The exponent for the mean square displacement of self-avoiding random walk on the Sierpinski gasket

Tetsuya Hattori ${ }^{1}$ and Shigeo Kusuoka ${ }^{2}$
${ }^{1}$ Laboratory of Applied Mathematics and Mathematical Physics, Department of Information Science, Faculty of Engineering, Utsunomiya University, Utsunomiya 321, Japan
${ }^{2}$ Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan

Received July 15, 1991; in revised form February 17, 1992

Summary. The authors rigorously prove that the exponent for the mean square displacement of self-avoiding random walk on the Sierpinski gasket is $\log 2 / \log \left(\frac{7-\sqrt{5}}{2}\right)=0.79862>0.5>\log 2 / \log 5$.

Mathematics Subject Classifications: 60K35, 82A99

0 Introduction

Let us define the pre-Sierpinski Gasket as follows. Let $O=(0,0) . a_{0}=\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$, $b_{0}=(1,0)$, and let F_{0} be a graph which consists of the vertices and the edges of the equilateral triangle $\Delta O a_{0} b_{0}$. Let us define a sequence of graphs inductively by

$$
F_{n+1}=F_{n} \cup\left(F_{n}+2^{n} a_{0}\right) \cup\left(F_{n}+2^{n} b_{0}\right), \quad n=0,1,2, \ldots,
$$

where, $A+a=\{x+a \mid x \in A\}$, and $k A=\{k x \mid x \in A\}$. Let $F=\bigcup_{n=0}^{\infty} F_{n} . F$ is the preSierpinski Gasket. Let G_{0} be the set of the vertices in F, and $a_{n}=2^{n} a_{0}, b_{n}=2^{n} b_{0}$.

We define the set of self-avoiding paths W_{0} on G_{0} to be the set of mappings $w: \mathbb{Z}_{+} \rightarrow G_{0}$ such that $w(0)=0$ and that there exists $L(w) \in \mathbf{Z}_{+} \cup\{\infty\}$ for which $w(i)=w(L(w)), i \geqq L(w), w\left(i_{1}\right) \neq w\left(i_{2}\right), 0 \leqq i_{1}<i_{2} \leqq L(w), w(i) w(i+1) \subset F$, and $\mid w(i)$ $-w(i+1) \mid=1,0 \leqq i \leqq L(w)-1$. We call $L(w)$ the length of the path w. Also, we define $\|w\|$, $w \in W_{0}$, by $\|w\|=\max \{|w(k)| ; k=1,2, \ldots, L(w)\}$.

Let $N_{n}=\neq\left(\left\{w \in W_{0} ; L(w)=n\right\}\right)$. We define probability measures P_{n}, $n=1,2, \ldots$, on W_{0} given by

$$
P_{n}(A)=N_{n}^{-1} \neq(\{w \in A ; L(w)=n\}), \quad A \subset W_{0} .
$$

We show the following results in the present paper.
Theorem. (1) $\lim _{n \rightarrow \infty}\left(\frac{1}{n}\right) \cdot \log N_{n}=\beta_{c}$. Here β_{c} is the critical inverse temperature given in Hattori et al. [4] (See Proposition 1.1 in this paper also), and $\beta_{c}=0.827691$ ($e^{\beta_{c}}=2.2880$).
(2) For any $s>0, \quad \lim _{n \rightarrow \infty}(\log n)^{-1} \cdot \log E^{P_{n}}\left[|w(n)|^{5}\right]=v \cdot s . \quad$ Here $v=\log 2 / \log$ $\left(\frac{7-\sqrt{5}}{2}\right)=0.79862$.
(3) There is an $\alpha>0$ such that

$$
P_{n}\left[(\log n)^{-\alpha_{n} v} \leqq\|w\| \leqq(\log n)^{\alpha_{n} v}\right] \rightarrow 1, \quad n \rightarrow \infty .
$$

This theorem says that "the exponent for mean square displacement of selfavoiding random walk in Sierpinski Gasket" is $2 v$. This number has been given in Ben et al. in [2], Dhar [3], Klein and Seiz [5] and Rammal et al. [7]. However, we believe that this is the first time a mathematically rigorous proof has been given.

Unfortunately, our results are not so sharp. For example, we could not prove that

$$
0<\varliminf_{n \rightarrow \infty} n^{-s v} E^{P_{n}}\left[|w(n)|^{s}\right] \leqq \varlimsup_{n \rightarrow \infty} n^{-s v} E^{P_{n}}\left[|w(n)|^{s}\right]<\infty .
$$

So several problems are still open from a mathematical point of view.

1 Preliminary

In this section, we summarize some facts which were proven in Hattori et al. [4] for later use and give some additional results. The proof of the main theorem relies strongly on the results in [4], and the reader is requested to be familiar with [4] to comprehend the detail of the proof.

Let $W^{(n)}$ and $\tilde{W}^{(n)}, n \geqq 1$, be subsets of W_{0} given by
and

$$
W^{(n)}=\left\{w \in W_{0} ; w(L(w))=a_{n}, w(i) \neq b_{n}, i \geqq 0\right\},
$$

$$
\begin{aligned}
\tilde{W}^{(n)} & =\left\{w \in W_{0} ; w(L(w))=a_{n}, w(i)=b_{n}, \text { for some } i \geqq 0\right. \\
& \text { and } \left.w(i) \in F_{n}, i \geqq 0\right\} .
\end{aligned}
$$

Let $Z_{n}(\beta)=\sum_{w \in W^{(n)}} e^{-\beta \cdot L(w)}$ and $\widetilde{Z}_{n}(\beta)=\sum_{w \in \tilde{W}^{(n)}} e^{-\beta \cdot L(w)}, n \geqq 1, \beta \in \mathbb{R}$.
Let $G: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ be an algebraic map given by

$$
G(x, y)=\left((x+y)^{2}+x^{2}(x+2 y), x y(x+2 y)\right), \quad(x, y) \in \mathbb{C}^{2} .
$$

Also, let $\Phi_{n}: \mathbb{C}^{2} \rightarrow \mathbb{C}$ and $\Theta_{n}: \mathbb{C}^{2} \rightarrow \mathbb{C}, n \geqq 1$ be given by $\left(\Phi_{n}(x, y), \Theta_{n}(x, y)\right)=G^{n}(x$, $y)$, $(x, y) \in \mathbb{C}^{2}$, where G^{n} is defined by $G^{1}(x, y)=G(x, y)$, and $G^{n+1}(x, y)$
$=G\left(G^{n}(x, y)\right)$ inductively. Then we have $Z_{n}(\beta)=\Phi_{n}\left(e^{-\beta}, e^{-2 \beta}\right)$ and $\tilde{Z}_{n}(\beta)$ $=\Theta_{n}\left(e^{-\beta}, e^{-2 \beta}\right), n \geqq 1, \beta \in \mathbb{R}$.

Also, for any $(x, y) \in(0, \infty)^{2}$, let $R_{n}(x, y)=\frac{\Theta_{n}(x, y)}{\Phi_{n}(x, y)}, n \geqq 1$, and $R_{0}(x, y)=\frac{y}{x}$.
Let $D=\left\{(x, y) \in(0, \infty)^{2} ; \sup _{n} \Phi_{n}(x, y) \leqq \frac{\sqrt{5}-1}{2}\right\}$. Then we have the following [4, Sect. 2].
(1.1) Proposition. (1) D is a closed set in $(0, \infty)^{2}$ and the closure of D in \mathbb{R}^{2} contains the point $(a, 0)$. Hence $a=\frac{\sqrt{5}-1}{2}$.
(2) If $(x, y) \in \partial D \cap(0, \infty)^{2}$, then $\lim \Phi_{n}(x, y)=a$.
(3) If $(x, y) \in D \backslash \partial D$, then $\lim _{n \rightarrow \infty} 2^{-\frac{n \rightarrow \infty}{n}} \log \Phi_{n}(x, y)$ exists and is negative.
(4) If $(x, y) \in D$, then $\lim _{n \rightarrow \infty} \Theta_{n}(x, y)=0$.
(5) If $(x, y) \in D, 0<x^{\prime}<x$ and $0<y^{\prime}<y$, then $\left(x^{\prime}, y^{\prime}\right) \in D \backslash \partial D$.
(6) There is a unique $\beta_{c}>0$ such that $\left(\exp \left(-\beta_{c}\right), \exp \left(-2 \beta_{c}\right)\right) \in \partial D$.
(7) $R_{n}(x, y) \leqq R_{n-1}(x, y), n \geqq 1, x, y \in(0, \infty)^{2}$, and $R(x, y)=\lim _{n \rightarrow \infty} R_{n}(x, y)$ is continuous in $(x, y) \in(0, \infty)^{2}$. Moreover, $R(x, y)=0$, for any $(x, y) \in D$.

We define probability measures $\mu_{n}(\beta), \beta \in R, n \geqq 1$, on W_{0} by

$$
\mu_{n}(\beta)(A)=Z_{n}(\beta)^{-1} \sum_{w \in A \cap W^{(n)}} e^{-L(w) \beta}, \quad A \subset W_{0} .
$$

Let v_{n} denote the probability law of $\lambda^{-n} L(w)$ under $\mu_{n}\left(\beta_{c}\right)(d w), n \geqq 1$. Here λ $=\frac{7-\sqrt{5}}{2}$. Then we have

$$
\int_{0}^{\infty} \exp (-\xi x) v_{n}(d x)=Z_{n}\left(\beta_{c}\right)^{-1} Z_{n}\left(\beta_{c}+\lambda^{-n} \xi\right), \quad \xi \in \mathbb{C} .
$$

Moreover, we have the following [4, Theorem 0.3 and Proposition 4.17].
(1.2) Proposition. v_{n} converges in law to a certain probability measure v_{∞} in $(0, \infty)$. The laplace transform $g(\xi)=\int_{0}^{\infty} \exp (-\xi x) v_{\infty}(d x)$ is an entire function in ξ and satisfies

$$
\begin{equation*}
g(\lambda \xi)=a^{2} \cdot g(\xi)^{3}+a \cdot g(\xi)^{2}, \quad \xi \in \mathbb{C} \tag{1.3}
\end{equation*}
$$

and $g^{\prime}(0)<0$. Here $a=\frac{\sqrt{5}-1}{2}$ again. Moreover,

$$
\int_{0}^{\infty} \exp (-\xi x) v_{n}(d x) \rightarrow g(\xi), \quad n \rightarrow \infty
$$

uniformly in ξ on any bounded set in \mathbb{C}.

We have the following regularity result for the probability measure v_{∞}.
(1.4) Proposition. There is a smooth function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x)=0, x \leqq 0$, $f(x)>0, x>0$, and $v_{\infty}(d x)=f(x) d x$.

Proof. By the fact that $g^{\prime}(0)<0$ and g satisfies the function equality (1.3), we see that the probability measure v_{∞} has a smooth density f (see the argument [6, Sect. 3, Theorem 3.19] or [1, Lemmas 3.4 and 3.6]). Then the formula (1.3) implies that

$$
\begin{equation*}
\lambda^{-1} f\left(\lambda^{-1} x\right)=a \cdot(f * f)(x)+a^{2} \cdot(f * f * f)(x), \quad x>0 . \tag{1.5}
\end{equation*}
$$

So it is sufficient to show that supp $f=[0, \infty)$.
Let A be the support of f. Then A is a closed set in $[0, \infty)$ and (1.5) implies that if $x, y, z \in A$, then $\lambda^{-1}(x+y), \lambda^{-1}(x+y+z) \in A$. Note that $2<\lambda<3$. There is an $x_{0} \in A$ such that $x_{0}>0$. Then we see that $\left(2 \lambda^{-1}\right)^{n} x_{0} \in A, n \geqq 1$. So we see that $0 \in A$. Therefore we see that if $x, y, z \in A$, then $0, \lambda^{-1} x, \lambda^{-1}(x+y), \lambda^{-1}(x+y$ $+z) \in A$. So by induction, we see that $m \cdot \lambda^{-n} x_{0} \in A, m=0,1, \ldots, 3^{n}$. This implies that $A=[0, \infty)$.

This completes the proof.
(1.6) Proposition. (1) $C_{0}=\sup Z_{n}\left(\beta_{c}-\lambda^{-n}\right)<\infty$, and $\widetilde{Z}_{n}\left(\beta_{c}-\lambda^{-n}\right) \rightarrow 0$.
(2) There are $n_{0} \geqq 1, C_{1}>0$ and $\gamma_{1}>0$ such that

$$
\left|Z_{n+m}\left(\beta_{c}+\lambda^{-n} \xi\right)\right| \leqq C_{1} \cdot \exp \left(-\gamma_{1} \cdot 2^{m}\right)
$$

for any $n \geqq n_{0}, m \geqq 1$ and $\xi \in \mathbb{C}$ with $\operatorname{Re} \xi \geqq 0$ and $\lambda^{-1} \leqq|\xi| \leqq \lambda^{2}$.
(3) There are $C_{2}>0$ and $\gamma_{2}>0$ such that

$$
Z_{n+m}\left(\beta_{c}+\lambda^{-n}\right)+\tilde{Z}_{n+m}\left(\beta_{c}+\lambda^{-n}\right) \leqq C_{2} \cdot \exp \left(-\gamma_{2} \cdot 2^{m}\right)
$$

for any $n \geqq n_{0}$ and $m \geqq 1$. Here n_{0} is as in the assertion (2).
Proof. (1) By Proposition 1.2, we see that $\lim _{n \rightarrow \infty} Z_{n}\left(\beta_{c}-\lambda^{-n}\right)=g(-1)>0$. By Proposition 1.1(7), we see that

$$
Z_{n}\left(\beta_{c}-\lambda^{-n}\right)^{-1} \tilde{Z}_{n}\left(\beta_{c}-\lambda^{-n}\right) \leqq R_{m}\left(\exp \left(-\left(\beta_{c}-\lambda^{-n}\right)\right), \exp \left(-2\left(\beta_{c}-\lambda^{-n}\right)\right)\right)
$$

for any $n \geqq m$. So we see that

$$
\overline{\lim }_{n \rightarrow \infty} Z_{n}\left(\beta_{c}-\lambda^{-n}\right)^{-1} \widetilde{Z}_{n}\left(\beta_{c}-\lambda^{-n}\right) \leqq R_{m}\left(\exp \left(-\beta_{c}\right), \exp \left(-2 \beta_{c}\right)\right) .
$$

However, by Proposition 1.1 (6) and (7) we have

$$
\lim _{m \rightarrow \infty} R_{m}\left(\exp \left(-\beta_{c}\right), \exp \left(-2 \beta_{c}\right)\right)=R\left(\exp \left(-\beta_{c}\right), \exp \left(-2 \beta_{c}\right)\right)=0
$$

These imply the assertion (1).
(2) Let $A=\left\{\xi \in \mathbb{C} ; \operatorname{Re} \xi \geqq 0, \lambda^{-1} \leqq|\xi| \leqq \lambda_{\infty}^{2}\right\}$. Then by Proposition 1.2 , we see that $Z_{n}\left(\beta_{c}\right)^{-1} \cdot Z_{n}\left(\beta_{c}+\lambda^{-n} \xi\right)$ converges to $\int_{0} \exp (-\xi x) f(x) d x$ uniformly in $\xi \in A$ as $n \rightarrow \infty$. Also we see that $\left|\tilde{Z}_{n}\left(\beta_{c}+\lambda^{-n} \xi\right)\right| \leqq \tilde{Z}_{n}\left(\beta_{c}\right), \xi \in A$. Note that by Proposi-

1

2

3

Fig. 1
tion $1.4 \sup \left\{\left|\int_{0}^{\infty} \exp (-\xi x) f(x) d x\right| ; \xi \in A\right\}<1$. Therefore there is an $\varepsilon>0$ and $n_{1} \geqq 1$ such that $\left|Z_{n}\left(\beta_{c}+\lambda^{-n} \xi\right)\right| \leqq a-\varepsilon$ for all $n \geqq n_{1}$ and $\xi \in A$. By Proposition 1.1, there is a $\delta>0$ such that $(a-\varepsilon, \delta) \in D \backslash \partial D$. There is an $n_{0} \geqq n_{1}$ such that $\left|Z_{n}\left(\beta_{c}+\lambda^{-n} \xi\right)\right| \leqq a-\varepsilon$ and $\left|\widetilde{Z}_{n}\left(\beta_{c}+\lambda^{-n} \xi\right)\right| \leqq \delta$ for any $n \geqq n_{0}$ and $\xi \in A$. Then we see that

$$
\sup \left\{\left|Z_{n+m}\left(\beta_{c}+\lambda^{-n} \xi\right)\right| ; \xi \in A\right\} \leqq \Phi_{m}(a-\varepsilon, \delta), \quad n \geqq n_{0}, \quad m \geqq 1
$$

By Proposition $1.1(3)$, we have $\varlimsup_{m \rightarrow \infty} 2^{-m} \log \Phi_{m}(\mathbf{a}-\varepsilon, \delta)<0$. This implies our assertion (2).
(3) By Proposition 1.1(7), we see that

$$
Z_{n}(\beta)^{-1} \widetilde{Z}_{n}(\beta) \leqq R_{0}\left(e^{-\beta}, e^{-2 \beta}\right)=e^{-\beta} \leqq 1, \quad n \geqq 1, \quad \beta>0
$$

So the assertion (3) follows from the assertion (2).
This completes the proof.

2 Estimates for the number of self-avoiding paths

Let $N_{n}=\neq\left(\left\{w \in W_{0} ; L(w)=n\right\}\right), n \geqq 1$. We will estimate N_{n} from above and below. Let $D: W_{0} \rightarrow\{0,1, \ldots\}$ be a map given by

$$
\begin{equation*}
D(w)=\min \left\{n \geqq 0 ; w(i) \in F_{n} \text { for all } i \geqq 0\right\}, \quad w \in W_{0} \tag{2.1}
\end{equation*}
$$

Now for each $n \geqq 0$, let

$$
M_{n}=\sum_{w \in W_{0}, \boldsymbol{D}(w) \leqq n} \exp \left(-\beta_{c} L(w)\right) .
$$

Obviously $M_{n+1}-M_{n}$ is the summation of $\exp \left(-\beta_{c} L(w)\right)$ for $w \in W_{0}$ such that $D(w)=n+1$. The path $w \in W_{0}$ with $D(w)=n+1$ can be classified into three types (see Fig. 1). The summation of $\exp \left(-\beta_{c} L(w)\right)$ for $w \in W_{0}$ of type 1 (resp. type 2 , type 3) is dominated by $2\left(Z_{n}\left(\beta_{c}\right)+\widetilde{Z}_{n}\left(\beta_{c}\right)\right) M_{n}$ (resp. $2\left(Z_{n}\left(\beta_{c}\right)+\widetilde{Z}_{n}\left(\beta_{c}\right)\right)^{2} M_{n}$, $\left.2 Z_{n}\left(\beta_{c}\right)\left(Z_{n}\left(\beta_{c}\right)+\widetilde{Z}_{n}\left(\beta_{c}\right)\right)^{2} M_{n}\right)$. So we have

$$
\begin{aligned}
M_{n+1} \leqq & M_{n}+2\left(Z_{n}\left(\beta_{c}\right)+\widetilde{Z}_{n}\left(\beta_{c}\right)\right) M_{n}+2\left(Z_{n}\left(\beta_{c}\right)+\widetilde{Z}_{n}\left(\beta_{c}\right)\right)^{2} M_{n} \\
& +2 Z_{n}\left(\beta_{c}\right)\left(Z_{n}\left(\beta_{c}\right)+\widetilde{Z}_{n}\left(\beta_{c}\right)\right)^{2} M_{n}
\end{aligned}
$$

for any $n \geqq 1$.

Take an $A_{0} \in \mathbb{R}$ with $A_{0}>1+2 a+2 a^{2}+2 a^{3}(=1+4 a)$ and fix it. Since $Z_{n}\left(\beta_{c}\right) \rightarrow a$ and $\widetilde{Z}_{n}\left(\beta_{c}\right) \rightarrow 0$ as $n \rightarrow \infty$, we see that there is a constant C_{3} such that

$$
\begin{equation*}
M_{n} \leqq C_{3} \cdot A_{0}^{n}, \quad n \geqq 1 \tag{2.2}
\end{equation*}
$$

It is easy to see that

$$
\log L(w) / \log 3 \leqq D(w) \leqq \log L(w) / \log 2, \quad w \in W_{0} .
$$

Therefore we have

$$
\begin{aligned}
& \exp \left(-\beta_{c} n\right) N_{n}[\log n / \log 2] \\
& \quad \leqq \sum_{k=[\log n / \log 3]} M_{k} \leqq C_{2} A_{0}\left(A_{0}-1\right)^{-1} A_{0} \log n / \log 2 .
\end{aligned}
$$

Therefore we have the following.
(2.3) Proposition. There are constants C_{4} and γ_{4} such that

$$
N_{n} \leqq C_{4} \cdot n^{\gamma_{4}} \cdot \exp \left(\beta_{c} n\right), \quad n \geqq 1
$$

To obtain lower estimate, we make some preparations.
(2.4) Proposition. Let $g(x)=(2 \pi)^{-1 / 2} \exp \left(-x^{2} / 2\right), \quad x \in \mathbb{R}$, and $g(x ; h)$ $=h^{-1} g\left(h^{-1} x\right), x \in \mathbb{R}, h>0$. Also, let $h_{n}=b \cdot \lambda^{-n} \cdot n^{1 / 2}, b>0, n \geqq 1$. If b is sufficiently large, then

$$
\left(v_{n} * g\left(\cdot ; h_{n}\right)\right)(x) \rightarrow f(x) \quad \text { uniformly in } x \in \mathbb{R} \quad \text { as } n \rightarrow \infty
$$

Proof. Let $\varphi_{n}(\eta)=\int_{\mathbb{R}} e^{i \eta x}\left(v_{n} * g\left(\cdot ; h_{n}\right)\right)(x) d x$, and $\varphi(\eta)=\int_{\mathbb{R}} e^{i \eta x} f(x) d x, \eta \in \mathbb{R}$. Then we see that

$$
\varphi_{n}(\eta)=Z_{n}\left(\beta_{c}\right)^{-1} Z_{n}\left(\beta_{c}-i \lambda^{-n} \eta\right) \exp \left(-h_{n}^{2} \eta^{2} / 2\right)
$$

Let n_{0} be an integer as in Proposition 1.6. Assume that $|\eta| \in\left[1, \lambda^{n-n_{0}}\right]$. Then there is an $m \in\left\{1, \ldots, n-n_{0}\right\}$ such that $\lambda^{-1} \leqq \lambda^{-m}|\eta| \leqq 1$. Then we see that

$$
\begin{aligned}
\left|Z_{n}\left(\beta_{c}-i \lambda^{-n} \eta\right)\right| & =\left|Z_{n-m+m}\left(\beta_{c}-i \lambda^{-(n-m)}\left(\lambda^{-m} \eta\right)\right)\right| \\
& \leqq C_{1} \cdot \exp \left(-\gamma_{1} \cdot 2^{m}\right) \\
& \leqq C_{1} \cdot \exp \left(-\gamma_{1} \cdot|\eta|^{\log 2 / \log \lambda}\right)
\end{aligned}
$$

for any $\eta \in\left[-\lambda^{n-n_{0}},-1\right] \cup\left[1, \lambda^{n-n_{0}}\right]$. Since $\varphi_{n}(\eta) \rightarrow \varphi(\eta), n \rightarrow \infty$, for each $\eta \in \mathbb{R}$, we have by the dominated convergence theorem that

$$
\int_{\mathbb{R}}\left|\chi_{\left[0, \lambda^{\left.n-n_{0}\right]}\right.}(|\eta|) \cdot \varphi_{n}(\eta)-\varphi(\eta)\right| d \eta \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

On the other hand,

$$
\begin{aligned}
& \int_{\mathbb{R}}\left|1-\chi_{\left[0, \lambda^{\left.n-n_{0}\right]}\right.}(\eta)\right| \cdot\left|\varphi_{n}(\eta)\right| d \eta \\
& \quad \leqq 2 \int_{\lambda n-n_{0}}^{\infty} \exp \left(-h_{n}^{2} \eta^{2} / 2\right) d \eta \\
& \leqq 2 \cdot h_{n}^{-1}\left(h_{n} \lambda^{n-n_{0}}\right)^{-1} \cdot \exp \left(-\left(h_{n} \lambda^{n-n_{0}}\right)^{2} / 2\right) \\
& \quad=2 \lambda^{n_{0}} \cdot b^{-2} \lambda^{n} \cdot n^{-1} \cdot \exp \left(-\left(\left(\lambda^{-n_{0}} b\right)^{2} n\right) / 2\right) \\
& \quad \rightarrow 0, n \rightarrow \infty, \quad \text { if } b \text { is sufficiently large. }
\end{aligned}
$$

So we see that if b is sufficiently large, then

$$
\int_{\mathbb{R}}\left|\varphi_{n}(\eta)-\varphi(\eta)\right| d \eta \rightarrow 0, \quad \text { as } n \rightarrow \infty
$$

This implies our assertion.
(2.5) Proposition. There are constants $C_{5}>0$ and $\gamma_{5}>0$ such that

$$
N_{n} \geqq C_{5} \cdot n^{-\gamma_{5}} \exp \left(\beta_{c} n\right), \quad n \geqq 1
$$

Proof. Let b be a sufficiently large number satisfying Proposition 2.4. Recall that

$$
\left(v_{n} * g\left(\cdot ; h_{n}\right)\right)(x)=\int_{\mathbb{R}} g\left(x-y ; h_{n}\right) v_{n}(d y), \quad x \in \mathbb{R}
$$

Let $k_{n}=b \cdot(2 \cdot \log \lambda)^{1 / 2} n \cdot \lambda^{-n}$. Then $g\left(k_{n} ; h_{n}\right)=\left(2 \pi b^{2} n\right)^{-1 / 2} \rightarrow 0$ as $n \rightarrow \infty$. So we see that

$$
\int_{\mathbb{R} \backslash\left[x-k_{n}, x+k_{n}\right]} g\left(x-y ; h_{n}\right) v_{n}(d y) \leqq g\left(k_{n} ; h_{n}\right) \rightarrow 0 .
$$

This proves that

$$
\left.\sup \left\{\mid f(x)-\int_{\left[x-k_{n}, x+k_{n}\right]} g(x-y) ; h_{n}\right) v_{n}(d y) \mid ; x \in \mathbb{R}\right\} \rightarrow 0, \quad \text { as } n \rightarrow \infty
$$

Since $f(x)>0, x>0$, this implies that there are $n_{1} \geqq 1$ and $\varepsilon>0$ such that

$$
h_{n}^{-1} v_{n}\left(\left[x-k_{n}, x+k_{n}\right]\right) \geqq \varepsilon
$$

for any $n \geqq n_{1}$ and $x \in\left[\lambda^{-1}, \lambda^{2}\right]$.
Now let $m \in \mathbb{N}$. Then there is an $n \geqq 1$ such that $\lambda^{-n} m \in[1, \lambda]$. If m is large enough, then $n \geqq n_{1}$ and $k_{n} \leqq 1-\lambda^{-1}$, and so we have $v_{n}\left(\left[\lambda^{-n} m-2 k_{n}, \lambda^{-n} m\right]\right)$ $\geqq h_{n} \varepsilon$. This implies that

$$
\begin{aligned}
& Z_{n}\left(\beta_{c}\right) h_{n} \varepsilon \leqq \sum_{w \in W^{(N)}, L(w) \in\left[m-2 k_{n} \lambda^{n}, m\right]} \exp \left(-\beta_{c} L(w)\right) \\
& \quad \leqq \exp \left(\beta_{c} \cdot 2 k_{n} \lambda^{n}\right) \cdot \exp \left(-\beta_{c} m\right) N_{m}
\end{aligned}
$$

Fig. 2
because $w \in W^{(n)}$ with $L(w) \leqq m$ can be extended to a path $w^{\prime} \in W_{0}$ with $L\left(w^{\prime}\right)=m$. Therefore we have

$$
N_{m} \geqq Z_{n}\left(\beta_{c}\right) \varepsilon b \cdot \lambda^{-n} n^{1 / 2} \exp \left(-2 \beta_{c} b \cdot(2 \cdot \log \lambda)^{1 / 2} n\right) \exp \left(\beta_{c} m\right)
$$

Since $n \leqq \log m / \log \lambda$, this implies our assertion.

3 Estimates for numbers of short paths and long paths

For $n, m \geqq 0$, let $U_{n, m}$ be the summation of $\exp \left(-\beta_{c} L(w)\right)$ for all $w \in W_{0}$ such that $D(w) \leqq n$ and $L(w) \geqq \lambda^{n+m / 2}$, and let $V_{n, m}$ be the summation of $\exp \left(-\beta_{c} L(w)\right)$ for all $w \in W_{0}$ such that $D(w)=n+1$ and $L(w) \leqq \lambda^{n-m}$.

The purpose of this section is to prove the following.
(3.1) Proposition. (1) There are constants C_{6} and $\gamma_{6}>0$ such that $U_{n, m}$ $\leqq C_{6} \cdot A_{0}^{n} \cdot \exp \left(-\gamma_{6} \cdot \lambda^{m / 2}\right), n, m \geqq 0$.
(2) There are constants C_{7} and $\gamma_{7}>0$ such that

$$
V_{n, m} \leqq C_{7} \cdot A_{0}^{n} \cdot \exp \left(-\gamma_{7} \cdot 2^{m}\right), \quad n, m \geqq 0
$$

Proof. For any $n, m \geqq 0$ and $t>0$, let $S_{n, m}(t)$ (resp. $\widetilde{S}_{n, m}(t)$) be the summation of $\exp \left(-\beta_{c} L(w)\right)$ for all $w \in W^{(n)}$ (resp. $\left.\widetilde{W}^{(n)}\right)$ such that $L(w) \geqq \lambda^{n+m / 2} t$. Also, for any $0 \leqq m \leqq n$, let $T_{n, m}$ (resp. $\widetilde{T}_{n, m}$) be the summation of $\exp \left(-\beta_{c} L(w)\right.$) for all $w \in W^{(n)}$ (resp. $\tilde{W}^{(n)}$) such that $L(w) \leqq \lambda^{n-m}$.
(1) Note that $\lambda^{n+1+m / 2}-\lambda^{n+(m+1) / 2}=\lambda^{n+m / 2}\left(\lambda-\lambda^{1 / 2}\right)$. Let $t=\left(\lambda-\lambda^{1 / 2}\right) / 3$. Then we have

$$
\begin{align*}
U_{n+1, m} \leqq\{ & 1+2\left(Z_{n}\left(\beta_{c}\right)+\widetilde{Z}_{n}\left(\beta_{c}\right)\right)+2\left(Z_{n}\left(\beta_{c}\right)+\widetilde{Z}_{n}\left(\beta_{c}\right)\right)^{2} \tag{3.2}\\
& \left.+2 Z_{n}\left(\beta_{c}\right)\left(Z_{n}\left(\beta_{c}\right)+\widetilde{Z}_{n}\left(\beta_{c}\right)\right)^{2}\right\} U_{n, m+1}+\left\{2\left(S_{n, m}(t)+\widetilde{S}_{n, m}(t)\right)\right. \\
& +4\left(Z_{n}\left(\beta_{c}\right)+\widetilde{Z}_{n}\left(\beta_{c}\right)\right)\left(S_{n, m}(t)+\widetilde{S}_{n, m}(t)\right) \\
& +6\left(Z_{n}\left(\beta_{c}\right)+\widetilde{Z}_{n}\left(\beta_{c}\right)\right)^{2}\left(S_{n, m}(t)+\widetilde{S}_{n, m}(t)\right\} M_{n}
\end{align*}
$$

for any $n, m \geqq 0$. Let us explain how one obtains the inequality (3.2).
The summation of $\exp \left(-\beta_{c} L(w)\right)$ for $w \in W_{0}$ such that $D(w) \leqq n$ and $L(w)$ $\geqq \lambda^{n+1+m / 2}$ is dominated by $U_{n, m+1}$. This is the first term of the righthand side of (3.2). Remember that the path $w \in W$ with $D(w)=n+1$ can be classified into 3 types (Fig. 1). Since the other cases are similar, we only observe the path $w \in W_{0}$ of type 3 with $D(w)=n+1$. This path w consists of four parts w_{1}, w_{2}, w_{3} and w_{4} (see Fig. 2). The case that the length $L(w)$ of w is greater than or
equal to $\lambda^{n+1+m / 2}$ is covered by the following two cases: Case 1 , the length of w_{4} is greater than or equal to $\lambda^{n+(m+1) / 2}$, and Case 2 , one of the lengths of w_{1}, w_{2}, w_{3} is greater than or equal to $\lambda^{n+m / 2} t$.

The summation of $\exp \left(-\beta_{c} L(w)\right)$ for w in Case 1 (resp. Case 2) is dominated by $\left.\quad 2 Z_{n}\left(\beta_{c}\right)\left(Z_{n}\left(\beta_{c}\right)+\tilde{Z}_{n}\left(\beta_{c}\right)\right)^{2}\right) U_{n, m+1} \quad$ (resp. $\quad 6\left(Z_{n}\left(\beta_{c}\right)+\tilde{Z}_{n}\left(\beta_{c}\right)\right)^{2}\left(S_{n, m}(t)\right.$ $\left.+\tilde{S}_{n, m}(t)\right) M_{n}$). These are the fourth term and the seventh term of the righthand side of (3.2). The other terms come from the paths of types 1 and 2.

Let A_{0} be as in Sect. 2. Then there is an $n_{2} \geqq 1$ such that

$$
\begin{aligned}
& 1+2\left(\mathrm{Z}_{n}\left(\beta_{c}\right)+\widetilde{\mathrm{Z}}_{n}\left(\beta_{c}\right)\right)+2\left(\mathrm{Z}_{n}\left(\beta_{c}\right)+\widetilde{\mathrm{Z}}_{n}\left(\beta_{c}\right)\right)^{2} \\
& \quad+2 \mathrm{Z}_{n}\left(\beta_{c}\right)\left(\mathrm{Z}_{n}\left(\beta_{c}\right)+\widetilde{Z}_{n}\left(\beta_{c}\right)\right)^{2} \leqq \mathrm{~A}_{0}
\end{aligned}
$$

for any $n \geqq n_{2}$. Therefore by (2.2) we see that there is a constant $C<\infty$ such that

$$
A_{0}^{-(n+1)} U_{n+1, m} \leqq A_{0}^{-n} \cdot U_{n, m+1}+C\left(S_{n, m}(t)+\tilde{S}_{n, m}(t)\right)
$$

for any $n \geqq n_{2}$ and $m \geqq 0$. Note that $U_{n, m}=0$ if $m \geqq 4 n$. Therefore we see that

$$
A_{0}^{-n} \cdot U_{n, m} \leqq C A_{0}^{-1} \cdot \sum_{k=0}^{[4 n / 5]}\left(S_{n-k-1, m+k}(t)+\widetilde{S}_{n-k-1, m+k}(t)\right)
$$

for any $n \geqq 6 n_{2}$ and $m \geqq 0$.
On the other hand, we have

$$
\begin{aligned}
S_{n, m}(t) & \leqq \exp \left(-t \cdot \lambda^{m / 2}\right) \sum_{w \in W^{(n)}} \exp \left(-\left(\beta_{c}-\lambda^{-n}\right) L(w)\right) \\
& =\exp \left(-t \cdot \lambda^{m / 2}\right) \cdot Z_{n}\left(\beta_{c}-\lambda^{-n}\right), \quad n \geqq 1
\end{aligned}
$$

Similarly we have

$$
\widetilde{S}_{n, m}(t) \leqq \exp \left(-t \cdot \lambda^{m / 2}\right) \cdot \tilde{Z}_{n}\left(\beta_{c}-\lambda^{-n}\right)
$$

So there is a constant $C^{\prime}<\infty$ such that

$$
A_{0}^{-n} \cdot U_{n, m} \leqq C^{\prime} \cdot \sum_{k=0}^{\infty} \exp \left(-t \cdot \lambda^{(m+k) / 2}\right)
$$

for any $n \geqq n_{2}$ and $m \geqq 0$. This implies our assertion (1).
(2) Note that

$$
\begin{equation*}
V_{n, m} \leqq\left\{2\left(T_{n, m}+\widetilde{T}_{n, m}\right)+2\left(T_{n, m}+\widetilde{T}_{n, m}\right)^{2}+2\left(T_{n, m}+\widetilde{T}_{n, m}\right)^{3}\right\} M_{n} \tag{3.3}
\end{equation*}
$$

for any $n, m \geqq 0$. Observe that

$$
T_{n, m} \leqq e \cdot \sum_{w \in W^{(n)}} \exp \left(-\left(\beta_{c}+\lambda^{m-n}\right) L(w)\right)=e \cdot Z_{n}\left(\beta_{c}+\lambda^{m-n}\right)
$$

Similarly we have $\widetilde{T}_{n, m} \leqq e \cdot \widetilde{Z}_{n}\left(\beta_{c}+\lambda^{m-n}\right)$. So by Proposition 1.6 there are $n_{0} \in \mathbb{N}$, $\gamma_{2}>0$ and $C_{2}<\infty$ such that

$$
T_{n, m}+\widetilde{T}_{n, m} \leqq e \cdot C_{2} \cdot \exp \left(-\gamma_{2} \cdot 2^{m}\right)
$$

for any $n, m \geqq 0$ with $n \geqq n_{0}+m$. Combining this with (2.2) and (3.3), we have our assertion (2).

4 Proof of Theorem

First, we prove the following.
(4.1) Proposition. (1) There is an $\alpha>0$ such that

$$
P_{n}\left[\|w\| \leqq(\log n)^{-\alpha} \cdot n^{v}\right] \cdot \exp \left((\log n)^{2}\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty .
$$

(2) There is $a \beta>0$ such that

$$
P_{n}\left[\|w\| \geqq(\log n)^{\beta} \cdot n^{\nu}\right] \cdot \exp \left((\log n)^{2}\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty .
$$

Here $v=\log 2 / \log \lambda$ as in theorem.
Proof. (1) Let $K(\ell)=\left[\frac{\log \ell}{\log \lambda}\right], \ell=1,2, \ldots$, where $[x]$ stands for the maximum integer less than or equal to x. Then we see that $\lambda^{K(\ell)} \leqq \ell<\lambda^{K(\theta)+1}$ Also, it is easy to see that $2^{D(w)-1} \leqq\|w\| \leqq 2^{D(w)}, w \in W_{0}$.

By Proposition 3.1 we have for $0 \leqq m \leqq K(\ell)$

$$
\begin{aligned}
\# & \left(\left\{w \in W_{0} ; L(w)=\ell, D(w) \leqq K(\ell)-m\right\}\right) \\
& \leqq \exp \left(\beta_{c} \ell\right) \cdot U_{K(\ell)-m, 2 m} \\
& \leqq C \cdot \exp \left(\beta_{c} \ell+\left(\left(\log A_{0}\right) / \log \lambda\right) \cdot \log \ell-\gamma \cdot \lambda^{m}\right) .
\end{aligned}
$$

So combining this with Proposition 2.5, we see that if a is large enough, there is a constant C^{\prime} such that

$$
P_{n}[D(w) \leqq K(n)-a \cdot \log (\log n)] \leqq C^{\prime} \cdot \exp \left(-(\log n)^{3}\right), \quad n=1,2, \ldots
$$

This implies our assertion (1).
(2) By Proposition 3.1 we have for $m, k \geqq 0$

$$
\begin{aligned}
\# & \left(\left\{w \in W_{0} ; L(w)=\ell, D(w)=K(\ell)+m+k+2\right\}\right) \\
& \leqq \exp \left(\beta_{c} \ell\right) \cdot V_{K(\ell)+m+k+1, m+k} \\
& \leqq C \cdot \exp \left(\beta_{c} \ell\right) A_{0}^{(\ell)\}+m+k+1} \cdot \exp \left(-\gamma \cdot 2^{m+k}\right) \\
& \left.\leqq C \cdot A_{0} \cdot \exp \left(\beta_{c} \ell\right)+K(\ell) \cdot \log A_{0}+m \cdot \log A_{0}-\gamma \cdot 2^{m-1}\right) \cdot A_{0}^{k} \cdot \exp \left(-\gamma \cdot 2^{k-1}\right) .
\end{aligned}
$$

Therefore if b is sufficiently large, there is a constant C^{\prime} such that

$$
P_{n}[D(w) \geqq K(n)+b \cdot \log (\log n)] \leqq C^{\prime} \cdot \exp \left(-(\log n)^{3}\right), \quad n=1,2, \ldots
$$

This implies our assertion (2).
This completes the proof.

Fig. 3
(4.2) Lemma.

$$
\begin{aligned}
& E^{P_{n}}\left[2^{(D(w)-1) s},|w(n)| \leqq 2^{D(w)-1}\right] \\
& \quad \leqq E^{P_{n}}\left[2^{(D(w)-1) s},|w(n)| \geqq 2^{D(w)-1}\right]
\end{aligned}
$$

for any $n=1,2, \ldots$, and $s>0$.
Proof. This follows from a reflection principle shown in Fig. 3. Note in Fig. 3 that a self-avoiding path $w \in W_{0}$ satisfying $|w(n)| \leqq 2^{D(w)-1}$ must hit the pivot point x.
(4.3) Corollary. For any $s>0$ and $n=1,2, \ldots$,

$$
2^{-s-1} \cdot E^{P_{n}}\left[2^{s D(w)}\right] \leqq E^{P_{n}}\left[|w(n)|^{s}\right] \leqq E^{P_{n}}\left[\|w\|^{s}\right] \leqq E^{P_{n}}\left[2^{s D(w)}\right] .
$$

Proof. This follows from Lemma 4.2 and the fact that $|w(L(w))| \leqq\|w\| \leqq 2^{D(w)}$.
Now let us prove our theorem. The assertion (1) is a consequence of Propositions 2.3 and 2.5. The assertion (3) follows from Proposition 4.1 immediately. So we only have to prove the assertion (2).

In view of Proposition 4.3 it suffices to prove the assertion (2) with $\|w\|$ in place of $|w(n)|$. Let $s>0$. Note that by Chebychev's inequality

$$
E^{P_{n}}\left[\|w\|^{s}\right] \geqq\left\{(\log n)^{-\alpha} n^{\nu}\right\}^{s}\left(1-P_{n}\left[\|w\| \leqq(\log n)^{-\alpha} n^{v}\right]\right) .
$$

So by Proposition 4.1(1) we see that

$$
\begin{equation*}
\underline{\lim _{n \rightarrow \infty}}(\log n)^{s x} \cdot n^{-s v} E^{P_{n}}\left[\|w\|^{s}\right]>0 . \tag{4.4}
\end{equation*}
$$

Also, note that

$$
E^{P_{n}}\left[\|w\|^{s}\right] \leqq\left\{(\log n)^{\beta} n^{v}\right\}^{s}+n^{s} \cdot P_{n}\left[\|w\| \geqq(\log n)^{\beta} n^{v}\right] .
$$

So by Proposition 4.1(2) we see that

$$
\begin{equation*}
\underline{\varliminf_{n \rightarrow \infty}}(\log n)^{-s \beta} \cdot n^{-s v} E^{P_{n}}\left[\|w\|^{s}\right]<\infty . \tag{4.5}
\end{equation*}
$$

By (4.4) and (4.5), we have

$$
\lim _{n \rightarrow \infty}(\log n)^{-1} \cdot \log E^{P_{n}}\left[\|w\|^{s}\right]=v \cdot s .
$$

This implies the assertion (2).
This completes the proof of Theorem.

References

1. Barlow, M.T., Perkins, E.A.: Brownian motion on the Sierpinski gasket. Probab. Theory Relat. Fields 79, 543-624 (1988)
2. Ben-Avraham, D., Havlin, S.: Self-avoiding walks on finitely ramified fractals. Phys. Rev. A 29, 2309-2311 (1984)
3. Dhar, D.: Self-avoiding random walks: Some exactly soluble cases. J. Math. Phys. 19, 5-11 (1978)
4. Hattori, K., Hattori, T., Kusuoka, S.: Self-avoiding paths on the pre-Sierpinski gasket. Probab. Theory Relat. Fields 84, 1-26 (1990)
5. Klein, D.J., Seiz, W.A.: Self-interacting self-avoiding walks on the Sierpinski gasket. J. Phys. Lett. 45, L241-L 247 (1984)
6. Kusuoka, S.: A diffusion process on a fractal. In: Ito, K., Ikeda, N. (eds.) Probabilistic methods in mathematical physics. Proceeding of Taniguchi International Symposium, Katata and Kyoto 1985, pp. 251-274. Tokyo: Kinokuniya 1987
7. Rammal, R., Toulouse, G., Vannimenus, J.: Self-avoiding walks on fractal spaces. J. Phys. 45, 389-394 (1984)
