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Summary. The authors rigorously prove that the exponent for the mean square
displacement of self-avoiding random walk on the Sierpinski gasket is

log 2/log (7—_21@> =0.79862>0.5>log 2/log 5.
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0 Introduction

Let us define the pre-Sierpinski Gasket as follows. Let O =(0, 0). a0=<%, Kg),
bo=(1, 0), and let F, be a graph which consists of the vertices and the edges
of the equilateral triangle 40 a4 b,,. Let us define a sequence of graphs inductively

by

F;H—l=Fnu(Ez+2"a0)U(Et+2nbO): nz()alaza"-n

where, A+a={x+a|xeA}, and kA={kx|xeA}. Let F= ] F,. F is the pre-
n=0
Sierpinski Gasket. Let G be the set of the vertices in F, and a,=2"a,, b,=2"b,.
We define the set of self-avoiding paths W, on G, to be the set of mappings
w: Z, — G, such that w(0)=0 and that there exists L(w)eZ, u{co} for which
w(i)=w(L(w)), iz L(w), w(i)+w(i,), 0=5i; <iz<L(w), w(i) w(i+ 1)< E and [w(j)
—w(i+1)]=1, 0=iZ<L(w)—1. We call L(w) the length of the path w. Also, we
define [w|, weW,, by |w|]|=max{|w(k); k=1, 2, ..., L(w)}.
Let N,=4+({weW,; L(w)=n}). We define probability measures P,
n=1,2, ..., on W, given by

B(A)=N,"'-£({wed; Lwy=n}), AcW,.
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We show the following results in the present paper.
.1 ,
Theorem. (1) lim (;) log N,= .. Here B, is the critical inverse temperature given

in Hattori et al. [4] (See Proposition 1.1 in this paper also), and f,=0.827691
(ef-=2.2880).
(2) For any s>0, lim(logn)™ ' log E*»[|w(n)|]=v-s. Here v=log2/log

(7—7—115) =0.79862.

2
(3) There is an « >0 such that

Eldogn)™"<|wl=(ognf"]>1, n-oo.

This theorem says that “the exponent for mean square displacement of self-
avoiding random walk in Sierpinski Gasket” is 2v. This number has been given
in Ben et al. in [2], Dhar [3], Klein and Seiz [5] and Rammal et al. [7]. However,
we believe that this is the first time a mathematically rigorous proof has been
given.

Unfortunately, our results are not so sharp. For example, we could not
prove that

0<lim n™>" EP[lw(n)lF] £ lim n™*" E™[|w(n)[] < co.

h—= 0

So several problems are still open from a mathematical point of view.

1 Preliminary

In this section, we summarize some facts which were proven in Hattori et al.
[4] for later use and give some additional results. The proof of the main theorem
relies strongly on the results in [4], and the reader is requested to be familiar
with [4] to comprehend the detail of the proof.

Let W® and W™, n>1, be subsets of W, given by

W® ={weW,y; w(L(W))=a,, w(i)£b,, i20},
and N
W®={weW,; w(L(W))=a,, w(i)=b,, for some i=0

and w(i)eF,,i=0}.
Let Z,(p)= Y e #L™and Z,(f)= Y e nz1, peR.
Let G: (EV; Z(”()EZ be an algebraic m:;pg\)fen by
G, y)=((x+y)* +x*(x+2y), xy(x+2y),  (x,1)eC

Also, let @,: €*> - € and 6,: C*> - C, n=1 be given by (D,(x, ), O,(x, y))= G"(x,
), (x, y)eC? where G" is defined by G!(x, y)=G(x,y), and G"*'(x,y)
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=G(G"(x, y)) inductively. Then we have Z,(f)=®,(e % ¢ ) and Z,(B)
=@,(e % e 2%, n=1, BeR.

Also, for any (x, y)€(0, 0)?, let R,(x, y)= (%, )

D,(x, y)
-1 _
Let D:{(x, Y)€(0, 00)?; sup D,(x, y) = 1/52 } Then we have the following

» ng]—s and Ro(x’ y):—i—

[4, Sect. 2].
(1.1) Proposition. (1) D is a closed set in (0, c0)* and the closure of D in IR*

contains the point (a, 0). Hence azﬁi.
(2) If (x, y)€dD (0, w0)?, then hm D (x y)=a.
(3) If (x, y)e D\OD, then 11m 2" " logcb (%, y) exists and is negative.
@) If (x, y)eD, then hm @ (x y)=
(5) If (x, y)eD, 0<x <x and 0<y <y, then (x', y')e D\0D.
(6) There is a unique B.>0 such that (exp(—f,), exp(—2.))eéD.
(7 R,(x, y)SR,_(x, y), n=1, x, ye(0, 00)?, and R(x, y)= ILH; R, (x, y) is continu-
ous in (x, y)e(0, oc0)?. Moreover, R(x, y)=0, for any (x, y)enD.
We define probability measures p,(8), feR, n=1, on W, by
LBA=Z,BH" Y WL Acw,.

weAdnWm
Let v, denote the probability law of A7"L(w) under u,(8.)(dw), n=1. Here A

_7——

5 5. Then we have

[ exp(—=¢x)v,(dxX)=Z,(B) ' Z,(B.+27"E), &eC.
0

Moreover, we have the following [4, Theorem 0.3 and Proposition 4.17].

(1.2) Proposition. v, converges in law to a certain probability measure v in
Ao

(0, 00). The laplace transform g(&)= | exp(—¢x) vw(dx) is an entire function in

£ and satisfies 0

(1.3) gAd)=a*-g(¢)*+a-g(¥)y’, (eC,

5_
and g'(0)<0. Here a =J% again. Moreover,

feel

[ exp(—E&x)v,(dx)—>g(é), n— oo,

0

uniformly in & on any bounded set in €.
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We have the following regularity result for the probability measure v, .

(1.4) Proposition. There is a smooth function f: R - R such that f(x)=0, x£0,
f(x)>0, x>0, and v (dx)=f(x)dx.

Proof. By the fact that g'(0)<0 and g satisfies the function equality (1.3), we
see that the probability measure v, has a smooth density f (see the argument
[6, Sect. 3, Theorem 3.19] or [1, Lemmas 3.4 and 3.6]). Then the formula (1.3)
implies that

(L) AT ) =a- (f N0+ @ (Ff ) (), x>0,

So it is sufficient to show that supp f=[0, o).

Let A be the support of f. Then A is a closed set in [0, c0) and (1.5) implies
that if x, y, ze A, then A~ 1(x+y), A~ 1(x+y+z)eA. Note that 2<1<3. There
is an x,€A4 such that x,>0. Then we see that 247 )"x,e4, n=1. So we see
that Oe A. Therefore we see that if x, y, ze 4, then 0, 17 x, A7 Y (x+y), A Y (x+y
+z)eA. So by induction, we see that m-17"x,e4, m=0, 1, ..., 3". This implies
that 4=[0, o).

This completes the proof.

(1.6) Proposition. (1) Co=sup Z,(f,— 1" ") < o, and Z,(f.— A~ ") —0.
(2) There are ny=1, C{ >0 and y, >0 such that

1 Z s mBe+ 27" SCy-exp(—7,-27)

for any n=ng, m=1 and e with Re E20 and A~ <|E| £ 2%
(3) There are C,>0 and y, >0 such that

Zn+m(ﬁc+)°_n)+zn+m(ﬂc+)“_n)é C2 -exp(—yz-Z"‘)

for any n=ny and m= 1. Here ng is as in the assertion (2).
Proof. (1) By Proposition 1.2, we see that lim Z,(f,—4™")=g(—1)>0. By Propo-

sition 1.1(7), we see that
Z,(B.— 27" Z,(B.— 2" SR (exp(—(B.—A7"), exp(—2(B.—17"))
for any n=m. So we see that

n@o—ozn(ﬁc_i_n)“ ! Zn(ﬁc_ﬂ'_n)éRm(exp(_ﬁc)’ exp(_zﬁc))

However, by Proposition 1.1(6) and (7) we have

lim R, (exp(—Bo), exp(—2f))=R(exp(—fo). exp(—2f))=0.

These imply the assertion (1).
(2) Let A={(eC; Re (=0, 1~ £|¢|<4?}. Then by Proposition 1.2, we see that

Z,(B)" 1 Z,(B.+A""¢E) converges to | exp(—&x) f(x)dx uniformly in (€4 as
0
n-co. Also we see that |Z,(8.+17"8)|=Z,(B.), écA. Note that by Proposi-
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tion 1.4 sup{

[ oxp(—ex) (9 dx;

n; 21 such that [Z, (f,+ A" ") <a—sfor all n=n, and e A. By Proposition 1.1,
there is a >0 such that (a—e, 0)eD\OD. There is an ny=n, such that
\Z(B.+A7"E)|<a—e and [Z,(B.+17"E)| <0 for any n=n, and e A. Then we
see that

ieA}<1. Therefore there is an ¢>0 and

sup{|Zn+m(ﬁc+)‘_né)l;6GA}_S_@m(a_S> 5)3 ”2”03 Mgl

By Proposition 1.1(3), we have hm 27" log ®,(a—e, 6)<0. This implies our
assertion (2).
(3) By Proposition 1.1(7), we see that

Z, B ' Z,(B)=Ry(e P e y=e"F <1, nzl, f>0.

So the assertion (3) follows from the assertion (2).
This completes the proof.

2 Estimates for the number of self-avoiding paths

Let N, = = ({weW,; L(w)=n}), n= 1. We will estimate N, from above and below.
Let D: W, — {0, 1, ...} be a map given by

2.1) D(w)=min{n=0;w(i)eF,foralli=0}, weW,.
Now for each n2>0, let

Mn: Z exp(“ﬁc L(W))

weWq, D(W)=<n

Obviously M, , — M, is the summation of exp(— B. L(w)) for we W, such that
D(w)=n+1. The path we W,, with D(w)=n+1 can be classified into three types
(see Fig. 1). The summation of exp(— B L(w)) for we W, of type 1 (resp. type 2,
type 3) is dominated by 2(Z,(B)+Z.(B) M, (resp. 2(Z,(B.)+Z,(B.))* M
2Z,(BNZ(B)+Z,(B))* M,). So we have

Moy SM+2(Z,(B) +Z,(B) My+2(Z,(B)+ Z,(B))* M.
+2Z,(B)Z,(B)+Z,(B))* M

for any n>1.
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Take an AqeR with Ag>1+2a+2a’+24°(=1+4a) and fix it. Since
Z,(f)—a and Z,(f,)—0 as n— oo, we see that there is a constant C, such
that

(2.2) M,£Cy-43, nz=l
It is easy to see that

log L(w)/log 3= D(w)<log L(w)/log2, weW,.
Therefore we have

exp(— . n) N, [log n/log 2]
< ) M,<C, Ay(4,—1)"* 4, logn/log 2.

k=[logn/log 3}

Therefore we have the following,

(2.3) Proposition. There are constants C, and vy, such that
N,=C,-n'-exp(f.n), n=l.

To obtain lower estimate, we make some preparations.
(2.4) Proposition. Let g(x)=(2n) "?exp(—x?/2), xeR, and g(x; h)
=h"1g(h~*x), xR, h>0. Also, let h,=b-1""-n'2,b>0,n= 1. If b is sufficiently
large, then
Vaxg(r; h))(x) > f(x)  uniformlyin xeR as n— .
Proof. Let ¢, (n)= { €"*(v,xg (- ; h,) (x)dx, and @(n)= | """ f(x) dx, neR. Then
R R

we see that

(pn(rl)zzn(ﬁc)_ 1Zn(ﬁc_i;“—‘n 7’[) CXP(_hf ;72/2)

Let n, be an integer as in Proposition 1.6. Assume that |4|e[1, A"~ "]. Then
there is an me{l, ..., n—ng} such that A7 <A7™ 5| < 1. Then we see that

IZn(ﬁc—l/l—an)l = |Zn—m+m(ﬁc—i/l_(n—m)(j‘_mrl))l
SCy-exp(—7y:-2")
SC,-exp(—y, - |y|°s2/e4)

for any e[ —A""", —1]w[1, A*7"]. Since @, () — @(n), n— oo, for each yelR,
we have by the dominated convergence theorem that

{ 1xg0, sn-nor (M) - @u (M — @) dyp—0 as n—oo.
R
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On the other hand,

F 11 =10, 1n-net (M) * | @ ()| d g

<2 | exp(—hin*/2)dn

in—ng
£2-hy H(hy 270) T exp(—(hy A"70)/2)
=2/m.b" 2" n" exp(—((A"™b)*n)/2)
—0,n—>o00, ifbissufficiently large.

So we see that if b is sufficiently large, then

§ loam—@@mldn—>0, as n—oo.
R

This implies our assertion.
(2.5) Proposition. There are constants C5>0 and y5>0 such that
N,=Cs-n""sexp(f.n, n=l
Proof. Let b be a sufficiently large number satisfying Proposition 2.4. Recall

that
a3 )X = | gx—y; h)va(dy), xeR.
R

Let k,=b-(2-log A)**n-A7" Then g(k,; h,)=Q2nb?*n)" > -0 as n— 0. So we
see that

§ g(x—y; h) v, (dy) S glky; ) —0.

RA\[x —ky, x + k)
This proves that

sup{[f(x)— [  glx—ysh)vdy);xeR} >0, as n—co.

[x—kp,x+kn}
Since f(x)>0, x>0, this implies that there are n; =1 and &¢>0 such that
hn_l vn([x—kn9x+kn])zg

for any n=n, and xe[)"1, 22].

Now let meIN. Then there is an n=1 such that A ™" me[1, 2]. If m is large
enough, then n=n, and k,<1—417"', and so we have v,([A "m~—2k,, A "m])
2 h, . This implies that

Zn(ﬁc) hnsé Z eXP(_,Bc L(W))

we W), L(wyelm — 2k, A", m]

éexp(ﬂc'an /ln)‘exp(—ﬂc m) Nm:
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VY
O bnd
Fig. 2

because we W® with L(w)<m can be extended to a path w'e W, with L(w)=m.
Therefore we have

=Z,(B)eb-A7"n''? exp(—2p,b-(2-log 2)"* n) exp(B. m).

Since n<log m/log A, this implies our assertion.

3 Estimates for numbers of short paths and long paths

For n,mz0, let U, , be the summation of exp(—f,L(w)) for all weW, such
that D(w)<n and L(w)=A"*™?, and let V, ,, be the summation of exp(— . L(w))
for all we W, such that D(w)=n+1 and L(w)<A"™™

The purpose of this section is to prove the following.
(3.1) Proposition. (1) There are constants Cg and y¢>0 such that U, ,
< Cg- Ay exp(—7e-A"2), n, m20.
(2) There are constants C7 and y,>0 such that

ZC,-Af-exp(—y4-2™, n,mz20.

Proof. For any n, m>0 and >0, let S, ,,(¢) (resp. S,, (1) be the summation
of exp(—p, L(w)) for all we W™ (resp. W®) such that L(w)=A"""2t. Also, for
any 0<m=n, let T, , (resp. T, ,) be the summation of exp(— f. L(w)) for all
we W™ (resp. ™) such that L(w)< A" ™.
(1) Note that Anti¥m2_jntm+1)2 o gn+mi2(_j12) Jet t=(1—A'?)/3. Then
we have

(32 Upr1.m={1+2(Z,(B)+Z,(B) +2(Z,(B) + Z,(B))
+2Z,(B) (Za(B)+ Zy(BIV} Upms 1 + {2080, m(O)+ S5, m(8))
+4(Zy(B)+Za(B) (Spm(®) + S, (1)
+6(Zu(B)+Zn (B (Sn,m(0)+ S, m(0)} M,

for any n, m=0. Let us explain how one obtains the inequality (3.2).

The summation of exp(— f.L(w)) for we W, such that D(w)=n and L(w)
ZArtitmi2 §g dominated by U, ,+,. This is the first term of the righthand
side of (3.2). Remember that the path we W with D(w)=n+1 can be classified
into 3 types (Fig. 1). Since the other cases are similar, we only observe the path
weW, of type 3 with D(w)=n+ 1. This path w consists of four parts w;, wy,
wy and w, (see Fig. 2). The case that the length L(w) of w is greater than or
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equal to A"*1*™2 is covered by the following two cases: Case 1, the length

of w, is greater than or equal to A"*™*"/2 and Case 2, one of the lengths
of wy, w,, ws is greater than or equal to A""™2¢.
The summation of exp(— 5, L(w)) for w in Case 1 (resp. Case 2) is dominated

by‘~ 2Zn(ﬂc) (Zn(ﬂc)+Zn(ﬂc))2) []n,m+1 (resp. 6(Zn(:3c)+zn(ﬁc))2 (Sn,m(t)
+5S,, (1) M,). These are the fourth term and the seventh term of the righthand
side of (3.2). The other terms come from the paths of types 1 and 2.

Let A, be as in Sect. 2. Then there is an n, =1 such that

14+ 2(Z,(B) +Z, (B +2(Z,(Bo) + Z,(B)?
+2Z,(BHZa (B + Z, (B S Ao

for any n=n,. Therefore by (2.2) we see that there is a constant C< oo such
that

1‘1()_0‘+ R Un+ 1,m§A6n' (Jn,m+1 + C(Sn,m(t)+§n,m(t))
for any n=n, and m=0. Note that U, ,,=0 if m=4n. Therefore we sce that
[4n/5] _
AO—n' Un,m§CA(;1 ) Z (Sn—k~1,m+k(t)+sn—k—1,m+k(t))

k=0

for any n=6n, and m=0.
On the other hand, we have

Spmt)Sexp(—t-2"%) . exp(—(B.—A"") L(w))

=exp(—t-A"*)-Z (B.—A""), n=l.

Similarly we have
gn,m(t) éexp( —t- }'M/z) ’ Zn(ﬂc - )\‘—n)‘

So there is a constant C’ < oo such that

@

A" Uy nSC- Y exp(—t-Am+012)

H,m=
k=0

for any n=n, and m=0. This implies our assertion (1).
(2) Note that
(3.3) Vem S 2(Tom+ T + 2L+ T, + 2T+ T ) M,

for any n, m=0. Observe that

wmSe ), exp(—(B.+ A" Lw)=e-Z,(B.+"").

we W
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Similarly we have T, . <e-Z,(8.+A"""). So by Proposition 1.6 there are nyeN,

L=

7,>0 and C, < oo such that
Tomt TomSe Ca-exp(—y,-2")

for any n, m=0 with n=n,+m. Combining this with (2.2) and (3.3), we have
our assertion (2).

4 Proof of Theorem

First, we prove the following.

(4.1) Proposition. (1) There is an o> 0 such that

BLiwl =(logn)~*-n"]-exp((logn)’) >0 as n— oo.
(2) Thereis a B>0 such that

BlIwlz(lognyf-n"]-exp((logn)’) >0 as n— oo.

Here v=1log 2/log 4 as in theorem.

log?
log 4
integer less than or equal to x. Then we see that X</ < KO+ Afso, it
is easy to see that 221 < ||w| <22™ we Wy,

By Proposition 3.1 we have for 0=m =< K(?¢)

Proof. (1) Let K(/)z[ ], £=1,2, ..., where [x] stands for the maximum

# ({(weW,; Lw)=¢, D(w)=K(¢)—m})
=exp(B.2) Uxy-m,2m
<C-exp(B.£ +((log Ao)/log A)-log £ —y-A™).

So combining this with Proposition 2.5, we see that if a is large enough, there
is a constant C’ such that

B[DW)ZK(n)—a-log(logn)]<C -exp(—(logn)®), n=12,....

This implies our assertion (1).
(2) By Proposition 3.1 we have for m, k=0

# ({weW,; Lw)=¢,D(w)=K(£)+m+k+2})

=exp(B.) V) +m+i+1.m+k
SC-exp(B.0) AFV T TFT L exp(—y-27F)
<C-Ay-exp(B.L)+K(()-log Ag+m-log Ag—y-2""1)- A% -exp(—y-2¢71).

Therefore if b is sufficiently large, there is a constant C’ such that
B[DW)=K(n)+b-log(logn)]<C -exp(—(logn)®), n=12,....

This implies our assertion (2).
This completes the proof.
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D(w)-1 D{w)=D{w’)1
Fig. 3

(4.2) Lemma.
EPa[20007 0% [y ()] £2700~ 1]
< EP 2070005 o) 22700 1]

foranyn=1,2, ..., and s>0.

Proof. This follows from a reflection principle shown in Fig. 3. Note in Fig. 3
that a self-avoiding path we W, satisfying |w(n)| <22~ ! must hit the pivot
point x.

(4.3) Corollary. For any s>0and n=1,2, ...,
274 EE[ 2P < EP [lw(n) ] S EP [ wl*] S EPn [2°00],
Proof. This follows from Lemma 4.2 and the fact that jw(L(w))| < [|w]| £2°™,
Now let us prove our theorem. The assertion (1) is a consequence of Proposi-
tions 2.3 and 2.5. The assertion (3) follows from Proposition 4.1 immediately.
So we only have to prove the assertion (2).

In view of Proposition 4.3 it suffices to prove the assertion (2) with ||w||
in place of |w(n)|. Let s> 0. Note that by Chebychev’s inequality

EP[llwl*]z {(log n)~*n*}*(1 = B,[||w] = (log n) ~*r’]).
So by Proposition 4.1(1) we see that

(4.4) lim (log n)**-n™"" EP=[||w||]>0.

n— o

Also, note that

EP[|wlT1={(logn)’n"}*+nr*- B[ |w] 2 (log n)’ n’].
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So by Proposition 4.1(2) we see that

(4.5) lim (logn)™*-n=>"E~[|w]*] < co.
By (4.4) and (4.5), we have

lim (logn)~!-log E-[||w|*]=v-s.

n— o

This implies the assertion (2).
This completes the proof of Theorem.
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