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0 Introduction 

/1 1/~\ 
Let us define the pre-Sierpinski Gasket as follows. Let O=(0,  0). a o = ( 2 , ~ ) ,  

bo =(1, 0), and let F o be a graph which consists of the vertices and the edges 
of the equilateral triangle A O ao bo. Let us define a sequence of graphs inductively 
by 

Fn+a=F,,u(F,+2"ao)u(F,+2"bo), n=O, 1, 2, ..., 

where, A + a = { x + a l x ~ A } ,  and kA={kx]xeA} .  Let F =  U Fn. F is the pre- 
. = 0  

Sierpinski Gasket. Let Go be the set of the vertices in F, and a, = 2" ao, b, = 2 n bo. 
We define the set of self-avoiding paths Wo on Go to be the set of mappings 

w: Z+-- .Go such that w(0)=0 and that there exists L(w)~Z+ ~ {oe} for which 
w(i)=w(L(w)), i> L(w), w(it)=l=w(i2) , O<il <i2 < L(w), w(i)w(i+ l)cF,  and [w(i) 
-w(i+ 1)1 = 1, 0 <_ i< g(w)--1. We call L(w) the length of the path w. Also, we 
define Ilwll, we Wo, by j[wll =max{[w(k)[; k =  1, 2 . . . . .  L(w)}. 

Let N~=:t:({w~Wo;L(w)=n}). We define probability measures P,, 
n = 1, 2, ..., on Wo given by 

~ ( A ) = ~  -1- +({w~A;L(w)=n}), AcWo. 
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We show the following results in the present paper. 

Theorem. (1) lim ( 1  / .log N , =  tic. Here  tic is the critical inverse temperature given 
n - - +  c o  \ n /  

in Hattori  et al. [4] (See Proposition 1.1 in this paper also), and flc=0.827691 
(e po = 2.2880). 
(2) For any s>0 ,  l i m ( l o g n ) - l . l o g E P . [ l w ( n ) l ~ ] = v . s .  Here  v = l o g 2 / l o g  

n - *  oo  

( 7 - - ~ 2  5) =0.79862. 

(3) There is an a > 0  such that 

P,[(logn)-~"v<_llwH<_(logn)~.v]--,1, n--*oc. 

This theorem says that "the exponent for mean square displacement of self- 
avoiding random walk in Sierpinski Gasket"  is 2 v. This number has been given 
in Ben et al. in [2], Dhar  [3], Klein and Seiz [5] and Rammal et al. [7]. However, 
we believe that this is the first time a mathematically rigorous proof has been 
given. 

Unfortunately, our results are not so sharp. For example, we could not 
prove that 

O< lim n - ~  EP.[lw(n)l s] <= 1-~ n - ~  EP.[lw(n)lq < oo. 
n ~ o o  n ~  

So several problems are still open from a mathematical point of view. 

1 Preliminary 

In this section, we summarize some facts which were proven in Hattori  et al. 
[4] for later use and give some additional results. The proof of the main theorem 
relies strongly on the results in [4], and the reader is requested to be familiar 
with [4] to comprehend the detail of the proof. 

Let W (') and ~V ("), n > 1, be subsets of W 0 given by 

W (") = {w ~ Wo; w (L(w)) = a,, w (i) ~ b,,  i > 0}, 
and 

~V (") = {w ~ Wo; w (L(w)) = a,, w (i) = b,,  for some i > 0 

and w(i)~F, ,  i>0}. 

Let Z.(f l)= ~ e -p'L(w) and Zn(fl)= ~ e -&L(w), n>= 1, fl~P.. 
w ~ W (  n ) w ~  I ~ ( ~ )  

Let G: 1122 ~ 1122 be an algebraic map given by 

G ( x , y ) = ( ( x + y ) 2 + x Z ( x + 2 y ) , x y ( x + 2 y ) ) ,  (x, y)EC 2 . 

Also, let ~,:  1122 --* 112 and (9,: 112 z --* 112, n > 1 be given by (~,(x, y), O, (x, y))= G" (x, 
y), ( x , y )~ lE  z, where G" is defined by G l ( x , y ) = G ( x , y ) ,  and Gn+l(x , y )  
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=G(G"(x,y)) inductively. Then we have Z,(f l )=@,(e-~,e -2~) and Z,(fl) 
= O,(e-P, e-2p), n >  1, fielR. 

O.(x, y) 
Also, for any (x, y)e (0, oo) 2, let R,(x, y) di,(x, y)'  n > 1, and R o (x, y)= Y. 

{ . ~/-5--1)2, Let D = (x, y)e(O, o0)2; sup ~n(X, y}~ --7" Then we have the following 
n 

[-4, Sect. 2]. 

(1.1) Proposition. (1) D is a closed set in (0, m) z and the closure of D in 1R 2 

1 -1 contains the point (a, 0). Hence a = 2 --  

(2) / f (x ,  y)eODn(O, m)2, then lira O~,(x, y)=a. 
n --+ o9  

(3) l f  (x, y )eD\aD,  then lira 2-"  log ~n(x, y) exists and is negative. 
n--+ oo 

(4 ) / f  (x, y) e D, then lira O, (x, y) = 0. 
n --+ c o  

(5) l f  (x, y)eD, 0 < x ' < x  and 0 < y ' < y ,  then (x', y')eD\OD. 
(6) There is a unique t ic>0 such that (exp(-flc), exp(-2/~0)eaD.  
(7) R,(x, y) <=Rn_l (X, y), n >= l, x, ye(O, 0o) 2, and R (x, y)= lim R,(x, y) is continu- 

tl--+ oO 

ous in (x, y)e(O, oo) 2. Moreover, R(x, y)=0,  for any (x, y)eD. 

We define probability measures/4(fl),  t ieR, n > 1, on Wo by 

la,(fl)(A)= Z,(fl) -1 ~ e -r(w)e, A =  W o . 
w e A  (~ W(n)  

Let v, denote the probability law of 2-"L(w) under #,(flc)(dw), n > l .  Here 2 
_ / 7 _  

7 
]/> Then we have 

2 

exp( -~x )v , (dx )=Z , ( f l c ) - lZ , ( f l c+2-"~) ,  ~eC. 
0 

Moreover, we have the following [-4, Theorem 0.3 and Proposit ion 4.17]. 

(1.2) Proposition. v, converges in law to a certain probability measure v~ in 

(0, oo). The laplace transform g({)= ; exp( -{x)voo(dx)  is an entire function in 

and satisfies o 

(1.3) g(2 ~) = aZ.g({)3 + a .g(()  2 , { e (17, 

IA-1 
and g' (0) < O. Here a = 2 again. Moreover, 

• exp(-- i x )  v,(dx) --+ g(~), 
0 

n ---~ o o  , 

uniformly in ~ on any bounded set in C. 
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We have the following regularity result for the probability measure vow. 

(1.4) Proposition. There is a smooth function f :  IR--.IR such that f ( x ) = 0 ,  x < 0 ,  
f ( x ) > 0 ,  x > 0 ,  and vo~(dx)=f(x)dx.  

Proof By the fact that g ' (0)<0 and g satisfies the function equality (1.3), we 
see that the probability measure v~ has a smooth density f (see the argument 
[6, Sect. 3, Theorem 3.19] or l-l, Lemmas 3.4 and 3.6]). Then the formula (1.3) 
implies that 

( 1 . 5 )  ) ~ - l f ( 2 - 1 x ) = a . ( f * f ) ( x ) + a 2 . ( f * f * f ) ( x ) ,  x > 0 .  

So it is sufficient to show that s u p p f =  [0, oe). 
Let A be the support of f Then A is a closed set in [0, oe) and (1.5) implies 

that if x, y, z~A,  then 2-1(x+y) ,  2 - 1 ( x + y + z ) e A .  Note that 2 < 2 < 3 .  There 
is an xo~A such that Xo>0. Then we see that (22-1)"xo~A, n > l .  So we see 
that  0~A. Therefore we see that if x, y, z eA ,  then 0, 2-1x,  )~- l (x+y) ,  2 - 1 ( x + y  
+z)eA .  So by induction, we see that m . 2 - " x o ~ A ,  m=0,  1, ..., 3". This implies 
that A = [-0, o0). 

This completes the proof. 

(1.6) Proposition. (1) C O = sup Z,(//C - 2-") < ~ ,  and 2 , ( B ~ -  2-") ~ O. 
(2) There are no > 1, C1 > 0 and 71 > 0 such that 

[Z. + m(/~ +)~-" ~)] =< C1" exp(-71-2")  

for any n > no, m >__ 1 and ~ E ffr with Re ~ > 0 and 2-1 <= [~l < )o2. 
(3) There are Ca > 0 and 72 > 0 such that 

Z.+m(flc-~ )~-")-l- 2.+rn(flcAv )~-") ~ C 2 �9 e x p ( - - 7 2 . 2  m )  

for any n>no and m>= 1. Here no is as in the assertion (2). 

Proof (1) By Proposition 1.2, we see that lim Z , ( / ~ - 2 - " ) =  g ( -  1)> 0. By Propo- 
. ~ o o  

sition 1.1 (7), we see that 

Z,  (/~c - 2-  ") - 1 2 ,  (/~ - 2 -") < Rm (exp ( -- (/~ - 2 -")), exp ( - 2 (j~ - 2 -"))) 

for any n > m. So we see that 

lira Z ,  (/~c - 2 -") - 1 2 ,  (/?c -- 2 -") < R,, (exp ( -/~c), exp ( - 2/3~)). 
n --+ cx3 

However, by Proposition 1.1 (6) and (7) we have 

lim Rm (exp ( --/~c), exp (-- 2/3c)) = R (exp ( --/~c), exp (-- 2/~)) = 0. 
t .  --* ez) 

These imply the assertion (1). 
(2) Let A = {~112; Re ~ > 0, 2-1__< 1~[ __<,~2}. Then by Proposition 1.2, we see that 

Z,(/?c)- 1. Z,(/~c + 2-"  ~) converges to { e x p ( -  ~x) f (x )  dx  uniformly in ~ A  as 
0 

n--, oe. Also we see that IZ,(flc+2-'~)l<2,(fic),  ~6A. Note that by Proposi- 
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t ionl .4sup{  ~o e x p ( - ~ x ) f ( x ) d x ; { e A } < i .  Thereforethereisane>Oand 

nl > 1 such that [Z,(flc+2-"~)[ _-<a-e for all n>n I and {cA. By Proposition 1.1, 
there is a 6 > 0  such that (a--e,a)eD\OD. There is an no>n ~ such that 
IZ,(~c+2-"r and 12.(/~c+)o-"~)1<6 for any n>no and CeA. Then we 
see that 

sup{lZ,+m(fi~+2-"~)l;~eA}<~,,(a-e, 6), n>no, m>l. 

By Proposition 1.1(3), we have lim 2- '~ log~ , , ( a - -e ,  6)<0.  This implies our 
assertion (2). m-~ ~o 
(3) By Proposition 1.1(7), we see that 

Z,(fl)-IZ,(~)<Ro(e-e,e-iP)=e-e<l, n>l, f i>0.  

So the assertion (3) follows from the assertion (2). 
This completes the proof. 

2 Estimates for the number of self-avoiding paths 

Let N~= 4= ({we Wo; L(w)=n}), n >  1. We will estimate N, from above and below. 
Let D: W0-o {0, 1 . . . .  } be a map given by 

(2.1) D(w)=min{n>O;w(i)eF, foralli>O}, weW o. 

Now for each n > 0, let 

M, = ~ e x p ( -  tic L(w)). 
weWo, D(w)<n 

Obviously Mn+I-M ~ is the summation of exp( - f i c  L(w)) for weWo such that 
D (w) = n + 1. The path w E W o with D (w) = n + 1 can be classified into three types 
(see Fig. 1). The summation of exp(--flcL(w)) for wEW o of type 1 (resp. type 2, 
type3)  is dominated by 2(Z,(flc)+Z,(flc))M, (resp. 2(Z,(flc)+Z,(flc))2M~, 
2 Z,(flc)(Zn(flc) + 2,(tic)) 2 M~). So we have 

M, + 1 < M,  + 2 (Z~ (tic) + Z,  (tic)) M,  + 2 (Zn (tic) + Zn (tic)) 2 Mn 

+ 2 Z~ (tic)(Z, (tic) + Z,z (tic)) 2 M~ 

for any n > i. 
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Take an Ao~IR with A o > l + 2 a + 2 a Z + 2 a 3 ( = l + 4 a )  and fix it. Since 
Zn(flc)~a and 2n(/~c)~0 as n ~  o% we see that there is a constant C3 such 
that 

(2.2) mn =< C3" A~, n > 1. 

It is easy to see that 

log L(w)/log 3 < D (w) < log L(w)/log 2, w ~ Wo. 

Therefore we have 

e x p ( -  tic n) Nn [log n/log 2] 

<= ~ Mk<=C2Ao(Ao-1) - lAologn/ log2 .  
k = [log n/log 3] 

Therefore we have the following. 

(2.3) Proposition. There are constants C4 and 74 such that 

N, < C4" n ~4" exp (/~ n), n > 1. 

To obtain lower estimate, we make some preparations. 

(2.4) Proposition. Let g(x)=(2rc) -1/2 exp( -x2 /2) ,  x e ~ ,  and g(x; h) 
= h-  l g(h- l x), x EIR, h>0 .  Also, let hn = b .2 -n. n 1/2, b > O, n > 1. I f  b is sufficiently 
large, then 

(Vn*g(" ; hn))(x)of(x)  uniformlyin x~lR as n o  oo. 

Proof. Let q)n01)= ~ ei"X(vn * g( " ; hn)) (x) dx, and q~(q)= ~ g"X f (x) dx, flaIR. Then 

we see that 

(Pn(tl) = Zn(fl~)- I Zn(fl~-- i 2-n tl) exp(--  h 2 q2/2). 

Let no be an integer as in Proposition 1.6. Assume that It/l~[-1, 2n-n~ Then 
there is an m~{1, ..., n - n o }  such that 2 -1 < 2 - " l q l <  1. Then we see that 

]Zn(f lc-  i 2-ntl)[ = [Zn_m+m(flc- i j --(n--m)(}C--mrl))[ 

-<_C1" e x p ( - 7 1  "2 m) 

C 1 .exp(--71. I/1] l~ 2/l~ 

for any q e [ - 2  n-"~ - 1 l u l l ,  2"-n~ Since On(q) o q~(r/), n o  oo, for each t/elR, 
we have by the dominated convergence theorem that 

~lZto,~.-.oa(lql)'q~.(~/)-q~(tl)ldt/o0 as n o o e .  
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On the o ther  hand,  

.[ I1 -Zto,.~.-,,ol(r/)l" I ~o,,(r/)l d~/ 

"---2 ; exp(-hZ, tl2/2)drl 
2 n -  n O 

____ 2. h~- ~ (h, 2" - "~  1. e x p ( -  (h, 2"-"o)2/2) 

= 2 2 "~ b -  2 2"- n -  1. exp ( - ((2- ,o b)2 n)/2) 

0, n ~ o% if b is sufficiently large. 

So we see tha t  if b is sufficiently large, then 

I~o.(~)-~0 (~)l d~ -~0, 
IR 

as n-~  oo. 

This implies our  assertion. 

(2.5) Proposit ion.  There are constants C5 > 0 and ?5 > 0 such that 

N.>Cs.n -~  exp(flcn ), n>=l. 

Proof Let  b be a sufficiently large n u m b e r  satisfying Propos i t ion  2.4. Recall  
that  

(v,,g(.;hn))(x)= ~ g(x-y;h,)vn(dy), xelR. 

Let k,=b.(2.1og2)X/Zn.2 -". Then  g(k, ;  hn)=(2Tcb2n)-l/2--*O as n ~  ~ .  So we 
see tha t  

g ( x - y ;  h,) v,(d y) <=g(k,; h,) ~ O. 
IR  \ [ x - k n ,  x + kn]  

This p roves  tha t  

s u p { I f ( x ) -  
[ x  - k n  , x + kn]  

g ( x - - y ) ;  h,) v.(d y)[; xMR} --* O, as n -~  oo. 

Since f ( x ) > 0 ,  x > 0 ,  this implies tha t  there are n I ~ 1 and  e > 0  such tha t  

h21 v . ( [ x - k . , x  + k.l)>e 

for any  n>=n 1 and x e [ 2  -1,  22]. 
N o w  let m e N .  Then  there is an n_>l such tha t  2-nms[1, 2]. If  m is large 

enough,  then n>=nl and k.<=l-2 -1, and  so we have  vn([2-"m-2k. ,  2-nm]) 
->_ h. e. This  implies tha t  

Z, (tic) hn e <= ~ exp ( -  tic L(w)) 
w e  W ( N ) ,  L ( w ) ~ [ m  - 2 k n 2  n ,  m]  

< exp (tic" 2 k, 2"). exp ( - tic m) N,,, 
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because we W (") with L(w)< m can be extended to a path w'e W o with L(w')= m. 
Therefore we have 

Nm > Z,  (fit) ~ b" 2-" n 1/2 e x p ( -  2 tic b-(2. log 2) 1/2 n) exp (tic m). 

Since n < log m/log 2, this implies our assertion. 

3 Estimates for numbers of short paths and long paths 

For n, m>0,  let U,,m be the summation of exp(-f lcL(w)) for all w e W  o such 
that D (w)< n and L(w)> 2" +,,/2, an d  let V,, m be the summation of exp( - t ic  L(w)) 
for all weWo such that D(w)=n+ 1 and L(w)<2 "-m. 

The purpose of this section is to prove the following. 
(3.1) Proposition. (1) There are constants C6 and 76>0 such that U,,,~ 
=~ C 6 .A~" exp(--76 "l~m/2), n, m>=O. 
(2) There are constants C 7 and Yv > 0  such that 

V,,m =< C7. A~. e x p ( -  77.2m), n,m>=O. 

Proof For any n, m > 0  and t>0 ,  let S, re(t) (resp. S, re(t)) be the summation 
of exp(--fl  c L(w)) for all we W (") (resp. r such that 'L(w)>2 "+m/2 t. Also, for 
any O<m<n, let T,,m (resp. T,,,,) be the summation of exp(-f icL(w))  for all 
w e W (") (resp. 17V~"))such that L(w)< 2"-". 
(1) Note that 2"+l+m/2--2"+(m+l)/2=2"+"/Z(2--2t/Z). Let t=(2--21/2)/3. Then 
we have 

(3.2) U. + 1, m ~ { 1 -~- 2 (Z. (tic) + 2 .  (tic)) + 2 (Z. (tic) + 2 .  (tic)) 2 
+ 2 Z,  (tic) (Z, (tic) + 2 ,  (tic)) z} U,,,, +, + {2 (S,, re(t) + S,,,, (t)) 
+ 4 ( z .  (/~c) + 2 .  (/~c)) (s.,  m (t) + g., ~ (t)) 
+ 6 (Z, (tic) + 2 ,  (tic)) z (S,, ,, (t)+ S,,,, (t)} M,  

for any n, m>0.  Let us explain how one obtains the inequality (3.2). 
The summation of exp(--pcL(w)) for w e W  o such that D(w)<n and L(w) 

> 2  "+1+"/2 is dominated by U,,m+l. This is the first term of the righthand 
side of (3.2). Remember that the path w e W  with D(w)=n+ 1 can be classified 
into 3 types (Fig. 1). Since the other cases are similar, we only observe the path 
weWo of type 3 with D(w)=n+l .  This path w consists of four parts wl, w2, 
w 3 and w4 (see Fig. 2). The case that the length L(w) of w is greater than or 
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equal  to 2 n+l+m/2 is covered  by the following two cases: Case 1, the length 
of w 4 is grea ter  than  or  equal  t o  2 n+~m+1)/2, and Case 2, one of  the lengths 
ofw~,  w2, w3 is grea ter  than  or equal  to 2"+m/zt. 

The  s u m m a t i o n  of  e x p ( - f l c  L(w)) for  w in Case 1 (resp. Case 2) is d o m i n a t e d  
by 2Z.(fl~) (Z . ( t c )+2 . ( f l c ) )  2) U.,.,+ ~ (resp. 6(Z.(tc)+2.(fl~))Z(S.,m(t) 
+ S., re(t)) M.).  These  are the four th  t e rm and  the seventh te rm of  the r igh thand  
side of  (3.2). The  o ther  te rms  come  f rom the pa ths  of  types 1 and  2. 

Let  A o be as in Sect. 2. Then  there is an n2 > 1 such tha t  

1 + 2 (z. (to) + 2. (tic)) + 2 (z. (tic) + ~. (tic)) ~ 

+ 2 z .  (tic) (z. (tic) + z .  (tic)) 2 =< Ao 

for any  n > n  2. Therefore  by (2.2) we see tha t  there is a cons tan t  C <  ~ such 
tha t  

Ao~.+ 1) U.+ ~,~.< Ao". U.,,.+ ~ + C(S.,~(t)+ go,.~(t)) 

for any  n > n2 and  m > 0. N o t e  tha t  U., ~ = 0 if m > 4 n. Therefore  we see tha t  

Ao".U.,,.<=CAo 1. 

for any  n > 6 n 2 and  m > 0. 
On  the o ther  hand,  we have  

[4n/5] 

Z (Sn-k- 1,m+k(t)+S.-k- 1,re+k(0) 
k = 0  

S .... (t)<exp(--t.2 m/z) ~ e x p ( - - ( t c - - 2 - " ) L ( w ) )  
w~W(n) 

=exp(-t.2"/2).Z,,(tc-2-"), n> l. 

Similarly we have  

S.,,. (t) < exp ( - t- 2m/2) �9 Z .  (tic - 2 -"). 

So there is a cons tan t  C' < ~ such tha t  

Ao" .  Un, m ~ C ' .  ~ e x p ( - t ' 2  ~m+k)/2) 
k = 0  

for any  n > n 2 and  m > 0. This  implies our  asser t ion (1). 

(2) N o t e  tha t  

(3.3) Vn,m~{2(Tn,m+Tn,,~)+Z(T.,m+~l".,,n)Z+2(Tn, m+7"n,m)3}Mn 

for any  n, m > 0. Observe  tha t  

T~,~<e. ~ exp(--(flc+2m-")L(w))=e.Z.(tc+2"-"). 
w~W(n) 
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Similarly we have 7" , , "<e-Z , ( f lc+2"-" ) .  So by Proposi t ion 1.6 there are noEN, 
72 > 0 and C2 < oo such that  

T,,, ,+ ~F,,"<e. C2" e x p ( - 7 2  "2 m) 

for any n, m > 0  with n > n o + m .  Combining this with (2.2) and (3.3), we have 
our  assertion (2). 

4 Proof of Theorem 

First, we prove the following. 

(4.1) Proposition. (1) There is an ~ > 0 such that 

P, [ [I w II --< (log n) - ~. n*] �9 exp ((log n) 2) -+ 0 

(2) There is a fl > 0 such that 

P, [ II w [I > (log n) a. n v] .exp ((log n) z ) ~ 0 

Here  v = log 2/log 2 as in theorem. 

as n ~ oo. 

as n--* oo. 

Proo f  (1) Let K ( E ) = [ I ~ g  ~ ] l ~  • , E=  1, 2 . . . . .  where Ix] stands for the max imum 

integer less than  or equal to x. Then we see that  2r(e)<=E<2 rte)+l Also, it 
is easy to see that  2 ~ 1< []wll ~ 2  D(w), WE W O. 

By Proposi t ion 3. i we have for 0 < m < K (Y) 

@ ({we Wo ;L(w)=# ,  D ( w ) < K ( # ) - - m } )  

< exp (fl~ d). Ut((e) - m, 2" 

< C. exp (tic d + ((log Ao)/log 2). log ~ -  y. 2"). 

So combining this with Proposi t ion 2.5, we see that  if a is large enough, there 
is a constant  C' such that  

P , [ D ( w ) < K ( n ) - a . l o g ( l o g n ) ] < C ' . e x p ( - ( l o g n ) 3 ) ,  n = l ,  2, . . . .  

This implies our  assertion (1). 
(2) By Proposi t ion 3.1 we have for m, k > 0  

({we Wo ; L(w) = ~, O(w) = K ( [ )  + m + k + 2}) 

=< exp(flcr VK~e)+"+k + 1,,,+k 

< C" exp (f lJ)  Ag (e)+"+k+ 1. exp( --~. 2 "+k) 

< C-Ao.eX p (tic {) + K (f)-log Ao + m. log Ao - 7" 2 " -  1). A~ �9 exp ( -- 7" 2k- 1). 

Therefore if b is sufficiently large, there is a constant  C' such that  

P . [ D ( w ) > K ( n ) + b . l o g ( l o g n ) ] < C ' . e x p ( - - ( l o g n ) a ) ,  n =  1,2, .. . .  

This implies our  assertion (2). 
This completes the proof, 
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(4.2) Lemma. 
EP. [2(mw)- 1)s Iw(n)l ~ 2 ~w)- 13 

< EP. [2(row)- 1)~, [w(n)l ~ 2 D{w)- 13 

for  any n = 1, 2 . . . .  , and s > O. 

Proo f  This follows f rom a reflection principle shown in Fig. 3. No te  in Fig. 3 
that  a self-avoiding path  wEWo satisfying Iw(n)l<2 D(w)-I must  hit the pivot  
point  x. 

(4.3) Corollary.  For any s > 0  and n =  1, 2 . . . .  , 

2-~- 1 Ee., E2S~,.,o-i =< E~. E Iw (n) lq =< E p" Ell w II q ~ E ~'" E2 ~''~3. 

Proo f  This follows f rom L e m m a  4.2 and the fact that  Iw(L(w))l ~ Ilwl[ ~ 2 row). 
N o w  let us prove our  theorem. The  assertion (1) is a consequence of Proposi-  

t ions 2.3 and 2.5. The  assert ion (3) follows from Propos i t ion  4.1 immediately.  
So we only have to prove  the assertion (2). 

In view of Propos i t ion  4.3 it suffices to prove the assertion (2) with ltwl[ 
in place of Iw(n)l. Let  s >  0. No te  that  by Chebychev 's  inequali ty 

EP" [ [I w ll s] > {(log n) - ~ nV}S(1 -- P. [ [I w [[ < (log n) - ~ nV]). 

So by Propos i t ion  4.1(1) we see that  

(4.4) lim (log n) S~. n - ~  E e" [[I w ll'] > 0. 
n ~ o o  

Also, note  that  

EP" [ t] w ll s] ~ { ( log n) p n~} ~ + n ~. P, [ 1[ w[[ > (log n)/3 n~]. 
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So by  P r o p o s i t i o n  4.1 (2) we see tha t  

(4.5) l im (log n)-S ~. n - ~  E e" Ill w ll q < o0. 
n ---> ~ 

By (4.4) a n d  (4.5), we have  

l im (log n ) -  1. log E P- [-11 w I] s] = v. s. 
n --~ o o  

This impl ies  the asser t ion  (2). 
This  comple te s  the p r o o f  of  Theorem.  
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