges uniformly on Q, and is a Brownian sheet (see [1] or [13] for details). 
For kEF(n) and nED we define a continuous linear functional on B by 

(3.49) ~k.(h) = ~ fk,(S) dh(s) (hEB). 
Q 

Sincefk . is a simple function of bounded variation on Q, the stochastic integral 
in (3.49) exists, and elementary properties of these stochastic integrals as given 
in [1] or [13] imply that {ek.(W): kEF(n), nED} is an i.i.d, sequence of N(0, 
1) random variables with 

(3.50) S c~ kn (t) = E (W0~ kn (W)) (t) 

= E ( W ( t )  ~ fkn(S) d W(s)) 
Q 

= E(~ l(s =< t) d W(s) ~/k.(S) d W(s)) 
(2 Q 

= ~ I(s<t)fk,(S ) ds 
Q 

: r (t) 

where s =< t if si < ti for i = 1, ..., p. 
Thus we can represent the Brownian sheet {W(t): tEQ} as 

(3.51) w(t)= F. F~ Z ~k,(W) S~k.(t), 
r=O Inl =r keF(n) 
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and to express (3.51) in terms of a single index d as in (2.1) we order the (2p 
+l)-tuples (r, n, k) with Inl=r  and keY(n) lexicographically. Hence IId(W ) is 
the sum of the first d terms of (3.51) in this ordering. 

By considering the number of ways to place r objects into p cells it is easy 
to see that for r >_ 0 

(3.52) Card{neD= ] n l = r } = ( P ; r l  1). 

Furthermore, 

Card F(n)=exp {log2 ~ (ns-1)I(nj> 0)}, 
j = l  

and hence with In[ =r ,  

(3.53) 

Thus, if 

max(l ,  2 r-p) < Card r(n) __< 2 r. 

m m + l  

(3.54) Z Z 2 l__<d< Z Z Z 1, 
r=O Inl =r ker(a) r=O In[ =r k~F(n) 

Jensen's inequality implies 

(3.55) EIIW--I- Id(W)I t~E ~, Z Z CZkn(W) SO~kn " 
r=m ]nl = r  k~F(n) 

Hence for some positive finite constant C, possibly differing from line to line, 
we obtain 

(3.56) EIIW--nd(W~ll< ~ (p+r-1 snpE]l ~ ~k.(W) S~k,H 
=r=m\  p--1 i.l=r k~r(n) 

,=r~ I~l =r ) 
I"1 =r 

since S ~k, ~ ~k. have disjoint support 
when k e F(n), and by applying (3.47) with 
Inl=r. 

=< C ~ r p- 12-,/2(log 2~)1/2 
r:m 

since Inl = r implies log(card F(n))~ r log 2 
by (3.53). 

<C ~ rP-1/22-~/2 
r:m 

C2-m/EmV- 1/2. 
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Combining (3.52), (3.53) and (3.54) we see that  d, as a function of m satisfies 

d,,~mP-12 m as m ---~ oo. (3.57) 

Hence,  

l o g d ~ m  and d(logd)-(P-1),,~2m, 

and (3.56) implies there is a finite constant  C such that  

(3.58) d - 1E II Qd(W) [I < C d -3/2 (log d) (3p- 2)/2. 

Hence for (2.4) we may  choose dn as a large constant  multiple of the solut ion 
of 

d - 3/2 (log d) (3p 2)/2 = L2 n/(Ln) 1/2. 

Thus 

and 

(3.59) 

dn ,-~ (Ln) 1/3 (L2 n) p- 4/3, 

~, ,~(Lz n) p- 1/3/(Ln)2/3.  

Thus by applying Theorem 2.1 we have established Theorem 3.2-A. 

Proof of  Theorem 3.2-B. Let nr = exp {r/(Lr) 2} for r__> 1, and set 

(3.60) W~= W(nr(.))/(nr) p/z (r> 1). 

Then  (3.37) implies 

(3.61) P(Wr/(2Lr) 1/2 ~ Y  + fl(L2 r) p- 1/3/(Lr)2/3 U eventually) = 1 

for f l > 0  sufficiently large. Since sup ]lfll = 1 and (3.27) holds, (3.60) and (3.61) 
fe2f 

together  imply 

(3.62) P (q,r ~ 2U + 2 fl (L 2 r) p - 1/3/(Lr)2/3 U eventually) = 1. 

The p roof  of part  B is now completed by proving a rescaling result as in Lem- 
ma 3.1. The details are s t ra ightforward and hence omitted. 

Proof of  Theorem 3.3. To  prove (3.42) one first proves the following analogue 
of (3.37) for identically distr ibuted copies of  { W(t): t ~ [0, 1] 2} : 

(3.63) P (W,/(2 Ln)1/2~ ~ + e, V) eventually) = 1 

where V is as in (3.43) and e, is as in (3.41). Once this is done,  one proceeds 
exactly as before via a rescaling lemma. We do not  include the details of the 
rescaling, but  we prove (3.63). 

To  establish (3.63) we apply Theorem 2.1 as before. To  do this we let 

2~n 2 + Sin((2n+ l) rct/2) (0_<t< 1, n>0) ,  (3.64) 7,(0--- 7c(2 1) 
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and define the linear functionals 

(3.65) eij(h) = ~ 7'i (s) 7)(t) dh(s, t) 
Q 

for he C(Q) and Q = [0, 1] 2. Then elementary properties of 2-parameter stochas- 
tic integrals, as developed in [1] or [13], imply 

(3.66) aij(W): i > 0, j > 0} 

is an i.i.d. N(0, 1) sequence, and 

(3.67) S ai i(s, t) = 7i(s) y j(t). 

Hence {W(s, t): (s, t)eQ} can be written as 

(3.68) W(s, t)= ~ ~ aij(W) S~ij(s, t) 
n = 1 ( i , j ) e M n  

where 

/q'/1 ~ Z i  

Mn=Lnc~lZn_l (n_->2), 

and for n > 1 

(3.69) Ln = {(i,j): i,j > 0 are integers satisfying (a), (b), or (c)}: 

(a) i> l , j>  l, and ij<=n. 
(b) i = 0 and j = 0, 1, . . . ,  n. 
(c) j = 0 and i = 1, . . . ,  n. 

In summing the series in (3.68), we order the triples (n, (i, j)), where (i, j)eLn, 
as follows: 

(3.70) (ni, (ii ,Jl)) <(n2, (i2,J2)) 

if nl<n2, or if n l = n  2 and i1<i2, or nl=n2, i~=i2, and j l < j 2 .  Then, in this 
ordering, the partial sums of (3.68) easily converge in L2(Q) to W, but they 
also converge uniformly on Q by using the Ito-Nisio theorem (see the comment  
prior to (2.2)). 

Let Hd(W ) denote the sum of the first d terms of the series (3.68) in this 
ordering. T h e n / / d  is as in (2.1), and for 

(3.71) Card (Lm) < d N Card  (Lm § 1) 
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we have by Jensen's inequality that 

(3.72) E ~+ c~ij(W)S~ij I E II W-H.(W)II  ~ < 
n= 1 ( i , j )~Mn 

4 4 
- _ ~ ~ rc2(2i+1)2 ~r2(2j+l) 2 

n = m +  1 ( i , j )~Mn 

16 
= ~ -  ~ (2 i+1)-2(2 j+1)  -2 

(i,,])r 

where Lm is the truncated hyperbolic shaped region determined by (3.69). Hence 
(3.72) implies 

with 

E If W-/Id(W)[I 2 z ~ 16 n - 4 ( I  1 + 12 + I3) 

1 
I1= ~ ~ (2i+l)-2(2j+l)-2,.~m -1 

j = 0  i = m +  1 

,]=2 i=[~-]+ 1 j = 2  

I3= 
j = m + l  i=0 

Thus, for d as in (3.71), d,~m logm, and (3.72) implies there is a finite constant 
C such that 

(3.73) EI[ w -  nd(w)ll 2 ~ C(log re~m) 1/2 ~ (log d)/d 1/2. 

Hence for (2.4) we may choose d, as a large constant multiple of the solution 
of 

d - 1 (log d)/d t/2 = L2 n/(Ln) 1/2. 

Thus, we have d,~(Ln) ~/3, and en=TL2n/(Ln) z/3 for ~>0  sufficiently large will 
yield (3.63) by applying Theorem 2.1. 

As indicated previously, once (3.63) holds, rescaling will yield (3.42) of Theo- 
rem 3.3 and the theorem is proved. 

4. Fractional  Brownian mot ion  and other self-s imilar processes 

Let {X(t): 0_-< t < oo } be a Gaussian process of the form 

t 
(4.1) X(t)= ~ (t-s) n- ~/2dW(s) (0_<t< oo) 

0 
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where 0 < H < oo and { W(t): - ~ < t < oo } is standard Brownian motion in IR 1. 
These processes all have continuous versions, and are self-similar of index H, 
i.e. for each a > 0  the process {X(at): t>0}  has the same distribution as the 
process {at~X(t): t>=0}. This was pointed out in [12], where the mean-zero, 
self-similar Gaussian processes with stationary increments were also introduced. 
They are the so-called fractional Brownian motions, i.e. the processes 

(4.2) Y(t) = Z (t) + X(t) (t >= 0), 

where {X(t): t>0}  is as in (4.1), 

0 

(4.3) Z( t )=  ~ {(t-s)~r-':~-(--s)tt-t/2} dW(s) (0=<t<oo), 

and 0 < H < I .  When H = l / 2 ,  Z = 0  and hence both {X(t): t>0}  and {Y(t): 
t >  0} are Brownian motion. 

If 0 < H < I ,  the process {Z(t): t>0}  also has a continuous version on [0, 
oo), and we assume throughout that this is the case for both X and Z, and 
hence also Y 

Theorem 4.1. Let {X(t): t=>0} and {Y(t): t>=0} be path continuous mean zero 
Gaussian processes as in (4.1) and (4.2), and set 

(4.4) J{ '=  f ( t )= (t-u)n-1/2g(u)du, O<-t<-l: ~ g2(u) du<=l 
0 

where 0 < H <  oo. Let r/f[[ = sup [f(t)[ and define 
0 < t < l  

(4.5) U =  {f~C[0,  1]" IlfJl < 1}. 

Then, the following hold" 
(A) I f7 > 0 is sufficiently large, then 

(4.6) P (X (n(" ))/(2n2n L2 n)l/z e X + ~, U eventually)= 1 

where 

(4.7) 
(7 (L3 n/L2 n) 2/3 for H > 1/2 

en~-~.y(Lzn/Lzn)(2It+l)/(2It+2) for 0 < H <  1/2. 

(B) Let r(g, M, t )=max(M,  M t~) for t->0, M>_ 1, f i>0,  and define the sample 
path continuous processes 

0 

2(0= S ((t-s) ~-1:2-(-s)~-1:~) dW(s), 
- r ( f l , M , t )  

}z(t) = X(t) + Z(t) 
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for t>O. I f  T>O is sufficiently large, /3<min(1, 2H), 0 < H < I ,  and ~, is as in 
(4.7), then 

(4.8) P(Y(n('))/(2 nZUL2 n) 1/2 ~ ~ + en U eventually) = 1. 

(C) I f O < H  < 1, en=7(L2n) -1/2, and 

where 

{ i } 
~ =  f ( t )=T•g ( t ) :O<t<l ,  j g2(u)du<l  

0 

Tug(t)= i (t--u) n 1/2g(u) du+ I 
0 --oo 

((t- u) ~1/2- (_ u)"- 1/2) g(u) clu, 

then for all 7 > 0 

(4.9) P ( Y (n(" ))/(2 n2n L2 n) 1/2 ~( ~{" + en U) eventually) = 1. 

Remark. In would be of interest to know whether the e, defined in (4.7) suffice 
in the setting of (C). We have nothing to report in this direction, and point 
out that although Z(t) approximates Z(t) for M large, the limit sets in (B) 
and (C) differ because of the long range interactions in these processes. 

The proof of Theorem 4.1 will be established via several lemmas. The first 
shows that {2(0: t>0}  is always neglegible i f /3<rain( i ,  2H), and hence Part 
B follows once Part A is proved. If H >  1/2 and r(/3, M, t )=max(M,  Mt/(L 2 t)/3), 
then a similar result hold if/3 > H -  1 

Lemma 4.1. Let {Z(t): t>0}  be as in part (B) of Theorem4.1 with 0 < H < I ,  
and take/3 such that 0 </3 <min(1, 2H). Then, 

(4.10) l imn p sup IZ(nt)l/(2n2HLzn) i/2=0 
n O--<t--<l 

where 
( H( 1 - f l ) / 2  if H>=1/2 

P = l ( H  -- /3/2)/2 if H < 1/2. 

Proof First observe that 

(4.11) 

where 

0 

Z(n t )=n u-1/2 j 
- - r ( p , M ,  nt) 

=n / / -  1/2(11 +12) 

(t st"lJ2 (-s1~ \ -~} - \ ~ - j  /dW(~) 

((t s1~ 
- M  
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and 
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- M  

I2=  
- M ( n t ) #  

(t slH-1/2 (--SIn-I~2 I 
\ --n] - - \ n - ]  /dW(s) I (n t>l) .  

Since W(O)= O, integration by parts implies 

(~) 1/2 -H 0 
1II[<21W(--M)I + 

- M  

Hence 

~)H- 3/2 
[W(s)IIH-a/21 n -1 t -  

-(~nS) '~-3/2 ds. 

Il l l  ~ 0 (1) n 1/2-H + 2nl/2-H 
0 

- M  

W(s)l h ( - s )  
h( -s )  (--s) 3/2-H ds, 

where h (u)= (u (L 2 u-1))1/2 and throughout the lemma 0 (1) is a possibly random 
quantity depending on M, but independent of n. By the LIL for Brownian 
motion at zero 

[W(s)] ? ~  o (L2(1/_s))l/2ds=O(1) 
_~ h( - s )  ( Hgds=O(1) -M ~ (--S) 1-H 

since 0 < H < 1. Combining both terms we therefore have 

Illl<=O(1) n 1/2-~. 

Integrating by parts, we have for n t > 1 that 

where 

and 

Im(,,~j / 

+[H--1 /2]n  -1 ~ I W(s)[ t - M(.,)a - I t ]  - k - n ~  ] ds 

<O(1) n1/e-H + I3 + I4 

13 2lW(--M(nt)a)l / l"l \ l / 2 - H  

-~" (~__S)3/2-,, I 4 = 2 n  -1 ~ IW(s)l ds. 
- M ( n t ) a  
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Hence for n t > 1 we get by the LIL  for Brownian motion at infinity that 

-M (L2(_s))l/2 ds I~ <=0(1) n 1/2-n ~ (_s ) l -n  
M(nt)B 

< O(1) n t /2-n(L z n)l/2(m(nt)P) n 

where O(1) is independent of t and n. Thus if t <  1 we have 

14 < O (1) n 1/2 -H(L 2 n) 1/2 n ~n. 

Similarly, by the functional LIL  for Brownian motion, if n t> 1, then t> 1In 
and 

I3<=O(1)(nPLzn)l/2n 1/2-n sup IM(nt)BI n-1/2. 
1/n<_t<= 1 

If H > 1/2 we get 
13 <__ O(1)(n~ L2 n)1/2 nl/2-HnP(n- 1/2) 

and for 0 < H < 1/2 we have 

13 ~ 0(1) n~(L2 n) 1/2 n 1/2 - i t .  

Combining terms we see 

(4.12) 1121----< 0(1) nl/2 -H + 0(1) n 1/2 -H(Lsn)I/2 n € 
+ O(1)(naL2 n)1/2 nl /2  -Hn#(n- 1/2)I(H> 1/2). 

Thus we have from (4.11) and (4.12) that 

12(nt)[ sup ( n 2 ~  1/2 < O (1) (n- n + nan- n + riB~2 + a(H- 1/2)I(H > U2) - / / )  
O_<t_<l 

and the lemma is proved. 

Lemma 4.2. Let {X(t): t>=O} be as in (4.1) with H> �89 then for 7>0 sufficiently 
large (4.6) holds with e, = 7(L3 n/L2n) 2/3. 

Proof If H = } ,  {X(t): t>0}  is Brownian motion so by Theorem 3.1-A there 
is nothing to prove. If H > 3, then integration by parts implies 

nt 
(4.13) X ( n t ) =  ~ W(s)(H �89 

0 

Hence, setting n u = s, we get 

(4.14) X ( n t ) =  i W(nu ) (H- �89  H-3/2n du 
0 

= n n - 1 / 2 ( H - � 8 9  i W ( n u ) ( t - - u ) n - 3 / 2 d u "  
o 
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Hence, forf~oU as in (4.4), we get from (4.14), by integrating by parts, that 

t u 

(4.15) f ( t )=(H- - �89  ~ ~ g ( s )ds ( t -u )U-3 /2du  (O< t< l ) .  
0 0 

u 

Note h(u)= ~ g(s)ds satisfies h(0)=0, and H > � 8 9  implies H - - ~ >  --1, so the end- 
0 

points involved in the integration by parts drop out when H >  �89 Combining 
(4.14) and (4.15) 

(4.16) 

where 

lim inf sup IX(nt) /(2n2UL2n)l/2-f( t) l  
n f~,Yi"O<t<l 

i W(nu) < ( H - 1 ) l i m  inf sup (2nL2n)l/2 
n h~ffO<=t<=l 

h(u) (t-u)~~ 3/2 au 

5r h(t)= g(u)du, O G t G l :  ~ g2(u)du<=l . 
0 

Now, as n ~ o% 

W(n u) h (u) = 0 ((L3 n/L2 n) 2/3) inf sup (2nL2n)l/2 
he97[ O - < t -  < 1 

by Theorem 3.l-A, and hence (4.6) implies 

lim inf sup IX(nt)/(2n2ULzn)l/2-f( t)[  
n f~o'UO<_t<_l 

~O((L3n /L2n)  2/3 s u p  i ( t--u)lf-3/2du) 
o < t ~ < l  0 

= 0 ((L 3 n i l  2 n) 2/3 

since H > �89 Thus the lemma is proved. 

Lemma 4.3. Let { X (t): t > 0} be as in (4.1) with 0 < H < �89 Then for ? > 0 sufficiently 
large, (4.6) holds with e, = ? (L 3 n/L2 n) (2n+ 1)/(2//+ 2) 

Proof The first step of the proof is to show that if {X,(t): 0 < t _< 1} is a sequence 
of identically distributed copies of {X (t): 0 _< t < 1} then 

(4.17) P (X,/(2 Ln) 1/2 e~,~F + e, U eventually) = 1 

where e, = y (L 2 n/Ln) (Z//+ 1)/(2 H + 2 )  

The proof  of (4.17) will follow by an application of Theorem 2.1. To apply 
Theorem 2.1 we first prove the following: 
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Fo r  each H, 0 < H <  1/2, there exists a finite constant  C H independent  of 
n such that  for all t, 0 < t <  1, and constants  Ck, k~F(n) ,  

(4.18) [ ~ Ckl[tk,(t)l<=Cl_12 -nIt m a x  [Ck[. 
kEF(n) keF(n) 

In (4.18), F(n) is as in (3.12) and 

(4.19) ~#kn(t) = i ( t - - s )  H-  l lZ fk , (S)ds  
0 

w h e r e f k , ( S )  is as in (3.12) for k e F ( n )  and 0_<s_< 1, i.e. 

P r o o f  of(4.18) .  F r o m  (4.19) and (4.20), if t~[0,  1] is fixed and k satisfies ( 2 k ) 2 - "  
< t, then 

( 2 k -  1 ) / 2  n 

Ok,(t)  = 2 ( " - l ) l e  S { ( t - - s ) n - l l Z - - ( t - - s - - 2 - " )  s-s-tlz} ds.  
( 2 k  - 2 ) / 2  n 

By the mean  value theorem for integrals there exists ~ e ( ( 2 k - 2 )  2-" ,  ( 2 k -  1) 2-")  
such that  

(4.21) ~Sk, (t) = 2 ("-a)/2 2 - "  {(t -- ~)SS- 1/2 __ (t -- ~ -- 2-")SS- 1/2}. 

By applying the mean value theorem to the function h ( u ) = ( t - ~ - u )  ~s- 1/2 we 
obtain q ~ ( ( 2 k - 2 ) 2 - " ,  (2k)2-" )  such that  

(t - ~)H- 112 _ (t -- ~ -- 2 -")H - 1/2 ---- 2 -"  (H -- 1)(t -- t/) H- 3/2. 

Combining this with (4.21), we obtain 

~Sk, (t) = 2 (" - 1)12 2 - 2, (H -- �89 -- q)ts - 3/2 

By assumption t > (2 k) 2 - "  > 17, so that  

[ 2 k \  H - 3 / 2  

(4.22) ] ~ k , ( t ) l < 1 � 8 9  ) . 

On the other  hand, if t _ < ( 2 k - 2 ) 2 - " ,  it is immediate  f rom (4.19) and (4.20) 
that  

(4.23) Ok,(t)=0.  

Suppose that  {Ck: k e F(n)} are given and choose j ~  F(n) such that  

( 2 j - 2 )  2 - " < t < ( 2 j ) 2 - " .  
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Then, from (4.23) we obtain 

(4.24) I Z 
keF(n) 

c~ 4,~.(t)l ~ I %  11149-1,.(t)l + Icjl IO>.(t)l 

j - 2  

+ Z Ic~ll0k.(t)l. 
k=l 

From (4.22), 

j - 2  j - - 2  

]ck[ [~Ok,(t)[ < max Ickl I S - H I  2 -(3"+ 1)/2 Z ((2j--2) 2-" - - (2 / )  2-n) n-3/2 
k = l  k<=j-2 k = l  

j - 2  
(4.25) = I S - H I  max Ickl 2 -(3"+ 1)/22(n-1)(3/2-H) Z (J-- 1 --k) n-3/2 

k<- j -2  k = l  

j - 2  

_-<[�89 max Ic~12 -n("-1)-2  y, i n-~/2. 
k__<]-2 i=l 

Since H <  1/2, ~. i n -3 /2  < oo, and letting C~r=(�89 H)2 n-2  ~. i x -  3/2 we have 
i = 1  i = 1  

from (4.24) and (4.25) that 

(4.26) I ~. Ck~Jk.(t)l<=C'~ max Ic~12-"~r+lcj_lll4,j_l,.(t)l+lcjllOj.(t)l. 
k~F(n) k<=j 2 

Next we consider ~ , ( t )  for t~( (2 j -2)  2-", (2j) 2-"]. Using (4.19) and (4.20) 

(4.27) ~[ijn(t) = 2(n - 1)/2 i (t -- s ) " -  1/2 {I 0 [2~2 2j 1~(S)--I[2j--2 2j_l~(S+Z-")}ds 

t 

= 2,.-,,,2 o* x,,-1/2 (,[2~ 2 2~ ~ -  , ) ( , -  x)- ,[2~2 - ~ , ~ .  2~ 1)(,- x + 2--)} ,~. 

How H <  k implies that x n-1/2  is decreasing and hence [Oj,(t)[ is maximum 
for t = ( 2 j - 1 ) 2 - " .  Thus 

(4.28) [~y. (t)l < 2 ("- 1)/2 (H + 1) -  12-"(n  + 1/2) 

= (H + 3)- 12-"n-  1/2 

Again, by the monotone nature of x n -  1/2, one sees from (4.27) that [~kj-1,,(t)l 
< [0j,(0[, so (4.28)implies 

(4.29) [~j- 1,, (t)[ < (H + 3) - 12-"n-  1[2. 

Combining (4.26), (4.28), and (4.29) we obtain a constant Cn, depending only 
on H such that (4.18) holds. 
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The next step of the proof is to show that if {C~k, } is the sequence of linear 
functionals on C [0, 1] defined in (3.14), then the series 

(4.30) )~(t)= ~ y' c%(W)Ok.(t) (0=t_--__l) 
n = 0 keF(n) 

converges uniformly on [0, 1] with probability one. This follows immediately 
from (4.18) and the fact that {ek,(W)} an i.i.d. N(0, 1) sequence implies 

( 4 . 3 1 )  sup IO:kn(W)[--= O((L2n)1/2). 
keF(n) 

Thus the process {)7(t): 0_<t< 1} is the uniform limit of the series (4.30) and 
thus it is sample continuous. Furthermore, the process {)7(0:0 _< t_< 1 } is equiva- 
lent to {X(t): 0 <  t <  1}. To check this is easy since both are mean zero Gaussian 
processes with identical covariance functions: 

S A t  

(4.32) E(X(s) X(t))= 
0 

(S - -  U) H - 1/2 ( t  - -  bO B - 1/2 d u 

and 

(4.33) ~(;?(s) 07(t))= ~ ~ 0~~ 0~.(t) 
n - 0 keF(n) 

t 
= ~ '  Z f ( s - u ) H  1/2J~ dR" I ( t - - u ) H - 1 / 2 f k n ( b l ) d u  

n= 0 keF(n) 0 0 

1 
= 5 1 (u < s) (s  - u) ~ -  1/21 (u < t ) ( t  - u ? ' -  1/2 d u 

0 

since {fk,: k e F(n), n > 0} is a CONS in L 2 [0, 1] 
S A t  

= S (s--u)H-1/2( t-u)n-1/2du" 
0 

Hence {X(t): 0__<t__<l} and {X(t): 0__<t__<l} are equivalent processes and we 
now turn to the task of representing {~(t): O < t < l }  by a series of the form 
(2.1). To do this define the operator 

(4.34) A f ( t ) -  Sin(~(1/2-H)) i (t--u)-(If+l/2)f(u)du (0<t=< 1). 
7~ 0 

Then, 0 < H < �89 a n d f e L  ~176 [0, 1] easily implies 

Sin(re(i/2- H)) 1 
sup ]Af(t)]< ][fl[ 1/2-H' 

0_<t_<l 7"C 
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k 

so A: L~[0, 1 ] ~ L ~ [ 0 ,  1] is a bounded linear operator. If f (t)= ~ biI~j(x), 
j=l  

k 

where Ex .. . . .  Ek are disjoint intervals and ~ E j =  I-0, 1], then it is easy to 
j = l  

check that for 0 < H <  1, Af(.)EC1-O, 1]. Of course, functions in C[-0, 1] are 
uniform limits of such step functions, and hence A bounded implies A: C1-0, 
1] ~ C1-0, 1]. 

Since A is bounded, and the series (4.30) converges uniformly, we have 

(4.35) AJf( t )= ~. ~ ak,(W)(AOk,)(t ) 
n = 0 k ~ F ( n )  

converging uniformly on [-0, 11. Now 

x 
(4.36) O~,(x) = ~ ( x - u )  u -  1/2f~, (u) du, 

0 

and hence from [9, pp. 4 1 4 2 ]  we see that (4.36) is Abel's integral equation 
with "inverse operator" A satisfying 

t 

(4.37) A (~kk,) (t) = ~ fk, (X) d x = ~bk, (t). 
0 

Substituting (4.37) into (4.35) we get with probability one that 

(4.38) AX(t)= ~ ~ ak,(W) ~k,(t)=W(t). 
n = 0 kEF(n )  

Using (4.38) in (4.30) we get 

(4.39) Jr ( t )= ~ ~ c%(AX)Ok,(t) ( 0 < t < l ) .  
n = 0 k ~ F ( n )  

O~k n o A "  Now { ~ . k~F(n), n=>0} consists of linear functionals on C[0, 1], and 
{%,oA(X): k~F(n), n>0}  is i.i.d. N(0, 1), so 97 Gaussian implies (4.39) converges 
in L p for any p_> 1. Hence 

(4.40) S a k. o A (t) = E (c~ k. o A (J~) J~ (t)) 

= 0 ~ .  (t) 
t 

= ~ (t-- s) ~- 1/2fk,(S ) ds. 
0 

Thus (4.39) represents {)~(t): 0_< t_< 1} as in (2.1), so Theorem 2.1 can be applied 
to .~. 

To express (4.39) in terms of a single index d as in (2.1) we order the sequence 
{CCknoA: k~F(n), n=>0} lexicographically. That is, (hi, kl)<(n2,  k2) if nl<n2 
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or n~=nz and k l < k  2. Hence FIa(X ) is the sum of the first d terms of (4.39) 
in this ordering. 

Since Card F(n) = 2"- a for n => 1 with F(0) = {0}, we see that for 

(4.41) 2" < d < 2" + t, 

Jensen's inequality implies 

(4.42) E I1R -- H a (J~ I1 _-< EII Jf - H2,-()7)l[ 

n = m k e s  

< ~" C n 2 - " n E ( m a x  [~k, oA(J?)[) 
n = m k e  F ( n )  

by (4.18) 

___< C ~ 2-"U(L2") 1/2 
n = m  

by (4.31) since A(X) has the same distribution as Wby (4.38). 

Combining (4.41) and (4.42) we see there is a constant C <  oo such that 

(4.43) E [[ )~ - Ha ()~)[[ < Cd -U(Ld)~/2. 

Hence for (2.4) we may choose d, as a large constant multiple of the solution 
of 

d -(H+ 1)(Ld)1/2 = (Lzn)(Ln)- 1/2 

Thus 
[ Ln \zn+z 

d, ~L2n ) 

and 

(4.44) ~n ~" (L2 n/Ln) {z n + 1)/(2 n + z). 

Hence by Theorem 2.1, and that J~ and X have the same distribution we have 
(4.17) for s, = y(Lzn/Ln) (2H+ 1)/(2a+2) provided V > 0 is sufficiently large. 

The proof  of Lemma 4.3 is now completed by rescaling as in Lemma 3.1 
with ~n='~(L3n/Lzn) CzH+I)/t2H+z). Thus Part A is proved and Part B follows 
immediately from Lemma 4.1. Hence it remain~ to verify Part C, but this follows 
immediately from Theorem 2.3, the remark following its statement, and by res- 
caling. The rescaling in this situation is slightly more complicated as we need 
to know that 

(4.45) lim H t/n [I < oo 
n 
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and  

(4.46) 

where  

lim I171. II < o0 
/1 

tl.(t) = X ( n t ) / ( 2 n 2 n L 2 n )  1/2 
71. = Y(n  0/(2 n zn  L2 n) 1/2. 

To prove  (4.46)let  n r = exp {r/(L r) 2} and  define 

Yr(t) = Y(nr t)/n~. 

Then  by  self-s imilar i ty  and  (2.6) app l i ed  to  {Y~: r_>_ 1}, it fol lows tha t  

(4.47) l im [171.r II < oo 
P 

as L 2 n, ~ Lr. Since the  inc rements  of  { Y(t): t > 0} are  s t a t i ona ry  and  nr/n r_ 1 ~ 1, 
self-similari ty,  (4.47), and  (2.6) comb ine  to  imply  (4.46). 

A p p l y i n g  the m e t h o d s  of  L e m m a  4.1 we can  also show 

l im IIZ(n(~ 
, (2n2BLzn)X/2 <Go, 

and  combin ing  this wi th  (4.46) easily yields (4.45). Hence  T h e o r e m  4.1 is p roved .  
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