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Summary. The class of (non-Gaussian) stable moving average processes is ex- 
tended by introducing an appropriate joint randomization of the filter function and 
of the stable noise, leading to stable mixed moving averages. Their distribution 
determines a certain combination of the filter function and the mixing measure, 
leading to a generalization of a theorem of Kanter (1973) for usual moving 
averages. Stable mixed moving averages contain sums of independent stable 
moving averages, are ergodic and are not harmonizable. Also a class of stable 
mixed moving averages is constructed with the reflection positivity property. 
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1 Introduction 

Stationary symmetric e-stable (Sc~S) processes have been fully described in [4], 
a key ingredient being a group of isometrics on an U space. In the Gaussian case 

= 2 this leads to the spectral representation of all stationary Gaussian processes 
(which are continuous in probability). However the non-Gaussian stable case 
0 < c~ < 2 is subtler and no explicit representation is known for all stationary stable 
processes (which are continuous in probability). The main two subclasses studied 
have explicit representations motivated by the Gaussian case: the harmonizable 
processes, which are superpositions of harmonics with (complex) SeS amplitudes, 
and the moving average processes, which are filtered SeS stationarily and indepen- 
dently scattered noise. In the Gaussian case e = 2, the latter is a subclass of the 
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former. However, for 0 < a < 2 the two classes are disjoint [8]. An important 
property of SaS moving average processes is that for 0 < c~ < 2, the distribution of 
the process determines essentially the filter function of the moving average (except 
for a translation and sign). 

The purpose of this work is to expand the class of non-Gaussian SeS moving 
average processes by the introduction of an appropriate joint randomization of the 
filter function and of the SaS noise (Sect. 2). We term them SaS mixed moving 
averages. In a far reaching generalization of the theorem of Kanter [5], it is shown 
in Theorem 1 that the distribution of a SeS mixed moving average determines 
a certain measure v on symmetric (under translation and sign change) sets of the 
unit sphere of U ,  which combines the filter function and the mixing measure. 

In Sect. 3, we show that sums of independent SeS moving averages, and in 
particular stationary SeS processes with finite multiplicity, are SaS mixed moving 
averages. We also show that Sc~S mixed moving averages are mixing, but not 
harmonizable. Finally, in Sect. 4, we characterize the reflection positivity of SeS 
mixed moving averages and provide a rich class of examples. As there are very few 
Markov S~S processes [1], the existence of reflection positive mixed moving 
averages may be of more general interest. 

2 Characterization 

A stable mixed moving average field is defined by 

(2.1) X(t) = f f ( x , t - -  s)M(dx, ds), tER  d, 
. ~ ' x R  ~ 

where M is independently scattered symmetric e-stable (SeeS) random measure on 
f x R d with control measure Q | Leb and 0 < ~ =< 2, (~c, Q) is a a-finite complete 
measure space, f: ~ x R d --> R is measurable and such that 

(2.2) 0 < f [f(x,t)l~Q(dx)dt < oo. 
~ ' x R  ,~ 

The usual S~S moving averages correspond to ~ consisting of one point, i.e. 
~Y = {1}, Q = 6{1} and f (1 , .  ) - f ( . )  ~ U(Rd). The distribution of the process {X(t): 
t ~ R e } is determined by its finite dimensional characteristic functions 

(2.3) qSx(a) = E e x p { i t ; a ( t ) X ( t ) }  

= e x p { - r f R "  ~R a(t)f(x,t  -- s) ~Q(dx)ds}, 

where a is a real function on R e such that a(t) = 0 for all but finitely many t, via its 
parameters fand  Q. It is clear from (2.3) that X is stationary. The first question we 
address is when two stable mixed moving averages X~ and X2, with parameters 
( f l ,  Q 1) and (f2, Q2), have the same distribution. For  usual stable moving averages 
Kanter [5] has shown that Xx and X2 have the same distribution if and only iffa 
and f2 differ by a global sign and a shift:f2 (-) = efl (" - s) for some s and e = _+ 1. 
For  mixed stable moving averages the characterization is more complex and is 
given in Theorem 1. 
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It follows from (2.2) that for Q - a . a .  x, f ( x , . ) e U ( R d ) .  Without loss of 
generality we may further assume this holds for all x ~ 2f. Define f: Y" ~ U ( R  e) by 
[ f (x)] (t) = f ( x ,  t) and note that 

, / y ( . ) ~  
(2.4) v(A)= f 'AI~,~7-., ! [lYll~,(Q~ 

L~(ll ~) \Ny I~/ 

is a finite measure by (2.2), supported by the unit sphere S~ of U(Re), and by (2.3), 

( 2 . 5 )  O x ( a ) = e x p { - - L o ; , , l ~ a ( t ) h ( t - - .  ) 2 v(dh)}. 

Let {Us: s e R e } denote the group of shift operators on L~(Rd), (U~o) (t) = 9(t - s). 
Define now an equivalence relation on U(R  e) by 

g ~ h  <=> 3 e =  + 1 ,  s ~ R e : s U s g = h .  

Let ~z: U(R d) ~ L~(Re)/_ be the canonical mapping. 

Theorem 1 There is a one-to-one correspondence between the distribution o f  the 
process {X(t): t~ R e } defined by (2.1) with 0 < ~ < 2, and the measure vo~ - j on the 
quotient space U(Ra)/_. 

The proof of Theorem 1 is preceded by two lemmas. A Borel subset A of U(R e) is 
symmetric if - A  = A and shift-invariant if UtA = A for every t E R d. The proof of 
[,emma 1 is routine and thus omitted. 

Lemma I Let  vl and v2 be two Borel measures on L~(Re). Then v~o~ -a = Y 2 o ~  - 1  / f  

and only i f  v l(A) = v z ( A ) f o r  any open symmetric shift-invariant set A. 

]_,emma 2 can be proven using the (time-reversed) Martingale Convergence 
Theorem. 

[,emma 2 Let  g ~ L 1(Re). Define 

g , ( s )=  2 e, ~ g(t + s), s~  R e , 
t ~ L .  

if the series converges absolutely and 9,(s) = 0 otherwise, where 
L, = {(k12-" . . . . .  ke2-"): k l . . . .  , k e s Z }  is a lattice in R e, n = O, 1, . . . . Then, as 
n - - +  o(3 ~ 

g"(s)--, f g(u)du a.e. [Leb] .  
R a 

Proo f  o f  Theorem 1 The process X, regarded as a random vector in R R~ equipped 
with the cylindrical a-algebra, is infinitely divisible and its distribution is uniquely 
determined by its L6vy measure given by 

c~dw 
(2.6) A(C) = f l c ( { w f ( x , .  - s ) } )Q(dx)ds  lwl~+~, 

X x R n  xRo 

where ca is a numerical constant, Ro = R\{0}.  
Let 

A = {h s L~(Re): I[h - hzll~ < rl, i = 1 , . . .  ,m}  

be a symmetric open set in U(Re), where hz E L~(R e) are continuous functions with 
compact support and r~ > 0 (we may assume m = 2k, h~ = -h~+k, r~ = ri+k, 
i = 1 , . . .  k). Note that such A generate the a-algebra of symmetric Borel subsets of 
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U(Ra) .  Consider  a function q: RR"~  [0, oo] given by 

q'(e) = lim sup2  -a" ~ [e(t)l ~, e e R  ~", 
n ~ o ~  t e L .  

where L,  is as in L e m m a  2. We now relate with the set A a cylindrical set C of the 
form 

{ } C = e e RR": q(e) > 1, q - hi < rl, i = 1 , . . . ,  m 

By L e m m a  2, q(h(.  - s)) = II h I1~ ds - a.e. for each h e L'(Re).  Moreover ,  for every 
h e L~(R a) and i = 1 . . . . .  m, 

q(h(.  - s ) -  h i ( ' ) )  = [Ih(- - s ) -  hi(')ll~ d s -  a.e. 

Indeed, fix i and consider h~,~(u) := h~(u + t), u ~ R a, t e L, .  By L e m m a  2, for each 
t ~ L, ,  the set 

V t  : =  {s E Rd:  q(h(.  - s) - -  h i , t ( "  - s ) )  = 11 h - -  h i ,  t 11~} 

is of full Lebesgue measure;  hence V = 0 , ~ o ,  ~L, Vt is of full Lebesgue measure.  
Let  s ~ V be fixed. Since h~ is cont inuous  and with compac t  support ,  bo th  
q(h~,t(. - s ) -  hi .)  and []h~,,(. - s ) -  h,(.)]]~ can be made  arbitrari ly small by 
choosing sufficiently large n and some t e L,  that  is close to s. Using then triangle 
inequali ty and the definition of V~ we infer that  q ( h ( . - s ) - h i ( . ) ) =  
l[ h(- - s) - h~(.)l[,. 

Therefore  we have 

A(C) = f 1 (w,s,x): q(wf(x , .  - s)) > 1, q~ H ~x , .  ,,~ 
~q xRa xRo 

i =  1 . . . . .  m Q(dx)dslwll  +~ 

2c~ e ~• \ (  , [[f(x,.--S)I[f(x,.)[[, h i  } )  = - -  J I I s ,  x )  - - - -  r i ,  = , m  I% < i 1 . . . .  [I f(x, .) l[:Q(dx)ds 

2c~ 
- f v(U2tA)ds. 

Thus  the distr ibution of X determines the measure  

(2.7) N~(A) := f v ( U ; 1 A ) d s  
R a 

on the a -a lgebra  of all symmetr ic  Borel subsets of U(Ra) .  
Let us show that  Nv determines the measure  vow-1. To  this end we will 

construct  a symmetr ic  Borel function t* : U ( R  a) ~ R a such that  

(2.8) t*(Ush) = t*(h) + s, Vh e L~(Ra), s e R a. 

F o r  each h E U ( R a ) ,  h # O ,  consider a function Oh(t)=ft+l lh(s) l~ds,  
1 = (1 . . . . .  1), t = (h . . . . .  td) e R d. Clearly Oh is cont inuous and vanishes as 
I t l ~  oo. Therefore  the set 

Fh = {t e Re: 0h(t) = sup 0h(S)} 
s e l l  a 
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is compact nonempty. The point t*(h) = ( t t  . . . . .  t*) is chosen from Fh as follows: 
t ] = m i n { h "  t e F h } ,  t * = m i n { t 2 :  t e F h ,  t l = t ] } , . . . , t ] = m i n { t d :  t ~ F h ,  
tj = t t , . . .  ,re-1 = t~'-1 }. We put t*(h) = 0 i f h  = 0. Clearly t*( - h) = t*(h). I t i s  
also easy to show that t* is a Borel function (just consider {h: 
t~(h) < al, . . . ,  t](h) < an}). Since Fvsh = Fh + S, (2.8) follows from the definition 
of t*. Put  

B ~ = { h e L ~ ( R d ) : t * ( h ) ~ [ s , s +  1)}, s e R  d. 

Using (2.7) and (2.8) we obtain, for every symmetric shift-invariant set A, 

(2.9) N~(A c~ Bo) = f v ( u Z a ( A  c~ Bo) ds = f v(A c~ B,)ds 
R ~ R a 

= f ~, v ( A n B , + s )  d s = v ( A ) ,  
[0, 1) a t e L o  

because, for each fixed s, the sets Bt+,, t E L0, are disjoint and U~Lo Bt+s = U(Rd). 
Since t* is symmetric, Bo is symmetric, so that N~(A c~ Bo) is uniquely determined 
by the distribution of X. In view of (2.9) and Lemma 1 the distribution of 
X uniquely determines vo~-1. 

Now we shall prove the converse part of the theorem, that vo~-1 uniquely 
determines the distribution of X. Using (2.5) and noting that in the integrand, 
h may be replaced by rch, we obtain 

~t 

-- log~bx(a) = L'(R") f ~f(t)h(t - .) v(dh) 

")i = f ~r'f(t)h(t - (vo re- 1)(dh), 
L'(R~)/~ t 

where in the last integral, ]]. H~ is not a norm in L~(R)/_ but is well-defined as 
a continuous function on it. Hence v o ~-1 determines $x(a). The proof of the 
theorem is complete. [] 

Discrete case 

A discrete analog of (2.1) is obtained by replacing R e by Z e and Lebesgue measure 
by the counting measure on Z e. Therefore we have 

(2.10) X(n)  = f ~, f ( x , n  - k ) M ( d x ,  k), n a Z  d, 
~" k s Z  ~ 

where M ( . ,  k), k e Z d, are independent SaS-stable random measures on (~, Q) with 
control measure Q. In order that (2.10) be well defined we clearly must assume that 

(2.11) 0 <  ~, f I f (x ,k)[~Q(dx)< ~ . 
k E Z  d 

A measure v is defined in an analogous way as in the continuous case; it is now 
supported by the unit sphere of P(Ze), and the relation ~ is defined on P(Ze). An 
analog to Theorem 1 holds in the discrete case and its proof is similar to but 
simpler than the proof of Theorem 1. 
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Theorem 2 There is a one-to-one correspondence between the distribution of the 
process {X(n): n E Z d} defined by (2.10) with 0 < c~ < 2, and the measure yon -1 on 
the quotient space P(zd)/_. 

Proof First we obtain, by the uniqueness of L~vy measures, that the distribution of 
X determines the measure 

N~(A)= Y' v(Uk-IA) 
k E Z  d 

uniquely on the a-algebra of symmetric Bore! subsets of U(Z d) (this is straightfor- 
ward since Borel and cylindrical ~r-algebras coincide in this case). Then we define 
~h(k) = Ih(k)I, h ~ P(Zd), k ~ Z d. Having ~h, t*(h) is defined exactly in the same way 
as in the proof of Theorem 1. Put Bk = {h ~ l~(Zd): t*(h) = k}, k ~ Z ~. We have, for 
every symmetric shift-invariant set A, 

N~(A c~ Bo)= ~ v ( U i i ( A  c~ Bo))= ~ v(A C~ Bk)= V(A). 
k ~ Z  ~ k ~ Z  d 

By Lemma 1, which holds in the discrete case as well, the distribution of X deter- 
mines yon -~. The converse follows by the same arguments as in the proof of 
Theorem 1. .~ 

We should notice that all results in this paper, given for continuous time, clearly 
have discrete counterparts with proofs essentially the same or simpler than in the 
continuous time case. The following result, in the case d = 1, is due to Kanter [5]. 

Corollary l Let {Xi(t): t~Rd} ,  i =  1,2, be usual S~S moving averages, with 
0 < ~ < 2 ,  

Xi(t) = f f.(t - s)Mi(ds), t e R e, 
Ra 

where M~ are independently scattered S~S random measures on R d with Lebesgue 
control measure and fi ~ L~(Rd). Then X1 and X2 have equal distributions if and only 
ifA ~A. 
Proof The measure v~, corresponding to X~, is a one-point measure given by 
vi = Ilf~ I[~b{l~H:*~}- Therefore vl oTr -1 = Y2 ~ if and only iff t  ~f2- [] 

3 Examples ,  ergodicity and harmonizabil i ty 

In the Gauss ian case a = 2, the mixed m o v i n g  averages coincide with the usual 
m o v i n g  averages. Indeed one  has 

1 ,~)12d,~} Q(dx) 

1 
- (2~z)d/2 R( e i(t ~"~)~b()0d2 = R dfg(t -- s ) g ( t ' - -  s )ds ,  

where F ( x ,2 )  is the L2-Fourier  transform of  f ( x , . ) , d p ( 2 ) = f ~ l F ( x ,  2)j 2 
Q(dx) ~ L~(Leb) since fR.q~(2)d2 = (2~) d/2 fe-• . If(x,  t)12dtQ(dx) < o0, and g ~ L 2 
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(Leb) is the L2-Four ier  t ransform of @1/2 ~ L2(Leb). Therefore  

{X(t): t ff R d } ~ {21/2 f g ( t  - s)B(ds): t ~ R d} 
R a 

where B is Gauss ian  white noise. 
We shall see now tha t  in the non-Gauss ian  stable case 0 < e < 2 the mixed 

moving  averages form a larger class than  the usual moving  averages. 

Sums of independent usual moving averages 

Let 

(3.1) X(t)  = ~ f f k ( t -  S)Mk(dS), t ~ R  e, 
k = l  R e 

w h e r e  M 1 . . . . .  M. are mutua l ly  independent ,  independent ly  scattered, SeS ran- 
d o m  measures  on R e with Lebesgue control  measure  and 0 < c~ < 2. We observe 
tha t  if, for some k =t=j, fk ~ Ck, jf~ where Ck,j ~ R, then the process 

f A( t  - s) Mk(ds) + f f (t - s) Mj(ds), t R e , 
R a R e 

has the same distr ibution as 

(1 + [Ck,i[~) 1/~ f fj(t -- s)Mj(ds), t ~ R  d. 
R d 

Therefore  one can always choose a minimal set of functions {f l  . . . . .  f,,} in (3.1) to 
represent  in distr ibution the process X, minimal  in the sense that  for no k =~ j, and  
no c ~ Rl , fk --~ cfj. The sum of independent  moving  averages (3.1) is a special case of 
(2.1), with Q being the count ing measure  on f = {1 . . . . .  n} and f (x ,  t)=f~(t),  
x e ~ .  In such a case, when the set { f l , - . .  ,f,} is minimal,  the measure  yore -1 is 
given by yon -1 = Y,"k=lllfk []~6(~(l~~lt:lfk)) and has exactly n-point  support .  Hence,  
applying Theorem 1, we obtain  

Corollary 2 Let {X(1)(t): t s R d} be given by (3.1), with fk replaced by fk (~), Mk by M(k ~, 
and n by n (~ i = 1, 2. Assume that the representing sets of fimctions { f~) ,  . . . ,f(~l} 
and { f l  (2) . . . .  ,f(,~,2, } are minimal. Then X (t) and X (2) have equal distributions if and 
only if n(~)= n(2)= n and there exists a permutation p of { 1 , . . . , n }  such that 
f(k ~) ~ f(2) k = 1, n. d p k  ~ " " " 

Corol la ry  2 shows that  when 0 < c~ < 2 there are (regular) s ta t ionary  Sc~S processes 
with any  given multiplicity n > 1, whereas all regular s ta t ionary  Gauss ian  pro-  
cesses have multiplicity n = 1. Also note  that  finite sums of independent usual SeS 
moving averages are dense in the class of mixed moving averages, as every a-finite 
measure  Q on a Borel space can be approx ima ted  by discrete measures  suppor ted  
by finite sets of points. 

Mixed memory moving averages 

We will now consider mixed moving  averages (2.1) defined by a R a d o n  measure  
Q on ~r = Rd+ and 

1, ifO<=ti<=xi, i = 1  . . . . .  d, 
f ( x , t )  = l~o.xl(t):= 0, otherwise,  
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x = (xl ,  �9 . . ,  Xd) e 3f, t = (h . . . . .  ta) e R e. Since IIf(x, ' ) l l~ = X l . . .  x~, assump-  
tion (2.2) translates in this case to 

0 < f x~ . . .  xaQ(dx) < oo. 

Using Theorem 1 we can show a one- to-one correspondence  between the distribu- 
t ion of the corresponding e-stable process X and the measure  Q. In fact, because of 
the special form of X, we can establish an even s t ronger  result, in a simpler way, by 
evaluat ing the bivariate  characterist ic functions of X. 

Proposit ion 1 There is a one-to-one correspondence between the bivariate distribu- 
tions o f  a mixed moving average defined above and the measure Q on R a . 

P r o o f  Write t < s if t, s e R d and tl <= Sl, . . �9 ta < Sd, and denote  [t, s]  = {u ~ Re: 
t < - u < - s } ,  I [ t , s ] l = L e b [ t , s ] .  Set also [t, oo] = { u e R a :  t < u } ,  [t, oo)~ = R a \  
[t, oo ). Then  for t e Ra+ noting that  [ - t, x - t] c~ [0, x] = [0, x - t], x ~Ra+, we 
have 

- l o g E e x p { i ( a X ( O ) +  b X ( t ) ) }  = f lalto,x~(u ) + blto, xl(t + u)]~Q(dx)du 
Rd+ • R d 

= f Q(dx){ la  + b l ~ l U 0 , x - t ] [  + lal~lUO, x]\UO, x -  t ] l  
[t, ~) 

+ fbl~l[ - t , x  - t l \ [ O , x  - t l l }  

+ f e(dx){lal ' l [O,x]l  + Ibl'l[ - t , x -  t]l} 
[ t ,  oo) c 

= (lal ~ + IbiS)me(O) + ( l a  + b V -  lal ~ -  IbiS)me(t),  

where me( t  ) = fi~, ~o) I[O, x - t] ]Q(dx), t ~ R%. I t  follows that  the univariate distri- 
but ion of X determines m e (0) = f R  ~ X~ . . .  Xd Q (dx) and then the bivariate  distribu- 
tions determine m e ( t  ) for t ~ R%. Integra t ing by parts,  one has me( t  ) = f~,~) 
Q([x ,  oo ))dx,  t ~ R ~ ,  hence me( t  ) determines the measure  Q. Conversely,  clearly 
the measure  Q determines all mult ivar ia te  distr ibutions of  X. [] 

Ergodici ty  

We notice that  stable mixed moving  average processes in R 1 are mixing. A real 
s ta t ionary  process {X(t): t e R} is mixing if and only if 

lira E(~tlT) = E(~)E(~)  
T - +  oo 

for all ~: (X(t): t < 0)-measurable and t/: (X(t): t > 0)-measurable with E~ 2 < o% 
Er/2 < oO, where tit is tl shifted by T. The following result can be proven  essentially 
like Theo rem 2 in [2]. 

Theorem 3 Every  S e S  mixed  moving average process with 0 < ~ < 2 is mixing. 

The stable generalized moving  average fields are actually doubly  s ta t ionary  in the 
sense ( introduced in [2. Sect. 6])  that  their representing kernel f ( . , t -  .) is 
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stationary with respect to the control measure. Indeed for all B ~ N(R"), t~ . . . .  , t,, 
"c~Rd, n>= l, 

(Q| {(x, s): ( f ( x ,  tl + z - s), . . . , f ( x ,  t ,  + z - s)) ~ B} 

= f Leb{s: ( f ( x ,  t l  + ~ - s ) , . . .  , f ( x , t ,  + ~ - s ) ) E B } Q ( d x )  
y ,  

= f Leb{u: ( f ( x ,  tl - u) . . . . .  f ( x ,  t, - u)) ~ B} Q(dx) 

= (Q | Leb) {(x, s): ( f ( x ,  tt - s ) , . . .  , f ( x ,  t, - s)) E B } .  

Non-harmonizabili ty 

Generally speaking, a SeS process is called harmonizable if it is the Fourier 
transform of a Sc~S random measure 

(3.2) f e~(t'~)Z(d2), t e R  a, 
R e 

where the integral is appropriately defined. The random measure Z is necessarily 
complex valued. (A complex random variable is SeS if its real and imaginary parts 
are jointly SeS.) For simplicity we will consider only the one dimensional case 
d = 1 here. 

Let L ( X )  be the closure in probability of the complex linear span of {X(t): 
t e R} defined by (2.1). Then every Y e  L ( X )  is of the form Y = f g d M  where the 
complex-valued function 9 is in L ~ ( ~ x R ,  Q |  and the norm 
11YI]~ = II g 11~ := 119 ]]Lo(~| convergence in probability. We say that the 
process X is harmonizable if there is an L(X)-valued strongly countably additive 
measure Z of finite semivariation on (R, N(R)) such that 

(3.3) X( t )  = f e"ZZ(d2) ,  t ~ R ,  
R 

where the integral is defined in the usual way (see 1-3, pp. 318-328]). (For indepen- 
dently scattered Z this is the usual integral.) 

Theorem 4 A (nondegenerate) SeS  mixed moving average process with 1 < ~ < 2 is 
not harmonizable. 

Proof  The map J: (L(X),  II" 11~) ~ Z~(~ x R, Q | Leb) defined by J (X( t ) )  --- 
f (* ,  t - �9 ) can be extended to a linear isometry on L(X), denoted also by J. Assume 
X is harmonizable. Then Z(B)  ~ L ( X )  for each B e N(R) and since J is an isometry, 
# (B) :=  J (Z (B) )  is a strongly countably additive U ( Y ' x R ,  QNLeb)-valued 
measure of finite semivariation on N(R). From (2.1) and (3.3) we obtain 

(3.4) f ( , ,  t - -) = f e "~# (d2 ) ( , , .  ) .  
R 

The following Lemma 3 implies that for every g ~ L~' (92, Q), 1/~ + 1/a' = 1,  

fo(t - -) := f f (x, t - . )g(x)Q(dx)  = f e"Z l~g(d2)(. ) , 
YE R 

where f0 e L~(R, Leb) and #o : N(R) ~ U(R, Leb) defined in (b) of Lemma 3 is 
a strongly countably additive measure of finite semivariation.Then the arguments 
in the proof of Proposition 1.9 in [8] imply thatfg = 0 in L~(R, Leb). Hence for each 
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g e U'(SV, Q) and h e U'(R, Leb) we have 

0 = f fo( t )h( t )dt  = f f(x, t)g(x)h(t)Q(dx)dt.  
R ~ f x R  

Since functions of the form g(x)h(t) are linearly dense in U ' ( X  x R, Q|  it 
follows that f = 0 in U ( X  x R, Q | Leb) which contradicts (2.2). [] 

Lemma 3 Let 1 < c~ < 2, 1/~ + 1/~' = 1, g ~ L~' ( f ,  Q) and f, # be as in (3.4). Then 

(a) s  ) :=  f e  f ( x , .  )g(x)Q(dx) ~ U(R, Leb), 

(b) #o(B)( .):=f~#(B)(x, . )g(x)Q(dx) is a strongly countabIy additive 
L~(R, Leb)-valued measure of  finite semivariation on N(R), and 

(c) fo(t - .) = fReit~#o(d2)(.), t ~ R. 

Proof. (a) This follows from (2.2) and 

f Ifo(t)l~dt < f If(x,t)l~Q(dx)dt [ g ( x ) f Q ( d x )  < oe . 
R ~ x R  

(b) As in (a) we obtain #g(B)(.)~ U(R,  Leb) for all B e ~(R). Also for each 
h ~ U'  (R, Leb) we have 

f#o(B) (t)h(t) d t =  f #(B)(x, t)g(x)h(t)Q(dx)dt 
R f x R  

and since g(*)h(.) 6 U ' ( X  x R, Q | Leb) and #(B) (*,.) is strongly countably addi- 
tive U ( X  x R, Q | Leb)-valued measure on ~(R), it follows that #g(B) (.)  is weakly 
countably additive U(R,  Leb)-valued measure on N(R), and by Pettis' theorem 
[-3, p. 318] is also strongly countably additive. By (a) we have 

N N 

II ~ a,#g(B,)l[L~(g,Leb) <= II ~ a,g(B,)l[L~(~•174 Ilgllg='(g, Leb), 
n = l  n = l  

and since # is of finite semivariation so is #0. 
(c) For  each h e U'(R,  Leb) we have 

f L(t - s)h(s)ds = f f f (x ,  t -  s)g(x)h(s)Q(dx)ds 
R R X  

:df{ e by, 4  

= f f f ei~x#g(d2)(s)th(s)ds by (b) 
R L R  ) 

and since f o ( t -  .) and fRei~gg(d)O(.) are both in L~(R, Leb), the conclusion 
follows. [] 

4 Reflection positivity 

A real process X = {X(t): t ~ R} is called reversible if the time-reversed process 
{X( - t): t e R} has the same distribution as X. A strictly stationary reversible 
process X = {X(t): t ~ R} is said to be reflection positive if for any n > 1 and 
0 < tl < . . . < t, and any bounded measurable function F : R" ~ C the following 
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inequali ty is true: 

(4.1) E { F ( X ( t l )  . . . .  , X ( t , ) ) F ( X (  - t l)  . . . . .  X ( -  t,))} > 0 .  

The not ion of reflection positivity is a generalization of the Markov  proper ty  for 
reversible processes, and has its origin in quan tum field theory, see e.g. [7]. Klein 
[6] characterized (vector-valued) Gaussian reflection positive processes; in particu- 
lar, he showed that  the covariance function of any real reflection positive process is 
given by the Laplace t ransform of  a positive finite measure on [0, oo). 

In this section we characterize reflection positivity for general (non-Gaussian) 
infinitely divisible processes and in part icular  also for Sc~S mixed moving averages. 
We also introduce a Sc~S Ornste in-Uhlenbeck  type process which is reflection 
positive. 

Let X = (X(t):  t e R }  be a real process such that  for any collection 
Z = ( t l , . . .  , tn)  , t I < . . .  < tn, n ~ 1, the distribution of X ~ : =  ( X ( t l )  . . . . .  X ( t n )  ) 

is infinitely divisible having the L 6 v ~ K h i n c h i n e  representat ion 

(4.2) E e x p { i ( a , X ~ ) } - - e x p {  R~f(e i (a ' " ) - - i - i (a 'O(u)) )A~(du)}  ' 

w h e r e a s R " , O k ( U )  = 1 ifug > 1, = ukifluk[ < 1, = -- 1 i fuk < -- 1, k = 1 , . . .  ,n, 
and A ~ is the (L6vy) measure on R~ = R"\  {0} such that  

f (u, u)(1 + (u, u))-I A ~ ( d u )  < ~ . 
R~ 

Theorem 5 Let  X = {X(t): t e R} be a real stationary reversible infinitely divisible 
process having the L~vy Khinchine representation (4.2). Then X is reflection positive 
if  and only i f for any z = (tb . . . ,  t,), 0 < tl < . . �9 < t,, n > 1, and any F E L 2 (R~, 
A t) the following inequality is true 

(4.3) f F(u+)F(u  )A~U(-~)(du) > O, 
II~" 

where z v o ( - -  r ) = ( - t  . . . . .  , - - t l , t l  . . . . .  t,), u = ( u _ , , . . . , u _ l , u l  . . . . .  u,) 
R g", u + = ( u l  . . . . .  u , ) , u - - = ( u _ l , . . . , u _ , ) ,  and the functions uw+F(u+), 
u ~--~F(u_): Ro2"--+ C in (4.3) satisfy the condition 

(4.4) F ( 0 , . . . , 0 )  = 0 .  

Remark  1 The system of L+vy measures {A~: z = ( t l , .  �9 ,t ,) ,  ta < �9 �9 �9 < t,, n > 1 } 
satisfying (4.3) will be called conditionally reflection positive, the word 'condit ion- 
ally' referring to the condit ion (4.4). It should be noted that, a l though the function 
F in Theorem 5 is originally defined on the set R~ = R"\{0} only, the expressions 
F(u+), F(u_)  in (4.3) denote its extensions on R 2" defined with the help of (4.4), as 
{u ~ R~": u+ = 0} and {u ~ R2": u_ = 0} are non-empty.  Note  also that 

f [F(u+)12A~'~(-~)(du) = f lr(u)12A~(du) < oo 
Rg" R~ 

because of (4.4) and the consistency relation between the L6vy measures A t and 
A ~ (  ~); hence the left hand side of (4.3) is well-defined. 

Proo f  o f  Theorem 5 Let us show the sufficiency of  the conditions of the theorem for 
X to be reflection positive. Note  that  it suffices to prove (4.1) for F :  R" ~ C of the 
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form F ( x ,  . . . . .  x,) = Y~'=t CkeXp{i(2(k) ,x)} ,  Ck e C, 2 (k) e R", 
R", k = 1 , . . . ,  m, m = 1, 2 , . . . ,  in which case it becomes 

(4.5) ~, Ck'e-[,exp{dkk,} > O, 
k,k '=l  

where 

(4.6) 

X = ( X  1 . . . . .  Xn) E 

�9 ( k )  dkk' = / [ exp{ , (2  , u + ) -  i (2(k ' ) ,u - )}-  1 -  i (2(k) ,r  
Ro z. 

+ i(,W k'), r A ~U(-') (du) 

according to (4.2). As X is reversible, the matrix (dkk')k,k' =~--7~ is Hermitian, and it is 
well-known (see e.g. [-10]) that in such a case (4.5) is equivalent to the positive 
definitiveness of the matrix dkk' := dkk' --  dk~ --  dlk" + d lx ,  k , k '  = 1 . . . . .  m, or the 
inequality 

(4.71 ~ Ck~k, dkk,>--O 
k,k '=l 

for any c ~ , . . . ,  c,~ ~ C. Without loss of generality, we may take 2 (1) = 0, and from 
(4.6) we find that 

gk~, = f (e ~(~`~''"+ ~ - 1)(e -i(a<~'''"-) -- 1 )W" (-~)(du),  
Ro ~. 

which together with (4.3) implies (4.7), or the sufficiency part of the theorem. 
The necessity follows from the argument above and the fact that functions F: 

R~--+ C of the form F ( u ) = s  i('vk''u)- 1), CkEC,  2(k) e R  n, k =  1 , . . . , m ,  

m = 1, 2 , . . .  are dense in L2(R~, W). This is of course equivalent to the statement 

that functions F+" R2"--+ C of the form F + ( u ) =  Y,'~=, Ck( e~ (x%"+) -  1), ckeC,  
2 (k) e R", k = 1 , . . .  ,m, m = 1 , 2 , . . .  are dense in the subspace of L2(Ro 2", W '~(-*)) 
consisting of functions u ~ F ( u + )  with FIR,asL2(R"o,W) and F ( 0 ) = 0 ;  see 
Remark 2. [] 

Corollary 3 L e t  

(4.8) X ( t )  = f f ( x ,  t - s ) m ( d x ,  ds), t ~ R ,  
~ x R  

be a S~S reversible mixed  movin 9 average wi th  0 < ~ < 2 and control  measure  Q. 
Then {X(t): t e R} is ref lect ion posi t ive i f  and only i f  the inequali ty  

f F ( w f ( x , t ,  - s) . . . . .  w f ( x , t , -  s)) 
,,%r x R x R o 

(4.9) x F ( w f ( x ,  - t l  - s) . . . . .  w f ( x , -  t ,  - s ) )Q(dx)ds]  w l - l - ~ d w  > 0 

hold f o r  any  n > 1, 0 < tx < . . . < t ,  and any  measurable  func t ion  F: R"--+ C such 
that  F(O, . . . , O) = 0 and 

f I F ( w f ( x ,  t l  - s ) , . . . , w f ( x , t ,  - s ) ) 1 2 Q ( d x ) d s l w [ - 1 - ~ d w  < oo . 
Y ' x R x R o  

P r o o f  It follows from Theorem 5 and the expression (2.6) for the L6vy measure of 
X in (4.8). [] 
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It seems that there is no easy way to verify the inequality (4.9) for concre tefand  
Q. In particular, we do not know whether there exist any reflection positive 
processes among the usual SeS moving averages, with Q concentrated at one point. 
However, as we shall see below, there is a class of such processes with non-trivial Q, 
corresponding to reversible Markov processes killed at a constant rate c > 0. 

L e t X = Q x R +  and 

(4.10) Q(dx) = P(dco)| x = (co,(), 

where (s P) is a probability space with a stationary reversible Markov process 
{~(t, co): t e R} defined on it, and taking values in a measurable space (N, #). We 
assume that # is the invariant measure for {~(t): t ~ R}, i.e. #(A) = P{~(t) s A} for 
any measurable A c ~ and any t c R. Let 9 e L~(#) �9 Consider the So~S mixed 
moving average 

(4.11) X0( t )=  f g(~ ( t -  s, co)) lto,~j(t- s)M(dco, d(,ds), t e R ,  
~ x R + x R  

with control measure Q given by (4.10). 

Example. In the simplest case f2 = ~ / =  {1}, ~(t, co) - 1,g = 1, the process (4.11) 
can be written as 

(4.12) X(t) = f lro,;](t-- s)M(d~,ds), t ~ R ,  
R+ xR 

with control measure Q(dO = ~e =~d(, ~ ~ R+, ~, c > 0, i.e. (4.12) is a particular 
case of the mixed memory moving average processes discussed in Sect. 3. As it 
follows from (4.14) below, the multivariate characteristic function of {X(t): t ~ R } is 
given by 

(4.13) Eexp i ajX(tj 
k j = l  

Z 

- o o  = : t o < t ~ <  . . . < t , < t , + l : =  + o o , A h : = h + l - h , i = l , . . . , n .  I n t h e  
Gaussian case e = 2, (4.13) becomes 

E exp{ij~= l ajX (tfl } = exp{ -- #c- 2 i,~ l e-Cltl-Ulaia~ } , 

i.e. (4.12) is a representation of the Ornstein-Uhlenbeck process with the 
covariance 2#c-2exp{ - c]t - s]}, t, s e R. Although for ~ < 2 the process (4.12) is 
not Markov (unlike two other S~S analogs of the Ornstein-Uhlenbeck process, 
namely the usual a-stable moving averages X + ( t ) = f t ~ e  c"-~)M(ds) and 
X_(t) = f ~  e ~t-~) M(ds), which are Markov [-1]), it has other important properties 
not shared by the processes X+ and X_,  namely the reversibility and reflection 
positivity. 

Theorem 6 For any g E L~(#) and 0 < ~ < 2, the process {Xo(t): t ~R} in (4.11) is 
well-defined and is reflection positive. 
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Proof By the invariance of #, 

f [g(~(t, o@)l~lm,o(t)e-~P(dco)d(& 
Y2xR+ xR 

= flgl~d# ? ? lm,r  2 f lg[~d#< og , 
0 -~o 

i.e. Xo(t ) is well-defined. Next,  if h < �9 �9 < tn and a l , . . . ,  an e R, then 

t n 1 ~ f E ~_~ s)~e-C~d~ds - l o g  E exp i ~ ajXo( t j )  = f ajg(~(t j -- s)) lm,~_~(tj -- 
L j = l  3 0 - ~  

= ds f e-CC-d~E a j g ( ~ ( t j - -  
i = l k = i t i  1 tk S 

. ~, t k + , - s  s~=iaja(4(tg) ~ = Z f ds f e-C~dr 
i = l  k = i  ti 1 tk s 

(4.14) = c- 2(e a~ - e ct' 1)(e-Ctk - a~g(~(tj)) 
i = 1  k = i  

by stat ionari ty  of {4(0: t e R}, where to := - oo, tn+l := + oo. F r o m  (4.14) and 
the reversibility of {4t: t e R} it follows immediate ly  that  {Xg(t): t e R} is reversible 
too. 

In order  to show that  {Xo(t): t e R} is reflection positive, by Corol la ry  3, it 
suffices to verify the inequali ty 

(4.15) I : =  f F(g(4(ta -- s))lEo,o(tl -- s), . . . ,g(~(G-- s))lEo,o(t,-- s)) 
Y2xR+ xR 

X F ( g ( 4  ( - -  t 1 - - S ) ) 1 [ 0 , O  ( - -  t 1 - - S ) , . . .  , g ( ~ ( -  t ,  - s)) 1[o ,o(  - tn - s ) )  

x P(dco)e ~r >= 0 

for any 0 < tl < . . .  < t, and any bounded  measurable  function F: R" -+ C such 
that  F ( 0 , . . . ,  0) = 0. Using the latter condition, as in (4.14), we obtain,  

- t i  t k + l - - S  

I = f ds f e ~d~ 
i , k = l  - t i - 1  t k - - s  

xE{F(g(~(tl  -- s)), . .  .,g(~(rk - s)),0 . . . . .  0) 

x F ( g ( 4 (  - t~ - s ) )  . . . . .  0 ( 4 (  - t~ - s)) ,  o , . . . ,  o ) }  

= ~ c-2(e ~ ' - e  ~+')(e ~*~-e -a~+~) 
i , k - - 1  

• E { r ( ~ ( 4 ( t ~ ) )  . . . . .  g ( ~ ( t ~ ) ) ,  o . . . . .  o ) F ( g ( 4 (  - t~) )  . . . . .  9 ( 4 (  - tO),  o . . . . .  o ) }  

= E{@(4(ta) . . . . .  4 ( t , ) ) ~ ( ~ ( -  t l )  . . . . .  4 ( -  G))} 

= f I E [ ~ ( ~ ( t x ) , . . . ,  ~ ( t , ) ) l ~ ( 0 )  = y ] [ 2 u ( d y )  _-> 0 
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by the condit ional  independence of past  and future of ~ given 4(0) and the 
reversibility of the M a r k o v  process {~(t): t e R } ,  where ~(YI . . . . .  Y,) 
:=  c - l E T = l ( e  c,  _ e - C , - 1 ) F ( g ( y l ) ,  . . .  , g ( y i ) , O , . . .  ,0), tn+l := + oQ . [] 

R e m a r k  2 Theorem 6 can be extended to reversible Markov  processes {~(t): t ~ R} 
with infinite invariant measure #; in particular, {d(t): t e R} may  be the Brownian 
mot ion  on (R, Leb). 

R e m a r k  3 In  a similar way one can show that  the process {Xg(t): t e R, g e U(#)}  
is reflection positive as a vector valued process [7], namely, for any 
0 < tl < . . .  < t,, gx . . . . .  g, e U ( # )  and any bounded  measurable function F :  
R " ~  C the following inequality is true: 

E { F ( X o , ( t l )  . . . . .  X o , ( t , ) ) F ( X o ~ ( -  t l) ,  . . . , X o , ( -  t,))} => 0 .  

Note  that  for a fixed t e R and any 91, - - �9 g, ~ U ( # )  with supp g~ c~ supp gj = 0 
(i =t= j), the r andom variables Xo, ( t  ) . . . .  , Xo , ( t  ) are independent;  in particular, the 
set-indexed family { X a ( t ) =  X1A(t): # ( A ) <  oe} is a Sc~S r andom measure on 

with control  measure c -2  #. Therefore (4.11) can be regarded as a s tat ionary SeS  
evolution of SaS  r andom measure. The M a r k o v  dynamics {~(t): t ~ R} implicit in 
the stochastic integral (4.11) can be used in a more  direct way to represent it as 
a functional of a Poisson Orns te in-Uhlenbeck  process of non-interact ing particle 
systems discussed in [11]. 

R e m a r k  4 Theorem 6 is true in the Gaussian case c~ = 2 too, the distribution of 
(4..11) being completely determined by the covariance 

EXo~(O)X.=(t) = ? dsE[gi(r162 + s))] ? e C;dr 
0 t + s  

= c 2e ct f g l ( y ) T ,  g2 (y )# (dy ) ,  
q/ 

t >  O, g l , g 2 e L 2 ( # ) ,  where T t g ( y ) =  E[9(~( t ) ) l~(0)=  y]  and (Tt)t>_o is a semi- 
group of bounded  self-adjoint operators  in Lz(#). The corresponding Gaussian 
Orns te in-Uhlenbeck  process was studied by Meyer [9]. 
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