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Summary. Let (i N) be a sequence of random variables with values in a topological 
space which satisfy the large deviation principle. For each M and each N, let 
E ~'N denote the empirical measure associated with M independent copies of i N. 
As a main result, we show that (E M'N) also satisfies the large deviation prin- 
ciple as M, N ~ oo. We derive several representations of the associated rate 
function. These results are then applied to empirical measure processes 
~M,N(t ) -1  = M y,i=lbr 0 < t < T, where (~(t) . . . .  , ~t(t)) is a system of weakly 
interacting diffusions 'with noise intensity 1IN. This is a continuation of our 
previous work on the McKean-Vlasov limit and related hierarchical models 
([4], [5]). 
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0 Introduction 

In order to introduce the basic idea of multilevel large deviations, we begin with 
a sequence (i N) of random variables on a probability space (g2, o~, p) taking values 
in a topological space Y. We assume that the sequence (i N) satisfies the large 
deviation principle (as N ~  oo) with scale 7N ~ oO and rate function 
J :  Y ~  [0, ~ ] :  

(i) the level sets { y ~ Y: J(y) < p}, p > O, are compact; 
(ii) for each open subset G of Y, 

lira inf 7~ 1 log p(~N e G) > - inf J(y) ; 
N-~  oo y ~ G  
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(iii) for each closed subset F of Y, 

lira sup ~ 1  logP(~N~F) < _ infJ(y) .  
N ~  oa y e F  

For each N, let ~ ,  ~2 N, . . .  be independent copies of ~N, and denote by 6~ the Dirac 
measure at ~ ~. Now consider the empirical measures 

1 ~ 6r 
yM,N := M,=I 

and regard them as random variables with values in ~{(Y), the space of Radon 
probability measures on Y furnished with the topology of weak convergence. The 
objective of this paper is to show that the empirical measures E ~t' N satisfy the large 
deviation principle as M, N --+ m and to identify the rate function. 

This question was partially motivated by our investigation of hierarchical 
systems of interacting diffusions. In [6] we studied phenomena such as metastabil- 
ity and nucleation for a class of mean field models of interacting diffusions by 
applying large deviation methods. Our overall objective is to develop appropriate 
large deviation techniques for corresponding multi-scale systems. In general, such 
hierarchical structures reflect more closely than do mean field models both the 
equilibrium and nonequilibrium behavior of short range models. One of the 
remarkable features of hierarchical systems is the observation that for large, but 
finite, system size the corresponding effects are organized in multiple time scales 
and in fact this provides a caricature of the behavior of short range systems at 
successively larger spatial scales (see [5], Sect. 5.2). 

However, in order to explain tile relevant multilevel large deviation problem, 
we will describe the simpler non-interacting case. Let ~ (t) be a diffusion process on 
IR a given by an It6 equation of the form 

d~(t) = b(~(t), t)dt + dw(t) , 

where w(t) denotes d-dimensional Brownian motion. For each N, let {~(t) . . . . .  
{~v(t) be independent copies of {(t) with not necessarily coinciding non-random 
starting points {~(0) . . . . .  {~(0) such that N-1 N 52j= 16r converges to a measure 
v in ~*:  = jg(IRa) as N --* ~ .  Consider the empirical measure process 

1 N 
' =  =~1 6~(,), 0 _< t _< T.  (0.1) z ~(t) ~ J= 

In Dawson and Gfirtner [4], Theorem 4.5, it was shown that, under mild condi- 
tions on the vector field b, the sequence (EN(')) of C([0, T]; J/lI)-valued random 
variables satisfies the large deviation principle with scale N and rate function 
S~ given by 

1 T 
= j ~(t) dt S~(#('))" ~ [I/~(t) - s 2 

if #( ' )  E C([0, T]; JY/*) is absolutely continuous and #(0) = v and equal to + oo 
otherwise. Here s denotes the formal adjoint of the diffusion operator 

1 a 02 d 

"= i = 1 ~ x i  
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associated with ~(t). Further, 

I(0'f)12 0 e ~ ' ,  (0.2) [10112 := sup 

where N and 9 '  denote the Schwartz space of infinitely differentiable functions 
with compact support and the corresponding space of distributions, respectively, 
and IVfl 2 = 2i=la (af/t?xi)Z. 

Now consider a two-parameter family M N . {~.] (t), i=  1 . . . .  , M , j  = 1 . . . . .  N} of 
independent copies of the diffusion process ~(t). The two-level empirical measure 
process is defined by 

where, for each i, 

3 M,~(t)" = ~ ~_~;(t), 
i = 1  

0 _< t _< T ,  (0.3) 

1 N 

~ cS~j.(t ), 0 _< t _< T.  ~=~(t) := ~ j :  

The problem is to show that, if ~-~M'N(o) converges to some measure in 
~ u  := jg(jg(iRa)) as M, N o ~ ,  then the processes EM'N(") considered as ran- 
dom variables in C([0, T]; ~ u )  satisfy the large deviation principle as M, N o 
and to find a suitable representation of the rate function. This large deviation 
problem has a structure similar to that hypothesized above with the additional 
complication that the processes E ~ ( . ) , . . . , S ~ ( . )  are not identically distributed. 
The law of the process EM'N(") depends on the (non-random) initial measure 
EM'N(O) which may be viewed as an additional parameter. For  this reason, our 
general results on multilevel large deviations will be formulated in terms of 
parametrized families of probability laws. 

Section 1 contains preliminary definitions and results on large deviation sys- 
tems. In Sect. 22 we will prove the multilevel large deviation theorems and derive 
several representations of the associated rate functions. These general results can be 
applied to our empirical measure process (0.3), but we do not yet have a simple 
integral representation for the rate function. However, in Sect. 3 we obtain such 
a representation for a simple caricature of the hierarchical system of diffusions, 
namely, for independent copies of randomly perturbed dynamical systems. In 
Sect.4 we will extend our analysis to perturbed dynamical systems with McKean- 
Vlasov interaction. The Appendix contains some auxiliary proofs which we separ- 
ated from the main exposition of the material. 

In order to provide an introduction to the multilevel large deviation results of 
Sect. 2, we will now state the main result and sketch the proof in the simple case in 
which there is no parametrization and in which the space Y consists of a finite 
number of points, Y = {Yl . . . . .  Yr}. Although the proof of our general large 
deviation result is much more delicate, it follows the same lines as the proof of 
Theorem 0.1 below. As before, let (f N) be a sequence of Y-valued random variables. 
For  each M and each N, let :M,N denote the empirical measure of M independent 
copies ~ , . . .  , ~ of ~N. 

Theorem 0.1 Assume that (~N) satisfies the large deviation principle (as N--* ~ ) 
with scale YN and rate function J. Then (E M'N) also satisfies the large deviation 
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principle (as M, N --+ co ) having scale MTN and rate function 

s(v) : =  f J(y)v(dy), v 6 J g ( Y ) .  
Y 

Proof. (i) The compactness of  the level sets { v s d/t ( Y)  : S (v) <= p }, p > O, is obvious in 
this case. 
(ii) Lower large deviation bound. Fix v s J/t(Y) and an open neighborhood U(v) of 
v arbitrarily. It suffices to show that 

liminfoo 1 --M N ~ l o g P ( =  ' e U ( v ) ) >  - S(v) .  
M , N  

We choose a partition of { 1 , . . . ,  M} into pairwise disjoint sets A M of size IAM], 
k = 1 , . . . ,  r, such that 

IAM] 
lim - V(yk), k = I , . . . ,  r .  (0.4) 

M-+oo m 

There exists e > 0 such that 

[7(v) := {ge ~(Y):v(Yk) > V(yk) -- ~ for all k} _c U(v) .  

It is now easy to verify that for large M and all N, 

(~ {{~ = Yk for all i e A M} c_ {zM, N e U(v)}. 
k=* 

For these M and N, 

P ( s M ' N ~ u ( v ) )  > P (  ~=I { ~  = Yk for all 

= f i  [p(~N = .Yk]J" "i]IAMI. ( 0 . 5 )  

k = l  

Since (i N) satisfies the large deviation principle and the topology of Y is discrete, we 
have 

lim 1 log p({Ne A) = - inf J(y) for each set A_c y .  
N--+ co ~)N y~A 

In particular, 

lim 1 logP({N = Yk) = -- J(Yk) 
N~CO ])N 

Combining (0.5) with (0.4) and (0.6), we obtain 

lim inf ~ log P ( S M' N ~ U ( v) ) 
M,N--+ co 

> ~ liminf IM-~MlllogP(~N=yk) 
k = l  M,N--+~176 

>= -- ~ V(yk)J(yk) = -- S(v) . 
k = l  

for k = 1 , . . . , r .  (0.6) 
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(iii) Upper large deviation bound. Fix h > 0 arbitrarily. Since JC/(Y) is compact, it 
will be sufficient to show that for each v ~ JC/(Y) there exists a neighborhood U(v) 
such that 

1 
lim sup - -  log p(~M,N ~ U(v)) < -- S(v) + h (0.7) 

i f S ( v ) <  ~ and _ _ < - h i f S ( v ) =  ~ .  Assume that J(Yk)< ~ for a l l k a n d ,  in 
particular, S(v) < oe. Take U(v) := { ~ ( Y ) : S ( ~ )  > S(v) - h}. Note that 
S ( ~ , N )  -1 u N = M ~i= ~J(~i ). Applying Chebyshev's exponential inequality, we ob- 
tain 

p ( ~ , N e  U(v)) = f ~ J (~ f )  > s(v) - h 
i = 1  

<=exp{ -OMTN(S(v ) -h ) }Eexp{  07N~J(~in)  

< exp{ - OMTN(S(v) -- h)} [E exp {OTNJ(IN)}] M 

for each 0 > 0. Thus, in order to prove (0.7), it will be enough to verify that the 
expectation on the right of the last inequality remains bounded as N ~ oe for 
0 < 0 < 1. But, since 

lim sup 1 log P(i N Yk) < - J(Yk), for k = 1, r 
N ~ c c  ~N 

we have 

r 

lim sup E exp{0~,NJ(~N)} = lira sup ~ exp(OTNJ(yk)}P(i N = Yk) 
N--*~ N~oo k = l  

< 1  f o r 0 < 0 < l .  

To handle the case when J(Yk) = oe for some k, one has to replace J by a function 
a ~ which coincides with J on { y: J(y) < oo } and which is 'arbitrarily large, but 
finite' on~ {y:J(y)= ~ }. Correspondingly, one has to replace S by 
S~(/~): = fJ(y)l~(dy), #e  dg(Y). [] 

Let us now explain in more detail the application of our large deviation results to 
interacting diffusions. Formally, the process E N defined by (0.1) may be associated 
with the infinite dimensional stochastic equation 

d~N(t) = ~*EN(t)dt + N-1/2 dmN(t), (0.8) 

where (M N) is a sequence of martingale measures with quadratic characteristics 
which remains 'bounded' as N ~ o9. This suggests the simple caricature of the 
hierarchical system (0.3), in which we replace (0.8) by a finite dimensional analog. 
More precisely, we consider the randomly perturbed dynamical system 

d~U(t) = b(IN(t), t)dt + N-1/Zdw(t), IN(O) = x ,  (0.9) 

in IR d with perturbation parameter N-1/2. Then, under certain restrictions on the 
vector field b, according to Freidlin and Wentzell [8], Chap. 4, Theorem 1.1, the 
sequence (IN( �9 )) of C([0, T]; lRa)-valued random variables satisfies the large devi- 
ation principle with scale N and rate function Ix for each starting point x c ]Re. The 
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rate function has the representation 

1 r 
Ix(q~) := ~ / I(b(t) -- b((p(t), t)12dt 

if (p e C([0, T]; ]R d) is absolutely continuous and (p(0) = x and Ix(~0) = oo other- 
wise. Given non-random starting points IN(0) . . . . .  ~t(0), let ~( t )  . . . .  , ~uu(t) be 
M independent processes of the form (0.9), and let 

1 U 

~M'N(t) "= M i~t 6r 0 -< t -< T ,  (0.10) 

denote the associated empirical process. Assume that EM'~(0)--+ v in ~ ( ]R  a) as 
M , N ~  oo.  

As an application of our multilevel large deviation results, we will prove in 
Sect. 3 that the family (~u,w(.)) of C([0, T]; J/g(Nd))-valued random variables 
satisfies the large deviation principle (as M, N ~ oo) with scale M N  and rate 
function S, given by 

1 /II~(t) (~eo),~(t) 2 = -- [l~(t)dt (0.11) sv(~(.)) : 2o 

if /~(') is absolutely continuous in C([0, T];JC[(IRd)) and # ( 0 ) = v  and 
Sv(#(')) = oo otherwise. Here the norm Ii" [1~ is defined by (0.2) and 

d 
s o t : =  ~ b i ( ' , t )  - 0 < t < T ,  

i=1  ~ X i '  - -  - -  

is the family of differential operators associated with the unperturbed dynamical 
system 

(o(t) = b((o(t), t) . 

It may be noted that, for fixed N, the large deviation results of our previous paper 
[4] show that the family (EM, s(.)) satisfies the large deviation principle as M -+ oo 
with scale M and rate function N S ~ ,  where N. S, is defined by (0.11) except that 5r ~ is 
replaced by the generator associated with (0.9). As a special case of Theorem 2.9 to 
be proved below, it will follow that these large deviation bounds are 'uniform' in 
N and that S~ converges in some sense (but not pointwise!) to the rate function for 
(~U,N(.)) as M, N --+ oo. However, in order to identify this rate function with (0.11) 
under a natural set of weak hypotheses involves a number of nontrivial technical 
steps carried out in the Sects. 3.2 and 3.3. 

Finally, in Sect. 4 we will extend the above result to the corresponding system 
with mean-field interaction 

d ( ~ ( t )  = b(~/N(t); EM'S( t ) )d t  + N -  1/2 dwi(t) ,  i = 1 . . . . .  M ,  

where EM'u(t) is again defined by (0.10) and wl ( t )  . . . . . .  w~t(t) are independent 
d-dimensional Wiener processes. As in Dawson and G/irtner [4] and Gfirtner [9], 
in order to treat unbounded drift coefficients b, we consider the processes EM'N( �9 ) 
as random variables with values in the space C([0, T]; Jr where ~'~o is a subset 
of JC/(IR d) furnished with an 'inductive' topology. More precisely, we introduce 
a smooth function ~k: IRe ~ [0, oo ) with @(x) ~ oo as ]xl ~ oo depending on the 
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'growth of b at infinity', set "/~'R : =  {V ~JCZ(lR~):ftpdv < R} ,R  > 0, define 

"/~oo:= U J ' /R, 
R > 0  

and equip this space with the strongest topology which induces the weak topology 
on MR for each R > 0. The space J~oo is not metrizable but satisfies a weak 
metrizability hypothesis formulated in Sect. 22. Refer to Appendix B in G/irtner [9] 
for a detailed discussion of the 'inductive' topology and the properties of ~////~o and 
C([0, r ] ;  J/-l~o). 

Let the drift coefficient b: IR a x ,//'/~o ~ IRa be continuous and satisfy assump- 
tions analogous to that in Dawson and Gfirtner [4], Sect. 5. Suppose that the non- 
random initial measures Zu'N(0) converge to a measure v in ~r Then we show 
that (zM, N(.)) again satisfies the large deviation principle with scale M N  and rate 
function S~, where S~ is now defined by (0.11) with the operator s replaced by 

d 0 
~~ :=  Y, bi( �9 ;#(t)) 0x--- x . 

i=l  

The proof of this result is based on a reduction to a system of independent 
diffusions along the lines of Sect. 5 of Dawson and G/irtner [41. At the end of this 
section we will briefly consider the corresponding McKean-Vlasov equations. 

In the situation considered here, the process IN(t) lives in the metric space IRa. 
But in the case of the interacting hierarchical model mentioned above, the role of 
{N(t) is played by an empirical measure process EN(t) which lives in the non- 
metrizable space dg~o. Although the results will not be used in this generality in 
Sect. 3 of this paper, the latter fact has motivated the development of our main 
results for families of probability laws on a space Y which are parametrized by 
a space X, where X and Y are not necessarily metrizable. It should be noted that 
this introduces a number of technical complications which would not arise in the 
metrizable case. 

Frequently used notation 

By N and IRd we will denote the set of natural numbers and the d-dimensional 
Euclidean space, respectively. 

Given a Hausdorff topological space X, we will denote by Cb(X) and ./~(X) the 
space of real-valued bounded continuous functions on X with the supremum norm 
I]" [[ and the space of Radon probability measures on the Borel a-field ~(X) of 
X furnished with the topology of weak convergence, respectively. By (v , f )  we will 
abbreviate the integral o f f e  Cb(X) with respect to v e ./r By 6x we will denote 
the Dirac measure at x e X. 

C([0, T]; X) will stand for the space of continuous functions [0, T] ~ X. I fX  is 
a Polish space, then C([0, T]; X) will be endowed with the uniform topology 
corresponding to a complete separable metric on X. 

We will use the abbreviations d/{ : = ~(IRa), Cb := Co(iRa), Co, T : = C([O, T]; IRa), 
and ego, T:=  C([0, T]; .///{(IRd)). 
By ~ we will denote the Schwartz space of infinitely differentiable functions 
]Re __, IR with compact support equipped with the usual inductive topology. The 
corresponding space of real distributions will be denoted by 9 ' .  

Finally, A and l I  a will stand for the closure and the indicator function of a set A, 
respectively. 
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1 Large deviation systems 

Let X and Y denote Hausdorff  topological spaces, and let (XN) be a sequence of 
subsets of X. A sequence (xN) of points in X will be called an XN-sequence if xN e XN 
for each N. We will assume throughout that each point in X is the limit of an 
Xu-sequence. 

Let I I  = {pu; x e XN, N ~ N} be a family of Radon probability measures on Y. 
(A probability measure v on the Borel a-field of a Hausdorff  space is called a Radon 
measure if v(A) = sup{ v(K) : K c_ A, K compact} for each Borel set A.) Let I be 
a function on X x Y taking values in [0, oo], and introduce the notation 

I(x; A) :=  inf{ I(x; y) :y ~ A}, x e X, A c_ y .  

Finally, let (YN) be a sequence of positive numbers tending to infinity as N ~ ~ .  

Definition 1.1 We will say that I I  is a large deviation system with rate function I and 
scale 7N if the following conditions are satisfied: 

(i) compactness of the level sets: for each x e X and each p >= 0 the set 

�9 (x; p) :=  {y e Y: I(x; y) < p} 

is compact (and, in particular, non-empty); 
(ii) lower large deviation bound: 

lim inf 7ff 1 log P~N(G) > -- I(x; G) 
N--* oo 

for each open set G in Y, each x e X, and each XN-sequence (XN) tending to x; 
(iii) upper large deviation bound: 

lim sup ~ 1 log P~N(F) < -- I(x; F) 
N--* oo 

for each closed set F in Y, each x ~ X, and each Xu-sequence (xN) tending to x. 

Given A _ X and p > 0, we define 

�9 (A; p):= U p). 
x E A  

Sometimes we will assume in addition that the level sets q)(K; p) are compact for all 
compact subsets K of X and all p > 0. 

Definition 1.2 Suppose that we are given in addition a surjective continuous map 
7c : Y--* X such that 

P~(Tr- l{x}) = 1 for each N ~ N  and all x ~ X N  . 

Then we will say that the family [I  forms a special large deviation system (with 
respect to 7c) having rate function J: Y ~  [0, oo] and scale ~N if I I  is a large 
deviation system with scale 7N and rate function 

J(y) if ~ ( y ) =  x, 
I(x; y ) : =  (1.1) 

+ oo otherwise. 

Note that the level sets ~(K; p) associated with the rate function (1.1) are of the form 

�9 (K; p) = { y e  Y:~(y)~K,  J(y) <= p}. (1.2) 
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A typical example we have in mind is the situation when X is a Polish space, 
Y =  C([0, 7"]; X) ,  XN = X for all N, re(y(.)) = y(0), and {P~; x e X }  is a Markov 
family of probability laws on Y for each N. 

Formally, the notion of a large deviation system is more general than that of 
a special large deviation system, since in the first case the supports of the measures 
P~ are not assumed to be disjoint for different x. Nevertheless, each large deviation 
system may be regarded as a special large deviation system. To explain this, let 
II = {P~; x ~ Xm N ~ N} be a family of Radon probability measures on Y. Given 
N e N and x s XN, let us denote by/ ;~ the unique extension of the product measure 
6~ | P~ to a Radon probability measure on Y : = X x Y. (Here fix denotes the Dirac 
measure at x. For Radon extensions see Schwartz [14], Chap. 1, Theorem 17.) We 
further denote by ~ the canonical projection of X x Y onto X. Clearly 

/~(ff-1 {x}) = 1 for each N ~ N  and all x ~ X N .  

Let 1~ denote the family of measures /~ ,  x e XN, N ~ N. 

Theorem 1.3 II is a large deviation system if and only i fH is a special large deviation 
system (with respect to ~) having the same scale and the same rate function. 

Proof. a) Assume that II is a large deviation system with scale ~N and rate function 
I. We must show that 1I is a large deviation system with the same scale and rate 
function I': X x Y ~ [0, oo ] defined by 

~I(x;y) 
f(Xo;(X, y)) := t + oo 

if x = Xo, 

otherwise. 

1 ~ Let ~(x; p) and ~(x; p) denote the level sets associated with I and I, respe~ively. 
Since the sets ~(x; p) are compact and cb(x; p) = {x} x ~(x; p), the level sets ~(x; p), 
x ~ X, p > 0, are also compact. 

2 o We next derive the lower large deviation bound for [I. Given (x, y) e X x Y 
and open neighborhoods U and V of x and y, respectively, it suffices to check that 

lim inf7;  ~ log - f i~(U • V) > - I(x; y) 
N---~ oo 

for each XN-sequence (xN) tending to x (cf. e.g. Freidlin and Wentzell [8], Chap. 3, 
Theorem 3.3). But this is immediate from the definition of/;~N and the lower large 
deviation bound for the measures pN 

3 o To derive the upper large deviation bound for fI, we fix x ~ X ,  an XN- 
sequence (xN) with xN ~ x, and a closed subset F of X x Y arbitrarily. We must 
check that 

lira sup 7~71 log/;xN (F) < - p (1.3) 
N--* oo 

for each p > O  with F c ~ ( x ; p ) = O .  Let therefore p > O  be such that 
F c~ q~(x; p) = 0 (provided that such p exists at all). Since O(x; p) is compact and 
q~(x; p) = {x} x 4~(x; p), we find open neighborhoods U and W of x and O(x; p), 
respectively, such that U • W does not intersect F. Thus, for sufficiently large N, 

ff~N(F) < Pn~,((U x W) c) = pN tWq  
= x N \  ] �9 
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(The upper index c denotes the operation of taking the complement.) Hence, 
applying the upper large deviation bound for the probabilities on the right, we 
arrive at (1.3). 

b) Suppose that 1] is a special large deviation system (with respect to 7~). Since, 
for each N and each x e XN, P~ is the image of the measu re /~  with respect to the 
canonical projection X x Y ~ Y, an application of the 'contraction principle' (see 
e.g. Varadhan [171, Theorem 2.4) yields that II is a large deviation system having 
the same scale and the same rate function as 1]. [] 

Fix a compact subset K of X and p > 0 arbitrarily, and consider the level sets 

q)(K; p) = {ye Y:I(x; y) < p for some x ~ K }  

and 

~(K; p)= {(x, y)~X • Y:x~K,I(x;y) < p} 

associated with the large deviation systems 17 and [I, respectively. Since ~(K; p) is 
the continuous image of 4~(K; p) with respect to the projection z~, the compactness 
of ~(K;p) implies the compactness of ~/,(K;p). On the other hand, 
4~(K; p) ___ K x 4~(K; p). Therefore, the compactness of q~(K; p) implies at least the 
relative compactness of ~(K; p). In the next lemma we will see that qS(K; p) is 
compact under the following additional assumption on X and (XN). 

Countability Hypothesis. 

For each compact subset K of X there exists a set X(K), K c_ X(K)  c_ X, such that 
each point of K has a countable base of neighborhoods in X(K) and is the limit of 
an XN-sequence which belongs to X(K)  for all but finitely many terms. 

Note that this hypothesis is fulfilled if X satisfies the first countability axiom. 

Lemma 1.4 Let the Countability Hypothesis be fulfilled. Assume that II is a large 
deviation system with rate function I and scale ?N. Given a compact subset K of X and 
p > O, suppose that the level set ~(K; p) is compact. Then ~b(K; p) is also compact. In 
particular, I is lower semi-continuous on K x Y for each compact subset K of X. 

Proof The level set 

~(K; p) = (K x Y) c~ {I < p} (1.4) 

is a subset of the compact K x ~(K; p). It is thus sufficient to show that (1.4) is 
closed in K x Y. To this end we fix e > 0 and (Xo, Yo) �9 K x Y arbitrarily. It will be 
enough to check that there exist open neighborhoods U and V of xo and Yo, 
respectively, such that 

inf{ I(x; y) : x e U ~ K, y e V} > I(xo, Yo) -- e.  (1.5) 

Set Po := I(xo, Yo) - e/2 and assume without loss of generality that Po _-> 0. Since 
�9 (xo; P0) is compact and does not contain Yo, there exist disjoint open neighbor- 
hoods V and W of Yo and ~b(xo; Po), respectively. Applying the upper large 
deviation bound for 17 to the complement of W, we find that 

l im  s up  ~N 1 logpNN(V) _--< -- Po (1.6) 
N -~o o  
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for each XN-sequence (xN) tending to Xo. From this and the Countability Hypo- 
thesis we conclude that there exists an open neighborhood U of Xo such that 

lim sup 7~ 1 log sup P~(V) < - P0 + e/2. (1.7) 
N-'* oo x ~ U  • X (K)  n XN 

Indeed, otherwise the opposite inequality is true for all sets U from a countable 
base (U,) of open neighborhoods of Xo in X(K). But then we would find natural 
numbers Nk ~ oo and points xN~ ~ Uk c~ X(K) c~ XN~ such that (1.6) is violated for 
the subsequence (xN~) although xN~ ~ Xo. 

Now choose x e U c~ K arbitrarily. Because of the Countability Hypothesis, we 
find an XN-sequence (xN) which tends to x and belongs to U c~ X(K) for all but 
finitely many terms. Applying the lower large deviation bound for N PxN(V) and 
combining it with (1.7), we obtain 

- I ( x ; V )  < - p o + e / 2 = - I ( x o ; Y o ) + e  for a l l x e U c ~ K .  

This finally yields (1.5). [] 

To pass from (1.6) to (1.7) we switched from a 'sequential' description of the large 
deviation bound to a 'topological' description. Similar arguments will be used in 
particular in Sect. 2 without further explanation. 

In the rest of this section we collect some further properties of rate functions 
which will be used in the subsequent sections. 

A subset of a Hausdorff space Z is called universally measurable if it belongs to 
the #-completion of the Borel o--field of Z for each Radon probability measure # on 

Z. A function f : Z ~ I R  is called sequentially lower semi-continuous if 
f (z)  < lim inf f(z,) for each sequence (z,) in Z with z, ~ z. If Z satisfies the first 
countability axiom, then a function f: Z ~ IR w { + oo} is lower semi-continuous iff 
it is sequentially lower semi-continuous. 

Lemma 1.5 a) Assume that H is a special large deviation system with rate function J: 
Y ~  [0, ~ ] ,  and suppose that the associated level sets O(K; p) are compact for all 
compact subsets K of X and all p > O. Then J is sequentially lower semi-continuous 
and universally measurable. 

b) Let the Countability Hypothesis be satisfied. Assume that H is a large 
deviation system with rate function I: X x Y--* [0, oo], and suppose that the asso- 
ciated level sets O(K; p) are compact for all compact subsets K of X and all p > O. 
Then I is sequentially lower semi-continuous and universally measurable. 

Proof a) For  each compact set K _c X, the sets O(K; p), p > 0, are closed, i.e. the 
restriction of J to r~-I(K) is lower semi-continuous. Since each converging se- 
quence in Y is contained in ~ -  ~ (K) for some compact subset K of X, this implies 
the sequential lower semi-continuity of J. 

Fix a Radon probability measure v on Y arbitrarily. Let (K,) be an increasing 
sequence of compact subsets of X such that the Radon measure v o ~-  t is concen- 
trated on [j K,. Then v is concentrated on [J ~- l (Kr)  and 

q~(K,;p)~{J<=p}c q>(K~; p) w ~z- I(K,) 
r = l  r=l 

for each p => O. Since the sets ~(K~; p) are Borel measurable, this proves the 
universal measurability of J. 
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b) This is a consequence of a). Indeed, we know from Theorem 1.3 that I is the 
rate function of a special large deviation system. Moreover, Lemma 1.4 tells us that 
the associated level sets (b(K; p) are compact. [] 

In the next lemma we will assume in addition that the space Y is regular. Then, in 
particular, each open subset G of Y is the union of the closures Z of all open sets 
A with A ~ G. 

Lemma 1.6 Assume that X satisfies the Countability Hypothesis and Y is regular. 
Let II = {PxN;X ~XN, N ~ N} be a large deviation system with rate function I and 
scale ?N, and suppose that the associated level sets q~(K; p) are compact for all 
compact subsets K of X and all p > O. Then the following assertions are valid. 

a) For each open subset G of Y the function I ( ' ;  G) is sequentially upper 
semi-continuous and universally measurable. 

b) For each closed subset F of Y the function I(. ;F)  is sequentially lower 
semi-continuous and universally measurable. 

c) For each bounded continuous function g: Y ~ ]R the function 

h 0 ( x )  : =  s u p [ g ( y )  - I ( x ;  y ) ] ,  x ~ X  , 

y~Y 

is bounded, sequentially continuous, and universally measurable. 

I 

Proof Let f: X ~ IR be a sequentially lower semi-continuous function. By the 
Countability Hypothesis, each compact subspace of X satisfies the first countabil- 
ity axiom. Consequently, the set { f <  p} n K is closed (and, hence, Borel measur- 
able) for each p s lR and each compact set K c X .  This implies the universal 
measurability of f (cf. the proof of Lemma 1.5 a)). This also shows that each 
sequentially upper semi-continuous and each sequentially continuous function on 
X is universally measurable. 

a) Let (x,) be a sequence in X with x, ~ x, and let K be a compact subset of 
X containing (x,). Given an open subset A of Y and h > 0, we find an open 
neighborhood U(x) of x such that 

- I(x; A) -- h < liminf 7~ 1 log inf P~(A). 
N ~  ~e U(x)n K~XN 

This is a consequence of the lower large deviation bound and the Countability 
Hypothesis. Applying the upper large deviation bound to P~(/T), we see that the 
expression on the right does not exceed 

- sup I()?;A). 
2 e U(x)  c~ K 

This shows that 

lim sup I(x,; A) < I(x; A) (1.8) 
n - - +  c o  

for each open set A ~_ Y. 
Now let G be an arbitrary open subset of Y. Then (1.8) implies that 

lim sup I(x,; G) < I(x; A) 
n - - +  o o  
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for each open set A with ,4__c_ G. Because of the regulari ty of Y, this yields 

lira s u p I ( x , ;  G) < I(x;  G ) ,  
n--+ oo 

i.e. I ( . ;  G) is sequentially lower semi-continuous.  
b) Let (x,) be a sequence in X with x,  -~ x, and let K be a compac t  subset of 

X containing (x,). We must  show that  

I(x;  F)  < lim in f I (x , ;  F)  (1.9) 
71-*o3 

for each closed subset F of Y. I t  suffices to prove  (1.9) for F ~ ~ (K;  p) instead of 
F with p > l iminf,- ,  ooI(x,; F). We can and will therefore assume that  F is compact .  

Fix e > 0 arbitrarily.  Since I is lower semi-cont inuous on K x Y (see L e m m a  
1.4), we find for each point  y in Y open ne ighborhoods  Uy and Vy of x and y, 
respectively, such that  

I(~; ~) > I(x;  y) - 8 for all (2 , ) )  e (Uy c~ K) x Vy. 

N o w  select a finite covering of F by sets V k ' =  Vy~ (k = 1 , . . .  , r )  with 
Yl . . . . .  Yr e F and put  U : = 0 ~, = 1Uy~. Then  for all sufficiently large n, x,~ belongs to 
U c~ K and therefore 

I ( x , ;  F) = min  I ( x , ;  F n Vk) > min I(x;  Yk) -- 8 > I(X; F)  -- 8 .  
l<_k<_r l<_k<_r 

This proves  (1.9). 
c) Again, let (x,) be a sequence in X with x,  ~ x, and let K be a compac t  subset 

of X containing (x,). Since I __> 0 and I(x;  Y) = 0 for each x ~ X ,  we have 

infg __< hg < s u p g .  

In  part icular ,  hg is bounded.  This also shows that  

hg(2)=  sup [ g ( y ) - I ( 2 ; y ) ] ,  2 ~ K ,  
y ~ ~(K;p) 

for p > supg  - infg. 
Fix 8 > 0 arbi trar i ly and choose a finite covering of ~b(K; p) by open neighbor-  
hoods  W(yl) . . . . .  W(yr) of Yl . . . . .  yr, respectively, such that  

sup ]g(Y) - g(Yk)] < 8 / 2  for k = 1 , . . . ,  r .  
y~W(yk)  

(Here we have used the regulari ty of Y.) Then  

lira inf hg(x.) = lira inf max  sup [-g(y) - I ( x . ;  y)] 
n ~  oo n~oo l <=k<=r y~W(yk) 

> l iminf  max  [g(Yk) -- I(X.;  W(yk))] -- 8/2.  
n--*oo l <=k<=r 

I t  follows f rom assert ion a) that  the m a x i m u m  on the right is sequentially lower 
semi-continuous.  We can therefore continue as follows: 

> max  [g(Yg) - I(x;  W(yk))] -- e/2 
l<-k<_r 

_-> max  sup [ g ( y ) -  I (x;y)]  - 8 
1 "<k<-r y e W ( y k )  

= h o(x) - e .  



436 D.A. Dawson, J. G/irtner 

This proves the sequential lower semi-continuity of hg. 
It remains to show that hg is sequentially upper semi-continuous. Using asser- 

tion b), we obtain 

limsup hg(x,) = limsup max sup [g(y) - I(x,,;y)] 
n--*o~ n--*oe 1 <=k<=r yeW(yk )  

< limsup Iax [g(Yk) -- I(x"; W(Yki)I + l <_k<_r 

=max[g(Yk)--lim~fI(x';W(yk))l+e/21<_k<_ r 

<hg(x)+e, 

and we are done. [] 

We remark that the results of this section are applicable to families of Radon 
probability measures indexed by an arbitrary directed set instead of N. 

2 Multilevel large deviations 

The aim of this section is to study large deviations for empirical measures of 
independent copies of random variables which themselves satisfy the large devi- 
ation principle. Before formulating the precise results (Theorems 2.1, 2.2, 2.7, and 
2.9 below), we introduce the necessary notation. 

Throughout  this section, X and Yare completely regular Hausdorff spaces, and 
(XN) is a sequence of subsets of X such that each point in X is the limit of an 
XN-sequence. By ~/(X) and ~ ( Y )  we denote the spaces of Radon probability 
measures on X and Y, respectively, furnished with the topology of weak conver- 
gence. J/g(X) and Jg(Y) are also completely regular Hausdorff spaces. Concerning 
this and further topological properties of the spaces J/I(X) and ~ ( Y ) ,  the reader is 
referred to Topsoe [16]. The main reason for restricting ourselves to completely 
regular spaces is that the theory of weak convergence of probability measures is 
well-established on such spaces. But at a few places we will also make explicit use of 
the complete regularity. 

Let Cb(X) and Cb(Y) denote the spaces of bounded continuous functions on 
X and Y, respectively, equipped with the sup-norm II'll. Given /~JN(X)  and 
f~ Cb(X), (# , f )  will stand for the integral o f f  with respect to #. Correspondingly 
we define (v, g) for v ~ Jg(Y) and g e Cb(I0. By A and IIAwe will denote the closure 
and the indicator function of a set A, respectively. 

Throughout  this section we will assume that the following hypotheses are 
satisfied. 

Metrizability Hypothesis. 
For each compact subset K of X there exists a metrizable set X(K), K ~ X(K)c_ X, 
such that each point of K is the limit of an XN-sequence which belongs to X(K) for 
all but finitely many terms. 
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Tightness Hypothesis. 

Each converging sequence in ~ ( X )  is tight. 

Note that the Metrizability Hypothesis implies the Countability Hypothesis of 
Sect. 1. The class of spaces X which fulfill the Tightness Hypothesis contains all 
metrizable spaces, all spaces which satisfy the second countability axiom, and all 
locally compact spaces (cf.Topsoe [16], Theorem 9.3). In particular, both hypothe- 
ses are satisfied in the case when X is a Polish space. 

Given M, N e N ,  we denote by ~ g ' N ( x )  the subset of ~ ( X )  consisting of 
M-point empirical measures on XN, i.e. 

"////M'N(X):= {M-1  ~ 6xm:XI ' ' ' ' 'XMeXN}  ' m = l  

where 6~ is the Dirac measure at x. Each element of J{(X) is the limit of an 
~/M'N(X)-sequence as M, N ~ oo. The proof of this fact relies on the Metrizability 
Hypothesis and will be given in Appendix A.1. 

2.1 Main result 

Let {P~; x e XN, N e N} be a family of Radon probability measures on Y. By 
{N~'N;#e~M'N(X),  M e N ,  N e N }  we denote the family of Radon probability 
laws on JI(Y) associated with the empirical measures of independent copies of 
Y-valued random variables with laws P~. More precisely, given p = M -  15~= 1 6x,, 
( x l , . . . ,  xMeXN), N~,N is the image of the Radon extension of the product 

N N measure Pxl|  "'" @P~M with respect to the continuous map 

M 

YMe(yl . . . . .  yM)~--~m - t  ~ 6,meJ/g(Y). 
m = l  

Let re: Y ~ X be a surjective continuous map, and denote by ~c the induced map 
d/l(Y) ~ J4"(X) defined by Co(v) := v o ~-1, v e ~d(Y), which is also continuous. 

We first formulate our result for special large deviation systems and then extend 
it to 'general' large deviation systems. 

Theorem 2.1 Assume that {P~; x e Xm N e N} is a special large deviation system 
(with respect to re) havin9 rate function J and scale ?u and that the associated level sets 
�9 (K;p) are compact for all compact subsets K of X and all p > O. Then 
{ ~ , s ; / t  e ~M,  S(X), M e N, N e N} is a special large deviation system (with respect 
to ~) with rate function 

S(v): =fJ(y)v(dy), veJg(Y) ,  (2.1) 
Y 

and scale M?s as M, N --* oe. 

Given #eJCZ(X) and veX(Y),  let ~ ( / 4  v) denote the set of Radon probability 
measures on X x Y with left marginal # and right marginal v. 

Theorem 2.2 Assume that {P~; xeXN,  N e N }  is a large deviation system havin 9 
rate function I and scale 7N and that the associated level sets ~(K; p) are compact for 
all compaet subsets K of X and all p > O. Then {~,M'S', # eo/r M eN,  N eN}  
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is a large deviation system with rate function 

S(/t;v)'= inf f I(x;y)Q(dx, dy), #e//g(X),v~d/t(Y), (2.2) 
QeJ~(~, v) XxY 

and scale MVN as M, N --* oo. 

By Lemma 1.5, the functions J and I are universally measurable. Therefore, the 
integrals in (2.1) and (2.2) are well-defined. Let us mention that an application of 
Theorem 2.2 to the particular situation in Theorem 2.1 leads to a representation of 
the rate function which is different from (2.1). 

Before proving Theorem 2.1, we show how to derive Theorem 2.2 from 
Theorem 2.1 and Theorem 1.3. 

Proof of Theorem 2.2 As in Sect. 1, let/~x u denote the Radon extension of c~x| P~. 
We know from Theorem 1.3 that {/~; x e XN, N ~ N} is a special large deviation 
system (with respect to the canonical projection X x Y ~  X) having rate func- 
tion I and scale 7N. Moreover, Lemma 1.4 tells us that the level sets 45(K; p) 
are compact for all compact subsets K of X and all p > 0. Let 

~M, N. {~u ,#~J//[M'N(X),MeN, N E N }  denote the fami~ly of Radon probability 
measures on J / ( X x  I0 associated with the empirical measures for 
{/~xU; x ~ XN, N e N}. According to Theorem 2.1, this family forms a special large 
deviation system (with respect to the canonical projection J / ( X  x Y ) ~  Jg(X)) 
having rate function 

if(Q):= f l(x;y)Q(dx, dy), Qe~(xxD,  
X x Y  

and scale MTN. But Ny,  N is the image of ~y,N with respect to the canonical 
projection /g (X x Y) ~/dd(Y) transforming Radon measures on X x Y into its 
marginals on Y. Therefore the assertion of Theorem 2.2 follows now by an 
application of the 'contraction principle' (see e.g. Varadhan [17], Theorem 
2.4). [] 

The rest of this subsection is devoted to the proof of Theorem 2.1. To this end we 
assume that {pU; X e XN, N s N} is a special large deviation system (with respect to 
re) having rate function J and scale 7N. Let ! be defined by (1.1), and denote the 
associated level sets by 45(K; p). We assume that 4~(K; p) is compact for each 
compact subset K of X and each p > 0. 

The proof of Theorem 2.1 will be divided into several steps (Lemma 2.3-Lemma 
2.6 below). For our family of probabilities to be a special large deviation system 
with respect to ~, it is necessary to check that ~ is surjective. This will be done in 
Lemma 2.3. In Lemma 2.4 we will consider the compactness (tightness) of the level 
sets. The most significant part of the proof is contained in the Lemmas 2.5 and 2.6, 
where we will establish the lower and upper large deviation bounds, respectively. 
The proof of these two lemmas mimics the particular one which was given in the 
Introduction in the case in which Y is a finite set and X consists of a single point. 
Let 

~P(#;p):={vsdg(Y)'vozc -I = # , f J d v < p } ,  ,ue.//~(X), p > O ,  
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be the level sets associated with S, and define 

p):= U p) 

for ~4___ Jg(X). 

Lemma 2.3 The level sets ~(#; 0), # ~ Jg(X), are non-empty. In particular, the map 
is surjective. 

Proof We first remark �9 the upper large deviation bound for 
{Pff; x ~ Xm N~ N} yields I(x; Y)=  0 and, together with the compactness of the 
level sets, that 4~(x; 0) is non-empty for all x ~ X. 

Choose # ~ ~ ' ( X )  arbitrarily�9 There exists an increasing sequence (Kr) of com- 
pact sets such that # is concentrated on U,K,. We write # in the form 

# = ~ P~#~, 
r = l  

where, for each r, #r is a probability measure concentrated on K ,  p, > 0, and 
~,,p~ = 1. 

Now fix r E N arbitrarily. We claim that there exists a probability measure 
v,~d/Z(Y) with vrorc-1 = #, which is concentrated on the compact level set 
q~(K,; 0). Indeed, one finds a sequence (x~,) in K, such that 

' i  
�9 = - ~ x r ~  ~ #~ 

# r n  n i= 1 

weakly as n ~ ~ (cf. the proof of Proposition A. 1). For  each n, choose a point y,, in 
the non-empty set ~(x~,; 0) and define 

' i  
Vrn " = -- (~Yri " 

h i =  1 

Then 7z(y,i)=x,i, v~,orc -~ = # , . ,  and the measures v,, are concentrated on 
�9 (K,; 0). In particular, the sequence (v,.) is tight. Selecting a converging subsequ- 
ence, we find a probability measure v which is concentrated on ~(K~; 0) and 
satisfies v, o re-1 = #r. Hence the measure 

V " =  ~ p r V r  
r = l  

belongs to Jg(Y) and satisfies v o re-1 = #. Since vr is concentrated on q~(K,; 0) and 
J = 0 on ~(K~; 0) for each r ~ N, we have fd dv = 0 and, hence, v ~ ~(#; 0). [] 

We next prove the compactness of the level sets. 

Lemma 2.4 a) For each # ~ ( X )  and each p > O, the set ~(#; p) is compact and 
tight. 
b) Suppose that ~r is a compact and tight subset of ~ ( X ) .  Then the sets ~ ( S ;  p), 
p >= O, are compact and tight. In particular, i f X  is a Polish space, then ~(~r;  p) is 
compact for each compact subset ~r of rig(X) and each p >= O. 
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Proof. a) Recall that 

~e( . ;  p) = {v: ~f ddv< p, vo~z -t = # } .  (2.3) 

Let (K,) be an increasing sequence of compact subsets of X such that 
#(X\K,)  < 1/r for each r. Remembering the definition (1.2) of the level sets q)(K,; r) 
and applying Chebyshev's inequality, we obtain for each v e !P(#; p) and each r the 
estimate 

v(Y\eb(K~; r)) < v(J > r) + V(Tr-l(X\K,)) 

< "~-fJdv + #(X\K,)  < - -  p + 1 (2.4) 
r - -  r 

This implies the tightness of the set 7J(#; p). To prove closedness is a bit more 
subtle. This would be immediate from (2.3) if we would know that J is lower 
semi-continuous. But from the compactness of the level sets ~(K; s) we may only 
conclude that the restriction of J to ~ - I (K)  is lower semi-continuous for each 
compact set K _ X. To overcome this difficulty, first note that, as a consequence of 
(2.4), each measure v e 7'(#; p) is concentrated on the a-compact set 

yO := 0 ~(K~;r).  
r = l  

Then, we may rewrite (2.3) in the form 

7~(#;P)={ v: f Jdv<--p'v~ (2.5) 

and view F(#; p) as a set of probabilities on yO. Now the trick is to furnish yO with 
a stronger topology which makes J lower semi-continuous on yO. Namely, we 
equip yO with the strongest topology which induces on ~b(Kr; r) the subspace 
topology of Y for each r. The lower semi-continuity of J on yO is evident from the 
closedness of 

(J < p} n ~b(K,; r) = ~(K,; r/x p) 

in r r) for all r and p > 0. Hence, we conclude from (2.5) that 7J(#; p) is closed 
when considered as a subset of rig(Y~ The bound (2.4) shows that this set is also 
tight with respect to the topology of yO. Hence, by Prokhorov's theorem, it is 
a compact subset of J/t(Y~ Since the natural imbedding of ~ / (yo)  into d{(Y) is 
continuous, this yields the compactness of 7J(#; p) in J{(Y), and we are (almost) 
done. To make the above arguments rigorous, we have to add two remarks. First, 
the Borel ~-field ~(yO) of yO is easily seen to be the trace of the Bore1 ~r-field ~(Y) 
on yo. Second, yO is a completely regular Hausdorff space. As free topological 
union of a countable number of compact spaces, yo is even normal (Postnikov 
[121 p. 30). 

b) Since JC is tight, we find an increasing sequence (K,) of compact subsets of 
X such that #(X\Kr) < 1/r for each # e ~ .  We can therefore repeat the proof of 
part a) with ~(#; p) replaced by 7*(a~f'; p). 

If X is Polish then, by Prokhorov's compactness criterion, the compactness of 
f implies its tightness, and we can proceed as before. [] 
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Now we turn to the proof of the lower large deviation bound. To this end we set 

S(v) i f v o ~ - ~ = # .  
S(#; v) :=  

+ ~ otherwise. 

Lemma 2.5 For each JgM'N (X)-sequence (#M,N) tending to #~J/g (X) and each open 
subset G of J /  ( Y) we have 

lim inf ~ log N~'.N(G) > -- S(#; G). 
M , N ~ o o  lVl yN 

Proof 1 ~ Fix vEJZ(Y) with S(v)< ~ arbitrarily and choose an JzM'N(X)- 
sequence (#M,N) which converges weakly to # := v orc -1 as M, N---, Go. We write 
the measures #M,N in the form 

~IM, N 1 ~=1 
i= 6x,/.N with x~'N . . . . .  x~'N e XN.  

Given M, N e N ,  we consider a yM-valued random vector (~M,N,. . . ,  r N ) on 
a probability space (O, i f ,  IP) the law of which coincides with the Radon extension 
of the product measure P~,., | ... | I.e., , ... are independent Y- 

valued random variables with laws u u Pxf.~, . . . ,  Pxg,~, respectively. We introduce the 
empirical measures 

1 M 

Let U(v) be an open neighborhood of v. Fix h > 0 and sequences (M.) and (N.) of 
natural numbers with M.,  N .  ~ ~ as n ~ ~ arbitrarily. We must show that 

lira inf ~ 1  log~'(~ M-'N- e U(v)) > - S(v) - h (2.6) 
n'-,~ Mn])N, 

(cf. Freidlin and Wentzell [83, Chap. 3, Theorem 3.3). 
In the following we will write #", xT, 47 and ~" instead of #M,,U,, X~t,,U,, 

~t,,U, and ffM,, u,, respectively. 
2 o It is not hard to see that there exist pairwise disjoint open sets 

Ga . . . . .  G~_ Y, compact sets Ck =-- Gk (k = 1 , . . . ,  r), and ~ > 0 such that 

U(v) :=  {~ e J/t(]1) : ~(Gk) > V(Ck) -- e for k = 1 . . . . .  r} _~ U(v) (2.7) 

(see e.g. Billingsley [2], Appendix III, Theorem 3 for a similar statement). We 
choose e'E(0, 1) so that 

g +  2~/e 7 < e .  (2.8) 

Because of the Tightness Hypothesis, we find a compact set K ~_ U~,= ~ rC(Ck) with 

#"(K) > 1 -- e'/3 for all n .  (2.9) 

Since {P~;x �9 XN, N e N} is a large deviation system with rate function I, we find 
for each x e K an open neighborhood U(x) such that 

liminf--1 log inf PI~(Gk) > -- I(x; Gk) -- h/2 (2.10) 
N ~ 0o ~)N YceU(x)nX(K)c~XN 
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for k -- 1 , . . . ,  r, where X ( K )  is taken from the Metrizability Hypothesis. Thereby 
we can assume that U(x) is chosen so 'small' that 

inf I(~; Ck) > I(X; Ck) -- h/2 (2.11) 
~ceU (x)c~K 

for k = 1 , . . . , r .  This follows from Lemma 1.6 b) and the Metrizability 
Hypothesis. Since I(X;Gk) < I(x; Ck) for all k, we can combine (2.10) and (2.11) to 
arrive at 

l i m i n f l l o g  inf P~(Gk) > -- inf I(Y; Ck) -- h 
N--' ~ ~/N Yc~U(x)nX(K)nXN YceU(x)c~K 

for k = 1 , . . . ,  r. We now choose a finite covering { U t , . . . ,  Uq} of K by open sets 
of the form Uj - -  U(xj)  with x j ~ K  (j = 1 . . . . .  q). Then 

l i m i n f l l o g  inf PNx(Gk) > -- inf I(x; Ck)--  h (2.12) 
N ~ oo ~N x~UjnX(K)nXN xeUjr3K 

f o r j = l , . . . , q a n d k =  1 . . . . .  r. 
3 0 We find pairwise disjoint Bore1 sets Wj__ Uj (j = 1 . . . . .  q) such that 

# ( K \  ~) W j ) < e ' / 3  and #(t?Wj) = 0 for each j ,  (2.13) 
j = l  

where t? Wj denotes the boundary of Wj. To construct such sets, we have used that, 
as a consequence of our Metrizability Hypothesis, K is metrizable. Given n e N, we 
introduce the pairwise disjoint sets of indices 

A ~ : = { i : x T e W j c ~ K } ,  j = l  . . . . .  q .  

For each j, we further select pairwise disjoint subsets A~, 1,. �9 �9 A~,r of A~ such that 

,A~,kl = [V(CknTZ- l (WJ))  1 #(Wj)  IA~l , k = 1, . . . , r , 

where IAI denotes the cardinality of the set A and [a] is the integer part of a e IR. If 
#(Wj) = 0, then we set A~,k = 0 for all k. Since IA~i/Mn = #n(Wj c~ K),  #" ~ # weakly 
and p(0Wj) = 0, we have 

lim sup[A~l/M, < I~(Wj) 
n ~ o 9  

for all j, and, consequently, 

lira sup [A~, k[/M, <= v(Cg c~ ~-1 (Wj)) (2.14) 
n --~ oo 

for all j and k. 
4 0 We now claim that 

{ , 7 ~ G k f o r a l l i ~ ) A ~ , k a n d k = l  . . . . .  r}__ { Z ~  U(v)} (2.15) 
j = l  
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for all sufficiently large n. Remembering the definitions of U(v) and E ~t'N and 
taking into account that ]AT]/M, = #"(Win K), we see that it will be enough to 
show that 

lim inf ~ V(Ck C~ 7r- I(Wj)) #"(Wj. ~ K) > V(Ck) -- e (2.16) 
n--* oo j = l  # ( W j )  

for each k. To this end, we fix k arbitrarily and assume without loss of generality 
that the sequences (#"(Wjc~ K)) converge for each j. Otherwise the subsequent 
considerations must be done for an appropriate subsequence of (M,, N,). We 
introduce the index set 

F := ~j: lim l~"(WjnK) > (1-~v/g)#(W~)} ~oo 

Using (2.9) and (2.13), we obtain 

lira #"(Wjn K) = lira #" Wjn K 
n--* ao j = l  n-~Qo j 

J 

Therefore 

i.e. 

1 - e' =< lira ~/~"(Wj) + lira ~ #"(Wj c~ K) 
n~oo j~F n~oo j~F 

=< Z ~(~)  + (1 - ,/2) Z ~ (~)  
j~r j(~F 

<= 1 - ~g' Z #(wj) ,  
j e t  

j e t  

Hence, using this, (2.9), (2.13), and (2.8), we obtain 

~ ~ ( ~ )  . ~  

>= (1 - ~2') Z v(Ck ~ ~-1(~))  
j~F 

> (1 - # 2 ' ) E ~ ( c , )  - ~ ' -  ~/2'1 >= v(Ck) - ~' - 2 v ~  

> v(Ck) - ~, 
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and we arrive at (2.16). 
5 0 We have now collected all ingredients to prove (2.6). Using (2.7), and (2.15) we 
obtain for all sufficiently large n the inequality 

IP(~,'eU(v))>~@~eGk for all i e U  A~,k and k = 1 , . . . , r )  
j=l  

k= 1 j =  1 ieAj, k k = 1 j= 1 Ux~VJ nx(K)nx~ .  "(Gk)j 
I 

Applying the large deviation bound (2.12) and taking into account (2.14), we find that 

lim in f .  1 log IP(E" e U(v)) 
n --* 00 JV.I n~)Nn 

i iF io, I(x;Ck)+h]v(CknU-l(l"Vj)) 
k = 1 j =  1 UxeWj nK 

__> - ~ f [J(y) + h]v(dy) 
k=l j=l  Ckn~-l(Wi) 

>__ - S ( v )  - h ,  

and we arrive at (2.6). Here we have also used that 7 Z ( C k ) ~ K  and therefore 

inf I(X;Ck) <J(y) foreach y e C k n ~ - l ( W )  
x e W j n K  

and all j and k. The above estimates work in the case when 

inf l(x; Ck) < oe (2.17) 
x~WjnK 

for all j and k. But they also work in the general situation with the conventions 
0 ~ = 1 and oo. 0 = 0. To see this, one has to take into account that A~, k * r implies 
V(Ck ~ rc-l(W)) > 0 and this yields (2.17), since by assumption S(v) = fJdv < oo. 

[] 

It remains to derive the upper large deviation bound. 

Lemma 2.6 For each d//M'U(X)-sequence (#M,N) tending to #eJs  and each 
closed subset F of J/g(Y) we have 

1 M N  
lira s u p -  log~ , ; t ,  (F) < -- S(#; F). 
M, Iq --, oo M'y  N ~" 

Proof. 1 ~ Fix # e J/g (X) and an dg M' N (X)-sequence (#M, N) with #M, N ~ # arbitrar- 
ily. As in the proof of the lower large deviation bound, we write #M,N in the form 

1 M 
# M , N  = M i~=l 6xM, N with x M'N . . . . .  x M ' N e x N  . 

Again, let (~f,N . . . . .  ~ ,N)  be a YM-valued random vector on a probability space 
(f~,Y, IP) the law of which coincides with the Radon extension of 

N N �9 .. | P~I,.~ | Let 

~M,N := M 5~,~ (2.18) 
i = 1  
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be the associated empirical measure. Fix p > 0 and h > 0 arbitrarily. Let (M,) and 
(N,) be sequences of natural numbers tending to infinity. Let further U(~(#;  p)) be 
an open neighborhood of the (non-empty) compact set 7~(#; p) (see Lemma 2.3 and 
Lemma 2.4). We must show that 

1 
lim s u p -  log lP(~ ~-'N- r U(~(#;  p))) ____ - p + h (2.19) 

(cf. Freidlin and Wentzell [83, Chap. 3, Theorem 3.3). 
Before carrying out the details, let us sketch the ideas used to prove (2.19). 

Roughly speaking, in step 2 o we will divide the space Yin a certain way into a finite 
number of 'small pieces' A~,~ and pick points Y~,r 'close' to A~,~ (0 < l < q, 
0 < r < ro). This will allow us to pass to a discrete approximation ~M,U of ~ t ,U by 
replacing in (2.18) the random variables ~ff, u by discrete variables ~M,u, where we 
set ~ff, u = Yt,~ if ~ff'UeAz,,. It will turn out that the proof of (2.19) essentially 
reduces to the same statement with ~g ,u  and U(7~(#; p)) replaced by ~M,u and 
a smaller neighborhood [7(~g(/~; p)), respectively. This discretized version of (2.19) 

n ~ , M  N will then follow from the observation that ~ := ~ -' - satisfies the upper large 
deviation bound with h-accuracy (step 3 o below). More precisely, we will see that 
for each closed subset C of J /(Y),  

lim sup ~ log F(~" ~ C) < - inf ;~(v) + h ,  (2.20) 
t~ ~ oO JVl  ,n]) N n  v ~ C  

where 

and 

~(v) :=  ff(y)v(dy), ve~(Y),  (2.21) 
Y 

f(y) :=  S d(y) for y e { y t ,  r : O < l < q , O < r < r o } ,  
(2.22) 

+ oe otherwise. 

This also explains the appearance of the additional parameter h in (2.19). 
In the following we will often write n instead of M,,  N,; in particular we will use 

the notations #", ~ and 3" instead of #M,,N,, ~ff,,N. and S M"'u", respectively. 
To prove (2.19), we choose measures vl . . . .  , V m e g J ( # ; p )  and functions 

9 i j~Cb(Y)  (i = 1 . . . . .  m ; j  = 1 , . . .  ,nO so that 

U(7~(#; p))~ U1 (TJ(#; p))--- U1/2(~P(#; p))--- 7J(#; p) ,  (2.23) 

where 

U,(TJ(#; p))"= ~) {ge JC/(Y):I(g, 9~j) - (v, ,  9~j)l < e for j = 1 . . . . .  n~} . (2.24) 
i = 1  

Because of the Tightness Hypothesis, we find an increasing sequence (K,) of 
compact subsets of X such that 

#"(Kr) > 1 - 1/r for all n and r .  (2.25) 

Then 

:= { ~ e . / g ( X ) : f i ( K ~ )  > 1 - 1/r for all r} 
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is a compact  and tight set of measures containing #" and #. F r o m  Lemma 2.4 we 
know that  ku(~P; p) is also compact.  Because of this, we conclude from (2.23) that  
there exist functions fk~ Q ( X )  (k = i , . . . ,  p) such that  

U1/2(7~(#; p ) )_  7J(V(#) ~ Y ;  p ) ,  (2.26) 

where 

V(#) "= {f i~dg(X) :  b(/~,fk) -- (#,fk)[----< 1 for k = 1 . . . . .  p} .  (2.27) 

20 We next construct  mutual ly independent  r andom variables ~'I' which attain only 
finitely many  values and are 'sufficiently close' to ~ for i = 1 , . . . ,  M, .  To  this end 
we fix a number  

t > 8 p [ m a x { n g i ~ l l : l < - i - < m , l = < j = < n i } v  max{nfkU "l  -< k -< p}] . (2.28) 

Because of (2.25), we may choose ro ~ N so that 

h 1 1 
#"(X\K~o ) < ~ /x mini,~. ~ /' mkin 1611fkll for all n ,  

i.e. 

[{ i :xT~Kro}[< , ~ / ~  m i n - - / x  for a l l n  (2.29) i,j lglloijH m k m ~  

where IAI denotes the cardinality of the set A. We select a finite covering of the 
compact  set 4~(Kro; t) by open sets G1,. �9 �9 G~ such that 

sup [a,j(y) - gdY)l < 1/8 for all i,j and 1 _< 1 _< q (2.30) 

and 

sup Ifk(~(Y)) --fk(ZC(y))[ < 1/8 for all k and 1 < l < q .  (2.31) 
y, ~eGz 

We choose pairwise disjoint measurable sets A1 . . . . .  Aq such that At~Gz for 
1 = 1 , . . .  , q and 0~=1 At = = ~=1  Gt. We further set Ao :=  Go :=  Y\0~=I  At. 
Note  that  this set is closed. Given 0 < l < q and 1 < r < to, we set 

At,~ ' =  At n re- I(K~\K~_ z) 

(with Ko :=  0) and pick a point  yz,~6Gz ~ q~(K~; t) so that 

J(Yz,~) = min{J(y) :  y s Gz c~ q~(K~; t)} . (2.32) 

(If Gz n ~(Kr;  t) = 0, then we choose y z , ~ ( K ~ ;  t) arbitrarily.) For  0 < l < q we 
further set 

Az, o :=  At n 7c- l(X\Kro) 

and Yz,0 :=  Yz,,o. Note  that  {Az,A 0 < l < q, 0 < r < to} is a part i t ion of Y into 
pairwise disjoint measurable sets. We introduce the index set 

F : =  {(l, r) : 0 <: l _< q, l _< r _< ro, G t ~ ( K , ; t )  4 =0} 

{(/, 0) :0  -< I -< q, Gt c~ ~(1~o; t) 4= 0} �9 
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Given n ~ N and 1 < i < M,,  we define 

~"" = Y l , .  if ~ E Al, r, O<- l<-q ,O<-r<_ro ,  (2.33) 

and introduce the associated empirical measure 

~ 1 M .  
6 " : = - -  ' F 6 ~ .  

M, ~= 

The objects constructed above have the following properties: 

m 

(i) yl,~sGl for all (l, r )eF,  yl,,e ~(K~o; t) for all I and r; 

m 

(ii) J(yr <= in f {J (y ) : yeA l ,  r} for 0 _< I __ q and 1 _< r _< ro; 

(iii) ~'-" o7c -1 e Y  a.s. for each n. 

The last property follows from the observation that ~"orc-l(Kro)= 1 and 
~n o ;g- l(Kr) ~ Sno g-l(Kr)  =/P(Kr) for 1 < r < ro almost surely. 
3 o We next show that ~" satisfies the 'h-accuracy' upper large deviation bound 
(2.20) with rate function S given by (2.21) and (2.22). The set ~ '  of all measures in 
J/g(Y) which are concentrated on { yl,,:0 < 1 _< q, 0 < r < r0} is compact. Since all 
realizations of the random measures g" belong to d/7 and S(v) = + oo for v r J/7, it 
suffices to prove (2.20) for compact sets C _  Jg. But for this it will be enough to 
derive the following local large deviation bound: For each v e ~///7 there exists an 
open neighborhood U(v) of v such that 

lim sup - -  log lP(ff" ~ U(v)) < - S(v) + h .  
n--, oo M n T N .  = 

(2.34) 

To prove (2.34), we fix v s ~  arbitrarily, choose g ~ C b ( Y  ) s o  that g = J on { y~,,.: 
0_< l_< q, 0_< r_< ro} and put 

U(v) '=  {~: (~, g) > S(v) - h /2} .  

The existence of the interpolation function g is a direct consequence of tile complete 
regularity of Y. We introduce the index sets A" :=  {i:x7 e Kro }. Since Yz, r s ~(Kro; t), 
we have g(Yl, r) <---- t for all 1 and r. Together with (2.29) this yields 

~ 1 ~. h 
g5 < + - .  

W I  n i u A  n 2 

Using this and Chebyshev's exponential inequality, we obtain 

< exp{ - M,VN,[S(v) - h]} l-[ IEexp{TN,9(~)}, (2.35) 
I E A  n 
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where IE denotes expectation with respect to IP. Here we have also used that the 
random variables ~', 1 _< i _< M,,  are mutually independent. For each i ~ A" we have 

q ro 
lEexp{~N,g(~r)} = ~ ~ exp{TNJ(y~,r)}lP(~7~At,,.) 

/ = 0 r = l  

q ro 
<= ~ ~ exp{3'NJ(y,.r)} sup P~(Az,r). (2.36) 

I=0 r= 1 x~K~c~XN. 

(By convention, the supremum over the empty set is zero.) Applying the upper large 
deviation bound for {P~; x ~ XN, N ~ N} and taking into account the Metrizability 
Hypothesis and property (ii) of step 2 ~ we obtain 

lira sup 1 log sup P~"(A,,r) < - J(Y,,r) (2.37) 
n --+~ ~N n x~Krc~X;% 

for 0 < 1 < q and 1 < r < ro. Combining (2.35), (2.36), and (2.37), we finally arrive 
at the desired bound (2.34). 
40 We have now collected all ingredients to prove (2.19). Using (2.23), (2.24), (2.27), 
and property (iii) of step 20 and taking into account that ~" o 7c- 1 = / d  --* # weakly 
as n ~ 0% we obtain for all sufficiently large n the estimate 

F(Z" r V(~'(#; p))) 

=< IP(Z n r U1 (~(#; p)), S"~ U1/2(~(#; p))) 

+ ~,(~" r v~/~(~e(#; p)), ~" o ~-1 ~ v(#) ~ x )  

~_ ]p(z~n o ~ - 1  r g ( # ) )  

< 11' I(g" - ~", g,~)l > 
i=1 j=l 

+ n'(Y" q! u 1 / ~ ( ~ ( ~ ;  p)), ~-"o ~ - 1  ~ v ( # )  ~ ~ )  

To prove (2.19), it therefore suffices to show that 

1 
limsup M-~N~ log IP(~ ~ r U~/2(~(#; p)), ~ o  rc -~ e V(#) c~ ~f) < - p + h ,(2.38) 

lim sup log ~p I(~g ~ - ~", g~j)l > < - p (2.39) 
.---) ~o MnTNn 

for i = 1 , . . . ,  m a n d j  = 1 . . . .  , n~, and 

lim sup ~ log IP( Z",fk o 7r)l > < p l(~.Tu. \ - = - (2.40) 

f o r k =  1 . . . . .  p. 
Taking into account the inclusion (2.26) and remembering the definition of 
~(V(#) c~ ~ ; p ) ,  we find that S(v) > S(v) > p for each v with v r U1/2(~(#; p)) and 
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v o re- a E V(#) c~ : f .  Therefore an application of the large deviation bound (2.20) 
yields (2.38). 
Using property (i), (2.30), (2.29), and (2.28) of step 2 ~ we get for all i,j: 

1 M. 
l( ~" -- ~", g~j)[ =<~,, Y~ Igij(C~)- gij(~)l 

k = l  

1 1 ~t, 
< ~ + 211g~jll Z 1I " 

- 1  ( t ,r)r  

< g + 2 1 l o J  I{k:x~r + 2 ~ A,.,(r 
k = l  ( t , r ) r  

r=t=O 

1 t 1 za. 
< -  + = - = - _  Z = 4  4p M,  k=t (l,~)~r " 

r # 0  

Using this estimate and applying Chebyshev's exponential inequality, we obtain 

F(l(g" - ~", g,i>l > 1/2) 

k 1 (l,r)q~F / 
r # O  

- t lI , < exp{ Mn~NnD} 1-I IEexp 7N, Z ,~ . (2.41/ 
k = 1 ( / , r )  r r 

r 4 : 0  

Moreover, for each k, 

(l,r)r t IIA, (~) 
r#-O 

N 1 + exp{vNt } ~, lP(~,eAt,,)  
(l ,r)r 
r4-O 

m 

< 1 + exp{Ts t} Z supx~Krnx, P~"(G~). (2.42) 
(l,r)~F 

r , 0  

But for (1, r) CF and r :# 0 we have G~ n qS(Kr; t) = 0 and therefore 

inf{J(y):y~-Gl ~ 7z-l(K~)} > t .  

Because of this and the Metrizability Hypothesis, an application of the upper large 
deviation bound for {P~; x e Xs ,  N e N} yields 

limsup 1 log sup P~"(Gz)< - t  
n~ oo ~N.  xeKrC~XN~ 

for (l, r) r F and r :# 0. Thus, the expression on the right of (2.42) tends to 1 as 
n ~ ~ .  Combining this with (2.41), we arrive at (2.39). The proof of assertion (2.40) 
repeats that of (2.39) with gzj replaced by fk ~ ~. 

This completes the proof of the upper large deviation bound (2.19). [] 
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2.2 Other representations of the rate function 

In this subsection we derive two more representations of the rate function (2.2). Let 
us begin with the derivation of a dual expression for the marginal problem (2.2). 

Theorem 2.7 Let the assumptions of Theorem 2.2 be satisfied. Then 

S(#; v) = sup [(v, g)  - (#, sup[g(y) - I ( ' ;  y)])] (2.43) 
geCb(Y) yeY 

for all # e ~ ( X )  and ved/(Y) .  

Remark 2.8 From Lemma 1.6 c) we know that the last supremum on the right of 
(2.43) is sequentially continuous. Therefore 

S(#; v) = sup [(/.t ,f) + (v, g)]  , 
f~)g<=l 

f eCb,s(X), geCb(Y) 

where Cb, s(X) denotes the space of bounded sequentially continuous functions on 
X. If X is Polish, then Cb, s(X) = Cb(X) . The representation (2.43) of the rate 
function S may therefore be regarded as a version of the dual representation for 
marginal problems, see Kellerer [10]. Unfortunately, the (rather general) assump- 
tions in Kellerer [10] do not exactly fit our needs. The proof given below employs 
the large deviation background of the functional S. 

Proof of Theorem 2.7 As in Lemma 1.6 c), we will use the abbreviation 

hg(x) := sup [g(y) - I(x; y)], x e X. 
yeY 

Given Q e,///(#, v) and g e Q ( Y ) ,  we have 

fQ(dx, dy)I(x; y) 

> fQ(dx, dy)(g(y) - ho(x)) 

= (v, g) - (#, hg). 

This shows that 

S(p; v) _-> sup [(v, g) - (#, ho)] (2.44) 
g~Cb(Y) 

for all #e  J//(X) and ve~/(Y) .  
Fix #e  J/#(X) arbitrarily and set ~J(p; v) : = S(#; v) for v e ~ ( Y )  and 

S(#; v):= + oo for v ~ Cb(Y)*\J~(Y). Note that S(#;-) is convex and the level sets 
T(#; p), p >_ 0, are compact in Q(Y)* (cf. Lemma 2.4 a)). Therefore the function 
S(#;.) is convex and lower semi-continuous on Cb(Y)*. But this means that S(#;.) 
coincides with its bipolar, i.e. 

S(#;v)= sup [ ( v , g ) -  L(p;g)], veJZ(Y), 
geCb(Y) 

where 

L ( # ; g ) ' =  sup [ (v ,g ) -S (p ;v ) ] ,  gECb(Y) 
ve~ (Y) 

(see e.g. Ekeland and Temam [7], Chap. 1, Proposition 4.1). 
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To prove the inequality opposite to (2.44), it will therefore be enough to show that 

L(/t; g) > (#, hg), g ~ Cb(Y). (2.45) 

Note that this inequality remains valid if one replaces g by g + const. 
To prove (2.45), we fix geCb(Y) and assume without loss of generality that 

g < 0. We choose an dgg'N(X)-sequence (#M,N) with #M,N ~/~ as M, N ~ oo. By 
Theorem 2.2, M, N. {~, , # ~ jc/M, N(X), M e N, N ~ N} is a large deviation system with 
rate function S and scale MTN. We can therefore apply the Laplace-Varadhan 
method to obtain 

1 
L (# ; g )=  lim - - l o g  f N~,Y(dv)exp{MTN(v,g)} (2.46) 

M,N-*oo M T N  Jz(Y) 

(see e.g. Varadhan [17], Theorem 2.2). It follows from the definition of the measures 
MN ~,;,'.~ that 

1 
- - l o g  f ~.~(dv)exp{Mys(V, 9)} 
MTu .~(r) 

= f ~,N(dx ) 1 log f P~(dy) exp{TNg(y)}. (2.47) 
X ~)N y 

Now fix e > 0 arbitrarily. Let (Mn) and (N,) be sequences of natural numbers 
tending to infinity. We will write #" instead of / t  Mn'N~. Because of the Tightness 
Hypothesis, there exists a compact set K__c X such that 

#n(K) > 1 - 8 for all n .  (2.48) 

Applying the Laplace-Varadhan method to the large deviation system 
{P~; x E XN, N ~ N}, we get 

lim 1 log f P~(dy) exp {?Ng(Y)} = ho(x) 
N--r ~176 ? N  Y 

for each XN-sequence (XN) tending to x e X. Therefore, taking into account the 
Metrizability Hypothesis and Lemma 1.6 c), we find for each x ~ K  an open 
neighborhood U(x) of x such that 

l i m i n f ~ l  log inf fP~"(dy)exp{TN, g(y)} 
tl'-e'oo ~ ] N n  ~c~U(x)nKnXN. 

> sup hg(~)- e .  (2.49) 
Yes U(x) n K 

We select a finite covering {Gt . . . . .  G~} of K by such open neighborhoods. Taking 
into account (2.48), we find pairwise disjoint measurable sets A~cG~ with 
#(0A~) = 0 (1 < i < r) and 

# X \  A~c~K < 2 e .  (2.50) 

From this and (2.48) we conclude that 

r X \  Ai c~ K < 4e (2.51) 
i 
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for all sufficiently large n. Combining (2.46) with (2.47) and taking into account 
(2.51), we obtain 

L(#; g) _-> ~ liminf f 
i = 1  n - , ' m  A~nK 

#"(dx) 1 log f P~"(dy)exp{~,u.g(y)} -- 4511911. (2.52) 
~Nn Y 

Since (2.49) holds for U(x) replaced by Ai, we get 

liminf f u"(dx)~@~ log f P~"(dy)exp{?N.g(y)} 
n-," eo Aic~ K y 

> liminf#"(Az)--i log inf fP~"(dy)exp{yN.g(y)}  
n ~  m y N  n x~Aic~Kc~XN. 

> f ~(dx)(h~(x) - e) - (llgl[ + O~(zz~g)  (253) 
A i n K  

for 1 <_ i _< r. Here we have used that, as a consequence of g __< 0, the expression 
under the first integral is nonpositive. We have also used the bound 
supy[g(y) - I(x;y)] > - Ilgll. Substituting (2.53) in (2.52) and taking into account 
(2.50), we arrive at 

L(~; g) >= f #(dx)ho(x ) - ~(711gll + 1 + O. 
X 

Since e may be chosen arbitrarily small, this proves (2.45), and we are done. [] 

We are now going to derive a further useful representation of the rate function 
S (formulas (2.54) and (2.55) below) under the restriction that X and Y are Polish 
spaces. Then, in particular, X satisfies the Metrizability and the Tightness Hy- 
potheses and rig(X) and ~r are also Polish spaces. For each N ~ N ,  we will 
denote by #I(XN) the space of Radon probability measures on XN and by ~'~(XN) 
the subspace of M-point empirical measures. We will consider ~(XN) as a sub- 
space of J~(X) and identify J/gM(xN) with Jd~'N(X), the subspace of J~(X) 
consisting of M-point empirical measures concentrated on Xw Let E~ denote 
expectation with respect to P~. 

Before formulating our result, we need to introduce the notion of e-convergence 
('convergence in terms of the epigraph', cf. Wets [19]). Let Z be a Hausdorff space, 
and let f,, n e N ,  a n d f b e  functions from Z into IR u { + oo}. We will say that the 
sequence ~ )  is e-convergent to f, 

f = e - lim f , ,  
11-~ o9 
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if for each z e Z the following conditions are satisfied: 

(i) f (z )  < sup lira inf inf f.(~) ; 
V e ~ ( z )  n'--, ao ~ V  

(ii) f (z)  > sup lim sup inf f,(5). 
V ef"  (z) n-* oo ~e V 

Here ~(z)  denotes the system of neighborhoods of z. If Z satisfies the first 
countability axiom, then (i) and (ii) are equivalent to the following conditions: 

(i') for each sequence (z,) tending to z it holds 

f (z)  < l iminff,(z,)  ; 
n..-~ oo 

(ii') there exists a sequence (z ~ tending to z such that 

f (z)  > lira inf f,(z~ 
n--+ o9 

This notion of convergence is useful in studying sequences of lower semi-continu- 
ous convex functions; in particular, a sequence of lower semi-continuous convex 
functions converges in this sense if and only if their convex conjugates converge (cf. 
Wets [19]). 

Theorem 2.9 Assume that X and Y are Polish spaces, and let the assumptions of 
Theorem 2.2 be satisfied. Suppose further that the map x~--,P~ from X ~ into ~ ( Y) is 
continuous for each N e N. Then the following assertions are valid. 

a) For each N e N, M, N. { ~ ,  , #e  dgu(XN), M e N }  is a large deviation system with 
scale M and rate function 

SU(#; v):= sup [ ( v , f )  - (#,logEN. ef)] ,  # e ~ ( X n ) ,  veJ/g(Y). 
f e C b ( Y )  

b) M,N. { ~  ,#e , / /gM'n(X) ,M~N,  N e N }  is a large deviation system with scale 
MTN (as M, N ~ oe). The corresponding rate function S satisfies 

S(#;') = e - lira 7F 1SN(S;') (2.54) 
N'-*  ao 

for each # e Jg (X) and each sequence of measures #N E dg (X N) tending to #. 
c) Let Z be a regular Hausdorff space and n a continuous map from J/d ( Y) into Z. 

Denote by ,~M,N the image of the measure NM, N with respect to n (#~JgM'N(X), 
M e N ,  NEN). Then, for each N e N ,  {~M,u; #ej/IM(xN), M s N }  is a large devi- 
ation system with scale M and rate function 

S~(#;z):= inf SU(#;v), #edg(Xu),  z s Z .  
~ ( v )  = z 

{ ~ , n ;  # e,//gM,U(X), M e N ,  N e N }  is a large deviation system with scale My# (as 
M, N --+ oo) and rate function 

S=(#;z):= inf S(#;v), #eJg(X) ,  z e Z .  
~(v) = z 

M o r e o v e r ~  

S~(#;') = e - lim ?ff 1S~(#N;.) (2.55) 
N---~ co 
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for each l~ E J/g(X) and each sequence of measures pu e ~ ( X N )  tending to It. 

Proof a) Assertion a) is a Sanov type theorem. Its proof can be found in Dawson 
and Gfirtner [4J, Sect. 3.5. 

b) That M,N. { ~  , # ~ d g M ' N ( X ) , M ~ N , N ~ N }  is a large deviation system is 
a restatement of Theorem 2.2. It only remains to prove (2.54). To this end, we fix 
/~ ~ J{(X) and a sequence of measures ~N ~ J~(XN) with #N ~ p. Since X is Polish, 
the subspaces XN are metrizable. We may therefore apply Proposition A.1 to find 
for each N ~ N  measures #M'N~J/cM(XN), M e N ,  such that 

~M,N ~ ~N in J///(XN) as M ~ ~ .  (2.56) 

Since ./s is metrizable, we conclude from this that for each N e N there exists 
Mo(N) e N such that 

i~ M'N ---> # in Js as M, N ~ ~ and M > Mo(N) . (2.57) 

Given v eJ#(Y), let V be an arbitrary neighborhood of v. From assertion a) and 
(2.56) we conclude that 

infSN(#N; ~) = l iminfM -1 log M Y - ~u~'.N (V) (2.58) 
9 e V  M ~ O 9  

for each N. On the other hand, because of Theorem 2.2 and (2.57), we have 

- infS(#; ~) > lim sup M-lyN 1 1 o g ~ . N ( l  7) . (2.59) 
~ e V  M ,  N ~  o9 

M >_- M o (N) 

Combining both estimates, we arrive at 

inf S(#; ~) < lira inf inf 7~ ~SN(#N; ~) �9 

Taking into account that S(~;" ) is lower semi-continuous and Jg(Y) is regular, we 
conclude from this that 

S(#; v) __< sup liminf inf v~sN(#N; f~). (2.60) 
Ve"U(v)  N ~ ~ ~)~"Z" 

Using the large deviation bounds 

- inf sN(ffv; ~) >= lim sup M - t  log ~u~.N(I ?) 
~ M -+ o9 

and 

- infS(#; g) < liminf M-17ff 1 logN~.Y(V) 

M>=Mo(N) 

opposite to (2.58) and (2.59), respectively, we find in a similar manner that 

S(#; v) > sup lim sup inf 7N 1SN(#N; g). (2.61) 
V e ~ ( v )  N ~  ~,eV 

(2.60) and (2.61) together imply the e-convergence of SN(pN; ") to S(#;.). 
c) The first half of assertion c) is a consequence of the contraction principle. 

The proof of the e-convergence (2.55) follows the proof of (2.54) with NM, N, S N, and 
M,N N S replaced by ~u , S~, and S~, respectively. [] 
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3 R a n d o m l y  perturbed d y n a m i c a l  s y s t e m s  

4.1 Notation and main result 

In this section we deal with diffusion processes in IR d with generator 

,g2 ~, 02 ~ 0 
- -  dJ( �9 , t) ~ + b~( �9 , t) (3.1) 

s := 2 i,j=l i=1 Oxl 

depending on a small parameter e > 0. More precisely, given T > 0, we consider for 
each e > 0 the solution {P~,t; (x, t)eiR a x [0, T]} to the martingale problem for 
{5r te[0 ,  T]}. Here P~,t is the law on Co, r : =  C([0, T];IR d) of the diffusion 
process governed by { ~ ;  te [0 ,  T]} which starts at time t at point x (i.e. P~,,t is 
concentrated on paths ~0e Co,r with ~o(s)= x for s t [ 0 ,  t]). For details see e.g. 
Stroock and Varadhan [15]. We will often write P~ instead of P~,o. 

We first want to formulate the Freidlin-Wentzell result on large deviations for 
the family of probability measures {P~; x e IR a, e > 0} in a form which is convenient 
for our purposes (Theorem 3.1 below). To this end we need some further notation. 

Given (x, t) E IRa x [-0, T], we denote by I" I~,~ and V~,,, respectively, the Rieman- 
nian norm and the Riemannian gradient in the tangent space at x for the Rieman- 
nian structure on IR a associated with the diffusion matrix a(. ,  t).  In particular, 

d 
Z 2 I Ix, t = Z aiJ( X, t)zizJ, Z = (z 1 . . . . .  z d ) ~ I R  d, 

i,j= 1 

and 

e Of(x) Of(x) 
IVx,,fl2,, = Z aO(x,t) 

i, j = 1 ~Xi OxJ 

Here {aij{x, t)} denotes the inverse of the matrix {a'J(x, t)}. (Of course, if a(. ,  t) is 
not sufficiently smooth, then there is not really a Riemannian structure associated 
with a( . ,  t), but the above formulas still make sense provided that the diffusion 
matrix is non-degenerate.) Suppressing the dependence on x, we will often write ['1, 
and V, instead of I'l.,, and V., ,  respectively. 
We define a functional I: Co, r --+ [0, oo] by setting 

1 r 
J t)lo,),, dt (3.2) I(~o) :-- ~ Iq;(t) - b(~o(t), 2 

if (p e Co, r is absolutely continuous and I(q)) : = + oo otherwise. Let 

~b(A;p):={q~eCo, T:q~(O)eA, I(ep)<p}, A g i R  a, p > O ,  

denote the associated level sets. 
Co, T, I, and r p) are defined with respect to the time interval [0, T]. Given 

an arbitrary time interval [s, t] ~ [0, T], the associated objects will be denoted by 
C~,,, I,,,, and ~/is, t(A; p), respectively. 

We impose the following assumptions on the diffusion matrix a(x, t)= 
{alJ(x, t)} and the drift vector b(x, t) = {bi(x, t)}. 

Assumption (D1). The diffusion matrix a: IRa x [0, T] --+ IRa@IRa and the drift 
vector b: IRd x [0, T] --+ IRd are continuous. For each (x, t) ~ IRd x [0, T], the matrix 
a(x, t) is symmetric and strictly positive definite. 
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Assumption (D2). The martingale problem for {5~ t~[0,  T-I} is well-posed for 
each e > 0. 

Assumption (D3). (i) For  each compact set K ~ IRe and each p > 0, the set ~(K; p) 
is bounded in Co, r. 
(ii) For  each t ~ [0, T) and each x e IR e, the equation 

s = b(~o(u), u), u ~ It, T] , (3.3) 

has at least one solution (p e C,, r with ~o(t) = x. 

Theorem 3.1 Let the Assumptions (D1)-(D3) be fulfilled. Then {P~; x e IRe, e > 0} is 
a special large deviation system (with respect to the map ~o(.)~--~(p(0)) with rate 
function I and scale ~- 2 as ~ ~ O. Moreover, the level sets ~b(K; p) are compact for all 
compact sets K ~ IR e and all p >_ O. 

For bounded and uniformly continuous drift and diffusion coefficients with uni- 
formly non-degenerate diffusion matrix the proof can be found in Freidlin and 
Wentzell [8], Chap. 5, Theorem 3.1, in the time homogeneous situation and in 
Wentzell [18], Theorem 4.3.3, for time inhomogeneous coefficients. Azencott [1], 
Chap. III, Theorem 2.13, allowed explosion and degeneracy of the diffusion matrix 
but assumed local Lipschitz continuity of the drift and diffusion coefficients. 

In Appendix A.2 it will be shown how Theorem 3.1 may be derived from the 
results in Wentzell [18] by use of localization techniques. 

We are now going to study large deviations for empirical processes of N inde- 
pendent copies of our diffusion processes in the limit as N -~ oe and e ~ 0. 

Before formulating our result (Theorem 3.2 below), we introduce some further 
notation. By J g : =  jg(iRe) we denote the space of probability measures on IR e en- 
dowed with Prokhorov's metric. Given N ~ N, let ~ N  be the subset of Jg consisting 
of N-point empirical measures, i.e. of measures/t  of the form 

N 

# = N -  1 2 8xl with x 1,. �9 . ,  xN e IRd. (3.4) 
i = 1  

Also let off0, r : = C([0, T]; d/Z) be the space of continuous functions from [0, T]  
into d/{ furnished with the topology of uniform convergence. Both Jg  and c~o, r are 
Polish spaces. 

Given N e N, e > 0, and a measure # e jgN of the form (3.4), we denote by 
~ ' ~  the law on Cgo, r of the empirical process associated with N independent 
diffusions having laws P~ ~ , .  �9 �9 Px,, respectively. More precisely, ~ s , ,  is the image 
of the product measure P ~ |  ... P~ | ~ with respect to the continuous map 

(Co, r)N~(y~ ( ' ) . . . .  ,yN('))~--~(t~--'N-~=~ CSy~(t)) ~ cg0, r . (3.5) 

We denote by ~ the Schwartz space of test functions IRdo IR having compact 
support and possessing continuous derivatives of all orders. We endow N with the 
usual inductive topology. Let N' be the corresponding space of real distributions. 
For  each compact set K c IR e, ~K will denote the subspace of @ consisting of all 
test functions the support of which is contained in K. Given 3e  @' and f e  ~ ,  let 
(,9, f }  denote the application of the test function f t o  the distribution O. 

A distribution-valued function 0(-) : [0, T l  --* N' will be called absolutely con- 
tinuous if for each compact set K ~ IRe there exist a neighborhood U~ of 0 in 



Multilevel large deviations 457 

N,v and an absolutely continuous function HK: [0, T] ~ IR such that 

](O(s), f )  - (O(t), f>[ < ]HK(s)- HK(t)[ 

for all s, t e [0, T] andf.e UK. If 0(. ) is absolutely continuous, then the derivative in 
the distribution sense 0(t) exists for Lebesgue-almost all t s [0, T], see Dawson and 
G/irtner [4], Lemma 4.2. 

Given # ~ ~ and t ~ [0, T], we introduce a normed linear space Tu,, := { 0~ @': 
[[O[[~,t < ~ } with norm 11 �9 defined by 

](O,f>] 2 
1[0[[2,,'= sup 2 , O e N ' .  (3.6) 

ir <#, Iv, fix > 

Here ~ , , ,  '=  { f e D ' < # ,  IV,fl~> # 0 }. Heuristically speaking this means that, for 
each t z [0, T], we consider Jr  as an infinite dimensional 'Riemannian manifold' 
with 'tangent spaces' Tv,, and 'Riemannian norm' I1" [I... # z ~ .  
We define a functional S O : ego, r -+ [0, o0] by setting 

1 r 
S~ := ~ ? II/i(t) - (L,e~ dt (3.7) 

if #(.) is absolutely continuous and S~ + m otherwise. Here 
a 

5Y~ "= Z bi( ", t) 
i = 1 ~xi 

denotes the operator (3.1) for ~ = 0 corresponding to the unperturbed motion 
2 = b(x, t), and (~o) .  is the formal adjoint of ~ o  acting on 9 ' .  Let 

~ ~  T:#(O)Ed,  S ~  d ~ J / [ ,  p > O ,  

be the level sets associated with S o . 

Theorem 3.2 Let  the Assumptions (D1)-(D3) be satisfied. Then N,~. { ~ ,  , # ~ d r  N, 

N e N, e > 0} is a special large deviation system (with respect to the map #( ' )~#(0) )  
with rate function S o and scale Ng -2 as N + oo and e --+ 0. The level sets 7'~ p) 
are compact for  all compact subsets J f  o f  ~ and all p > O. 

Before turning to the proof of Theorem 3.2, let us make several comments about 
the Assumptions (D1)-(D3). 

R emark  3.3 a) Assumption (D1) guarantees uniqueness of the solution to our 
martingale problem for each g > 0 (Stroock and Varadhan [15], Theorem 7.2.1 and 
Corollary 10.1.2), but it does not exclude explosion. In Assumption (D2) we require 
that our processes do not explode. Non-explosion criteria can be found e.g. in 
Stroock and Varadhan [15], Chap. 10. 

b) Let Assumption (D1) be satisfied. Then Assumption (D3) is equivalent to the 
condition that the sets ~b,,t(K;p ) are bounded in C,,t and non-empty for 
0 < s < t < T, each compact set K c 1R d, and all p > 0. 

Indeed, part (ii) of Assumption (D3) is obviously equivalent to the condition 
that the sets ~,,t(K; p) are non-empty. Now let (D1) and (D3) be satisfied. To check 
that q~,t(K; p) is bounded, we define a map z: C,,t--+ Co, r by setting t(q0(u) :=  ~0(s) 
for u ~ [0, s], t(q0(u) := q~(u) for u ~ [s, t], and by choosing t(cp)(u), u ~ It, T], to be 
a path of the dynamical system (3.3) with t(q))(t) = ~0(t) which exists according to 
part (ii) of Assumption (D3). It follows that z(~,,(K; p))_c ~b(K; t~) for some t3 > p. 
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Since 4~(K; t3) is bounded by part (i) of Assumption (D3), this yields the bounded- 
ness of ~s,t(K; p). The reverse part of our claim is immediate. 

c) If the drift coefficient b is time-independent, then Assumption (D1) and part 
(i) of Assumption (D3) together imply part (ii) of Assumption (D3). Otherwise one 
would find t s [-0, T), x e IRa, and an unbounded continuously differentiable func- 
tion (p:[t ,T) ~ iRa satisfying (p( t )=x and (o(u)=b(~o(u)) for u ~ [ t , T ) .  Set 
On(U) := X for u ~ [0, t + 1In] and (p,(u) := (p(u - l/n) for u ~ It  + l/n,  T]. Then ((p,) 
is an unbounded sequence in Co, r which belongs to ~b(x; p) for some p > 0. But this 
contradicts part (i) of Assumption (D3). 

d) In general, the Assumptions (D1) and (D2) do not imply Assumption (D3). 
To see this, let F be a bounded smooth real function with F'(x)  > 0 for all x. Then 
the Assumptions (D1) and (D2) are satisfied for d = 1, a(x, t) = a(x) = ( f ' (x ) )  -2 
and b(x, t) - O. But each solution of the equation 

(o(t) = a(cp(t , t > O, 

explodes before time T for p > (F( + oo) - F( - oo))a/T. Consequently, for each 
such p, the level sets ~(K; p) are not bounded in Co, r- 

e) Let Assumption (D1) be fulfilled. Suppose that there exist a continuously 
differentiable function U: IR a ~ IR with 

lim U ( x ) =  + oo (3.8) 
LxL-~ oo 

and 2 > 0 such that 

1 
~e ~ u + ~ IV, UI, ~ < ,~u for all t~ [0, T ] .  (3.9) 

Then Assumption (D3) is satisfied. Before turning to the proof, let us remark that 
condition (3.9) is certainly fulfilled in the case when b( ' ,  t) = - V~U, te  [0, T]. 
Using (3.9), we find that 

dt e-ZtU(q)(t)) = e-~t[(cP(t)' VtU(~0(t)))~ - 2U(rp(t))] 

1 Iv, g(~0(t))l~l < e-~'l_((o(t) - b(rp(t), t), V,U(~0(t))), - 

<e_Xt  1 = ~ I~b(t) - b(~o(t), t)lt z 

for all absolutely continuous paths (p e Co, r and Lebesgue-almost all t~ [0, T]. 
Here (.,  ")t denotes the Riemannian inner product with respect to the diffusion 
matrix a( ' ,  t). Thus, integration yields 

e-~tU(q)(t)) <= U((p(0)) + I((p), t e l0 ,  T] . 

Together with (3.8), this implies the boundedness of the level sets, i.e. part (i) of 
Assumption (D3). Now let (p be a path of the dynamical system (3.3) in a right-open 
time interval [t, t') c [0, T]. Then, analogous to the above, we obtain 

e-~"U((o(u)) <= e-~tU(~o(t)) for u e [ t ,  t') . 
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Hence, ~0 is bounded on [t, t '). In other words, the paths of our dynamical system 
do not explode. Together with Assumption (D1), this implies part (ii) of Assump- 
tion (D3). 

The rest of Sect. 3 is devoted to the proof of Theorem 3.2. We will assume 
throughout that the Assumptions (D1)-(D3) are satisfied. We will close the present 
subsection by showing that {~,N'~', # �9 dC/N, N � 9  e > 0} is a special large deviation 
system. The remaining two subsections are devoted to the identification of the rate 
function in the form (3.7). 

Given t � 9  [0, T], we will denote by nt the canonical projection Co, r--* lRd 
defined by ~t(q0):= ~o(t), (p �9 Co.r. Let ?c t be the induced map ./r --> J//(lRd), 
i.e. Cot(Q):= Qon; -1, Q�9 r). Since each measure Q�9 r) may be re- 
garded as the probability law of a stochastic process with continuous paths, the 
measures r t �9 [0, T], may be interpreted as the one-dimensional distributions 
of this process. Recall that I denotes the rate function for {P~; x �9 IR d, e > 0} given 
by (3.2). 

Lemma 3.4 The family N,~. {~u , # �9 .//4 'N, N �9 N, e > 0} forms a special large deviation 
system (with respect to the map 12(')~-*#(0)) having scale Ne -2 and rate function 

S(12(-)) := inf{(Q, 1) : Q �9 J//(Co. T), ~,(O) = 12(0 for all t �9 [0, T ] } ,  (3.10) 

12(" ) �9 Cdo, T. The associated level sets 

~'(x;  p) := {12(.)�9149 : ( ,  s(12(.)) < p} 

are compact for all compact sets JT" ~ ~ and all p >= O. 

Proof. Given N �9 N, e > 0, and a measure 12 �9 ~ N  of the form 

N 
1 2 = N - 1 ~  ~ , ,  x l , . . . , x N � 9  d, 

i = I  

. . .  e ~  " c let #N,, denote the image of the product measure P~, | | ~ with respect to the 
map 

N 

(Co, T)Ng(y l ( " ) , . . . ,  YN( " )) ~ X - 1  ~ ~,,(.) �9 ~ (  Co, T) . 
i = 1  

Since {P~,; x �9 ]R a, e > 0} is a special large deviation system (with respect to rCo) with 
scale e- 2 and rate function I and because of the compactness of the associated level 

^ 

sets (Theorem 3.1), we may apply Theorem 2.1 to see that the measures ~N,, form 
a special large deviation system (with respect to ~o) having scale Ne -2 and rate 
function 

g(Q) := f l(e)Q(d~o), Qe/Z(Co,~). 
Co,  r 

Moreover, according to Lemma 2.4 b), the level sets 

~ ( y ;  p) : = { Q �9 JZ(Co, T) ~o(Q) �9 :~, g(Q) < p} 

are compact for all compact sets JC c ~ and all p __> 0. But ~ ' "  is the image of 
~ ' ~  with respect to the continuous map 

dZ(Co, r)eQ ~ (tF--,~,(Q)) e ~fo. r -  (3.11) 
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(Concerning continuity, see the proof of Lemma 4.6 in Dawson and G~irtner [4].) 
Therefore the assertions of our lemma now follow by an application of the 
'contraction principle'. [] 

3.2 Identification of the rate function for bounded smooth coefficients 

In the rest of Sect. 3 we show that the functionals S O and S defined by (3.7) and 
(3.10), respectively, coincide. We will always impose the Assumptions (D 1)-(D3) on 
the drift and diffusion coefficients. 

In this subsection we will derive the inequality S > S ~ After that the proof of 
the opposite inequality will be given under the following boundedness and smooth- 
ness conditions. 

Assumption (BS). The diffusion and drift coefficients (a, b) are bounded and 
uniformly continuous. The diffusion matrix a is uniformly non-degenerate and 
possesses bounded continuous spatial derivatives of first order. 

This means that the proof of Theorem 3.2 will then be complete under the 
additional Assumption (BS). In the next subsection it will be shown how to remove 
this boundedness and smoothness restriction to get the inequality S < S o in full 
generality. This final step of our proof is rather technical. The reader who is 
interested in catching the main ideas of the proof only may skip Sect. 3.3. 

To prove the inequality S > S ~ we will apply a variational expression for 
S o taken from Dawson and G/irtner [-4] with slight modification (Lemma 3.5). 
Then, applying the Laplace-Varadhan method to a certain family of exponential 
martingales, we will see that the terms in the variational expression do not exceed 
S (Lemma 3.6). 

According to Theorem 2.9, S is the epigraph limit as e ~ 0 of the rate functions 
{~ ,  , # ~ #/gN, N ~ for S ~ associated with the special large deviation systems u,~. N} 

fixed s > 0 and N ~ oo. Because of this, we will see that the proof of the inequality 
S __< S o may be reduced to the verification of 

lim sup lim sup S~(#~(.)) < S~ 
6-+0 ~ 0  

(3.12) 

Here #6(t) denotes the convolution of #(t) with a smooth 6-like density such 
that #6( ' ) -~  # ( ' )  as 6 ~ 0. We know from Dawson and Gfirtner [4] that S ~ 
admits the same integral representation (3,7) as S o but with 5# ~ replaced 
by the diffusion operator 5~ Under Assumption (BS), in S ~ we may get rid 
of the singularly perturbing second order term of ~ as e ~ 0, if we replace 
#( .)  by its 'smooth' approximations #6(') �9 This fact will be proved in Lemma 3.7. 
Altogether the above arguments will then yield S < S o under Assumption (BS) 
(Lemma 3.8). 

Let us now turn to the details. Given a function g: IRd• [0, T]--* IR and 
t~[0,  T], we will denote by g(t) the function g(t)(x):= g(x, t), x~IR ~. We will 
denote by C 2' 1 = C 2,1 (IR d • [0, T]) the set of continuous real-valued functions on 
IRa • [0, T]  having compact support and possessing continuous spatial derivatives 
of first and second order and a continuous time derivative of first order. We begin 
with the following lemma which was proved in Dawson and G/irtner [4], Lemma 
4.8, for ~ ,  s > 0, instead of A ~176 It is also valid for 5r ~ since the presence of second 
order derivatives in s played no role in the proof. 
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L e m m a  3.5 For  each #( ' )~ (do ,  r ,  

s~  = sup s (~( . ) ;  0), 
oeC~' 

where 

461 

(3.13) 

t 

( (M~)) t (x( ' ) )  :=  e 2 f IVs a(x(s) ,  s)l~ ds, 
0 

for each x ~ IRa. Therefore,  

M ~ ( x ( ' ) ) ' =  g(x( t))  - g(x(O)) - 8s + s g(x(s),  s) d s ,  
o 

t ~ [0, T] ,  is a bounded  cont inuous  P~-mart ingale with quadrat ic  characterist ic 

tE[O, T ] ,  

is an exponent ia l  P~-martingale.  Because of (3.15), this implies that  

~2 l o g E ~ e x p { e - 2 F ~ }  = 0 (3.16) 

for all g e C 2' 1, x e IR d, and e > 0. Here  E~ denotes expectat ion with respect  to P~. 
No te  that  F~ converges to F ~ uniformly as e --, 0. Applying the Lap lace -Varadhan  
me t hod  (Varadhan  [17], Theo rem 2.2) for the large deviat ion system 
{P~; x ~ IR a, e > 0}, we m a y  therefore pass on the left-hand side of (3.16) to the limit 
as e ~ 0 to obta in  

sup [F~ - I(~o)] = O, x e l R  d. 
~o(o) = x 

Hence,  I > F ~ and, in part icular,  

(Q, I )  > (Q,  F ~  

where 

J (# ( . ) ;  g ) : =  Qz(T), g ( T ) )  - (p(O), g(O)) 

- f @(t), (~ + ~e~ + ~ IV~g(t)l?) dt. (3.14) 

L e m m a  3.6 S > S ~ 

Proof.  Given  g e C 2" 1 and e > 0, we introduce the bounded  cont inuous  functional  

F~(x( '))  :=  g(x (T ) ,  T) - 9(x(O), O) 

- o ~1 tg (x( t ) ,  , 

x ( ' )  e Co, T. Fo r  e > 0 this functional  has the form 

1 
F~ = M~- -- ~ e  2 ((M~))T, (3.15) 
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for each measure  Q e d//(Co, r). But 

(Q,  F ~  = J(~.(Q); 9 ) ,  

where J is defined by (3.14). Combin ing  these facts with (3.10) and (3.13), we finally 
obtain  for each/~(')~CgO. T: 

S ( # ( ' ) ) - -  inf ( Q , I )  >supJ(/~( ' ) ;9)--  S ~  [] 
~.((2) = u(') o~c~ ,1 

TO prove  the opposi te  inequali ty S < S  ~ we introduce functionals S": 
ego, r ~ [0, o0], e > 0, by setting 

1 
f tl/i(u) ~ * ' =  - (5r #(u)Hu(,,),.2 du (3.17) 

s~(~(')) 2 o 

i f /~( ' )  is absolutely cont inuous  and S~(#(.)) :=  + oo otherwise. No te  that  for e = 0 
this coincides with our  previous definition of S o . 

Let  k: IRa ~ Ill be a symmetr ic  C ~ function such that  k(x) > 0 for ]xl < 1, 
k(x) = 0 for Ix] > 1, fk (x)dx  = 1, and 

IVk(x)l 2 
f k(x) dx = ' t c  < oo , (3.18) 

Ixl < 1 

where V denotes the 'usual '  gradient  with respect to the Euclidean n o r m  ]. i. We 
introduce the smooth ing  kernels 

k~(x):=6-ak(g-lx) ,  x s l R  a, 6 > 0 .  

Given a measure  # e  d/{ and a function f e  Cb, we will denote  by #~ and f~ the 
convolut ion  of # and f w i t h  the kernel  ka, respectively. 

L e m m a  3.7 Let Assumption (BS) be satisfied.Then 

lim sup lim sup S~(#~(')) < S~ 
~-- ,0  e ~ 0  

for each #(')~CgO, T. 

Proof. We fix #(" ) ~ ego, T arbi trar i ly and assume without  loss of generali ty that  #( .  ) 
is absolutely continuous.  

1 ~ Because of our  assumpt ions  on the diffusion matr ix  a, we find constants  

C'~ and 0 < _~ < ~ < ~ such that  

a*J(x, t) < C" (3.19) 
j = l  i -  

and 

d d d 

7_ Z 22<= Z aiJ( x, t)2~2J < ~ ~ 22 (3.20) 
i = l  i , j = l  i = 1  

for all (x, t )e lR n x [0, T ]  and ' ~ 1 ,  �9 �9 �9 , ,~a ~ IR. Note  that  the diffusion matr ix  a m a y  
be writ ten in the form aa*,  i.e. 

d 

ai~(x, t) = 2 a~(x, t)a{(x, t) . (3.21) 
k = l  
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Consider the operators 

d 02 
W , ' =  ~ aU( �9 t) t e [0 ,  T] (3.22) 

i , j =  1 ' O x i ~ x J '  

We first want to show that 

T 

f II~r dt < oo for each 6 > 0 .  (3.23) 
0 

This is the kind of 'smoothness' of #6(" ) which is needed to get rid of the diffusion 
part of s163 in the representation (3.17) of S~(#6( �9 )) asymptotically as e --+ 0. Note 
that, in general, (3.23) fails to be true for #6(') replaced by #(.). By definition (3.6), 
we have 

II ~,*m(t) = sup . (3.24) I1~,(,),, I(#(t), k ~ ,  J : , f ) l  2 
:~..,, , . ,  (#(t), k6-,IV, fl]) 

Writing the convolution ka ~ ~ t f  as an integral, integrating by parts, and using 
(3.21), we find that 

k 6 .  Yc~tf = eL:) + i~2), (3.25) 

where 

and 

I(~l)(x, t ) : =  - -  f 
I x -  yl < 6 

(~ Ok.(~ - y) / 
k=l =i  OY~- - - /  

of(:)) 
x 4(,. o 

I ~ 2 ) ( x , t ) : = - f d y k 6 ( x - Y ) j  i~luylaU(y,t) OyJ" 

Applying the Cauchy-Schwarz inequality and again using (3.21), we obtain 

[I~l)(x, 0[ 2 <= f de k t) - 1  ,x_,,<, 

d d . ~f(y),~2 

ak~(x - y) Ok,~(x - y) 
d 

= f dy ~ aU(y, t) ay' Oy ~ 

a Of(y) Of(y) 
x f dy k6(x - y) Y" aU (y, t) 

i,j= l OY i OY j " 
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Together with (3.20) and (3.18), this implies that 

[iaO)12 < ~ - 2/s k~ ~ [Vf l  2 . (3.26) 

Similarly, using (3.18)-(3.20), one gets 

11~2)12 ~ C,a~_-i k a ~ t V f l 2  . (3.27) 

Combining (3.25) with (3.26) and (3.27), we conclude that 

I<#(t), k a * ~ , / > l  2 < <#(t), I k a . ~ , / [ 2 >  

where the constant Ca does not depend on f o r  t. Hence, the supremum on the right 
of (3.24) does not exceed Cz for all t E [0, TJ, and we arrive at (3.23). 

20 Note that the absolute continuity of ~t(. ) implies the absolute continuity of 
/~( ')  for each 6 > 0. Since (a + b) 2 < a2/O + b2/(1 - 0) for 0 < 0 < 1 and 

g 2 
~e; - ~e o = ~ ~ , ,  

we get 

e ,  t 2 

1 
- ( ~ e , )  m ( t ) l l . , ( , ) , ,  + - -  =< ~ II~z(t) o ,  2 

g4 

4(1 - 0 )  

for arbitrary 0e  (0, 1) and all tr  [0, T]. Thus, 

1 0 
s ~ ( m ( ) )  =< 0 s ( m ( ) )  + - -  

* t 2 II~t m( )llu~r 

/~4 T 
f 

8(1 - 0) o J 

for each 6 > 0 .  

Together with (3.23), this implies that 

lim sup S"(#a(')) < S~ 
e---~ 0 

This reduces the proof of our lemma to the verification of the inequality 

lim sup S~ < S~ 
6-~0 

(3.28) 

for all t e [0, T] a n d f s  N provided that 6 is sufficiently small. Because of (3.20) and 
the uniform continuity of the diffusion matrix, 

d d 

y~ a'J(y, t),~,;~j >= o Z a~J( x, t)~i~j 
i , j = l  i , j = l  

for all x, y e l R  d with i x - y [  < 6 and all 21 . . . . .  2d~lR provided that 6 is 

30 To prove (3.28), we fix 0~(0, 1) arbitrarily. We first show that 

<#a(t), IV, fit2> > 0<#(t), IW,(ka~f)l~> (3.29) 
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sufficiently small. Taking into account  (3.21), we obtain for such 6: 

d 

k~slV,  fl2(x) = f d y k n ( x -  y ) ~  a~J(y,t) 8f(y~) ~f(y~) 
i , j  = 1 ayi OyS 

d 
t" af(y) af(y) > O f dy ka(x - y) • a~S(x, ) ~ Qyy 

i , j = l  

t af(y) 2 

:o i (  7 '- k= 1\i= 1 c~xi (k~ -~ f )(x)  

-- 0 IV,(ka •f)12(x) �9 

This implies (3.29). 
On the other  hand, we have 

I(D~(t) - (~g)*#~( t ) , f ) l  2 

= I(ti(t) - (~t~ k~ . f )  + (#(t), &~176 ~ f )  - k~ . ~ ~  

1 1 
-< - I (D( t )  - (~e~ k~ ~ f ) l  2 + ~ (#(t), I~e~ * f )  - k~ ~ :Lat~ 
- -0  

Applying the Cauchy-Schwarz  inequality and using (3.20), we see that  

I ~ ~  * f )  - k~ * s176  

f d y  k~(x Of(y) 2 = - Y) i=1 ~ [bi(x' t) - bi(y, O] 

< fdyk~(x  - y) Ibi(x, t) - bi(y, t)lZfdyk~(x - y) 
i = l  i 

< S(3)Z- l k ~ .  [V, f l 2 ( x ) ,  

where 

Therefore, 

B(a):= 
d 

sup ~, Ibi(x, t) - bi(y, 012 . 
I x - y l < 6  i = 1  
t~[O, T] 

1 
I(/i~(t) - (~~ ~ ~ I(/~(t) - (~~ k ~ . f ) l  2 

B(6) 
+ - -  ( # # ) ,  IV, f l 2 )  �9 

2(1 - 0) 

465 

(3.30) 
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Using the definition (3.6) of the no rm 11 " li,,,, (3.30), and (3.29), we find that  

1 II/ia(t) o ,  2 ~ o ,  t 2 B(6) 
Z(1 - 0 ) '  

i.e. 

d-g T O) B(6) (3.31) S~ < S~ + 2 7 _ _ ( ~  

for all sufficiently small 6 > 0. Since the drift vector  b is uniformly continuous,  B(6) 
tends to zero as 3 ~ 0. Therefore,  in (3.31) first letting 3 ~ 0 and then 01" 1, we finally 
arrive at assert ion (3.28). [] 

L e m m a  3.8 Let Assumption (BS) be satisfied. Then S < S ~ 

Proof According to Theo rem 3.1, {P~; x e IRd, ~ > 0} is a special large deviat ion 
system with rate function I and  scale 5 -2. Moreover ,  the associated level sets 
�9 (K; p) are compact .  No te  also tha t  the m a p  x ~ P ~  f rom IR a into all(Co, r) is 
cont inuous for each e > 0 (Stroock and Varadhan  [15], Corol la ry  10.1.4). F r o m  
L e m m a  3.4 and its p roof  we know that  ~ u , ,  is the image of the measure  ~ff'~ with 
respect to the cont inuous m a p  (3.11) and that  u,~. { ~ ,  , # ~ ./f/N, N e N ,  e > 0} is 
a special large deviat ion system with rate function S and scale Ne-2. In D a w s o n  
and G/ir tner [-4], Theorem 4.5, it was shown that  the family N,~. {~u , # eJ//dN, N ~ N }  
forms a special large deviat ion system having rate function e-2S ~ and scale N for 
each e > 0, where S ~ is given by (3.17). We may  therefore apply assert ion c) of 
The o rem 2.9 (with respect to the measures  P~ and the m a p  (3.11)) to obta in  

S = e - lira S ~ . (3.32) 
8-*0 

In  part icular,  we have 

S(#~( '))  _-< lira inf S~(#e(-)) 
~ 0  

for each # ( - ) e  ego, T and each 6 > 0. Since the functional  S is lower semi-cont inuous 
and #~(. ) --* #( .  ) in ego, T as 6 --* 0, we conclude f rom this that  

S ( # ( - ) )  < lira inf lim inf S~(#o(.)) .  
6-*0 ~ 0  

Combin ing  this with L e m m a  3.7, we arrive at  S < S ~ [] 

Remark 3.9 We have shown that, under  Assumpt ion  (BS), 

S o = S = e -  lim S ~ , 
8 4 0  

cf. (3.32). But S O is not the pointwise limit of S ~ as e --* 0. Namely ,  as a byproduc t  of  
the above  proofs,  one gets 

lim S ' (#( . ) )  = S~ 
e~O 
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if #( . )  is absolutely continuous and 

but 

T 

f II~*~(t)ll2~o,,dt < oo, 
0 

S~(#(')) = + ~ for all e > 0 

otherwise. (The operators ~4~t are defined in (3.22).) In particular, if (p e Co, r is such 
that the Freidlin-Wentzell rate function I(q~) is finite, then 

S~ = S(6~o( . ) )  = I ( ( p )  < oo , 

but 

S~(6~(.)) = oo for all e > 0 .  

At least partially, this explains why the identification of our rate function causes 
problems. 

3.3 Extension to unbounded coefficients 

So far, we have shown that  the inequality S < S o and therefore also the assertion 
of Theorem 3.2 are valid under the additional boundedness and smoothness 
restrictions of Assumption (BS). In the rest of this subsection we show how to 
prove the inequality S < S o for merely continuous unbounded drift and diffusion 
coefficients. The crucial condition which we imposed on the coefficients to control 
their growth at infinity is the compactness of the level sets, cf. Assumption (D3). 
Our  approach is to derive an appropriate  inequality for bounded coefficients (see 
Lemma below) which implies S < S o and to make explicit use of the compactness 
of the level sets to extend the mentioned inequality to the case of unbounded 
coefficients. 

Note  that the Assumptions (D1)-(D3) for the time interval [0, T]  imply the 
analogous assumptions for each subinterval [s, t] ~ [0, T]. Given 0 < s < t < T, 
we may therefore apply Theorem 3.1 to conclude that the family {P~,a; x e  IRe, 
e > 0} of probabilities on Ca, t forms a special large deviation system with rate 
function Ia,, and compact  level sets ~a,t(K; p). By the 'contraction principle', the 

o - 0} of probability laws on IR d also forms a large family {P~,~ ~t I"~Xc=]Rd, 8 > 

deviation system having rate function 

Pa(x; y) :=  inf{ Ia.t(q~) : q) ~ Ca.t, q~(s) = x, q~(t) = y}, x, y ~ IRa . (3.33) 

Moreover, the level sets 

q)~'t(K; p ) : =  {y e lR~ : P't(x; y) < p for some x e K } 

are compact for all compact sets K c IR~ and all p > 0. Given 
vl . . . . .  v, eJr = d//(lRd), we will denote by d/l(vl . . . . .  v,) the set of probabili ty 
laws on (lRd)" with marginals vl, .  �9 �9 v,. 

Considering ~ ' ~  as the law of an JC/-valued stochastic process, we now express 
the rate function S in terms of rate functions associated with the corresponding 
finite dimensional distributions. 
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L e m m a 3 . 1 0  The rate function S o f  the special large deviation system 
N,~. N 0} has the form {9~ ,#~o//// , N e N ,  e > 

S(#( ' ) )  = sup )_j, St .... t*(g(tk-1); #(tk)), 
O=to<t l  < ' " < t ~ < T  k= l 

#( - )e%,~ ,  

where 

S~'t(#; v ) : =  inf f 
Qe~/g(#, v) (N.a) z 

for  0 < s < t < T and #, v ~ JC[. 

Proof. As a first step we show that  

where 

P't(x; y) Q (dx, dy) 

S(p( ' ) )  = sup S t ...... t~(#(0); # ( t ~ ) , . . . ,  #(t~)), (3.34) 
O<tl  < '"<tr<=T 

S" ..... tr(Vo; vl . . . . .  vr) 

: =  inf f i pk 1,t~(yk_l;yk)Q(dy ~ . . . . .  dyr) (3.35) 
Q~.Z4(vo . . . . .  Vr) (IRa) r k = l  

with the convent ion to : =  0. 
Let jr rl be the space of functions [-0, T]  ~ ~ equipped with the produc t  

topology.  Given N ~ N, e > 0, and # ~ J/d s, we denote by ~ s , ,  the image of the 
measure ~ ' ~  with respect to the cont inuous imbedding Cg0, T~J///[~ Let 
NN,,;t ...... t~ 0 < t~ < ... < t, < T, denote the finite dimensional distributions of  
Nu . In  other words, ~N,,;t ...... t. is the image of m, ~u , ~ ,  with respect to the map  

Cr r ~ # ( ' )  ~ -~ (# ( t l ) , . . . ,  #(t,)) e Jr 

{~s,  ~; # E ~ N ,  N e N,  e > 0} is a special large deviation system with rate function 

S equal to S on C~o, T and equal to + ~ on dg [~ T1\c~0,T. By the 'contrac t ion 
principle', for each part i t ion 0 < t~ < ..- < t~ < T of [0, T] ,  the measures 
N~,~;t ...... t, also form a large deviation system as N ~ oe and ~ --, 0. Let us denote 
the associated rate function by S t ...... t~. Note  that  ~ ' ~  is the projective limit of the 
measures ~u~N'~;t ...... t~, 0 =< t~ < ... < t~ =< T. Projective limits of large deviation 
systems have been considered in Dawson  and G/irtner [4], Theorem 3.3. Tha t  
result yields the formula  (3.34). 

We next verify (3.35). To this end, let/3~,~;, ..... t. denote the law of the empirical 
g;t l , . . . , t r  measure associated with N ' independent  copies' of the measures P~ , x ~ IR d, 

where e;t l , . . .  ,tr P~ , 0 < tl < "" < t~ _-< T, are the finite dimensional distributions of 
pN,~;t ...... t~ is the image ^N ~.t .... t. of Pu . . . .  with respect to the diffusion P~. The measure - u  

the cont inuous map  Jf((lRd) ~) ~(JC/(lRd)) ~ which transforms each probabil i ty 
measure on (lRd)" into its r marginals on IR d. Applying Theorem 3.1 and the 

~;t ...... t ,  0} forms 'contrac t ion principle', we find that  the family {P~ , x ~ I R  a, e > 
a large deviation system with scale e-2  and rate function 

I t ...... t"(Yo; Y~ . . . . .  Yr) : =  inf{ I((p) : ~o e Co, r, ~O(to) = Yo . . . . .  ~o(t,) = y, } 

= ~ I t . . . .  t ~ ( y k - 1 ; Y k ) ,  Yo . . . . .  Y~ ~ l R d  �9 

k = l  



Multilevel large deviations 469 

Now, in order to identify the rate function S tl ..... tr of ~pN.~;t, ..... t.. 
N ~ N ,  e > 0}, we may apply Theorem 2.2 to compute the rate function of 
{/3~,~;, ..... t~; #e jh ,  N, N eN,  e > 0} and then apply the 'contraction principle'. In 
this way we arrive at (3.35). 
To complete the proof, it remains to check that 

inf f ~ I t . . . .  t ~ ( y k - 1 ; y k ) Q ( d y  o . . . . .  dyr) 
Q~,~ ' (vo  . . . . .  v . )  (~a)r k= 1 

= i inf f I t ... .  t~(Yk-1;Yk)Q(dyk-1;dyk) 
k = 1 QeJl (vk-  1, vk) (~qd)2 

for 0 = to < tl < ... < t, =< T a n d  Vo, ... , v ~ J ~ .  
Given Q~d/[(Vo . . . . .  v~), let Q1 . . . . .  Q, denote the 'two-point' marginals of 

Q corresponding to the variables (Yo, Yl), . . . ,  (Y~- 1, Y~), respectively. Then 

f ~ I '  . . . .  ' q Y k - 1 ; Y k ) O ( d y o , . . . , d Y r )  
( R d )  r k =  1 

= ~ f I t  ....  '~(Yk-1;Yk)Ok(dyk-1;dyk) (3.36) 
k = 1 (IRa) 2 

which yields the inequality '>__ '. To prove the opposite inequality, fix 
Qk~dg(Vk-1 ,  Vk), k = 1 , . . . ,  r, arbitrarily. Each of these measures Qk may be 
written in the form 

Qk(dyk-  1, dyk) = qk(Yk- 1, dyk)Vk- l (dyk-  1) , 

where qk(Yk-1 , ' )  is the regular conditional probability distribution of 
Qk(dyk-1 ,  dyk) given Yk-1" Let Q denote the law of the (time inhomogeneous) 
Markov chain on IR d with initial distribution Vo and transition kernels qk: 

Q(dyo,  . . . , dyr) "= vo(dyo)ql(yo,  dya) . . .  qr(Yr- 1, dyr) . 

One easily checks that the 'two-point' marginals of Q coincide with Q1,. �9 �9 Q~ 
and, in particular, Q belongs to ~/(Vo, �9 �9 �9 vr). Thus, equation (3.36) is also valid in 
this case, and we obtain the inequality ' < '. [] 

For the remainder of this subsection, we fix s, t with 0 < s < t < T arbitrarily. 
Lemma 3.10 tells us that, in order to prove the inequality S < S ~ it will be sufficient 
to show that 

inf f P' t (x;  y )Q(dx ,  dy) <= S~ (3.37) 
Qeeg(#(s),#(t)) ( R a ) 2  

for all paths #( . )~ Cgs, t, where Ss~ is defined by (3.7) except that the time interval 
[0, T] is replaced by [s, t]. 
We now switch to 'time-reversed' objects. More precisely, we set 

f u ' V ( x ; y ) : = P + t - v ' s + t - " ( y ; x ) ,  s < = u < v < = t ,  x , y ~ I R  d,  (3.38) 

and 

~ , o  : =  o [~, t ]  . - -  ~(Ps+ t - u ,  U ~ 
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Moreover, we define a functional S~ ~ [0, co] by setting 

1: 
" = - [ I . ~ . ) , . + , - .  d u  )): tl/i(u) 

if # ( ' ) s ~ , t  is absolutely continuous and g~ + co otherwise. Note that 
fS:(x; y) = P'~(y; x) and that the diffusion operators 2~ ~ correspond to the time- 
reversed dynamics ~b(u)=-b(q~(u) ,s+ t - u ) .  Replacing #(.) by the time- 
reversed path fi(u) := #(s + t - u), u s  Is, t], we see that (3.37) is equivalent to 

inf f ?'~(x; y)Q(dx, dy) < S~ (3.39) 
Q~g' (~(s ) ,  #(t)) (Rd) 2 

for all #(.)scgs, t. Our motivation for switching to 'time-reversed' objects will 
become clear after Lemma 3.11. 

Let (Z,,) be a sequence of continuous functions on IR a with compact support 
such that 0 < Z,,?I pointwise. Sometimes we will consider Z,, as function on 
IR a x IR d by setting Zm(X, Y) :=  Xm(Y). We claim that 

inf (Q, ;~mf~'t)---~ inf (Q, f~,t) as m ~ co (3.40) 

for arbitrary #, v s J/l. Since d/L(#, v) is compact in J/L(IR e x IRa) and the functions 
Zmf~,t are nonnegative and continuous, the infimum on the left of (3.40) is attained 
for some Q~ s J//(#, v). We may assume without loss of generality that (Qm) con- 
verges to a measure Q s J//L(#, v) weakly as m-~ co. But then 

lim inf(Q,n, )~m ]-s't) ~ lim inf(Qm, Z.[  ~'t) >-_ (Q, Z j  S't) 
m--* oo m-+oo 

for each n. Hence, letting n ~ co, we obtain 

liminf(Q,,, )bff ~'t) > (Q, f~,t) , 
m--+ oo 

and this proves (3.40). 
According to a duality theorem for marginal problems, 

inf (Q,)~m P ' t )  : sup [ ( # , f )  + (v, g)] 
Q~,/a'(#, v) f @o <- zm -b'' f,geCb 

(Kellerer 1-10], Theorem 2.6 and Proposition 1.33; cf. also Theorem 2.7 and 
Remark 2.8 above). The expression on the right does not exceed 

supI(1J, g)--(#,sup[g(Y)--)~m(y)fS't(';Y)])l" 
g~Cbl Y 

We next show that this supremum may be restricted to nonnegative functions 
g s ~ ,  g ~ O. Denote the expression under the supremum by H(g) . Since 
H(g) ~ H(g + const), it suffices to take the supremum over strictly positive g s Cb. 
Now fix g s Cb with g >= const > 0 arbitrarily and choose a sequence (g,) of non- 
negative continuous functions with compact support so that g,~g pointwise. Then 

H (g) <_<_ lim inf H (g,) . 

This shows that we may restrict ourselves to nonnegative functions g s Q ,  g ~ O, 
with compact support. But each such function can be approached uniformly by 
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nonnegative functions from ~,  and we arrive at the desired result. Hence, we have 
shown that 

sup, , 
Q~C(t~, v) a> O,g ~ 0 

o~D 

for each m ~ IN and all #, v ~ d//. 
Putting all things together, we see that the proof of inequality (3.3 9) may be reduced 
to the verification of 

(#(t),f> -- (It(S), sup [f(y)  -- Zm(y)[S't('; y)] ~ =< ,qo,(It(.)) (3.41) 
\ y / 

for I t ( ' )e  cg~,t, m e N, and all nonnegative f e  ~ ,  f ~ 0. Given a non-empty open set 
G~_IR a, we introduce semi-norms II" II,~,., (It, u ) ~ J / •  Is, t], by setting 

(11 G 2 I<O, f ) l  2 ~ , ,  
0 1 l . , . )  : - -  sup 0e  

s ~ . ,  <It, IV.fl2> ' 
s u p p  f c G- 

and define a functional go, o: %,t-- '  [0, oo] by 

1 t 
go;G(It(.)) :=  2 / (liP(u) - (~~ 2 du (3.42) 

if It(') is absolutely continuous and g~ := + oo otherwise. Note that, for 
G lRd, II I[.~,. and go,G coincide with II I1.,~ and ~o = " s,t �9 S~,t, respectively. 

It will turn out later that inequality (3.41) is satisfied even if the functional go t is 
replaced by the smaller functional g~176 where U(K) denotes an arbitrarily small 
open neighborhood of the set K := K~,t(f) which is defined as follows: 

K~'t ( f ) '= { xelR~: ,,4~,mintl ["'t(x; Y) <-- Ilfll} �9 (3.43) 

y ~ s u p p f  

Here supp f and ]l f II denote the support and the sup-norm off,  respectively. By 
convention, P't(x; y) := 0 for x = y and P't(x; y) := ~ otherwise. 
Let us introduce the functions 

h(x, u): = sup [ f (y)  - [~'t(x; y)] (3.44) 
y 

and 

h(m)(x, u): = sup [f(y) - Zm(y)p't(x; y)] ,  (3.45) 
y 

(x, u)elRdx Is, t]. By convention, 0 " ~  = 0 on the right of (3.45). Note that 
h(t) = h(m)(t) = f f o r  large m. Thus, for such m, the expression on the left of (3.41) 
may be written in the form (#(t), h(")(t)> - (p(s), h(~)(s)>. 

Summarizing the above considerations, we have found that the proof of the 
inequality S < S o may be reduced to the following lemma. 

Lemma 3.11 For #(.)ecgs, t, all nonvanishin9 nonnegative functions f e ~ ,  and all 
sufficiently large m, we have 

(#(t), h(m)(t) ) - (#(s), h(m)(s) > < S~ ( . )), (3.46) 
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where U(K) denotes an arbitrary open neighborhood of the set K = Ks, t( f)  given by 
(3.43) and h (m) is defined by (3.45). 

To derive the key inequality (3.46), we will proceed as follows. In the next 
lemma we will prove that the set K is compact and does not change if we modify the 
coefficients (a, b) outside of a large ball. Moreover, the support of the function h is 
contained in K x Is, t], and h 'behaves well' under the mentioned modification of 
(a, b). After that we will show for bounded coefficients that the function h is 
a viscosity solution of a Hamilton-Jacobi equation. Together with 
s u p p h ~ K  x Is, t], this observation then yields inequality (3.46) for bounded 
smooth coefficients (Lemma 3.13). Note that this is yet another way to prove 
Theorem 3.2 under Assumption (BS). Now the very rough idea is that the expres- 
sions in (3.46) do not change 'for the worse' if we modify the coefficients (a, b) 
outside of the above mentioned large ball. Note that the functional on the right will 
not change at all. This observation allows in (3.46) to pass from bounded to 
unbounded coefficients. 

Let us mention that the compactness of K is crucial for the sketched approach. 
This is the reason why we have had to switch to 'time-reversed' objects. Otherwise 
we would have to consider the set (3.43) with freplaced by I which, in general, is not 
bounded. For the last claim the reader is referred to the corresponding note in the 
proof of part a) of the next lemma. 

The proof of Lemma 3.11 will be broken down into several steps. To begin with, 
let us introduce the following boundedness and uniform continuity condition. 

Assumption (BU).  The diffusion and drift coefficients (a, b) are bounded and 
uniformly continuous and the diffusion matrix a is uniformly non-degenerate. 

Note that this assumption differs from Assumption (BS) in Sect. 3.2 by drop- 
ping the requirement that the diffusion coefficients possess bounded continuous 
spatial derivatives of first order. 

Now fix #(-)~gs.~, m s N ,  and a nonvanishing nonnegative function f s ~  
arbitrarily. We will assume without loss of generality that X,, = 1 on suppfand,  in 
particular, h(m)(t) = 1. We first collect some properties of the set K and the functions 
h and h (m) defined by (3.43), (3.44), and (3.45), respectively. Let BR denote the open 
ball in IR d with center 0 and radius R. 

Lemma 3.12 a) The set K is compact. 
b) Suppose that the coefficients (a, b) satisfy Assumption (BU). Then the function h is 
nonnegative and continuous, and 

supp h _  K x Is, t] . 

c) Suppose that the coefficients (a, b) satisfy Assumption (BU). Let {(a,, b,)} be 
a sequence of diffusion and drift coefficients having the same properties. Label each 
object associated with (a,, b,) with the subscript n. Suppose that a, --* a and b, ~ b 
uniformly on IR d x Is, t]. Then 

h. ~ h uniformly on ]Ra x Is, t] 

and 

Kn = C(K) 

for each neighborhood U(K) of K and all sufficiently large n. 
d) Let (a, b) denote arbitrary diffusion and drift coefficients satisfying the Assumptions 
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(D1)-(D3). Then there exists R > 0 such that the following holds true. If(a, "b) is a pair 
of diffusion and drift coefficients which satisfy Assumption (BU) such that (& b) 
coincides with (a, b) on BR x [s, t], then 

K = K  and h (m)>'h. 

Here Is and h are de~ned in the same way as K and h, respectively, but with respect to 
the coefficients ((t, b) instead of (a, b) . 

Proof a) Under  the Assumpt ions  (D1) and (D3), the function ["'t(x; y) is continu-  
ous in the variables (u, x, y )e  [s, t) x IRa x IRa. Moreover ,  if u,i" t, x ,  ~ x_, y,  ~ y, and 
x :4= y, then ["-a(x , ;  y,) ~ oo. Recall that/-"~(x; y) = 0 for x = y and It'~(x; y) = oo 
otherwise. F r o m  these propert ies  and the compactness  of supp f one easily con- 
cludes that  the min imum in (3.43) is at tained and the set K is closed. Suppose  tha t  
K is not  compact .  Then  we find points  x ,  with Ix.I--, oo, y, ~ s u p p f  and  u, s [s, t) 
such that  

IS'S+t-".(y,; x,) = P.'t(x,; y,) __< HfII �9 

R e m e m b e r i n g  the definition (3.33) of P'S+t-u,,(y,;x,), we find functions 
q0, e Cs, s+,_ , ,  with q~,(s) = y,, (o,(s + t - u,) = x~, and 

Is.s+,-, .((P,) = is, s+ t - , , (y , ;  x , ) .  

Because of Assumpt ion  (D3), (ii), we m a y  continue % to a function (p, s Cs,, so that  
(o,(u) = b(q~,(u), u) for u e [s + t - u,, t]. Then  also 

Is,,(q~,) = P '  s+ , - , , (y , ;  x , ) .  

Hence,  Is, t(~0,) remains  bounded  as n ~ oo. Thus,  since the level sets cor responding 
to the rate function Is,, are compac t  (cf. R e m a r k  3.3 b)), the sequence ((p,) is 
bounded  in Cs, t. But this contradicts  our  assumpt ion  that  Ix,I ~ oo. 

If  we had  not  switched to 'time-re_versed' objects, then we would have had to use 
the compactness  of  the level sets of Is,, instead of Is.t. But in a t ime-homogeneous  
situation, Is,, corresponds  to a diffusion with diffusion matr ix  a and drift vector  

- b which, under  our  general assumptions,  m a y  explode. Moreover ,  the associated 
level sets might  be unbounded  in which case our  proofs would b reak  down. 

b) Since the drift coefficient b is bounded  and continuous,  there exists a solu- 
tion of ~b(v) = b(cp(v), v), ve [s, s + t - u], with ~o(s + t - u) = x for each (x, u) 
e iRa x [s, t]. Hence,  for each (x ,u)e iRex[s , t ] ,  we find some y with 
F,a(x; y) = p , s+ , - , (y ;  x) = 0. This implies the nonnegat iv i ty  of  h. If  h(x, u) > O, 
then there exists y e supp f such that  

f (y)  - P't(x; y) > O, 

i.e. x belongs to K. This shows that  the suppor t  of h is conta ined in K x Is, t]. 
Tak ing  into account  the above ment ioned  propert ies  of ["'t(x; y), one also easily 
checks that  h is continuous.  
c) We first r emark  that,  under  our  assumpt ions  on (a., b,) and (a, b ) ,  

[~""(x,;  y.) ---, ? " ( x ;  y) (3.47) 

for u, --* u, x ,  + x, and  y,  ~ y except in the case when u = t and  x = y. Set 

M,(x)  : = min  f,"'r(x; y), x ~ IR a . 
u~E s, t] 

y~suppf 
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Using the definition of f~,'t(x; y) = p , s+t - . ( y ;  x) as a m in imum over pa th  integrals 
and taking into account  the assumpt ions  on (a., bn) and (a, b), one easily checks 
that  M . ( x )  ~ co as Ix] ~ oe uniformly in n. This means  that  the sets Kn = {x �9 
M,,(x) < IJfll } are bounded  uniformly in n. Therefore,  in order  to show that  
K,, c U(K)  for each ne ighborhood  U ( K )  of K and all sufficiently large n, it will be 
enough to check that  x,, �9 K .  and  x .  -~ x together  imply x �9 K. F o r  each n, we find 
u. �9 Is, t] and y.  �9 supp f such that  

I~"'t(x,,; Y,,) <-_ Ilfll �9 

We assume without  loss of  generali ty that  u. --. u and y. ~ y. Because of (3.47), this 
yields 

P' t (x;  Y) < Ilfl[ �9 

Thus, since u �9 [s, t] and y �9 supp f the point  x indeed belongs to K. 
We next prove  that  h. converges to h uniformly. By the assertions a) and  b), h is 
continuous,  supp h _c K x Is, t], and supp h.  ___ K .  x Is, t]. Recall that  the sets K .  are 
bounded  uniformly in n. Hence, it will be enough to check that  

h,,(x,,, u,,) --~ h(x, u) 

for x.  --+ x and u. ~ u. If u + t, then we m a y  use (3.47) to obta in  

h,,(x,,, u,,) > f (y) - I-~n't(x,,; y) --. f (y) - ?'~(x; y) 

for each y �9 IR d, i.e. 

lim inf h,,(x,,, u,,) > h(x, u) . 
n ~ o 0  

This inequali ty is also true for u = t. Indeed, in this case In (x., x . ) - - ,  0, and 
therefore 

h,,(x., u,,) > f (x,,) - ~" ' t ( x . ;  x,,) ~ f (x) = h(x,  t) . 

Let us now prove  the opposi te  inequali ty 

lim sup hn(x,,  u,,) <= h(x, u) , 
t l - *  oo 

Since h is nonnegative,  we assume without  loss of generali ty that  h. (x . ,  u.) > 0 for 
all n. Then  we find y.  �9 supp f such that  

h. (x . ,  u.) = f ( y . )  ~ , t  , - I ,  (x., y,). 

Since f has compac t  support ,  we m a y  also assume that  y,  -~ y for some y �9 supp f. 
Then, using (3.47) once more,  we obtain  

lim sup h,(x~, u~) < f ( y )  - P' t (x ;  y) < h(x, u ) .  
n--* c~ 

d) According to L e m m a  A.3, we m a y  choose R so large that  for any pair  (4, b) of 
diffusion and drift coefficients with the ment ioned  propert ies  

�9 s,~+t-.(suppJ~H f]])  = ~ , ~ + t - . ( s u p p f ,  HfH)~-B~ '~+t-"3 , (3.48) 

s < u < t. Using the representat ions of p,~+t- . (y;  x) and i'~,~+t-.(y; x) as min ima  
over  pa th  integrals, we conclude f rom (3.48) that  K = K. 
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Let us now show that h ~m) > h. Since •,, has compact support, the function 
h ~") is nonnegative. Because of this and 

h(m)(x, t) > f ( x )  = h(x, t), x e l R  a , 

it suffices to check that 

h(m)(x, u) > h(x, u) 

for all (x, u)~lR a x [s, t) with h(x, u) > 0. For such (x, u), we find y ~ s u p p f w i t h  

h(x, u) = f (y )  - IS'S+'-"(y; x) > 0 ,  (3.49) 

and there is a path ~oe Cs, s+t-,  with cp(s) = y, ~o(s + t - u) = x, and 

f f ~ , ~ + , - U ( y ;  x )  = I~,s+t-.(q~) < I[/ll �9 

Hence, q~ belongs to ~s,,+t-,(suppJ~ll f II). By (3.48), this implies that the path ~0 is 
entirely contained in the ball BR. Therefore, since (a, b) = (a, b) on 
BR x Is, s + t -- u], ~,~+,_,(~p) coincides with ls,~+t-,(q~), and we arrive at 

7~,~+~-"(y; x) _>_ r,s+'-"(y; x). 

Substituting this in (3.49), we finally obtain 

"h(x, u) <=f(y) -- Zm(y)I*'*+'-"(y; x) <= h(m)(x, u) . [] 

Next we show that the assertion of Lemma 3.11 is valid for bounded smooth drift 
and ediffusion coefficients. More precisely, we have the following lemma. 

Lemma 3.13 Let Assumption (BS) be satisfied. Then 

(#(t),  h(t))  - (#(s), h(s)) < ~-o, u{r) = ~s,, (#(.)) (3.50) 

for each open neighborhood U(K)  of  the set K. 

Before proving this lemma, let us remark that the function h defined by the 
variational expression (3.44) turns out to be a viscosity solution of the Hamilton- 
Jacobi equation 

~u + leo  h(u) + ~l s+t-,h(u)[,+,-, = 0, u~[s ,  t] (3.51) 

with 'initial datum' h ( t ) = f  cf. Crandall and Lions [3] and Lions [11]. Thus, if 
h were smooth, then we would obtain 

(#(t),  h(t)} - (#(s), h(s)} 

= (#(t), h(t)} - (#(s), h(s)} 

t + 1  2 

1 t 
< - f d u  1(/2(u) - ( ~ , , ~  h ( u ) } l  ~ 
= 2 ;  " 
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Since supp h _~ K x [s, t] (Lemma 3.12 b)), the last expression would then not  exceed 
~o~v(~:)(/~(. )), and this would imply (3.50). Unfortunately,  these arguments fail to be 
rigorous because of the non-differentiability of h. Note  also that  the uniqueness 
conditions of Crandall  and Lions [-3] are not  fulfilled for (3.51). In the following 
steps the above approach will be made precise by adapting the 'vanishing viscosity 
method '  to our  situation, cf. e.g. Lions [11]. 
Given u ~ Is, t] and e > 0, we define the operators  

e2 d 02 d 

~)~u ;-~- 2 i ,  j=12 aiJ(', U)Oxi~xj-- i=12~)i(" bl)--OXi, Ue[-S, t] , 

where a~J( ., u ) : =  dJ( ", s + t - u) and bi( ' ,  u ) : =  bi( ", s + t - u). Note  that  for 
e = 0 this coincides with our  previous definition of ~ o .  We further consider 
functionals &,t_.'~'~ gs, t --+ [0, oo], _e => 0, which are defined in the same way as 
ffo,o but  with ~ o  replaced by 5r see (3.42). To  prove Lemma 3.13, we need the 
following statement which is a slight modification of Lemma 3.7. 

Lemma 3.14 Let Assumption (BS) be satisfied. Let G and H be nonempty open 
subsets of IRd such that G is compact and G c H. Then 

lim sup lim sup ~' o Ss,, (m( ' ) )  = go ; , , (~( . ) ) .  
O-+0 O-*O 

Proof of Lemma 3.13 1 o Let U(K) and V(K) denote open neighborhoods  of K such 

that  V(K) is compact  and V(K) c U(K) .  Let g: IR e x Is, t] -+ IR be a C ~ function 
with supp g c V(K) x [s, t]. Then, similar to the computa t ions  immediately after 
the statement of Lemma 3.13, we find that  

Q.ta(t), g(t) ) -- (I.to(s), g(s) 

t ( ) 
1 / du(#o(u), ~ 1 2 
2 -~u + ~ 9(u) + 51V,+,-,,9(u)l~+t-,,) 

1 ' I(/i~(u) - (~e,~,)*m(u), g(u))l 2 
__< / du 

for all 6 > 0 and e > 0, where as before #a(u) = k0 �9 #(u). Hence, remembering the 
definition of S~' vo:) s,t , we obtain 

% ( 0 ,  g ( t ) )  - (re(s) ,  g ( s ) )  < g~,v~,o,,. , .  ~ s,t k/~Ok J! 

1 t 
~lVs+ , - , g (u ) l s+ , - , )  �9 (3.52) 

In fact, this inequality is valid for all 9eC~' l (]Rex[s , t ] )  with 
supp 9 c V(K) x Is, t]. 
2 o Because of our  assumptions on (a, b), the martingale problem for {~o~; u ~ Is, t]} 
admits a unique solution {F~,,;(x, u )e iRax  Is, t]} on C,,t for each e > 0. Let  
E~,,, denote expectat ion with respect to fi~,,. For  each e > 0, the function 

h~(x, u) : = e21og E~,, exp {e- 2f(x(t))}, (x, u) s IRa x Is, t] , (3.53) 
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is the unique bounded solution of the Cauchy problem 

~ u +  ~ ,  u~[s , t ] ,  h ~ ( t ) = f .  (3.54) 

Recall that the initial datum is the non-vanishing nonnegative funct ionfs  ~ which 
was fixed after Lemma 3.11. Let n~: C~,r ~ IR d denote the projection defined by 
nt(~0) := ~o(t), ~o e C~,~. The measures P~,~ satisfy the Freidlin-Wentzell large devi- 
ation principle (Theorem 3.1). Hence, by the 'contraction principle', for each 
u s [s, t) the family {/~, ~ o ~-  ~; x ~ IR d, e > 0} of probabilities on llU forms a large 
deviation system with rate function f~,t and scale e-2. Therefore, applying the 
Laplace-Varadhan method and remembering the definition (3.44) of the function h, 
we derive from (3.53) that 

h e ~ h boundedly and pointwise on IR d x [s, t] (3.55) 

as e -~0 .  
30 We now apply inequality (3.52) for 

g(x, t) = O[ (x)he(x, t ) ,  

where 0 < 0 < 1 and ~ is a C ~~ function such that 0 ____ ~ < 1, ~ -- 1 in a neighbor- 
hood of K, and supp ~ ~ V(K).  As a result, we obtain 

(#~(t), ~h~(t)) - (,l~(s), ~he(s)) < 0-1 ~ ,  v(K)t,, ~. ~ = s , t  ~lJ'6~ I I  

+ g ~  glV~+,_,(~h (u))l~+,-,) 

For each u ~ [s, t], h~(u) ~ h(u) boundedly and pointwise as e -~ 0 by (3.55), and h(u) 
is continuous and supp h ( u ) ~ K  by Lemma 3.12 b). Since ~ = 1 on K, this implies 
that ~h~(u) -~ h(u) boundedly and pointwise as ~ ~ 0. Moreover, #~(u) ~/~(u) weak- 
ly as 6 ~ 0. Therefore 

lira lira [(~t~(t), (h~(t)) - (l~(s), (he(s))] = (#(t), h(t)) - (#(s), h ( s ) ) ,  
&-*O e ~ O  

and this limit coincides with the expression on the left of (3.50). On the other hand, 
according to Lemma 3.14, 

lim sup lim sup ~e V(K) = s~:, (m(')) < go ,y~(~( . ) ) .  
&-+O e ~ O  

Thus, in order to finish the proof of Lemma 3.13, it only remains to check that 

limsup f du #~(u), + ~ ((he(u)) + ~lVs+,_,((h (u))ls+,-, < 0 (3.56) 
e O S 

for all 0 ~ (0, 1) and 6 > 0. We therefore fix 0 ~ (0, 1) and 6 > 0 arbitrarily. We have 

IV~+,-u((h~(u))G,-. 

1 1 
--< 0 ~lvs+,-.h(u)l~+,-. + Vs+ , - .G+, - . (h  (u)) . 
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Taking also into account that h" satisfies equation (3.54), we see that the verification 
of (3.56) reduces to the proof of 

t 

lim f du(#a(u), ~,((h~(u)) - (~,h~(u))  = 0 (3.57) 
e-*O S 

and 

j IVs+t-,~l,+t-dh ( u ) ) )  = O. lim du ( 1,26 (U), 2 e 2 
e--+O s 

To prove (3.57), we remark that 

(pa(u), ~,((h~(u)) - ( ~'~,h~(u) ) = (#(u), R~(u) ) , 

where 

(3.58) 

R~(x, u ) ' =  f dy ko(x - y)(~O(y)h~(y,  u) 

a [ <(Y)]h-,, ks(x-y/a',(y,u 77 j ,.,ul 
i , j = l  

This is a result of integration by parts under the assumption that the diffusion 
matrix a is continuously differentiable with respect to all spatial variables. Because 
of this, (3.57) now turns out to be straightforward from the fact that h " ~  h 
boundedly and pointwise as e ~ 0 and the observation that the supports of h(u) and 
the derivatives of ( are disjoint. The same argument yields (3.58). [] 
We now want to remove the differentiability assumption imposed on the diffusion 
coefficients by means of approximation. 

Lemma 3.15 Let (a, b) be a pair of diffusion and drift coefficients satisfying Assump- 
tion (BU). Denote by {(a,, b,)} a sequence of diffusion and drift coefficients with the 
same properties. For each n, let the functional ~o, ~ be defined in the same way as 

~o,6 but with respect to (an, b,) instead of(a, b) . Assume that a, -+ a and sO,G : ~  s,t 

b, ~ b uniformly. Then 

lim sup ~o,G(#(.)) < ~o,~(~(.)) 
n--+ oo 

for each non-empty open set G ~_ IR d. 

Proof This is a modification of step 3 0 in the proof of Lemma 3.7. Roughly 
speaking, instead of comparing ko * 5r176 with _Sr176 ~ f )  and k a .  IV~fl~ with 

o ~  0 / I v ( n )  r ~2 with ] V t ( k ~ f ) ]  2, one has to compare ~ o . ~ f  with _ ,  f and tl-~+t-,2~+t-~J 
]V~+t_j]2+t_,.respectively. Here V ('~, I" ](~, and s ~ are defined in the same way 
as V, ]' [, and 5r o, respectively, but with (a, b) replaced by (a,, b,). Moreover, one 
only considers functions f e  N with the additional property that supp f c G. The 
details are left to the reader. 

Lemma 3.16 The assertion of Lemma 3.13 is valid without the differentiability 
assumption on the diffusion matrix a, i.e. with Assumption (BS) replaced by Assump- 
tion (BU). 

Proof Consider a sequence {(a,, b,) } and a pair (a, b) of diffusion and drift 
coefficients satisfying Assumption (BS) and (BU), respectively. Suppose that a, ~ a 
and b, --* b uniformly. Label each object associated with (a,, b,) with the subscript n. 
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Let U(K) denote an arbitrary open neighborhood of K. We may apply Lemma 
3.13 for (a,, b,) instead of (a, b) to obtain 

(#(t), h,(t)) - (#(s), h,(s)) < ~o, V(K)(#(.)) 

for large n. Here we have also used that, as a consequence of Lemma 3.12 c), U(K) 
is a neighborhood of K,  for large n. Letting n ~ oo and applying Lemma 3.12 c) 
and Lemma 3.15, we arrive at 

(#(t), h(t)) - (#(s), h(s)) <= ~o, V(K)(#(.)), 

and we are done. [] 

We are now in a position to switch from bounded to unbounded coefficients and 
therefore to finish the proof of Lemma 3.11. 

Proof of  Lemma 3.11 Let (a, b) be arbitrary diffusion and drift coeficients satisfying 
the Assumptions (D1)-(D3). Let U(K) be a bounded open neighborhood of K. We 
choose R and bounded coefficients (8, b) as in assertion d) of Lemma 3.12. We 
therebyassume without loss of generality that U(K) is contained in the ball BR. Let 
h and K be also as in Lemma 3.12 d). Since (a, b ) =  (8, b) on U(K)x  [s, t] and 
K =/~ ,  the functional ~o,f(K) will not change if we replace the coefficients (a, b) by 
(8, b) (and K by /~). Hence, we may apply Lemma 3.16 with respect to the 
coefficients (8, b) to obtain 

(#(t), h(t)) - (#(s), h(s)) < fro, v(K)(#(.)). (3.59) 

Recall that h (t) = h {")(t) = f and that h(s) < h(m)(s) by Lemma 3.12 d). Substituting 
this in (3.59), we arrive at the assertion of Lemma 3.11. [] 

The proof of Theorem is now complete. 

4 McKean-Vlasov interaction 

In this subsection it will be shown that our large deviation result for empirical 
processes of independent diffusions (Theorem 3.2) carries over to diffusions with 
mean field interaction. We will deal with large systems of coupled diffusions which 
interact via the empirical measure continuously entering the drift vector. 

Let U: lRa--* IR be a nonnegative twice continuously differentiable function 
such that U(x) ~ co as Ix[ ~ oo. Given R > 0, let dgR denote the subspace of 
d{ consisting of all # for which (#, U)__< R, and let cg R denote the space 
C([0, T]; J/R) furnished with the uniform topology. We introduce a space dg~o of 
admissible probability measures and a corresponding space ~ of measure-valued 
paths by setting 

d / /~ :=  U ddR and (~o :=  ~ ~R.  
R > 0  R > 0  

We equip both spaces with the strongest topology which induces on ddR and ~R, 
respectively, the given topology for each R > 0. Concerning the topological prop- 
erties of these non-metrizable spaces, the reader is referred to Appendix B in 
Ofirtner [9]. 
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We consider diffusion operators 

~2 d 02  d 

~ ( # )  "= 2- i,j= ~ 1 alj(" ) ~ + ~= ~1 b*('; #) --Oxi' 

#eo/r e _-> 0. By I'lx and Vx we will denote the Riemannian norm and the 
Riemannian gradient in the tangent space at x ~ IR d associated with the diffusion 
matrix {dJ(x)}. We impose the following conditions on the diffusion matrix 
a(x) = {aiJ(x)} and the drift vector b(x; #) = {hi(x; #)}. 

Assumption (M1). The maps a: IR d --~ IRa| d and b: IRa x ~ ~ IRa are continu- 
ous. For  each x ~ IR a, the matrix a(x) is symmetric and strictly positive definite. 

Assumption (342). There exists a constant 2 => 0 such that 

(#, ~e~(#) U + ~tVUI 2) <= ;~(#, U) 

for all probability measures # on IR a with compact topological support and all 
e~(0, 1). 

Assumption (M3). For each f i ( ' )e  c~o, there exists a constant 2 _>_ 0 such that 

1 2 ~e~(~(t))u + ~lvuI _-< ] u  

for all t e [0, T]  and all e e (0, 1). 

Assumption (M4). For each fi( ')  ~ c~o, the function 

T 

~ , ~ # ( ' )  ~ f (#(t),Jb('; #(t)) - b(';/2(t))12> dt~ [0, o0] 
0 

is sequentially continuous at point # ( ' )  =/2(.).  
For  each N ~ N and each e e (0, 1), we consider an N-particle system of interac- 

{P, , x e (iRa)s} of the martingale ring diffusions which is given by the solution s,~. 
aN problem for the diffusion operator ~N,~ acting on functions f o n  (IR) according to 

L,e N' ~f (x) : = . . 5r - -  ~ fi~, f ( x ) ,  x = ( x i ,  . ,  XN) E (IRa) N. 
k = l  Ni=l  

Here P~N'~, Xe(IRd) N, are probability laws on C([0, T]; (IRa) N) and 5r is the 
operator Zz~(#) acting on the variable Xk. It was pointed out in Dawson and 
G/irtner [4], Sect. 5.1, that, as a consequence of the Assumptions (M1) and (M2), 
the martingale problem for yN,~ is well-posed for each N E N and each e e (0, 1). 
Given N ~ N, e ~ (0, 1), and an N-particle empirical measure 

# = ~ 3x~, x l , .  �9 . , xN~IR a , (4.1) 
i=1  

we denote by ~ ' ~  the law of the empirical process associated with our N-particle 
system starting at #. It is defined as the image of the measure pN, ~ with respect (xt . . . . .  xN) 
to the continuous map 

C([O,T];(IRa)N)~(x~(") . . . . .  xN('))~ t ~  6~(o ~f~.  
i=1  
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Let further ~//~N stand for the subset of dg~ consisting of measures of the form (4.1). 
To formulate our large deviation result, we introduce functionals S~: 

~ -* [0, oo], 0 < e < 1, by setting 

1 
f II/i(t) - ~(#(t))*#(t)112(0 dt (4.2) 

s~(~( ' ) )  "= 2 o 

if #( ' )~cd~ is absolutely continuous and St(#( . ) ) :=  +oo otherwise. Here the 
norms [] �9 ]], are defined as in (3.6) but now with respect to our time-homogeneous 
diffusion matrix a. We also define the level sets 

7t~(~cff;p):= {#(.)ecdo~:#(O)~sff, S~(#(.)) <=p},  ~r p >= O. 

We are now ready to state our result. 

Theorem4.1 Let the Assumptions (M1)-{M4) be satisfied. Then N.~. { ~  , # e dg N, 

N e N ,  e~(O, 1)} is a special large deviation system (with respect to the map 
/t(.)~-~#(0)) with rate function S o and scale Ne - 2 as N ~ oo and e ~ O. The level sets 
7~~ p) are compact in cg~o for all compact subsets ~ of dgo~ and all p >= O. 

In Dawson and Gfirtner [4], Sect. 5, it was shown that, for fixed ~ ~ (0, 1), the family 
N,,. N N} forms a {~u , # e d {  , N e special large deviation system with rate function 

e-2S~ and scale N. This assertion was proved by 'freezing' the interaction fi(.) in the 
drift vector which made it possible to reduce the 'local' large deviation bounds to 
that for non-interacting diffusions governed by the 'frozen' operators 

5r t := ~r t s [0, T]  . (4.3) 

This idea also works well in studying large deviations for N ~ oo and e ~ 0 
simultaneously. Since the changes consist in obvious modifications only, we will 
not present the details here. Instead, for the orientation of the reader, we will state 
the corresponding lemmas without proof. 

The first step consists in proving the following lemma. 

Lemma 4.2 For all positive numbers r and p there exists a compact set X in 
~oo such that 

lim sup N -  1/;2 log sup 
N ~ ~ # ~ . ~  ~ ~ N  
e-~O 

N,~  ~ .  ( eeoc \y )  < - p .  

The proof of this lemma relies on the fact that sets of the form 

YF = cd R c~ ~ Y/, 
n 

are compact in c#oo for any R > 0 and all sets dr', of the form 

where {f,; n ~ N} is a countable dense subset of ~ in the sup-norm and K,,  n ~ N, 
denote compact subsets of C([0, T]; IR). Lemma 4.2 can therefore be derived from 
the next two lemmas which make essential use of Assumption (M2). 
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Lemma 4.3 Given positive numbers r and R, we have 

sup ~'"(c#oo\C#R) _--< exp{ - Ns-2RT} 
/tEdC'r n ~  N 

for all N E N  and e~(0, 1), where Rr  := R e x p { -  2 T } -  r and 2 is taken from 
Assumption (M2). 

Lemma 4.4 Given R > O, p > O, and a function f ~ ~,  we find a compact subset K of 
C([-0, T]; JR) such that 

~'~(~R\JfS.  ) < exp{ - Ne-2p} 

for all N ~ N ,  e~(0, 1), and #e j~N,  where 

S y : =  {#(')ecdo~" ( # ( ' ) , f ) e K }  , 

Lemma 4.2 allows us to reduce the proof of Theorem 4.1 to the consideration of 
'local' large deviation bounds_ To obtain these bounds we fix fi(. )e ~oo arbitrarily 
and consider the operators ~ defined by (4.3). The Assumptions (M1) and (M3) 
guarantee that the martingale problem for { ~ ;  t s [0, T]} admits a unique solution 
{Px, t, ~ " (x, t)~IRdx [0, T]} on Co, T ~ -  C([0, T]; IR a) for each e e (0, 1). P~,t is a prob- 
ability on CO, T concentrated on paths q)eCo, r with q~(s) = x for se [0 ,  t]. Given 
N e N  and e~(0, 1), let -N,, ~ ,  , #Eo///N, denote the laws on C([0, T];J//) of the 
empirical processes of N independent diffusions governed by the operators 2.q~ As 
a consequence of Assumption (M3), condition (3.9) in Remark 3.3 e) is fulfilled in 
the situation considered here. Hence, we may apply Theorem 3.2 to conclude that 

- - N , e .  {r ,# ej/tN, N e N ,  e~(0, 1)} is a special large deviation system as N ~ oo and 
e -o 0 with scale N e-  2 and rate function fro given by (4.2) for e = 0 except that ~et ~ 
is replaced by Ze ~ Note that s ~  ~o(~(.)). Fix g e N ,  ee(0, 1), and 
x = (xl, . . . ,x~)e(lRa) N arbitrarily. Then, by the Cameron-Martin-Girsanov 
Theorem, the measure Pf ' "  is absolutely continuous with respect to 
p~,~. -~ -~ 

. . . .  |  P~, o | and 

exp M~ '~ 1 
- -  T dP~. - 2 MN'~ 

where M N'' is a continuous local/5~'~-martingale with quadratic characteristic 

((MN'~))t(x(')) = Ne -2 f (Vx(u~,lb('; V~(u~) - b(" ;~i(u))?> du. 
0 

Here Vx'= N-~F~=~5~, denotes the empirical measure of the configuration 
x = (Xl, . . . ,  xn)~ (IRa) n. Because of Assumption (M4), this allows to obtain the 
following 'local' largedeviation bounds from the corresponding bounds for the 

N , ~  'frozen' probabilities N ,  . 

Lemma 4.5 Given # ~ / [ ~  and #~dd~ ,  suppose that # ~ #  in J / ~ .  Then the 
following assertions are valid for each ft(.) ~ with fi(O) = #. 

a) For each open neighborhood q/~ of/i(-)  in c~o~, 

lim sup N -  i e2 log ~n;,(,g') > -- S O (fi(-)). 
N---~ oo 
8- -*0  
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b) For each 7 > 0 there exists an open neighborhood r of fi(.) in cg~ such that 

lim sup U-leZlog~Nu;~(~ ) < -- S~ + 7 (4.4) 
N ~  
e---~ 0 

provided that S~ < oe. I f  S~ ~ ,  then this assertion holds with the 
expression on the right of (4.4) replaced by - 7. 

We remark that in the proof of assertion a), in order to switch from the topology on 
C([0, T];dg) to the topology on cg~ = C([0, T];Jgo~), we have also applied 
Lemma 4.3 with ~N.~ replaced by ~ ' ~  and Assumption (M2) replaced by Assump- 
tion (M3). 

Finally, the relative compactness of the level sets T~ p) follows by a combi- 
nation of Lemma 4.2 and Lemma 4.5 a). That these sets are closed can be deduced 
from the representation of S~ �9 )) in the form (3.13)-(3.14) with 5r ~ replaced by 
~~ 

We close this section with a few remarks on the McKean-Vlasov equations 
related to our empirical processes. For each e, 0 < ~ < l, the weak solutions #(.) 
e cg~ of the McKean-Vlasov equation 

12(t) = 5~cf~(l~(t))*p(t), t~ [0, T] , 

coincide with the zeros of the corresponding rate function S ~. The Assumptions 
(M1) and (M2) imply that there is at least one solution for each initial datum #(0) 
e ~ o  and each ee[0,  1), see G/irtner [9]. But our assumptions do not ensure 
uniqueness. We refer to Scheutzow [13] for a discussion of uniqueness and 
non-uniqueness in the degenerate case ~ = 0. Adequate uniqueness conditions for 

4:0 can be found e.g. in [9], Sect. 2.3. These conditions also ensure uniqueness for 
e = 0 under the additional assumption that the degenerate Fokker-Planck equa- 
tion 

li(t) = Sf~ t~[O, T ] ,  

admits a unique weak solution/~(" ) ~ C([O, T]; J/g) for each initial datum #(0) e Jg 
and each/~(.) ~ egos. This is certainly true if the vector field b(x; p) is continuously 
differentiable in x. 

Let /~( . )  and/~o(.) denote weak solutions of the McKean-Vlasov equation for 
the operators 5~ and ~ o ( . ) ,  respectively. Assuming uniqueness for 0 < e < 1 
and using results from [9], one also readily checks that #~(') ~ #o(. ) in ~ as e ~ 0 
provided that #~(0) ~ #~ in ~o~. 

A. Appendix 

A.1 ~M,N (X)-sequences 

Let X be a completely regular Hausdorff space, and let (X~) be a sequence of 
subsets of X such that each point in X is the limit of an XN-sequence. Denote by 
Jg(X) the space of Radon probability measures on X equipped with the topology 
of weak convergence. Given M, N e N, denote by ~/~M'N(x) the subset of M-point 
empirical measures on XN. In the following we assume that X and (XN) satisfy the 
Metrizability Hypothesis of Sect. 2. 
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Proposition A.I Each measure in JIg(X) is the weak limit of an J~M'N (X )-sequence as 
M,N--* ~ .  

Proof Fix #eJY{(X) arbitrarily. We must find measures #M'NeJF{M'N(X) with 
#M,N ~ # in J{(X). Since # is a Radon measure, there exists a sequence of compact 
subsets K~ ~ K 2 ~ . . .  of X such that # is concentrated o n  U r K r .  We can therefore 
write # in the form 

# =  ~ #~, (A.1) 
r = l  

where, for each r, #, is a measure which is concentrated on Kr. 
Now fix r e  N arbitrarily. Let (~,,) be a sequence of independent K~-valued 

random variables with joint law #r(')/#~(X). According to the strong law of large 
numbers, 

1 [M~,.(X)] 
Y, f (~ , , )~  f f d#~ a.s. (a.2) 

m = 1 Kr 

as M ~ ~ for e a c h fe  C(K~), where [x] denotes the integer part of x s IR and C(Kr) 
is the space of continuous functions on K~. Since Kr is metrizable (by the Metriza- 
bility Hypothesis), the space C(Kr) is separable. Because of this, (A.2) implies the 
weak convergence 

1 [Mur(X)l 
~ 6~ -+#~ a.s. 

m = l  

In particular, there exists a sequence (x~,.) in K~ with 

1 [Mu~(X)] 

weakly as M --* oo. 
Let X(Kr) be the metrizable set introduced in the Metrizability Hypothesis, and 

let pr be a metric on X(K~) which generates the subspace topology of X. Using the 
Metrizability Hypothesis and the compactness of K~, we see that X• ~ X(K~) is 
non-empty for all sufficiently large N and pr(x, XN n X(Kr)) ~ 0 as N ~ oo uni- 
formly in x s Kr. For  each m and each N, we can therefore select a point X~m e XN 
such that xN,, e X(Kr) for all sufficiently large N and all m and 

p,(x~,,, x,,) ~ 0 uniformly in m 

as N -~ oo. Together with (A.3) this implies that 

1 [uur(x)] 
# ~ , u : =  M Z 6xa---~#r (a.4) 

m = l  

weakly as M , N ~  ~.  Note that # ~ ' u ( X ) <  #r(X) and # ~ ' N ( X ) ~ # r ( X )  as 
M N z X ' ,  M, N --+ m for each r. Therefore L~#r ' t ) < 1 and y~ #~'u(X) ~ 1 as M, N ~ ~ .  

Now we define 

#M,N:= ~, #~,N + ~ 5 ~ ,  (A.5) 
v = l  
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where Xo u is an arbitrary point in XN and k~t,N is a nonnegative integer making 
#M, N into a probability measure. By construction, #~t, N E JC/u' N (X) for all M, N e N 
and kM, N/M --* 0 as M, N ~ ~ .  Passing in (A.5) to the limit as M, N ~ oe and 
using thereby (A.4) and (A.1), we find that 

#M, N ~ # in JP/(X) as M, N --* 0 0  , 

and we are done. [] 

A.2 Freidlin-Wentzell estimates 

The objective of this appendix is to prove Theorem 3.1. From Wentzell [18], 
Theorem 4.3.3, we know that the assertion of Theorem 3.1 is valid under the 
following hypothesis. 

Assumption (W). The diffusion matrix a: IRa x [0, T] ~IRd|  d and the drift 
vector b: IRd x [0, T] -~ IR a are bounded and uniformly continuous. The matrix a is 
symmetric, positive definite, and uniformly non-degenerate. 
Our idea consists in reducing the general case (Assumptions (D1)-(D3) of Sect. 3.1) 
to that of Wentzell by changing the drift and diffusion coefficients outside of a ball 
with center 0 in such a way that the new coefficients satisfy Assumption (W). If the 
ball is sufficiently large, then this change will not influence the considered large 
deviation quantities. 

In the sequel, BR will denote the open ball in iRa with center 0 and radius R, and 
B~'Vl will stand for the set of functions on the interval [u, v] with values in BR. 
We first prove the compactness of the level sets. 

Lemma A.2 Let the Assumptions (D1) and (D3) be satisfied. Then the sets ~b~,t(K; p) 
are compact for 0 < s < t < T, all compact sets K c iRa, and all p > O. 

Proof 1 o The Assumptions (D1) and (D3) imply the corresponding assumptions 
for the time interval Is, t] instead of [0, T], cf. Remark 3.3 b). Therefore it will be 
sufficient to consider s = 0 and t = T only. 
2 o We show that the function I: Co, r ~ [0, o9] is lower semi-continuous. Suppose 
that ~o, ~ (p in Co, T" We choose R so large that the paths q~,, n ~ N, and q~ belong to 
the ball BR. We replace the coefficients a and b by new coefficients 8 and b, 
respectively, so that a = 8 and b = b on B~ x [0, T] and 8 and b satisfy Assumption 
(W). Then the associated rate function I" is lower semi-continuous. But I(q~,)= 
I(q),), h e N ,  and l(q)) = l((p). Hence I(q)) < liminfI(~0,). 
3 o Now fix a compact set K c IRd and p > 0 arbitrarily. By Assumption (D3), the 
set ~(K; p) is bounded and non-empty. Thus, ~(K; p)c_B~ "rl for some R > 0. 
Replacing a and b by 8 and b, respectively, as instep 2 o and denoting the associated 
level set by ~(K; p), we find that ~(K; p)___~(K; p). Since ~(K; p) is compact, 
~b(K; p) is relatively compact. From step 2 o we know that ~(K; p) is closed. Hence 
4~(K; p) is compact. [] 

We next show that q~,t(K; p) coincides with 4~,t(K; p) for sufficiently large R. 

Lemma A.3 Let the Assumptions (D1) and (D3) be satisfied. Let a compact subset 
K of ire and p > 0 be given. Then there exists R >  0 such that the following holds 
true. For any diffusion and drift coefficients (gt, b) satisfying Assumption (W) and 
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coinciding with (a, b) on B R • [0, T],  we have 

~s,t(K; p) = ~bs, t(K; p)~-B~ 'tj, 0 < s < t <= T ,  

where ~s,t(K; p) and ~s,t(K; p) denote the level sets associated with (a, b) and (4, "b), 
respectively. 

Proof We fix a compact  set K c ]R d and p __> 0 arbitrarily. 
1 ~ We show that  

�9 s,t(K; p)~_B[~ "t] for 0 < s < t =< T (A.6) 

provided that  R is sufficiently large. Suppose the contrary.  Then  we find a sequence 
of functions q~,:[s,, t,] ~ IR d with 0 < s, < tn < T, q~n(sn)sK, Is,.t~(q~,) < p and 
Iq~n(tn)l ~ ~ .  In accordance with par t  (ii) of Assumption (D3), we may continue 
q)n to a function 0n E Co, T by setting 0n(u) = T,(sn) for u e [0, sn], 0n = q~n on [sn, tn], 
and choosing 0n on [tn, T]  as a solution of ~'n(u) = b(On(u), u), u ~ [tn, T]. Then, on 
the one hand, I (~,)  remains bounded  for n --. 0% i.e. the sequence (0n) belongs to 
�9 (K; fi) for some fi > p. But, on the other  hand, the sequence (0n) is unbounded  in 
Co, T, and this contradicts part  (i) of Assumption (D3). 
2 o We choose R so large that  (A.6) is fulfilled. Let (4, b) be diffusion and drift 
coefficients which satisfy Assumption (W) and coincide with (a, b) on BR x [0, T].  
Fix 0 __< s < t __< T arbitrarily.~Recall that Is,~ and I'~,t denote the rate functions 
associated with (a, b) and (4, b), respectively. It remains to check that  ~ , t (K ;  p) 
coincides with C~s,t(K; p). Since Is, t and/s , t  coincide on B~ '.1, it will be sufficient to 
verify that  not  only ~ , t (K ;  p) but also @~, t(K; p) is contained in B~'tJ. Suppose that  

~s,~(K; p) ~ S~' o. Then we find a function (p ~ ~b~,,(K; p) and u ~ (s, t] such that  Iq) (v) l 
< R for vE[s, u) and I~o(u)l = R, i.e. Is,~(q)) = I's,,(cP) < P and cpr 'tl. Therefore 

q9 e ~s,,(K; p)\Bt~ '~1 which contradicts (A.6), [] 

Proof of  Theorem 3.1 The compactness of the level sets was shown in Lemma A.2. 
Fix x~ lR  d, p > 0, and ~O~Co, T with cp(0) = x arbitrarily. Let x"~lR d be such that  
x ~ ~ x as e ~ 0. Denote  by U(~o) and U(~(x;  p)) bounded  open neighborhoods  of 
4o and q~(x; p), respectively (cf. Assumption (D3)). It suffices to check that  

lim inf e21og P~,(U(q))) > - I(q~) (A.7) 
e'-+0 

and 

lim sup e 2 log P~(Co, r\U(q~(x; p))) < p (A.8) 
e---~ 0 

(cf. Freidlin and Wentzetl  [8], Chap. 3, Theorem 3.3). 
We choose R > 0 so that  U(q)) and U(q~(x; p)) are contained in B~ "T1 and the 

assertions of Lemma A.3 are valid for K = {x} and certain coefficients 4 and b. This 
means that I(q~), ~(x; p), and the probabilities on the left of (A.7) and (A.8) will not  
change if we replace a and b by 4 and b, respectively. But, according to Wentzell  
[18], Theorem 4.3.3, the bounds (A.7) and (A.8) hold for the diffusion processes 
with diffusion matr ix 4 and drift vector b instead of a and b, respectively. This 
proves (A.7) and (A.8), and we are done. [] 
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