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Summary. Let (£) be a sequence of random variables with values in a topological
space which satisfy the large deviation principle. For each M and each N, let
EM:N denote the empirical measure associated with M independent copies of &V.
As a main result, we show that (E™:¥) also satisfies the large deviation prin-
ciple as M, N —» co. We derive several representations of the associated rate
function. These results are then applied to empirical measure processes
EMAN) = MTIYM vy, 0 <t < T, where (E1(2), . . ., EX(1)) is a system of weakly
interacting diffusions with noise intensity 1/N. This is a continuation of our
previous work on the McKean-Vlasov limit and related hierarchical models

([41, [5D).
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0 Introduction

In order to introduce the basic idea of multilevel large deviations, we begin with
a sequence {¢¥) of random variables on a probability space (@, &, P) taking values
in a topological space Y. We assume that the sequence (¢V) satisfies the large
deviation principle (as N — o) with scale yy— oo and rate function
J: Y- [0, 0]

(i) the level sets {y € Y:J(y) < p}, p = 0, are compact;

(i) for each open subset G of ¥,

Iilsninfy,;l logP(YeG) =z — ingJ(y) ;
- o ye
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(iii) for cach closed subset F of Y,
lirj\rr1 supyylog P(¥eF) < — inﬁJ(y) .
-0 ye

Foreach N, let &Y, &5, . . . be independent copies of ¥, and denote by d.» the Dirac
measure at £. Now consider the empirical measures
1 M
N — O

and regard them as random variables with values in .#(Y) , the space of Radon
probability measures on Y furnished with the topology of weak convergence. The
objective of this paper is to show that the empirical measures Z*-" satisfy the large
deviation principle as M, N — oo and to identify the rate function.

This question was partially motivated by our investigation of hierarchical
systems of interacting diffusions. In [6] we studied phenomena such as metastabil-
ity and nucleation for a class of mean field models of interacting diffusions by
applying large deviation methods. Our overall objective is to develop appropriate
large deviation techniques for corresponding multi-scale systems. In general, such
hierarchical structures reflect more closely than do mean field models both the
equilibrium and nonequilibrium béhavior of short range models. One of the
remarkable features of hierarchical systems is the observation that for large, but
finite, system size the corresponding effects are organized in multiple time scales
and in fact this provides a caricature of the behavior of short range systems at
successively larger spatial scales (see [5], Sect. 5.2).

However, in order to explain the relevant multilevel large deviation problem,
we will describe the simpler non-interacting case. Let £(¢) be a diffusion process on
R? given by an Itd equation of the form

d(r) = b(&(e), dt + dw(r) ,

where w(t) denotes d-dimensional Brownian motion. For each N, let £Y(2),. . .,
EN(t) be independent copies of £(r) with not necessarily coinciding non-random
starting points £Y(0), . . ., &N (0) such that N™'S 8.y, converges to a measure
vin %= #(R?% as N - oo. Consider the empirical measure process

[I]

Mo = Z O, O0St=T. (0.1)

In Dawson and Girtner [4], Theorem 4.5, it was shown that, under mild condi-
tions on the vector field b, the sequence (E¥(+)) of C([0, T']; .#')-valued random
variables satisfies the large deviation principle with scale N and rate function
S, given by

1 T
S(uC)i=7 S — LEu@ |3 dt
[¢]

if u(")YeC([0, TY; #") is absolutely continuous and u(0) = v and equal to + oo
otherwise. Here ## denotes the formal adjoint of the diffusion operator

t -
ox*
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associated with &(t). Further,

<8,/ >1
o (s [VfI?Y

where 2 and 2’ denote the Schwartz space of infinitely differentiable functions
with compact support and the corresponding space of distributions, respectively,
and |Vf|* = T4, (8f/0x").

Now con51der a two-parameter family {é Nepi=1,...,M,j=1,.. ., N} of
independent copies of the diffusion process i(t) The two-leuel empirical measure
process is defined by

IIOIIM sup e, 0.2)

M
EM'N(t):— Z EO 0Zt=T, 0.3)
where, for each i,
E t) :—Z(sfMN(t), OétéT

The problem is to show that, if Z-¥(0) converges to some measure in
M= (M (R?) as M, N —» oo, then the processes ZM¥(-) considered as ran-
dom variables in C([0, T]; .#"7) satisfy the large deviation principle as M, N — oo
and to find a suitable representation of the rate function. This large deviation
problem has a structure similar to that hypothesized above with the additional
complication that the processes Z7(*),...,EN (") are not identically distributed.
The law of the process Z*¥(-) depends on the (non-random) initial measure
EM-¥(0) which may be viewed as an additional parameter. For this reason, our
general results on multilevel large deviations will be formulated in terms of
parametrized families of probability laws.

Section 1 contains preliminary definitions and results on large deviation sys-
tems. In Sect. 22 we will prove the multilevel large deviation theorems and derive
several representations of the associated rate functions. These general results can be
applied to our empirical measure process (0.3), but we do not yet have a simple
integral representation for the rate function. However, in Sect. 3 we obtain such
a representation for a simple caricature of the hierarchical system of diffusions,
namely, for independent copies of randomly perturbed dynamical systems. In
Sect.4 we will extend our analysis to perturbed dynamical systems with McKean-
Vlasov interaction. The Appendix contains some auxiliary proofs which we separ-
ated from the main exposition of the material.

In order to provide an introduction to the multilevel large deviation results of
Sect. 2, we will now state the main result and sketch the proof in the simple case in
which there is no parametrization and in which the space Y consists of a finite
number of points, ¥ = {y,,...,y}. Although the proof of our general large
deviation result is much more delicate, it follows the same lines as the proof of
Theorem 0.1 below. As before, let (£¥) be a sequence of Y-valued random variables.
For each M and each N, let ¥ denote the empirical measure of M independent
copies &Y, ..., EN of é”.

Theorem 0.1 Assume thar (£N) satisfies the large deviation principle (as N — o)
with scale yy and rate function J. Then (EM-N) also satisfies the large deviation
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principle (as M, N — o0) having scale Myy and rate function
SOy := [Jyv@y),  ved(Y).
Y
Proof. (i) The compactness of the level sets {ve #(Y):S(v) < p}, p = 0, is obvious in
this case.

(ii) Lower large deviation bound. Fix ve .#(Y) and an open neighborhood U(v) of
v arbitrarily. It suffices to show that

1
hmlnfmlogP("M NeUW)z —SO).

M,N—w
We choose a partition of {1,..., M} into pairwise disjoint sets A’ of size |43,
k=1,...,r, such that
A _
A}lirio Y (i), k=1,...,r. 0.4)

There exists ¢ > 0 such that
UW):= (e (Y):5(y) > v(y) — ¢ for all k}=U(v
It is now easy to verify that for large M and all N,

ﬂ {N =y, forallieAf}c{EMNe U(v)}.

For these M and N,

=

P(EMNcUW) = ( {&F =y, for all ieAkM}>
k

1
= T1 [P =yl 03)

Since (&V) satisfies the large deviation principle and the topology of Y is discrete, we
have

1
lim —log P(t¥eA) = — inf J(y) for each set ASY .
N—-ow YN ved
In particular,
1
lim —logP(E" =y)= —J() fork=1,....7 (0.6)
N-w YN

Combining (0.5) with (0.4) and (0.6), we obtain

lim inf log PEMNeU(®W)

M,N-ow YN

|M|1

v

og P(EY = y)

k=1 M\N-w

—éwmnm=—ﬂw

[\
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(iii) Upper large deviation bound. Fix h > 0 arbitrarily. Since .#(Y) is compact, it
will be sufficient to show that for each ve .#(Y) there exists a neighborhood U (v)
such that

lim sup ML logPEMNeUGW) < —S0W +h 0.7

M,N-® YN

if S¢) < o0 and = —hif S() = oo. Assume that J(y,) < oo for all k and, in
particular, (v) < . Take U():= {FeH(Y):S(V)> S(v) — h}. Note that
SEMN)y = MY M J(EY). Applying Chebyshev’s exponential inequality, we ob-

tain

PEMNecU®W) = P<i % J(EN > SK) — h>
M=

< exp{ — OMy(SO) — )} Eexp {eyN 5 J(m}

< exp{ — OMyy(S(v) — h)} [E exp{Byy J(E¥)} M

for each 8 > 0. Thus, in order to prove (0.7), it will be enough to verify that the
expectation on the right of the last inequality remains bounded as N - oo for
0 < 0 < 1. But, since

11msup—logP( =y —J), fork=1,...,r

N—-w

we have

lim sup E exp{0yxJ (")} =limsup 3, exp(@yyJ ()} PEY = 1)
- o =1
<1 for0<f<1.

To handle the case when J(y,) = for some k, one has to replace J by a function
J which coincides with J on {y:J(y) < oo } and which is ‘arbitrarily large, but
finite on {y:J(y)= w }. Correspondmgly, one has to replace S by

S(w) := fT)udy), pe#(Y). O

Let us now explain in more detail the application of our large deviation results to
interacting diffusions. Formally, the process £~ defined by (0.1) may be associated
with the infinite dimensional stochastic equation

AEN() = L¥EV®dt + N2 dMM) (0.8)

where (M") is a sequence of martingale measures with quadratic characteristics
which remains ‘bounded’ as N — co. This suggests the simple caricature of the
hierarchical system (0.3), in which we replace (0.8) by a finite dimensional analog.
More precisely, we consider the randomly perturbed dynamical system

agh(t) = b(EN (@), ndt + N™2dw(),  M(O0)=x, 0.9)

in R? with perturbation parameter N~ /2, Then, under certain restrictions on the
vector field b, according to Freidlin and Wentzell [8], Chap. 4, Theorem 1.1, the
sequence (£¥(+)) of C([0, T]; R?)-valued random variables satisfies the large devi-
ation principle with scale N and rate function I, for each starting point x e R% The
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rate function has the representation

Ii(e) =5 f |6(t) — bl(), nI*dt

if e C([0, T]; R?) is absolutely continuous and ¢(0) = x and I,(¢) = oo other-
wise. Given non-random starting points £Y(0), . . ., E(0), let E¥(p), . . ., ERp(¢) be
M independent processes of the form (0.9), and let

EMN(@) = Z devr OStET, (0.10)

denote the associated empirical process. Assume that Z¥:N0) — v in .#(RY) as
M,N— .

As an application of our multilevel large deviation results, we will prove in
Sect. 3 that the family (2-¥(-)) of C([0, T]; .# (R%)-valued random variables
satisfies the large deviation principle (as M, N — o) with scale MN and rate
function S, given by

1 T
Sv(u('))1=50f I5(e) — (L) uie) |y dt (0.11)

if u(-) is absolutely continuous in C([0,T]; #(RY) and u(0)=v and
S,(u(+)) = oo otherwise. Here the norm || - ||, is defined by (0.2) and

d
. 0
= bl'at A O.S_ éT:
; ( )6x‘ '

is the family of differential operators associated with the unperturbed dynamical
system

@) = ble@), 1) -

It may be noted that, for fixed N, the large deviation results of our previous paper
[4] show that the family (E™-¥(-)) satisfies the large deviation principle as M — oo
with scale M and rate function NSY, where SY is defined by (0.11) except that £ is
replaced by the generator associated with (0.9). As a special case of Theorem 2.9 to
be proved below, it will follow that these large deviation bounds are ‘uniform’ in
N and that S¥ converges in some sense (but not pointwise!) to the rate function for
(EM-N(-))as M, N — oo.However, in order to identify this rate function with (0.11)
under a natural set of weak hypotheses involves a number of nontrivial technical
steps carried out in the Sects. 3.2 and 3.3.

Finally, in Sect. 4 we will extend the above result to the corresponding system
with mean-field interaction

AEN@) = bEN @ BV @)dt + N~ dwy(t),  i=1,..., M,

where EM¥(t) is again defined by (0.10) and wy(2),. . .,, wy(t) are independent
d-dimensional Wiener processes. As in Dawson and Gértner [4] and Gértner [9],
in order to treat unbounded drift coefficients b, we consider the processes = FMN(.)
as random variables with values in the space C([0, T]; .# ), where .# , is a subset
of .#(R?) furnished with an ‘inductive’ topology. More precisely, we introduce
a smooth function ¥: RY — [0, co) with y(x) — oo as |x| = oo depending on the
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‘growth of b at infinity’, set .#g:= {ve#(RY:fydv < R},R > 0, define

% wr = U ﬂ R
R>0
and equip this space with the strongest topology which induces the weak topology
on #y for each R > 0. The space .#, is not metrizable but satisfies a weak
metrizability hypothesis formulated in Sect. 22. Refer to Appendix B in Gértner [9]
for a detailed discussion of the ‘inductive’ topology and the properties of .# ., and
C([0, TY; A ).

Let the drift coefficient b: R?x .# ,, - R? be continuous and satisfy assump-
tions analogous to that in Dawson and Gartner [4], Sect. 5. Suppose that the non-
random initial measures £ ¥(0) converge to a measure v in .# ,,. Then we show
that (E¥7(-)) again satisfies the large deviation principle with scale MN and rate
function S,, where S, is now defined by (0.11) with the operator #? replaced by

d 0
Lou) = i; (- sul®) o -

The proof of this result is based on a reduction to a system of independent
diffusions along the lines of Sect. 5 of Dawson and Girtner [4]. At the end of this
section we will briefly consider the corresponding McKean-Vlasov equations.

In the situation considered here, the process £¥(¢) lives in the metric space R*.
But in the case of the interacting hierarchical model mentioned above, the role of
EN(¢) is played by an empirical measure process EV(t) which lives in the non-
metrizable space .# . Although the results will not be used in this generality in
Sect. 3 of this paper, the latter fact has motivated the development of our main
results for families of probability laws on a space Y which are parametrized by
a space X, where X and Y are not necessarily metrizable. It should be noted that
this introduces a number of technical complications which would not arise in the
metrizable case.

Frequently used notation

By N and R? we will denote the set of natural numbers and the d-dimensional
Euclidean space, respectively.

Given a Hausdorff topological space X, we will denote by C,(X) and .# (X) the
space of real-valued bounded continuous functions on X with the supremum norm
|-l and the space of Radon probability measures on the Borel o-field #(X) of
X furnished with the topology of weak convergence, respectively. By (v, /> we will
abbreviate the integral of fe C,(X) with respect to ve .# (X). By ¢, we will denote
the Dirac measure at xe X.

C([0, T]; X) will stand for the space of continuous functions [0, 7] — X. If X is
a Polish space, then C([0, T']; X) will be endowed with the uniform topology
corresponding to a complete separable metric on X.

We will use the abbreviations ./ := .4 (R?), C, := C,(R?), Co 1:= C([0, T]; RY),
and %o, 7:= C([0, T]; #(RY).

By 2 we will denote the Schwartz space of infinitely differentiable functions
R? - R with compact support equipped with the usual inductive topology. The
corresponding space of real distributions will be denoted by 2.

Finally, 4 and 1 , will stand for the closure and the indicator function of a set 4,

respectively.
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1 Large deviation systems

Let X and Y denote Hausdorff topological spaces, and let (Xy) be a sequence of
subsets of X. A sequence (xy) of points in X will be called an X y-sequence if xye X n
for each N. We will assume throughout that each point in X is the limit of an
X y-sequence.

Let IT = {PY;xe Xy, Ne NN} be a family of Radon probability measures on Y.
(A probability measure v on the Borel o-field of a Hausdorff space is called a Radon
measure if v(4) = sup{v(K):K < 4, K compact} for each Borel set A.) Let I be
a function on X x Y taking values in [0, o], and introduce the notation

I(x; A):=inf{I(x; y):ye A}, xeX,AcY.

Finally, let (yy) be a sequence of positive numbers tending to infinity as N - .
Definition 1.1 We will say that Il is a large deviation system with rate function I and
scale vy if the following conditions are satisfied:

(i) compactness of the level sets: for each xe X and each p = 0 the set

P(x; p):={yeY:1(x;y) < p}

is compact (and, in particular, non-empty);

(ii) lower large deviation bound.

liminf yy*log PY (G) 2 — I(x; G)
N—-ow

for each open set G in Y, each xe X, and each X y-sequence (xy) tending to x;
(iii) upper large deviation bound:

liglsup ya - log PY(F) £ — I(x; F)

for each closed set F in Y, each xe X, and each X y-sequence (xy) tending to x.
Given 4 = X and p = 0, we define
®(4; p):= | 2(x; p) -
xeA

Sometimes we will assume in addition that the level sets ®(K; p) are compact for all
compact subsets K of X and all p = 0.

Definition 1.2 Suppose that we are given in addition a surjective continuous map
n: Y — X such that

P¥n~Yx})=1  for each NeN and all xe Xy .

Then we will say that the family IT forms a special large deviation system (with
respect to n) having rate function J:Y — [0, o] and scale yy if II is a large
deviation system with scale yy and rate function

I(x; y):= { ) iy = (1.1)

+ o© otherwise.

Note that the level sets $(K; p} associated with the rate function (1.1) are of the form
OK;p)={yeY:n(y)eK,J(y)=p} (12)
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A typical example we have in mind is the situation when X is a Polish space,
Y=C(0,TL; X), Xy = X for all N, n(y(*)) = y(0), and {PY; xe X} is a Markov
family of probability laws on Y for each N.
Formally, the notion of a large deviation system is more general than that of
a special large deviation system, since in the first case the supports of the measures
PY are not assumed to be disjoint for different x. Nevertheless, each large deviation
system may be regarded as a special large deviation system. To explain this, let
= {PY;xeXy,NeN} be a family of Radon probability measures on Y. Given
N €N and x€ Xy, let us denote by P? the unique extension of the product measure
9. ® PY to a Radon probability measure on ¥ : = X x Y. (Here 8, denotes the Dirac
measure at x. For Radon extensions see Schwartz [14], Chap. 1, Theorem 17.) We
further denote by # the canonical projection of X x ¥ onto X. Clearly

};ﬁ’(ﬁ"l{x}): 1 for each NeN and all xe Xy .
Let I1 denote the family of measures PY, xe Xy, NeN.

Theorem 1.3 Il is a large deviation system if and only if Hisa special large deviation
system (with respect to 7) having the same scale and the same rate function.

Proof. a) Assume that ITis a large deviation system with scale yy and rate function
I. We must show that 1I is a large deviation system with the same scale and rate
function I: X x Y — [0, oo ] defined by

I(x;y) if x = x,,

I{xo3(x, y)) := { .
+ o otherwise.
1° Let @(x; p) and ®(x; p) denote the level sets associated with I and I, respectively.
Since the sets @(x; p) are compact and @(x; p) = {x} x ®(x; p), the level sets D(x; p),
xeX, p =0, are also compact.
2° We next derive the lower large deviation bound for IT. Given (., eXxY
and open neighborhoods U and V of x and y, respectively, it suffices to check that

11m1nny110gPN(U>< Nz —Ixy)

for each X y-sequence (xy) tending to x (cf. e.g. Freidlin and Wentzell [8], Chap. 3,
Theorem 3.3). But this is immediate from the definition of PN and the lower large
deviation bound for the measures PNN .

3% To derive the upper large deviation bound for II, we fix xe X, an Xy-
sequence (xy) with xy — x, and a closed subset F of X x Y arbitrarily. We must
check that

hm suplelogP 'F)S —»p (1.3)

for each p20 with Fn dg(x; p)=0. Let therefore p=0 be such that
F N &(x; p) = 0 (provided that such p exists at all). Since ®(x; p) is compact and
D(x; p) = {x} x D(x; p), we find open neighborhoods U and W of x and &(x; p),
respectively, such that U x W does not intersect F. Thus, for sufficiently large N,

PY(F) £ PY((Ux WY)=PY(Wwr).
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(The upper index ¢ denotes the operation of taking the complement.) Hence,
applying the upper large deviation bound for the probabilities on the right, we
arrive at (1.3).

b) Suppose that isa spe01a1 large deviation system (with respect to 7). Since,
for each N and each xe Xy, PY is the image of the measure PN with respect to the
canonical projection X x ¥ — Y, an application of the ‘contraction principle’ (see
e.g. Varadhan [17], Theorem 2.4) yields that IT is a large deviation system having
the same scale and the same rate function as II. [

Fix a compact subset K of X and p = 0 arbitrarily, and consider the level sets
@(K; p) = {yeY:I(x;y) < p for some xe K}

and
B(K;p)={(x,y)eXxY:xeK,I(x;y) £ p}

associated with the large deviation systems IT and I, respectlvely Since @(K; p) is
the continuous image of ®(K; p) with respect to the projection 7, the compactness
of ®(K;p) implies the compactness of @(K;p). On the other hand,
®(K; p) < K x (K; p). Therefore, the compactness of ®(K; p) implies at least the
relative compactness of @(K; p). In the next lemma we will see that ®(K; p) is
compact under the following additional assumption on X and (Xy).

Countability Hypothesis.

For each compact subset K of X there exists a set X(K), K = X(K) < X, such that
each point of K has a countable base of neighborhoods in X(K) and is the limit of
an X y-sequence which belongs to X (K) for all but finitely many terms.

Note that this hypothesis is fulfilled if X satisfies the first countability axiom.

Lemma 1.4 Let the Countability Hypothesis be fulfilled. Assume that I1 is a large
deviation system with rate function I and scale yy. Given a compact subset K of X and
p = 0, suppose that the level set ®(K; p) is compact. Then @ (K; p) is also compact. In
particular, I is lower semi-continuous on K x Y for each compact subset K of X.

Proof. The level set
B(K;p)=(KxY)n{I <p} (1.4)

is a subset of the compact K x &(K; p). It is thus sufficient to show that (1.4} is
closed in K x Y. To this end we fix ¢ > 0 and (x,, yo)€ K x Y arbitrarily. It will be
enough to check that there exist open neighborhoods U and ¥V of x, and y,,
respectively, such that

inf{I(x; y):xeUnK,yeV} = I(xo, yo) — & . (1.3)

Set po := I(xo, yo) — &/2 and assume without loss of generality that p, = 0. Since
@D (x0; po) is compact and does not contain y,, there exist disjoint open neighbor-
hoods ¥ and W of y, and ®(x,; po), respectively. Applying the upper large
deviation bound for II to the complement of W, we find that

limsup yy* log P (V) £ — po (1.6)
N-
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for each X y-sequence (xy) tending to x,. From this and the Countability Hypo-
thesis we conclude that there exists an open neighborhood U of x, such that

limsupyyllog  sup PYWV) S —po+e2. (1.7)

N~ xeUnX(K)n Xy

Indeed, otherwise the opposite inequality is true for all sets U from a countable
base (U,) of open neighborhoods of x, in X (K). But then we would find natural
numbers N — oo and points xy, € Uy " X (K) n Xy, such that (1.6) is violated for
the subsequence (xy,) although xy,_— x,.

Now choose xe U n K arbitrarily. Because of the Countability Hypothesis, we
find an X y-sequence (xy) which tends to x and belongs to U n X(K) for all but
finitely many terms. Applying the lower large deviation bound for P} (V) and
combining it with (1.7), we obtain

— 1 V) £ —po+8/2=—1I(xg; y0) + & for all xeUNnK .
This finally yields (1.5). [

To pass from (1.6) to (1.7) we switched from a ‘sequential’ description of the large
deviation bound to a ‘topological’ description. Similar arguments will be used in
particular in Sect. 2 without further explanation.

In the rest of this section we collect some further properties of rate functions
which will be used in the subsequent sections.

A subset of a Hausdorff space Z is called universally measurable if it belongs to
the p-completion of the Borel o-field of Z for each Radon probability measure p on

Z. A function f:Z->R is called sequentially lower semi-continuous if
f(2) < liminf f(z,) for each sequence (z,) in Z with z, — z. If Z satisfies the first
countability axiom, then a function f: Z - R U { + o0} is lower semi-continuous iff
it is sequentially lower semi-continuous.

Lemma 1.5 a) Assume that I is a special large deviation system with rate function J:
Y — [0, oo, and suppose that the associated level sets ®(K; p) are compact for all
compact subsets K of X and all p 2 0. Then J is sequentially lower semi-continuous
and universally measurable.

b) Let the Countability Hypothesis be satisfied. Assume that II is a large
deviation system with rate function I. X x Y — [0, co], and suppose that the asso-
ciated level sets ®(K; p) are compact for all compact subsets K of X and all p = 0.
Then I is sequentially lower semi-continuous and universally measurable.

Proof. a) For each compact set K < X, the sets @(K; p), p = 0, are closed, i.e. the
restriction of J to =~ !(K) is lower semi-continuous. Since each converging se-
quence in Y is contained in ™ *(K) for some compact subset K of X, this implies
the sequential lower semi-continuity of J.

Fix a Radon probability measure v on Y arbitrarily. Let (K,) be an increasing
sequence of compact subsets of X such that the Radon measure von~ ! is concen-
trated on | JK,. Then v is concentrated on (=~ !(K,) and

o0

0 o=tz ok =)

r=1 r=

for each p = 0. Since the sets @(K,; p) are Borel measurable, this proves the
universal measurability of J.
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b) This is a consequence of a). Indeed, we know from Theorem 1.3 that I is the
rate function of a special large deviation system. Moreover, Lemma 1.4 tells us that
the associated level sets @(K; p) are compact. [

In the next lemma we will assume in addition that the space Y is regular. Then, in
particular, each open subset G of Y is the union of the closures A of all open sets
A with A<G.

Lemma 1.6 Assume that X satisfies the Countability Hypothesis and Y is regular.
Let T1 = {PY;xe Xy, NeN} be a large deviation system with rate function I and
scale yy, and suppose that the associated level sets ®(K; p) are compact for all
compact subsets K of X and all p 2 0. Then the following assertions are valid.

a) For each open subset G of Y the function I(-; G) is sequentially upper
semi-continuous and universally measurable.

b) For each closed subset F of Y the function I(-;F) is sequentially lower
semi-continuous and universally measurable.

¢) For each bounded continuous function g: Y — IR the function

hy(x):=sup[g(y) — I(x; y)], xeX,

yeY

is bounded, sequentially continuous, and universally measurable.

Proof. Let f: X - R be a sequentially lower semi-continuous function. By the
Countability Hypothesis, each compact subspace of X satisfies the first countabil-
ity axiom. Consequently, the set { f < p} n K is closed (and, hence, Borel measur-
able) for each pelR and each compact set K<X. This implies the universal
measurability of f (cf. the proof of Lemma 1.5 a)). This also shows that each
sequentially upper semi-continuous and each sequentially continuous function on
X is universally measurable.

a) Let (x,) be a sequence in X with x, — x, and let K be a compact subset of
X containing (x,). Given an open subset A4 of Y and k>0, we find an open
neighborhood U(x) of x such that

—I(x; A) — h < liminfyg'log  inf  PY(4).

N—w® FeUMNKNnXy

This is a consequence of the lower large deviation bound and the Countability
Hypothesis. Applying the upper large deviation bound to PY(A), we see that the
expression on the right does not exceed

— sup I(%A).

feUx)nK
This shows that

limsup I(x,; A) < I(x; A) (1.8)

n— o0

for each open set A< Y.
Now let G be an arbitrary open subset of Y. Then (1.8) implies that

limsup I(x,; G) < I(x; A)

n—oo
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for each open set A with 4= G. Because of the regularity of ¥, this yields
limsup I(x,; G) < I(x; G),

1e. I(-; G) is sequentially lower semi-continuous.

b) Let (x,) be a sequence in X with x, — x, and let K be a compact subset of
X containing (x,). We must show that

I(x; F) < liminfI(x,; F) (1.9)

for each closed subset F of Y. It suffices to prove (1.9) for F n @(K; p) instead of
F with p > liminf,, ,,I(x,; F). We can and will therefore assume that F is compact.

Fix & > 0 arbitrarily. Since I is lower semi-continuous on K x Y (see Lemma
1.4), we find for each point y in ¥ open neighborhoods U, and ¥V, of x and y,
respectively, such that

IGP>Hxy—c¢ for all (X, /) e(U,nK)xV,.

Now select a finite covering of F by sets Vi:=V, (k=1,...,r) with
Vi,- - > p€Fand put U := ;= U,, . Then for all sufficiently large n, x, belongs to
U n K and therefore

Ix,; F)= min I(x; Fo V)= min I(x;y) ~—e=I1(x;F)—¢.

1sksr 1Zk=sr

This proves (1.9).
c) Again, let (x,) be a sequence in X with x, — x, and let K be a compact subset
of X containing (x,). Since I = 0 and I(x; ¥) = 0 for each xe X, we have

infg < h, < supyg .
In particular, k, is bounded. This also shows that

hyX)= sup [g(») —I(%y)], XeK,
ye $K;p)
for p > supg — infyg.
Fix ¢ > 0 arbitrarily and choose a finite covering of ®(K; p) by open neighbor-
hoods W{(y,),..., W(y,) of yi,. ..,y respectively, such that

sup lg(y) — gyl <e2 fork=1,...,r.

yeW(y)

(Here we have used the regularity of Y.) Then

liminf hy(x,) = liminf max sup [g(y) — I(x,; »)]

n— o n2o 1Z2k=Zr yeWiy)

2 liminf max [g(ye) — I(xs; W) —¢/2 .

n—ow 1=Zk=r

It follows from assertion a) that the maximum on the right is sequentially lower
semi-continuous. We can therefore continue as follows:

11335 Lg() — 10 W(yi)] — /2

Sk=r

v

2 max sup [g(y)—I(xy)] —e

1Zk=r yeW (v

= hy(x) —¢.
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This proves the sequential lower semi-continuity of 4,.
It remains to show that h, is sequentially upper semi-continuous. Using asscr-
tion b), we obtain

limsup h,(x,) = limsup max sup [g(y) — I(x,; y)]

n—ow n—w 12kZr yeW(yy)

< limsup max [g(yk) — I<xn; W(yk)ﬂ + ¢/2

n—>w 1Sksr

max [g(yk) — lim ian(xn; W(yk)>} + &/2

1=k=sr n—w
< max {g(yk) -1 <x; W()’k)):l +&/2
1<k<r

é hg(x) + & 3
and we are done. [

We remark that the results of this section are applicable to families of Radon
probability measures indexed by an arbitrary directed set instead of IN.

2 Multilevel large deviations

The aim of this section is to study large deviations for empirical measures of
independent copies of random variables which themselves satisfy the large devi-
ation principle. Before formulating the precise results (Theorems 2.1, 2.2, 2.7, and
2.9 below), we introduce the necessary notation.

Throughout this section, X and Y are completely regular Hausdorft spaces, and
(Xy) is a sequence of subsets of X such that each point in X is the limit of an
Xy-sequence. By #(X) and #(Y) we denote the spaces of Radon probability
measures on X and Y, respectively, furnished with the topology of weak conver-
gence. .4 (X) and .#(Y) are also completely regular Hausdorff spaces. Concerning
this and further topological properties of the spaces .# (X) and .#(Y), the reader is
referred to Topsee [16]. The main reason for restricting ourselves to completely
regular spaces is that the theory of weak convergence of probability measures is
well-established on such spaces. But at a few places we will also make explicit use of
the complete regularity.

Let C,(X) and C,(Y) denote the spaces of bounded continuous functions on
X and 7Y, respectively, equipped with the sup-norm | -|. Given ue.#(X) and
feCuo(X), {pf» will stand for the integral of f with respect to u. Correspondingly
we define (v, g) for ve .#(Y) and ge C,(Y). By A and 1 ;we will denote the closure
and the indicator function of a set A, respectively.

Throughout this section we will assume that the following hypotheses are
satisfied.

Metrizability Hypothesis.

For each compact subset K of X there exists a metrizable set X (K), K€ X(K)< X,
such that each point of K is the limit of an X y-sequence which belongs to X (K) for
all but finitely many terms.



Multilevel large deviations 437

Tightness Hypothesis.
Each converging sequence in .#(X) is tight.

Note that the Metrizability Hypothesis implies the Countability Hypothesis of
Sect. 1. The class of spaces X which fulfill the Tightness Hypothesis contains all
metrizable spaces, all spaces which satisfy the second countability axiom, and all
locally compact spaces (cf. Topsee [16], Theorem 9.3). In particular, both hypothe-
ses are satisfied in the case when X is a Polish space.

Given M, NeN, we denote by .#™¥(X) the subset of .#(X) consisting of
M-point empirical measures on Xy, i.e.

M

MMN(X) = {M‘l Y O Xyse - ,xMeXN} ,
m=1

where J, is the Dirac measure at x. Each clement of .#(X) is the limit of an

MM-¥(X)-sequence as M, N — oo. The proof of this fact relies on the Metrizability

Hypothesis and will be given in Appendix A.l.

2.1 Main result

Let {PY;xeXy, NeN} be a family of Radon probability measures on Y. By
{PMN: pe MM ¥(X), MeN, Ne N} we denote the family of Radon probability
laws on #(Y) associated with the empirical measures of independent copies of
Y-valued random variables with laws PY. More precisely, given pp = M~ 12“%: 10y,
(X1,. .., X €Xy), P2V is the image of the Radon extension of the product
measure P} ® --- ® P} with respect to the continuous map

M
MeW,....yM™t Y 6, ed(Y).
m=1
Let m: Y — X be a surjective continuous map, and denote by 7 the induced map
M(Y)— M (X) defined by #(v):=vorn~?, ve #(Y), which is also continuous.
We first formulate our result for special large deviation systems and then extend
it to ‘general’ large deviation systems.

Theorem 2.1 Assume that {PY; xe Xy, NeN} is a special large deviation system
(with respect to m) having rate function J and scale vy and that the associated level sets
D(K; p) are compact for all compact subsets K of X and all p=0. Then
{PVN, pe ™ N(X), MeN, N e} is a special large deviation system (with respect
to &) with rate function

SE): ={J(y)V(dy)= ved(Y), (2.1)

and scale Myy as M, N — co.

Given pe #(X) and ve #(Y), let .4 (u,v) denote the set of Radon probability
measures on X x Y with left marginal p and right marginal v.

Theorem 2.2 Assume that {PY; xe Xy, NeN} is a large deviation system having
rate function I and scale vy and that the associated level sets ®(K; p) are compact for
all compact subsets K of X and all p 2 0. Then {ZN; pe #M¥(X), MeN, Ne N}
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is a large deviation system with rate function

S(y;v):= inf f 1(x; y)Q(dx, dy), pued(X),ve H(Y), (2.2)

Qe # (u,v) X xY

and scale Myy as M, N — 0.

By Lemma 1.5, the functions J and I are universally measurable. Therefore, the
integrals in (2.1) and (2.2) are well-defined. Let us mention that an application of
Theorem 2.2 to the particular situation in Theorem 2.1 leads to a representation of
the rate function which is different from (2.1).

Before proving Theorem 2.1, we show how to derive Theorem 2.2 from
Theorem 2.1 and Theorem 1.3.

Proof of Theorem 2.2 As in Sect. 1, let PY denote the Radon extension of 3, ® PY.
We know from Theorem 1.3 that {P xe Xy, NeN} is a special large deviation
system (with respect to the canonlcal projection X x ¥ — X) having rate func-
tion I and scale yy. Moreover, Lemma 1.4 tells us that the level sets cD(K D)
are compact for all compact subsets K of X and all p=0. Let
(PN e M V(X),MeN, NeN} denote the family of Radon probability
measures on J#(X xY) associated with the empirical measures for
{Px, x€ Xy, NeN}. According to Theorem 2.1, this family forms a special large
deviation system (with respect to the canonical projection 4 (X x Y)— 44 (X))
having rate function

S := [ Ixy»Q0dxdy), Qed(XxY),

XxY

and scale Myy. But 2N is the image of 2¥-¥ with respect to the canonical
projection # (X x Y) - #(Y) transforming Radon measures on X x Y into its
marginals on Y. Therefore the assertion of Theorem 2.2 follows now by an
application of the ‘contraction principle’ (see e.g. Varadhan [17], Theorem
24). O

The rest of this subsection is devoted to the proof of Theorem 2.1. To this end we
assume that {PY; xe Xy, N e N} is a special large deviation system (with respect to
n} having rate function J and scale yy. Let I be defined by (1.1), and denote the
associated level sets by ®(K; p). We assume that @(K; p) is compact for each
compact subset K of X and each p = 0.

The proof of Theorem 2.1 will be divided into several steps (Lemma 2.3-Lemma
2.6 below). For our family of probabilities to be a special large deviation system
with respect to #, it is necessary to check that 7 is surjective. This will be done in
Lemma 2.3. In Lemma 2.4 we will consider the compactness (tightness) of the level
sets. The most significant part of the proof is contained in the Lemmas 2.5 and 2.6,
where we will establish the lower and upper large deviation bounds, respectively.
The proof of these two lemmas mimics the particular one which was given in the
Introduction in the case in which Y is a finite set and X consists of a single point.
Let

P(wpyi={ved(Y):ven ' =p [Jdv=<p}, peM(X), p20,



Multilevel large deviations 439

be the level sets associated with S, and define

V(s )= P p)

nesd
for of <M (X).

Lemma 2.3 The level sets ¥ (u; 0), ue 4 (X), are non-empty. In particular, the map
7 is surjective.

Proof. We first remark that the upper large deviation bound for
{PY; xe Xy, NeN} yields I{(x; ¥Y) = 0 and, together with the compactness of the
level sets, that @(x; 0) is non-empty for all xe X.

Choose pe #(X) arbitrarily. There exists an increasing sequence (K,) of com-
pact sets such that p is concentrated on | J,K,. We write p in the form

L= Dilhy,

r=1

where, for each r, u, is a probability measure concentrated on K,, p, = 0, and
Yepr=1

Now fix reIN arbitrarily. We claim that there exists a probability measure
v,eH(Y) with v,on~! =y, which is concentrated on the compact level set
@(K,; 0). Indeed, one finds a sequence (x,,) in K, such that

1 n
Bpn <= ; Z 5xri——)ur

weakly as n — oo (cf. the proof of Proposition A.1). For each n, choose a point y,, in
the non-empty set &(x,,; 0) and define

| =

n
Ven == 0. .
i=1
Then #(y,) = Xyi, Vmo® ' = w,, and the measures v,, are concentrated on
&(K,; 0). In particular, the sequence (v,,) is tight. Selecting a converging subsequ-
ence, we find a probability measure v which is concentrated on ®(K,;0) and
satisfies v,om~! = y,. Hence the measure

o0
vi= Y poV,
r=1

belongs to .#(Y) and satisfies von ™! = p. Since v, is concentrated on ®(K,; 0) and
J =0 on @(K,;0) for each reN, we have [Jdv = 0 and, hence, ve ¥(;0). O

We next prove the compactness of the level sets.

Lemma 2.4 a) For each ue.#(X) and each p = 0, the set ¥(u, p) is compact and
tight.

b) Suppose that A is a compact and tight subset of M (X). Then the sets ¥ (X ; p),
p 2 0, are compact and tight. In particular, if X is a Polish space, then Y (X', p) is
compact for each compact subset A of M(X) and each p = 0.
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Proof. a) Recall that

Y(u; p) —{ [Jdv<pven? =,u}. (2.3)

Let (K,) be an increasing sequence of compact subsets of X such that
wW(X\K,) < 1/r for each r. Remembering the definition (1.2) of the level sets ¢(K,; r)
and applying Chebyshev’s inequality, we obtain for each ve ¥(u; p) and each r the
estimate

V(Y\P(K,; 7)) = V(J >7)+ v~ (X\K,)

dev +u(x\K,) <? Jrr ! 24)

This implies the tightness of the set ¥(y; p). To prove closedness is a bit more
subtle. This would be immediate from (2.3) if we would know that J is lower
semi-continuous. But from the compactness of the level sets &(K; s) we may only
conclude that the restriction of J to =~ !(K) is lower semi-continuous for each
compact set K< X. To overcome this difficulty, first note that, as a consequence of
(2.4), each measure ve ¥(y; p) is concentrated on the g-compact set

= ) o(K:n)

F=1

Then, we may rewrite (2.3) in the form

Y’(u;p)={v: Il Jdv§p,von_1=u} (2.5)

Yo

and view ¥ (u; p) as a set of probabilities on Y°. Now the trick is to furnish Y° with
a stronger topology which makes J lower semi-continuous on Y°. Namely, we
equip Y° with the strongest topology which induces on &(K,;r) the subspace
topology of Y for each r. The lower semi-continuity of J on Y? is evident from the
closedness of

(J 2 p}n®(K,;1) = O(K,; 1 Ap)

in @(K,; r) for all r and p = 0. Hence, we conclude from (2.5) that ¥ (y; p) is closed
when considered as a subset of .#(Y?). The bound (2.4) shows that this set is also
tight with respect to the topology of Y°. Hence, by Prokhorov’s theorem, it is
a compact subset of .#(Y°). Since the natural imbedding of .#(Y°) into #(Y) is
continuous, this yields the compactness of ¥(y; p) in #(Y), and we are (almost)
done. To make the above arguments rigorous, we have to add two remarks. First,
the Borel o-field (Y °) of Y° is easily seen to be the trace of the Borel o-field %#(Y)
on Y°. Second, Y° is a completely regular Hausdorff space. As free topological
union of a countable number of compact spaces, Y° is even normal (Postnikov
[12], p. 30).

b) Since A" is tight, we find an increasing sequence (K,) of compact subsets of
X such that u(X\ K,) < 1/r for each ue#". We can therefore repeat the proof of
part a) with ¥ (y; p) replaced by ¥(A7; p).

If X is Polish then, by Prokhorov’s compactness criterion, the compactness of
A" implies its tightness, and we can proceed as before.
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Now we turn to the proof of the lower large deviation bound. To this end we set
S(v) if vor ! =p.
+ © otherwise.

S(#;V):={

Lemma 2.5 For each 4™ (X)-sequence (u™'") tending to ue.#(X) and each open
subset G of M (Y) we have

1
lim inf log Z1id (G 2z — S(i G) .

M, N—-w MY§
Proof. 1° Fix ve.#(Y) with S(v) < oo arbitrarily and choose an A4 ¥(X)-
sequence (u*'N) which converges weakly to u:=von~' as M, N — co. We write
the measures u™¥ in the form

1 X .
pM=—3% S with x¥oN . xiVeXy.
M i=1 ’
Given M, NeN, we consider a Y*-valued random vector (M5, ..., %M on

a probability space (2, #, P) the law of which coincides with the Radon extension
of the product measure Pﬁnlm ®R-® Pfg,n. Le., &N ..., &% Y are independent Y-

valued random variables with laws Pft{m, ..., PRux, respectively. We introduce the
empirical measures

: %

wM,N . __ S

o = g
M &

Let U(v) be an open neighborhood of v. Fix & > 0 and sequences (M,) and (N,) of
natural numbers with M,, N, > oo as n — oo arbitrarily. We must show that

log P(EMmM¥eU(W) 2 — S(v) — h (2.6)

lim inf
n->oo n’VNn
(cf. Freidlin and Wentzell [8], Chap. 3, Theorem 3.3).
In the following we will write u", x}, & and E”
EMnNn and ZMnNn respectively.
29 Tt is not hard to see that there exist pairwise disjoint open sets
Gy,...,G, €Y, compact sets C, =G, (k= 1,...,r), and ¢ > 0 such that

U0):= Fed(Y):5G)>v(C)—efork=1,...,r}cU®) 2.7

(see e.g. Billingsley [2], Appendix III, Theorem 3 for a similar statement). We
choose ¢’ €(0, 1) so that

instead of pMmNn xMwln

¢ +2/¢ <e. (2.8)
Because of the Tightness Hypothesis, we find a compact set K2{);=1 7(C,) with
w(K)=1-¢/3 for all n . (2.9)

Since {P¥;xe Xy, NeN} is a large deviation system with rate function I, we find
for each xe K an open neighborhood U (x) such that

1
lim inf — log inf  PYGy)= —I(x;G)—h)2 (2.10)

N-ow VN (eU(X)n X (K)n Xy
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fork=1,...,r where X(K) is taken from the Metrizability Hypothesis. Thereby
we can assume that U(x) is chosen so ‘small’ that

inf 1% Cp 2 I(x; Cy) — hf2 2.11)

xeU(x)nK

for k=1,...,r. This follows from Lemma 1.6 b) and the Metrizability
Hypothesis. Since I(x;G,) < I(x; Cy) for all k, we can combine (2.10) and (2.11) to
arrive at

1 . . N
lim inf — log inf P¥Gy=— inf I(%Cy)—h
N-ow IN %eUx)NnX(K)nXx %eU(x)nK

fork=1,...,r. We now choose a finite covering {Uy, . . ., U,} of K by open sets
of the form U; = U(x;) with x;eK (j=1,.. ., q). Then

1
liminf—log inf PY¥(GY= — inf I(x;C)—h (2.12)

N-w N xeU;nX(K)n Xy xeU;nK

forj=1,...,gand k=1,...,r
3% We find pairwise disjoint Borel sets W;cU; (j = 1,. . ., g) such that

q
,u(K\ U WJ> <&/3 and  p(@W)=0  foreachj, (2.13)

j=1

where 0W; denotes the boundary of ;. To construct such sets, we have used that,
as a consequence of our Metrizability Hypothesis, K is metrizable. Given ne N, we
introduce the pairwise disjoint sets of indices

A= {i:x}eW;n K}, i=L....q.

For each j, we further select pairwise disjoint subsets A} ;,. . ., A}, of A} such that
C “Yw;
A3 = [————V( xon (1) |A;f} k=17,
w(Wy)

where |A| denotes the cardinality of the set A and [a] is the integer part of acR. If
w(W;) = 0, then we set A7, = @ for all k. Since |A}//M, = p"(W; n K), u* — uweakly
and u(0W)) = 0, we have

lim sup|AJl/M, £ p(W)

for all j, and, consequently,
lim sup| A //M,, < v(Ci n ™" () (2.14)
for all j and k.
4° We now claim that
q i~
{i?eGk forall ie | Aj,and k=1,. .. ,r}g{E"e U®)} (2.15)
j=1
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for all sufficiently large n. Remembering the definitions of ﬁ(v) and E*N and
taking into account that |A%|/M, = u*(W;n K), we see that it will be enough to
show that
& (Cnn ()
liminf } ———0u 2
n— o jgl H(Wj)
for each k. To this end, we fix k arbitrarily and assume without loss of generality
that the sequences (u"(W; N K)) converge for each j. Otherwise the subsequent
considerations must be done for an appropriate subsequence of (M,, N,). We
introduce the index set

1WA K) > v(Cy) — e (2.16)

Ii= {j: lim (N K) > (1 - \/?)u(Wj)}.
Using (2.9) and (2.13), we obtain

lim Zu(WmK—hm,u<Lq) >

n= 00 1

J
q
g;;(U %)—8’/3>1—8'.
i=1

Therefore
1—¢ < lim Y p"(W) + hm Y. w"(W;n K)
RO jer ®© jer
<Y rW) + (1= /&) ¥ u(W))
Jjel jer
S ENEW U2
Jer
ie.

Y u(W) </

jer
Hence, using this, (2.9), (2.13), and (2.8), we obtain

Z V(Ckmn_l(Wj)) }gn NB(I/V](\K)

jel' M(VV;)
2 (1 - /%) Y Cnn™ (W)
> (1 - f)[ S W(Cenm (W) — ; u(W)]

2 (1—/&)(C) — & — /el Zv(C) —& — 2/¢

> v(ck) — &,
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and we arrive at (2.16).
5% We have now collected all ingredients to prove (2.6). Using (2.7), and (2.15) we
obtain for all sufficiently large » the inequality

q
PE"eU®W) = ]P({{’eGk forall ie { ) A% andk=1,... ,r)

i=1

r q IA?vkl
- TUTT Tz 01|, e, PG|

1 ied, k=1j xelU;nX(K)nXn,

Applying the large deviation bound (2.12) and taking into account (2.14), we find that

lim inf logP(E"e U(v))
=0 n/N,
r q
2= $ 5| st s coen]connton)
k=1j=1 xe nK
r q
>- Y'Y [ [JO)+ kvdy)
k=1 j=1 Cxnn }(Wj)
z -850~

and we arrive at (2.6). Here we have also used that #(Cy) = K and therefore

inf I(x;Cy) <J(y) foreach yeCinn }(W)

xeW;nK
and all j and k. The above estimates work in the case when
inf I{x;C,) < 0 (2.17)

xeW;inK

for all j and k. But they also work in the general situation with the conventions
0° = 1 and o0 -0 = 0. To see this, one has to take into account that A% , + @ implies
v(C, ™ (W) > 0 and this yields (2.17), since by assumption S(v) = fJ dv < 0.

[

It remains to derive the upper large deviation bound.

Lemma 2.6 For each 4™ "(X)-sequence (u™'") tending to pe #(X) and each
closed subset F of #(Y) we have

hmsup—log@ 2 (F) < — S F).

M, N—& M

Proof. 1° Fix pe .#(X) and an ﬂM’N (X )-sequence (u*") with u™-¥ — y arbitrar-
ily. As in the proof of the lower large deviation bound, we write ¥ in the form

1 M .
N= =) g with X150V, XV e Xy .
i=1
Again, let (M7 ..., %Ny be a YM-valued random vector on a probability space
g p

(Q,%#,P) the law of which coincides with the Radon extension of
Plux ® -+ @Plur. Let

1
M,

EM’N'

O (2.18)

||Mg
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be the associated empirical measure. Fix p = 0 and & > 0 arbitrarily. Let (M,) and
(N,) be sequences of natural numbers tending to infinity. Let further U (¥ (y; p)) be
an open neighborhood of the (non-empty) compact set ¥ (y; pj (see Lemma 2.3 and
Lemma 2.4). We must show that

log P(EM M ¢ U(P(p))) £ —p+h (2.19)

u
LT
(cf. Freidlin and Wentzell [8], Chap. 3, Theorem 3.3).

Before carrying out the details, let us sketch the ideas used to prove (2.19).
Roughly speaking, in step 2° we will divide the space Y in a certain way into a finite
number of ‘small pieces’ A;, and pick points y;, ‘close’ to A4,, 0 =<I1=Zg,
0 < r < r). This will allow us to pass to a discrete approximation £ N of EM:N by
replgcmg in (2 18) the random variables £¥ by discrete variables M-V, where we
set &MV =y, if E¥Ned,,. It will turn out that the proof of (2.19) essentlally
reduces to the same statement with Z¥'¥ and U(¥(i; p)) replaced by Z*-¥ and
a smaller neighborhood U(‘P( w p)), respectlvely This discretized version of (2.19)
will then follow from the observation that 5" := ZM=M~ satisfies the upper large
deviation bound with h-accuracy (step 3° below). More precisely, we will see that
for each closed subset C of .#(Y),

lim sup o loglP(E"eC) < — inf S +h, (2.20)
where
S): fJ(y)v(dy) ved(Y), (221
and

(2.22)

- J() for ye{y,,;0=1<q0=r=<r},
J(y):= )
+ otherwise.

This also explains the appearance of the additional parameter 4 in (2.19).
In the following we will often write n instead of M,,, N,,; in particular we will use
the notations u", & and Z" instead of yMn"n EMn-¥a gnd EM= Ve respectively.
To prove (2.19), we choose measures vi,...,v,e¥(y; p) and functions
g;eCo(N(=1,...,mj=1,...,n)so that

U 02U (P p))2U12(P (1 0))2 ¥ (15 0) (2.23)
where

m

U (P (1 0)):= | {Fe M (YYD, gyp — O gippl <aforj=1,...,n}. (224)

i=1

Because of the Tightness Hypothesis, we find an increasing sequence (K,) of
compact subsets of X such that

WK)=z1-1/r for all n and » . (2.25)
Then
H = {feM(X):AK,) 21— 1/r for all 7}
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is a compact and tight set of measures containing u" and p. From Lemma 2.4 we
know that W(£"; p) is also compact. Because of this, we conclude from (2. 23) that
there exist functions f,e C,(X) (k =1,.. ., p) such that

Uia(P (s p) 2P (VW) 0 A5 p) (2.26)
where

V= (AeM(X): KR > — il Sllork=1,...,p}.  (227)

2° We next construct mutually independent random variables &7 which attain only
finitely many values and are ‘sufficiently close’ to &f fori=1,. .., M,. To this end
we fix a number

¢ > 8plmax{lgyl:l Si<m1<j<n}v max{|fl:1 Sk<p}]. 229)

Because of (2.25), we may choose ro €N so that

h
WX\K, ) < % A for all n,

) 1
min -——— A min
i 16]g;l k16| fill

ie.

h 1
[{ixI¢ K, <M< min A min
{ixt ¢ Ky} 2 " TP elggl " 161

where |A4| denotes the cardinality of the set A. We select a finite covering of the
compact set ®(K, ; t) by open sets G4, . . ., G, such that

> for all n, (2.29)

sup [g:(y) — gi(P) < 1/8 foralli,jand 1 L1 =g (2.30)
¥, ¥eGi
and
sup | fi(n(y)) — fillw(P)) < 1/8 forallkand 1 <1 Z¢q. (2.31)
v, 3eGy
We choose pairwise disjoint measurable sets A;,..., 4, such that 4,2G, for
I=1,...,qand {Jj-y A, = = (J{=, G;. We further set 4,:= Go:= Y\Ui=1 4s.

Note that this set is closed. Given 0 £l < gand 1 £r <1y, we set
A=A 0 (KK, -1)
(with K, := 0) and pick a point y, ,€ G,n &(K,; t) so that
J(y,) = min{J(y):ye G, N ®(K,; 1)} . (2.32)

(If G, ®(K,; t) = §, then we choose yi.r€ @(K,; t) arbitrarily.) For 0 <1< g we
further set

Al,O = Al NI I(X\Kro)

and y; o:= yi,, Note that {4,,;0=<1=<q,0<r=<ro} is a partition of Y into
pairwise disjoint measurable sets. We introduce the index set

I':= {(lor):()glé%léréro,_élﬁ¢(K,;t)=i=(b}
U{6,0):0=1<4q,G n &K, =0} .
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Given nelN and 1 £i £ M,, we define
=y, if&ed, O0=I<q0=r<r, (2.33)

and introduce the associated empirical measure

The objects constructed above have the following properties:
(i) y.,€G, for all (I, r)eT, Vi,r€P(K, ;1) for all  and 7;
(i) J(y,,) Sinf{J(y):yed;,} for0<I<gand 1 <r <rg;
(i) Z"on~ e as. for each n.

The last property follows from the observation that Fom “K,,)=1 and
o YK)= Eron™ 1(K,) = p"(K,) for 1 < r < ry almost surely.

3% We next show that 5" satisfies the ‘h-accuracy’ upper large deviation bound
(2.20) with rate function S given by (2.21) and (2.22). The set .# of all measures in
M (Y) which are concentrated on { y; 0= [£405r ro} 1s compact. Slnce all
realizations of the random measures =" belong to M and § S(v) = + oo forv ¢ M, it
suffices to prove (2.20) for compact sets C<.#. But for this it will be enough to
derive the following local large deviation bound: For each ve.# there exists an
open neighborhood U(v) of v such that

lim sup

n—= w0 n/N

logP(E"e U(v)) £ — S() + h . (2.34)
To prove (2.34), we fix ved arbitrarily, choose ge Cy(Y) so that g = J on {y, -
0<1<¢0=r=<ry} and put

= (7:¢7,9> > SO) — b2} .

The existence of the interpolation function g is a direct consequence of the complete
regularity of Y. We introduce the index sets A" := {i: x} e K, }. Since y;,e ®(K, ; 1),
we have g(y,,) <t for all | and r. Together with (2.29) this yields

(&g Zg(é)+—

M n jeAr

Using this and Chebyshev’s exponential inequality, we obtain

P(Z" e Uv)) < 1P( Y g(é" > M,[S() — h])

iedn

< exp{ — M,yx,[SO) — 11} T] Eexp{yn, (&)} . (2.35)

iean
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where IE denotes expectation with respect to IP. Here we have also used that the
random variables ¢, 1 £i £ M, are mutually independent. For each i€ A" we have

ro

Eexp{yy g0} =Y Y exp{yn, J(.)} P(EreA,,)

I=0r=1
q Fo
<Y Y explynJOun)} sup PY Ay, . (2.36)
=

0r=1 xeKrnXy,

(By convention, the supremum over the empty set is zero.) Applying the upper large
deviation bound for {PY; xe Xy, N e N} and taking into account the Metrizability
Hypothesis and property (ii) of step 2°, we obtain

1
hmsup—log sup PY¥{4,,) < —J(y.,) (2.37)

n—>oo N xeKrn Xy,

for0<I<gand 1 £r £ ry. Combining (2.35), (2.36), and (2.37), we finally arrive
at the desired bound (2.34).

4° We have now collected all ingredients to prove (2.19). Using (2.23), (2.24), (2.27),
and property (iii) of step 2° and taking into account that Z"on ™' = p" — u weakly
as n — o0, we obtain for all sufficiently large n the estimate

P(E"¢ U(P (15 p)))
<PE" ¢U(P(1 ) Z'e U2 (P (15 p))
P(E" ¢ Uya (P (5 p) E"on ™ e V(W) N H)
+P(E"on " ¢ V(w)
< i § # (k& - 200 >3)
PE"¢ U, (P (s p)) Eon e V()N H)
+ k‘;lP<|<§" — 5" from)| > %) .

To prove (2.19), it therefore suffices to show that

lim sup log P(E" ¢ Uyn(P(1s p) E"on e V(W) N A) S — p + 5 ,(238)
n— oo n/N,
li L jogp |<Em — =" >|>1 < (2.39)
P 3 g, B~ o0l > 3 )< -
fori=1,...,mandj=1,...,n;, and
~ 1
lim sup log IP(I(E” — B fyom)| > §> <—p (2.40)
n—ow nIN,
fork=1,...,p

Taking into account the inclusion (2.26) and remembering the definition of
Y(V(w n o p), we find that S(v) = S(v) > p for each v with v ¢ U, (¥ (i p)) and
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vor~te V(w) n A . Therefore an application of the large deviation bound (2.20)
yields (2.38).
Using property (i), (2.30), (2.29), and (2.28) of step 2°, we get for all i, j:

- 1 M.
IKE™ = B giip| £ — ¥ 194;(E0) — g:;(ED)
M

nk=1
<L gt % 2 I, (&)
8 Y M, 21 o 5er At
{ 1 \ w "
S+ 2l | Heexk e Kol + ) Y 1,80
8 M, k=1 (Ln¢r
r+0
1t 1 M
Lyt D
4 4pMnkgl(l,§%F a
r+

Using this estimate and applying Chebyshev’s exponential inequality, we obtain
P(<E" — 5% gip)l > 1/2)

< 1P< YOY i, () > an)

k=1 (,n¢rlr
r+0

My
<exp{ — Myn,p} [] Eexp {m Y tlIA,,,(é;'l)} - (2.41)
k=1 {Lné¢r
r+0

Moreover, for each k,

]Eexp{yN" Y tHA,,,(fl'c')}

(Lry¢r
r+0

<1+exp{yntt Y Ped,,)

(Lry¢r
r+0

é 1 + eXp{VN"t} Z Sl'lpxeK,.rnYN,l Pﬁcvn (El) . (242)

@re¢r
r+0

But for (I, ) ¢ I' and r = 0 we have G, " ?(K,; t) = 0 and therefore
inf{J(y):yeGnr Y (K)} >t.

Because of this and the Metrizability Hypothesis, an application of the upper large
deviation bound for {PY; xe Xy, Ne N} yields

lim sup Llog sup P¥(G) < —1t
nol Py xeKnnXn,
for (I,r) ¢ I and r & 0. Thus, the expression on the right of (2.42) tends to 1 as
n — co. Combining this with (2.41), we arrive at (2.39). The proof of assertion (2.40)
repeats that of (2.39) with g;; replaced by f, =
This completes the proof of the upper large deviation bound (2.19). O
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2.2 Other representations of the rate function

In this subsection we derive two more representations of the rate function (2.2). Let
us begin with the derivation of a dual expression for the marginal problem (2.2).

Theorem 2.7 Let the assumptions of Theorem 2.2 be satisfied. Then
S(ps v) = sup [<v,g> — <, suplg(y) — I(+; y)1D] (2.43)

geCy (1) yeY
for all pe #(X) and ve H#(Y).

Remark 2.8 From Lemma 1.6 c) we know that the last supremum on the right of
(2.43) is sequentially continuous. Therefore

S v) = sup K>+ v g>],
f@gsI
feCp, (X)), geCy(Y)

where C, (X)) denotes the space of bounded sequentially continuous functions on
X. If X is Polish, then C, (X) = Cy(X) . The representation (2.43) of the rate
function S may therefore be regarded as a version of the dual representation for
marginal problems, see Kellerer [10]. Unfortunately, the (rather general) assump-
tions in Kellerer [10] do not exactly fit our needs. The proof given below employs
the large deviation background of the functional S.

Proof of Theorem 2.7 As in Lemma 1.6 c¢), we will use the abbreviation

hy(x) := Sygp[g(y) —I(x;y)], xeX.

Given Qe.#(p, v) and ge C,(Y), we have
JO@x, dy)I(x; y)
Z [Q(dx, dy)(g(y) — hy(x))
=V, 9> — {phs ).

This shows that
S(’u, v) g Sup [<V’ g> - <:u7 h’g>:] (244)

4eCy(Y)

for all ye #(X) and ve #(Y). _

_ Fix pe#(X) arbitrarily and set S(gv):=S(wv) for ve#(Y) and
S(u; v):= + oo for ve C,(Y)"\A(Y). Note that S(u; ) is convex and the level sets
(s p), p = 0, are compact in Cy(Y)* (cf. Lemma 2.4 a)). Therefore the function
S(u; ) is convex and lower semi-continuous on C,(Y)*. But this means that S(u; )
coincides with its bipolar, i.e.

S(wv)= sup [{v,9> — L(i9)), ve(Y),

geCp(Y)
where

Ly g):= ves%)[@, gy —S(wv)], geCy(Y)

(see e.g. Ekeland and Temam [7], Chap. 1, Proposition 4.1).
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To prove the inequality opposite to (2.44), it will therefore be enough to show that

L(is 9) 2 <w by, geCy(). (245)

Note that this inequality remains valid if one replaces g by g + const.

To prove (2.45), we fix ge C,(Y) and assume without loss of generality that
g £ 0. We choose an 4™ V(X)-sequence (u*") with u™'¥ —» y as M, N —» . By
Theorem 2.2, {Z3"; pe 4N (X), MeN, N eN} is a large deviation system with
rate function S and scale Myy. We can therefore apply the Laplace-Varadhan
method to obtain

) 1
L(y; g):Ml}erwM log [ 2N (dv)exp{Myy<{v, g>} (2.46)

I~ M(Y)

(see e. g Varadhan [17], Theorem 2.2). It follows from the definition of the measures
MN that
u

i log [ 2M¥(dv)exp{Myx<{v, g>}
VN M)

1
= [ " N(dx)—log [ PI(dy)exp{yng(»)}. (247)
X N Y

Now fix ¢ > 0 arbitrarily. Let (M,) and (N,) be sequences of natural numbers
tending to infinity. We will write 4" instead of u™»"» Because of the Tightness
Hypothesis, there exists a compact set K < X such that

WwKYz1—e for all n. (2.48)

Applying the Laplace-Varadhan method to the large deviation system
{PY; xe Xy, NeN}, we get

Jim Liog f P (dy)exp{yng ()} = hy(x)
for each Xy-sequence (xy) tending to xeX. Therefore, taking into account the
Metrizability Hypothesis and Lemma 1.6 ¢), we find for each xeK an open
neighborhood U(x) of x such that

1
lim inf — log inf  fP¥(dy)exp{yn g0}

n>wo YN, xeU()NnKnXy,

Z sup hfX)—e. (2.49)

XeU(x)nK

We select a finite covering {Gy, . . ., G,} of K by such open neighborhoods. Taking
into account (2.48), we find pairwise disjoint measurable sets A4;,=G; with
u(@A4)=0(1<£i<Lr)and

u(X\ U (4; N K)) <2. (2.50)

i=1

From this and (2.48) we conclude that

M"(X\O 4; N K)) < de (2.51)

i=1
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for all sufficiently large n. Combining (2.46) with (2.47) and taking into account
{2.51), we obtain

L(u Z liminf [ p" dx)—log fPN (dy)exp{yn g} — 4ellgll - (2.52)
i=1 170 4nK VN,
Since (2.49) holds for U(x) replaced by 4;, we get

liminf [ u(dx)—log f PY(dy)exp{yn,g ()}

R0 g.AK N,

1 .
> liminf p"(4) —log  inf  [P¥(dy)exp{yn,g(»)}

n= 0 N xedinKnXy,

n

zu(Ai)( sup_hy(x) — s)

xedinK

2 w40 K)< sup hy(x) — 8) — (lgll + &u(4\K)

xeAdinK

{%

[ udx) (hyx) — &) — (gl + Bu(A\K) (2.53)

AinK

for 1 £i <r. Here we have used that, as a consequence of g < 0, the expression
under the first integral is mnonpositive. We have also used the bound
sup,[g(y) — I(x;y)] = — |lg|- Substituting (2.53) in (2.52) and taking into account
(2.50), we arrive at

Ly 9) 2 f pldx)hy(x) — e(7llgll + 1 + &) .

Since ¢ may be chosen arbitrarily small, this proves (2.45), and we are done. [

We are now going to derive a further useful representation of the rate function
S (formulas (2.54) and (2.55) below) under the restriction that X and Y are Polish
spaces. Then, in particular, X satisfies the Metrizability and the Tightness Hy-
potheses and .#(X) and .#(Y) are also Polish spaces. For each NeN, we will
denote by .# (X y) the space of Radon probability measures on X and by 4™ (X y)
the subspace of M-point empirical measures. We will consider .#(Xy) as a sub-
space of #(X) and identify .#M(Xy) with .#M-¥(X), the subspace of .#(X)
consisting of M-point empirical measures concentrated on Xy. Let EY denote
expectation with respect to P¥.

Before formulating our result, we need to introduce the notion of e-convergence
(‘convergence in terms of the epigraph’, cf. Wets [19]). Let Z be a Hausdorff space,
and let f,, ne N, and f be functions from Z into R U { + co}. We will say that the
sequence (f,) is e-convergent to f,

f=e—1lm f,,

n— o0
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if for each ze Z the following conditions are satisfied:

Q) f(2) £ sup liminfinf f,(8) ;
Vet (z) n—w ZeV
(ii) f(2) = sup limsup inf f,(2).

Vev'(z) n—w© zZeV

Here 77(z) denotes the system of neighborhoods of z. If Z satisfies the first
countability axiom, then (i) and (ii) are equivalent to the following conditions:

(i') for each sequence (z,) tending to z it holds
f(2) £ liminf f(z,) ;

(ii") there exists a sequence (z$) tending to z such that

f(z) = liminf £,(z2) .

n—>w

This notion of convergence is useful in studying sequences of lower semi-continu-
ous convex functions; in particular, a sequence of lower semi-continuous convex
functions converges in this sense if and only if their convex conjugates converge (cf.
Wets [19]).

Theorem 2.9 Assume that X and Y are Polish spaces, and let the assumptions of
Theorem 2.2 be satisfied. Suppose further that the map x+—PY from X  into M(Y) is
continuous for each N e IN. Then the following assertions are valid.

a) For each NeNN, {?%N, ue #M(Xy), M eN} is a large deviation system with
scale M and rate function

SN(#: V) = fsgr()y)[<v=f> - <‘LL, IOg E{vef>]a ﬂGﬂ(XN), veﬂ(Y)

b) {PM-N, ue MM N(X),MeN, NeN} is a large deviation system with scale
Myy (as M, N — o). The corresponding rate function S satisfies

S(-) =e~ lim yy'S(uY;-) (2.54)
N-ow

Jor each pe 4 (X) and each sequence of measures u € M (X y) tending to p.

c) Let Z be a regular Hausdorff space and w a continuous map from 4(Y) into Z.
Denote by 2"V the image of the measure PN with respect to n (ue AN (X),
MeN, NeN). Then, for each NeN, {2V, pe 4™(Xy), MeN} is a large devi-
ation system with scale M and rate function

SY(wz):= inf S¥(wv), uedM(Xy), zeZ.

n(v)=z

{2MN, pe MMN(X), MeN, NeN} is a large deviation system with scale Myy (as
M, N — o0) and rate function

Sn(u;2)1=ﬂ(iv1)1£ Swv), peHX) zeZ.

Moreover,

So(ps+) = e — lim yy 'SY(u"; ) (2.55)
N—-w
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for each pe . #(X) and each sequence of measures p" € M (Xy) tending to p.

Proof. a) Assertion a) is a Sanov type theorem. Its proof can be found in Dawson
and Girtner [4], Sect. 3.5.

b) That {#¥N; ye a™™X), MeN, NeN} is a large deviation system is
a restatement of Theorem 2.2. It only remains to prove (2.54). To this end, we fix
pe#(X)and a sequence of measures ¥ e .#(Xy) with gV — p. Since X is Polish,
the subspaces Xy are metrizable. We may therefore apply Proposition A.1 to find
for each NeN measures u'Ne #M(Xy), MeN, such that

PN ¥ inM(Xy) as M- . (2.56)

Since .4 (X) is metrizable, we conclude from this that for each N e NN there exists
M(N)eN such that

MY s uoin H(X)as M, N » oo and M = My(N) . (2.57)

Given ve #(Y), let V be an arbitrary neighborhood of v. From assertion a) and
(2.56) we conclude that

— inf SV(1Y; 9) < liminf M~ log 228 (V) (2.58)

eV M-w
for each N. On the other hand, because of Theorem 2.2 and (2.57), we have
1nfS(/1, )= limsup M~ 'yt log ZMN(V). (2.59)

M,N—-w
M2 My(N)

Combining both estimates, we arrive at

inf S(y; ¥) < liminf inf y5 'S™(uY; ¥) .

eV N—-ow veV

Taking into account that S(y;-) is lower semi-continuous and .#(Y) is regular, we
conclude from this that

S(;v) < sup liminf inf yy 1S¥(u"; 9) . (2.60)

Ve?'(vy N-oow Ve’
Using the large deviation bounds

— inf SN (uY, v)>11msupM Log MY (V)

JeV

and

—inf S(x 7) < liminf M~ ly5" log 2% (V)
e M,N—
Mz My(N)

opposite to (2.58) and (2.59), respectively, we find in a similar manner that

S(u;v) = sup limsup inf yy 'S¥(u; 7). (2.61)
Ver'(v) N—-w veV
(2.60) and (2.61) together imply the e-convergence of S¥(u";-) to S(y;°).
c) The first half of assertion c) is a consequence of the contraction principle.
The proof of the e-convergence (2.55) follows the proof of (2.54) with 2}~ S¥ and
S replaced by 2N, SN and §,, respectively. O
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3 Randomly perturbed dynamical systems

4.1 Notation and main result

In this section we deal with diffusion processes in R? with generator

2 d

ys'—gz}d: (- t)—a + Y bi(: t)i
t'_2i’j=1a T oxioxt & T axt

(3.1)

depending on a small parameter & > 0. More precisely, given T > 0, we consider for
each ¢ > 0 the solution {P% ,;(x,)e R*x [0, T]} to the martingale problem for
{5 1[0, T]}. Here P, is the law on Co r:= C([0, T]; R?) of the diffusion
process governed by {#5; te[0, T]} which starts at time ¢ at point x (ie. P, is
concentrated on paths ¢ e C, r with @(s) = x for se[0, t]). For details see e.g.
Stroock and Varadhan [15]. We will often write P instead of P% .

We first want to formulate the Freidlin—Wentzell result on large deviations for
the family of probability measures {P%;x e R% ¢ > 0} in a form which is convenient
for our purposes (Theorem 3.1 below). To this end we need some further notation.

Given (x, f)e R? x [0, T], we denote by | -|,. , and V, ,, respectively, the Rieman-
nian norm and the Riemannian gradient in the tangent space at x for the Rieman-
nian structure on R? associated with the diffusion matrix a(-, £) . In particular,

d

2, =Y alx 022, z=(z},...,z%eR"
iLji=1
and
Lo of (x) of (x)
|Vx,tf|J2c,t = i,]Z=‘1 a](xz t) axi axj .

Here {a;;(x, t)} denotes the inverse of the matrix {a"(x, £)}. (Of course, if a(-, £) is
not sufficiently smooth, then there is not really a Riemannian structure associated
with a(-, t), but the above formulas still make sense provided that the diffusion
matrix is non-degenerate.) Suppressing the dependence on x, we will often write ||,
and V, instead of |-|. , and V. ,, respectively.

We define a functional I: C, 1 — [0, o] by setting

.
I(g):= Eof l9(8) — bl(2), Ol5w, dt (32)

if e C,, 1 is absolutely continuous and I{¢p):= + oo otherwise. Let
@(A,p)={(PEC0’T(D(O)€A,I((,0)§,D}, AEIRda ona

denote the associated level sets.

Co. 1, I, and @(4; p) are defined with respect to the time interval [0, 7. Given
an arbitrary time interval [s, 1] [0, T, the associated objects will be denoted by
Cs.1s 15,1, and & (A4; p), respectively.

We impose the following assumptions on the diffusion matrix a(x, t) =
{a"(x, 1)} and the drift vector b(x, t) = {b'(x, 1)}.

Assumption (D1). The diffusion matrix a: R¢x [0, T] - R‘@R? and the drift
vector b: IR? x [0, T] — IRY are continuous. For each (x, t) € IR? x [0, T, the matrix
a(x, t) is symmetric and strictly positive definite.



456 D.A. Dawson, J. Gartner

Assumption (D2). The martingale problem for {#% 1[0, T} is well-posed for
each ¢ > 0.

Assumption (D3). (i) For each compact set K = R and each p > 0, the set $(K; p)
is bounded in Cg, 7.
(ii) For each te[0, T) and each xe R, the equation

o) =blpw),w, uelr,T], (33)
has at least one solution ¢ € C, r with ¢() = x.

Theorem 3.1 Let the Assumptions (D1)~(D3) be fulfilled. Then {P%; xeR% & > 0} is
a special large deviation system (with respect to the map @(-)— @(0)) with rate
function I and scale ¢~ as ¢ — 0. Moreover, the level sets ®(K; p) are compact for all
compact sets K = R? and all p = 0.

For bounded and uniformly continuous drift and diffusion coefficients with uni-
formly non-degenerate diffusion matrix the proof can be found in Freidlin and
Wentzell [8], Chap. 5, Theorem 3.1, in the time homogeneous situation and in
Wentzell [18], Theorem 4.3.3, for time inhomogeneous coefficients. Azencott [1],
Chap. III, Theorem 2.13, allowed explosion and degeneracy of the diffusion matrix
but assumed local Lipschitz continuity of the drift and diffusion coefficients.

In Appendix A.2 it will be shown how Theorem 3.1 may be derived from the
results in Wentzell [18] by use of localization techniques.

We are now going to study large deviations for empirical processes of N inde-
pendent copies of our diffusion processes in the limit as N — oo and ¢ —» 0.

Before formulating our result (Theorem 3.2 below), we introduce some further
notation. By .# := .4 (IR?) we denote the space of probability measures on R? en-
dowed with Prokhorov’s metric. Given N e N, let .4 be the subset of .# consisting
of N-point empirical measures, i.c. of measures y of the form

N
p=N"1) 6, with x4,...,xyeR?. (3.4)
i=1
Also let €4 r:= C([0, T]; .#) be the space of continuous functions from [0, 7]
into # furnished with the topology of uniform convergence. Both .# and %, r are
Polish spaces.

Given NeN, ¢ > 0, and a measure pe.#" of the form (3.4), we denote by
PY* the law on %, r of the empirical process associated with N independent
diffusions having laws P5 ,. . ., P%,, respectively. More precisely, Wﬁ’ *#is the image
of the product measure P} ® --- ® P;, with respect to the continuous map

N
(Co,1)¥a(y1(*), - -, yn(*)) H(”"N_l Z 5Yi(t)>e(gO,T . (3.3)

i=1
We denote by & the Schwartz space of test functions R? — R having compact
support and possessing continuous derivatives of all orders. We endow & with the
usual inductive topology. Let & be the corresponding space of real distributions.
For each compact set K = IR?, @ will denote the subspace of 2 consisting of all
test functions the support of which is contained in K. Given 9 2’ and fe &, let

{3, > denote the application of the test function f to the distribution &

A distribution-valued function 9(-):[0, 7] — &' will be called absolutely con-
tinuous if for each compact set K = IRY there exist a neighborhood Uy of 0 in
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Pg and an absolutely continuous function Hy: [0, T] — R such that

1<), [ — <), /O] = |Hi(s) — He(0)]

foralls, te[0, T]and fe Ug. If (- ) is absolutely continuous, then the derivative in
the distribution sense 3(t) exists for Lebesgue-almost all te[0, T], see Dawson and
Gartner [4], Lemma 4.2.

Given ue 4 and te[0, T'], we introduce a normed linear space T, , 1= { 9 Z":
[, < oo} with norm |- |, , defined by

1<K, /O
2= sup ————o—,
1911, o IV S

Here 2,,,:= {fe2:{u|V,f1?> * 0}. Heuristically speaking this means that, for
each te[0, T], we consider .# as an infinite dimensional ‘Riemannian manifold’
with ‘tangent spaces’ T, , and ‘Riemannian norm’ || ||, ,, ue.#.

We define a functional S°: %, 1 — [0, co] by setting

9 . (3.6)

T
SO =y [ G — (L0, 37

if u(-) is absolutely continuous and S°(u(:)):= + co otherwise. Here

)
HLGURE

denotes the operator (3.1) for ¢ = 0 corresponding to the unperturbed motion
% = b(x, t), and (£?)* is the formal adjoint of #? acting on &'. Let

PO(t; p):= {u(-)€bo,r: O e, SNu(- ) < p}, A<M, p20,
be the level sets associated with S°.

Theorem 3.2 Let the Assumptions (D1)-(D3) be satisfied. Then {PN% pe #™,
NeNN, e > 0} is a special large deviation system (with respect to the map (- ) u(0))
with rate function S° and scale Ne™% as N — oo and & — 0. The level sets ¥°(A"; p)
are compact for all compact subsets A" of M and all p Z 0.

Before turning to the proof of Theorem 3.2, let us make several comments about
the Assumptions (D1)—(D3).

Remark 3.3 a) Assumption (D1) guarantees uniqueness of the solution to our
martingale problem for each ¢ > 0(Stroock and Varadhan [15], Theorem 7.2.1 and
Corollary 10.1.2), but it does not exclude explosion. In Assumption (D2) we require
that our processes do not explode. Non-explosion criteria can be found e.g. in
Stroock and Varadhan [15], Chap. 10.

b) Let Assumption (D1) be satisfied. Then Assumptlon (D3)is equlvalent to the
condition that the sets @ (K;p) are bounded in C,, and non-empty for
0 < s <t Z T, each compact set K = IR% and all p = 0.

Indeed, part (ii) of Assumption (D3) is obviously equivalent to the condition
that the sets @, ,(K; p) are non-empty. Now let (D1) and (D3) be satisfied. To check
that @, ,(K; p) is bounded, we define a map : C, , > Cq 1 by setting 1(@) () := ¢(s)
for uel0, s, t(@)(u) : = @(u) for ue[s, t1, and by choosing 1(¢)(u), uc[t, T, to be
a path of the dynamical system (3.3) with 1(¢)(f) = ¢(¢) which exists according to
part (ii) of Assumption (D3). It follows that (&, (K; p)) < ®(K; p) for some p > p.
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Since ®(K; p) is bounded by part (i) of Assumption (D3), this yields the bounded-
ness of & ,(K; p). The reverse part of our claim is immediate.

c) If the drift coefficient b is time-independent, then Assumption (D1) and part
(i) of Assumption (D3) together imply part (ii) of Assumption (D3). Otherwise one
would find t€[0, T), xeIR% and an unbounded continuously differentiable func-
tion ¢@:[t,T) — R? satisfying ¢(t) = x and ¢(u) = b(p(u)) for uelt, T). Set
@) := xforuef0, ¢t + 1/n] and ¢, () := @u — 1/n)foruelt + 1/n, T]. Then (¢,)
is an unbounded sequence in C, r which belongs to @(x; p) for some p = 0. But this
contradicts part (i} of Assumption (D3).

d) In general, the Assumptions (D1) and (D2) do not imply Assumption (D3).
To see this, let F be a bounded smooth real function with F'(x) > 0 for all x. Then
the Assumptions (D1) and (D2) are satisfied for d = 1, a(x, t) = a(x) = (F'(x))~*
and b(x, ) = 0. But each solution of the equation

p 1/2
o(0) = (—7-, a(w(t))) . tzo0,

explodes before time T for p > (F( + o) — F( — o0))*/T. Consequently, for each
such p, the level sets @(K; p) are not bounded in Cq 5.

e) Let Assumption (D1) be fulfilled. Suppose that there exist a continuously
differentiable function U: R? —» R with

lim U(x) = + (3.8)
o= 00
and A = 0 such that
1
LU + 2 VU2 U for all te[0, T] . (3.9

Then Assumption (D3) is satisfied. Before turning to the proof, let us remark that
condition (3.9) is certainly fulfilled in the case when b(-,t) = — V,U, te[0, T].
Using (3.9), we find that

d
7 <e_“U(<0(t))> = e~ “[(@(t), V. U(@®)) — AU (p(1))]

1
s e‘“[(qb(t) —b(e®), ), VU (e®)) — 5 IV:U(qo(t))I?]

1
Se ™ 5 9@ — blo(), I

for all absolutely continuous paths @ e Cy r and Lebesgue-almost all t<[0, T7].
Here (-, '), denotes the Riemannian inner product with respect to the diffusion
matrix a(-, t). Thus, integration yields

e MU(@M) S U(eO) + (), te[0,T7.

Together with (3.8), this implies the boundedness of the level sets, i.e. part (i) of
Assumption (D3). Now let ¢ be a path of the dynamical system (3.3) in a right-open
time interval [¢, ¢') = [0, T]. Then, analogous to the above, we obtain

e MU(pw) < e #U(p(t))  foruels ).
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Hence, ¢ is bounded on [¢, ') . In other words, the paths of our dynamical system
do not explode. Together with Assumption (D1), this implies part (ii) of Assump-
tion {D3).

The rest of Sect. 3 is devoted to the proof of Theorem 3.2. We will assume
throughout that the Assumptions (D1)+D3) are satisfied. We will close the present
subsection by showing that {#)%; pe #", NeN, ¢ > 0} is a special large deviation
system. The remaining two subsections are devoted to the identification of the rate
function in the form (3.7).

Given te[0, T], we will denote by =, the canonical projection Cy 7 — R?
defined by m(¢p):= ¢(t), p€Co, 1. Let #, be the induced map #(C,, 1) — H#(RY),
ie. #(Q):=Qom ', Qe (Co,1). Since each measure Qe .#(C, ;) may be re-
garded as the probability law of a stochastic process with continuous paths, the
measures 7,(Q), t€[0, T'], may be interpreted as the one-dimensional distributions
of this process. Recall that I denotes the rate function for {P%; xeIRY, ¢ > 0} given
by (3.2).

Lemma 3.4 The family {?Y*; ue #4~, NeN, ¢ > 0} forms a speczal large deviation
system (with respect to the map u(-)— u(0)) having scale Ne™? and rate function

S(u(-):=inf{<Q,I>:Qe M (Cy 1), #(Q) = u(t) for all te[0, T]}, (3.10)

u(-)e¥o, . The associated level sets

V(A5 p) = {u(-)eBo,r: @ eX, S(u(-)) < p}
are compact for all compact sets A" < M and all p = 0.

Proof. Given NeN, ¢ > 0, and a measure pe.#% of the form

N
ﬂszlz 53‘71" xl,...,xNE]Rd,

i=1

let 972’ *¢ denote the image of the product measure P5 ® --- ® P}, with respect to the
map

N
(Co,T)N3()’1(')a- N )N Z 5yi(~)€ﬂ(C0,T)-

i=1

Since {P%; xe R ¢ > 0} is a special large deviation system (with respect to 7,) with
scale ¢~ 2 and rate function I and because of the compactness of the associated level
sets (Theorem 3.1), we may apply Theorem 2.1 to see that the measures £5°¢ form
a special large deviation system (with respect to #°) having scale N¢~2 and rate
function

S := [ I(e)QWp),  QeM(Cor).

Moreover, according to Lemma 2.4 b), the level sets

P(H'; p):= {Qe.M(Co 1): Ro(Q)e X, 5(Q) < p}

are compact for all compact sets #* < .# and all p = 0. But 23-¢ is the image of
9’” * with respect to the continuous map

M(Co,1)2Q — (t—>7(Q))€Fo, 1 - (3.11)
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(Concerning continuity, see the proof of Lemma 4.6 in Dawson and Gértner [4].)
Therefore the assertions of our lemma now follow by an application of the
‘contraction principle’. U

3.2 Identification of the rate function for bounded smooth coefficients

In the rest of Sect. 3 we show that the functionals S and S defined by (3.7) and
(3.10), respectively, coincide. We will always impose the Assumptions (D1)—(D3) on
the drift and diffusion coefficients.

In this subsection we will derive the inequality S = S°. After that the proof of
the opposite inequality will be given under the following boundedness and smooth-
ness conditions.

Assumption (BS). The diffusion and drift coefficients (g, b) are bounded and
uniformly continuous. The diffusion matrix ¢ is uniformiy non-degenerate and
possesses bounded continuous spatial derivatives of first order.

This means that the proof of Theorem 3.2 will then be complete under the
additional Assumption (BS). In the next subsection it will be shown how to remove
this boundedness and smoothness restriction to get the inequality S < S° in full
generality. This final step of our proof is rather technical. The reader who is
interested in catching the main ideas of the proof only may skip Sect. 3.3.

To prove the inequality S = S° we will apply a variational expression for
S taken from Dawson and Gértner [4] with slight modification (Lemma 3.5).
Then, applying the Laplace-Varadhan method to a certain family of exponential
martingales, we will see that the terms in the variational expression do not exceed
S (Lemma 3.6).

According to Theorem 2.9, S is the epigraph limit as ¢ — O of the rate functions
St associated with the special large deviation systems {#)%; ue 4", Ne N} for
fixed ¢ > 0 and N — c0. Because of this, we will see that the proof of the inequality
S < §° may be reduced to the verification of

lim sup lim sup 8*(u5(-)) < S°(u(*)) . (3.12)

§=0 £—0

Here ps(t) denotes the convolution of u(t) with a smooth é-like density such
that us(+) = u(-) as 6 » 0. We know from Dawson and Gértner [4] that §°
admits the same integral representation (3.7) as S° but with #? replaced
by the diffusion operator .#¢. Under Assumption (BS), in $* we may get rid
of the singularly perturbing second order term of % as ¢—0, if we replace
u(+) by its ‘smooth’ approximations u,(-) . This fact will be proved in Lemma 3.7.
Altogether the above arguments will then yield S < S® under Assumption (BS)
(Lemma 3.8).

Let us now turn to the details. Given a function g: R*x [0, T] - R and
te[0, T, we will denote by g(t) the function g(t)(x):= g(x, ), xeR%. We will
denote by CZ! = CZ'1(IR? x [0, T]) the set of continuous real-valued functions on
R? % [0, T'] having compact support and possessing continuous spatial derivatives
of first and second order and a continuous time derivative of first order. We begin
with the following lemma which was proved in Dawson and Gértner [4], Lemma
4.8, for &%, ¢ > 0, instead of £?. It is also valid for £, since the presence of second
order derivatives in #; played no role in the proof.
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Lemma 3.5 For each u(-)e%,,r,
SO(u()) = sup J(u(-); 9) » (3.13)

geCh!

where
J(pu(-) g) := (1), g(T)y — <u(0), g(0)>
- f <u(t) < + $°>g(t)+ IVtg(t)|t> (3.14)

Lemma 3.6 S = S°

Proof. Given ge C2* and ¢ = 0, we introduce the bounded continuous functional

Fgx(+)) 1= g(x(T), T) — 9(x(0), 0)

- f[( +ge>g(x(t) )+ 3 Mg @), 07 |ai

H

x(+)eCy, 1. For & > 0 this functional has the form
1
Fg=Mi— 5 M, (3.15)
where

L0
Mi(x(+)):= g(x(®) — g(x(0)) — Of <8—S + 32)9(36(5), s)ds ,

te[0, T'], is a bounded continuous P;-Irfartingale with quadratic characteristic

M x() =& [ [Vsg(x(s) s)lids,  te[0,T],
0

for each x e R% Therefore,
1
exp{ M:— 2 2 LM, }

is an exponential P}-martingale. Because of (3.15), this implies that
&? log Esexp{e *F;} = 0 (3.16)

for all ge C¥1, xeR?, and ¢ > 0. Here EZ denotes expectation with respect to PZ.
Note that F converges to Fy uniformly as ¢ — 0. Applying the Laplace-Varadhan
method (Varadhan [17], Theorem 2.2) for the large deviation system
{P¢; xeRY, & > 0}, we may therefore pass on the left-hand side of (3.16) to the limit
as ¢ — 0 to obtain

sup [Fg(p) —I(¢)]=0, xeR~
o(0)=x

Hence, I 2 F{ and, in particular,

Q, 1> =<Q, F>
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for each measure Qe #(C,, 1). But

Q. F)>=J#Q)9),
where J is defined by (3.14). Combining these facts with (3.10} and (3.13), we finally
obtain for each u(-)e%,, r:

S(u(-) = inf <Q,I> ZsupJ(u(-);g)=8%u("). O

#Q)= (") geC2!

To prove the opposite inequality S < S° we introduce functionals S%
bo,7 — [0, 0], =20, by setting

Su(-) =5 f () — (L2 () | 2y u A (3.17)

if u(-) is absolutely continuous and S?(u(-)) := + oo otherwise. Note that for ¢ =0
this coincides with our previous definition of S°.
Let k: R > R be a symmetric C® function such that k(x) > 0 for |x| < 1,
k(x)=0for |x| = 1, fk(x)dx =1, and
Vi (x)|?
/ k(x)
x| <1
where V denotes the ‘usual’ gradient with respect to the Euclidean norm || We
introduce the smoothing kernels

ky(x):=0"%( 1x), xeR% §>0.

Given a measure pe.# and a function fe C,, we will denote by u; and f; the
convolution of p and f with the kernel k;, respectively.

Lemma 3.7 Let Assumption (BS) be satisfied. Then
lim sup lim sup $*(us(+)) < S%(u(-))
=0 e—=0

dx =:x < 0, (3.18)

for each u(-)e%,, r.

Proof. We fix u(-)e%,, r arbitrarily and assume without loss of generality that p(-)
is absolutely continuous.
1° Because of our assumptions on the diffusion matrix a, we find constants

C; and 0 <y <7 < oo such that

d d a . 2
Y Yamdixy) £C, (3.19)
j=1\i= 10x
and
d d B _d
Z <Y Ak id <y Y A2 (3.20)
i= Lj=1 =1
for all (x, ) e R?x [0, T] and A4, . .., 4;€R. Note that the diffusion matrix a may
be written in the form oo*, ie.
d
al(x, 1) = Y, oi(x, Dai(x, 1) . (3.21)

k=1
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Consider the operators

d 2
%’t‘—llzl ai(-, ) pEw te[0,T]. (3.22)
We first want to show that
T
S N FusD) 2, dt < 0 for each 6 > 0. (3.23)
0

This is the kind of ‘smoothness’ of ys(-) which is needed to get rid of the diffusion
part of .#5 in the representation (3.17) of S®(u;s(-)) asymptotically as ¢ » 0. Note
that, in general, (3.23) fails to be true for us(-) replaced by u(-). By definition (3.6),
we have

<R, ko #0f P
th i«s it = -
17O = SIP o VT

Writing the convolution ks x 5, f as an integral, integrating by parts, and using
(3.21), we find that

(3.24)

ks H.f = IV + 12, (3.25)
where
Oks(x — y)
W=~ [ dy Y |Y ey~
x—yl <& k=1\i=1 Vks(x —y)
4 1,
(g 10, 0/l = 3) ﬂ”)
and

d /e 0 P
I;Z)(x, t):= ——fdyka(x —-9) Z ( a_yiau(y’ t)) .g)(});) )

j=1\i=1

Applying the Cauchy-Schwarz inequality and again using (3.21), we obtain

Oks(x — y) ¢

" 5 d ayi
PP [ dy Y Z oi(y, t) ———
-y <5 k=1\i=1 ks(x — )

ﬁ@Z(Zd%mMM— ”@)

k=1\j=1

Oks(x — y) Oks(x — )

d 0y’ oy’
= dy Y, d’(y,1)
|x~y|f<é ij=1 Vko(x — ) Ss(x — y)

a P P
Sk 3 @00 GG
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Together with (3.20) and (3.18), this implies that
IV < 67 2ky ks % |Vf)? . (3.26)
Similarly, using (3.18)—(3.20), one gets
[IPI2 < Coy~ P ks * VS (3.27)
Combining (3.25) with (3.26) and (3.27), we conclude that
[ule), ks A f Y12 < (), ks k12
< Colult), ks % [Vof 12

where the constant C; does not depend on f or ¢t. Hence, the supremum on the right
of (3.24) does not exceed C; for all te [0, 7], and we arrive at (3.23).

2% Note that the absolute continuity of u(-) implies the absolute continuity of
us(+) for each 6 > 0. Since (a + b)* < a?/0 + b*/(1 — ) for 0 < § < 1 and

82

Q?—$?=E«7ﬂ,

we get

1s(8) — (LD*usO 1 207,

L
=gl — (L0 1O s, + 17 15 20,

4(1 0)
for arbitrary 8€ (0, 1) and all te [0, 7. Thus,

et

S() S 5 S0 ) + 37—

f |5 s ()| 2,0, dE -

Together with (3.23), this implies that
11m 1sup S*(us()) < S%us(+))  foreach 6>0.

This reduces the proof of our lemma to the verification of the inequality

lim sup 5°(us(+)) = SO(u(-)) - (3.28)

3° To prove (3.28), we fix 8e(0, 1) arbitrarily. We first show that

{pslt), VS 17> Z 0p(0), [Velks kIS (3.29)
for all te[0, T] and fe & provided that § is sufficiently small. Because of (3.20) and
the uniform continuity of the diffusion matrix,

d

d
Y i) 20 Y allx, )i

i,j=1 i,j=1

for all x, yelR? with |x —y| <é and all A,...,A;€R provided that ¢ is
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sufficiently small. Taking into account (3.21), we obtain for such &:

) L) HV)
oy oyl
d
20 dykx =) 3 atx 6f;y) af;)
l af(y)>2

Y. fdyks(x —y) < Y ok(x, I)T

k=1 i=1 y
d
X

03 (5 dn farnis—n L0

=82<Zﬁ@t i%*ﬂuﬁ

k=1

ks %V, f12(x) = fdyks(x — y) Z ¥,

i,j=1

Y

= 0|V,(ks % f)I?(x) .

This implies (3.29).
On the other hand, we have

I<as(t) = (L2)*us 0, f 1P
= [<a() — (LY u), ks %[> + <p(t), L7 ks *f) — ks % L7 fHI

=3 Kﬂ(t) — (L) ule), ks xf 2 +—<u(t) | L2ks %f) — ks *x L2 .

Applying the Cauchy—Schwarz inequality and using (3.20), we see that
|22 (ks %) — ks % Z7 f17(x)

= |[dyks(x —y) Z[b(x 1) — by, 1]

: d
éf@%u—wgwu, bmmf@%@_”z<f@>

oy'
S By ks % IVefI7(x)

where
d . :
B(d):= sup ., [b'(x,0) —bi(y, 0.
|x—y|<di=1
te[0,T]
Therefore,

I[<as(t) — (L2 us@). SO = - |<#(t) — (L), ks ¥ f HI?

B(9)
y(1—90)

+ Spat), IS 125 (3.30)
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Using the definition (3.6) of the norm |||, ., (3.30), and (3.29), we find that

B(5)

[l s(2) — (f")*ua(t)ll,l.,(z) 1 = ||/«l(t) — (L u®lio, + m R

ie.

S%(us(-)) = —SO(M( N+5 g B0 (3.31)

T
2y(1 - 9)
for all sufficiently small § > 0. Since the drift vector b is uniformly continuous, B(J)
tends to zero as § — 0. Therefore, in (3.31) first letting § — 0 and then 61 1, we finally
arrive at assertion (3.28). O

Lemma 3.8 Let Assumption (BS) be satisfied. Then S < S°.

Proof. According to Theorem 3.1, {P%; xe R & > 0} is a special large deviation
system with rate function I and scale ¢~2. Moreover, the associated level sets
&(K; p) are compact. Note also that the map x—P% from R? into #(Cy, 1) is
continuous for each & > 0 (Stroock and Varadhan [15], Corollary 10.1.4). From
Lemma 3.4 and its proof we know that 23* is the image of the measure 2}¢ with
respect to the continuous map (3.11) and that {#%%; ue 4™ NeN,e> 0} is
a special large deviation system with rate function S and scale Ne~ 2. In Dawson
and Gartner [4], Theorem 4.5, it was shown that the family {#}°%; ue 4", N e N}
forms a special large deviation system having rate function ¢~ 25 and scale N for
each ¢ > 0, where §° is given by (3.17). We may therefore apply assertion c) of
Theorem 2.9 (with respect to the measures P; and the map (3.11)) to obtain

S=e— lim§° . (3.32)

g0
In particular, we have

S(ue(+)) = lim ionf S(us ()
for each u{-)e %, r and each ¢ > 0. Since the functional S is lower semi-continuous

and u;(-) — p(-) in €, r as 0 - 0, we conclude from this that

S(u(-)) < liminf lim inf S*(u,(+)).
40— 0 £=0

Combining this with Lemma 3.7, we arrive at S < §°. [
Remark 3.9 We have shown that, under Assumption (BS),

S°=S=¢—limS®,

e~0

cf. (3.32). But S° is not the pointwise limit of §¢ as ¢ — 0. Namely, as a byproduct of
the above proofs, one gets

lim §*(u(-)) = SO(u())



Multilevel large deviations 467

if u(-) is absolutely continuous and

T
SN G dt < oo,
0

but
Su(-) =+ forall e >0

otherwise. (The operators &, are defined in (3.22).) In particular, if ¢ € Cy,  is such
that the Freidlin—Wentzell rate function I(¢) is finite, then

SBoc)) = SByy) = 1(9) <0,
but
S50,y) = ®© foralle>0.

At least partially, this explains why the identification of our rate function causes
problems.

3.3 Extension to unbounded coefficients

So far, we have shown that the inequality S < S° and therefore also the assertion
of Theorem 3.2 are valid under the additional boundedness and smoothness
restrictions of Assumption (BS). In the rest of this subsection we show how to
prove the inequality S < S° for merely continuous unbounded drift and diffusion
coeflicients. The crucial condition which we imposed on the coefficients to control
their growth at infinity is the compactness of the level sets, cf. Assumption (D3).
Our approach is to derive an appropriate inequality for bounded coefficients (see
Lemma below) which implies S < S° and to make explicit use of the compactness
of the level sets to extend the mentioned inequality to the case of unbounded
coefficients.

Note that the Assumptions (D1}+D3) for the time interval [0, T] imply the
analogous assumptions for each subinterval [s, t]<[0, T]. Given 0 £ s <t £ T,
we may therefore apply Theorem 3.1 to conclude that the family {P: ; xeIRY,
¢ > 0} of probabilities on C,, forms a special large deviation system with rate
function I, and compact level sets @, ,(K; p). By the ‘contraction principle’, the
family {P% o7 ';xeR% &> 0} of probability laws on R? also forms ‘a large
deviation system having rate function

PP y)i=inf{I(@):9eCsno(s) =X, 0(t) =y},  x,yeR?. (3.33)
Moreover, the level sets
P>'(K; p)i= {yeR%:I*!(x; y) < p for some xeK }

are compact for all compact sets K<IR? and all p=0. Given
Vi, ..,V €M = M(R%, we will denote by A (vy,. . .,v,) the set of probability
laws on (RYY with marginals v, ..., v,.

Considering 2)°¢ as the law of an .#-valued stochastic process, we now express
the rate function S in terms of rate functions associated with the corresponding
finite dimensional distributions.
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Lemma 3.10 The rate function S of the special large deviation system
(PN e ue MV, NeN, ¢ > 0} has the form

S(u(-) = sup Sttt ) ptd),  p(-)ebo,r,

O=tg<ty < <t,<T p—1

where

S v):= inf [ P y)Qdx, dy)

Qe (u,v) (R4)?
forO<s<t<Tand u,ve H.

Proof. As a first step we show that
Su(-)=_ sup SO p), . ., pult) (3.34)

o<ty <<t 5T
where

Stl ..... tr(v(); Vise o o s Vr)

= inf I Y I %G990y, . . ., dy,) (3.35)
Qe (vo,....v) (RY)" k=1
with the convention ¢, := 0.

Let .4 ™) be the space of functions [0, T'] - .# equipped with the product
topology. Given NeN, ¢ > 0, and pe.#%, we denote by #¥¢ the image of the
measure #Y¢ with respect to the continuous imbedding %o ¢ — 417\ Let
st () <ty < - <t, £ T, denote the finite dimensional distributions of
2% In other words, 255"~ is the image of Z)* with respect to the map

Co,rou(") > (ulta), . . ., pt)) e A" .

{#55; ne MY, NeN, ¢ > 0} is a special large deviation system with rate function
S equal to S on %, 7 and equal to + oo on %"\, ;. By the ‘contraction
principle’, for each partition 0 <t; < - <t, £ 7T of [0, T], the measures
PN-uto-t glso form a large deviation system as N — oo and & — 0. Let us denote
the associated rate function by S Note that #Y° is the projective limit of the
measures ﬂf’““"“”*, 0=t; < - <t,£T. Projective limits of large deviation
systems have been considered in Dawson and Gértner [4], Theorem 3.3. That
result yields the formuila (3.34). .

We next verify (3.35). To this end, let PY5*> denote the law of the empirical
measure associated with N ‘independent copies’ of the measures P&+, xcRY,
where P%'t " 0 <ty < .-+ <t, < T, are the finite dimensional distributions of
the diffusion P%. The measure PY:%-* is the image of P} %' with respect to
the continuous map .#((RY) — (#(RYY which transforms each probability
measure on (RY into its » marginals on R%. Applying Theorem 3.1 and the
‘contraction principle’, we find that the family {P%'"-*; xeR% ¢ > 0} forms
a large deviation system with scale ¢~ 2 and rate function

Itl ..... t'()’o;)’n- . syr) = inf{l(fﬂ)3§0eco.ra (P(to) = Y05 .- >(p(tr) = yr}

= Y I*“v"ye_ ;) Yos..., V. €R?.
k=1
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Now, in order to identify the rate function S of {PY&®b; ye 4V,
NeN, e >0}, we may apply Theorem 2.2 to compute the rate function of
{Pyetot ue MY, NeN, e > 0} and then apply the ‘contraction principle’. In
this way we arrive at (3.35).

To complete the proof, it remains to check that

r

inf f 2 T2 (ye - 1;¥00(@dyo, . . . , dy,)

Qe (vo,..., V) (REr k=1

= z inf f I %y 1390 Q(dyic— 15 AV)
k=1 Qe (vic-1, vi) (R9)2
forO=ty<t; < - <t.<Tand vy, ..., v,e.4.
Given Qe #(vy, ..., v,), let Qy, ..., Q, denote the ‘two-point’ marginals of
Q corresponding to the variables (yo, y1), ..., (V,—1, 31} , respectively. Then

r

/ Z Itk_l,tk(yk—l;yk)Q(dym rres dyr)

(IR'i)' k=1

¥

=3 [ "% 150 Qu(dyi—15dy) (3.36)

k=1 (R9)2

which yields the inequality ‘Z=’. To prove the opposite inequality, fix
Qre MVi—1, V), k=1,...,r, arbitrarily. Each of these measures Q, may be
written in the form

Qdyi-1, dyr) = adye—1, dye)vie—1(@ye-1) ,

where ¢q(yi—1,°) 18 the regular conditional probability distribution of
O(dyy— 1, dyy) given y,_;. Let Q denote the law of the (time inhomogeneous)
Markov chain on R? with initial distribution v, and transition kernels g;:

Q(dy()a e dyr) = VO(dyO)ql(y09 dyl)'”qr(yr—ls dyr) .

One easily checks that the ‘two-point’ marginals of Q coincide with Q4,...,Q,
and, in particular, Q belongs to .#(v, . . . , v,) . Thus, equation (3.36) is also valid in
this case, and we obtain the inequality ‘<°. [

For the remainder of this subsection, we fix s, ¢t with 0 < s < ¢t £ T arbitrarily.
Lemma 3.10 tells us that, in order to prove the inequality S < §9, it will be sufficient
to show that

inf [ P y)Qdx, dy) £ S (u(+)) 3.37)
Qe (u(s), u(1) (RF)2

for all paths u(-)e %, where S2, is defined by (3.7) except that the time interval
[0, T is replaced by [s, t].
We now switch to ‘time-reversed’ objects. More precisely, we set

I“o(x; p) 1= [rostimugy gy s<u<v<t, x,yelR?, (3.38)
and

"guo:= _$SO+t—us ue[sat]'
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Moreover, we define a functional S_s‘ft:(gs,t — [0, o] by setting

- 1 _
Seiu(-): = 3 S Uaw) — (L), s+ du

if u(-)e%;, is absolutely continuous and S2,(u(-)):= + oo otherwise. Note that
I®*(x; y) = I*'(y; x) and that the diffusion operators £ correspond to the time-
reversed dynamics ¢(u) = — b(p(u),s +t — u). Replacing u(-) by the time-
reversed path a(u):= u(s + t — u), ue[s, t], we see that (3.37) is equivalent to

inf [ 1505 ) Q(dx, dy) < 89.(u()) (3.39)
Qe (u(s), u(t)) (RH2
for all p(-)e¥,,,. Our motivation for switching to ‘time-reversed’ objects will
become clear after Lemma 3.11.
Let (x,,) be a sequence of continuous functions on R? with compact support
such that 0 £ y,11 pointwise. Sometimes we will consider y, as function on
R x IR? by setting y,(x, ¥): = xm(y). We claim that

inf  <Q, yI>>— inf <(Q,I% as m— o0 (3.40)
Qe (n,v) Qe (u,v)
for arbitrary p, ve 4. Since .4 (u, v) is compact in .#(R? x R?) and the functions
¥mI*" are nonnegative and continuous, the infimum on the left of (3.40) is attained
for some Q,, € .#(u, v). We may assume without loss of generality that (Q,,) con-
verges to a measure Q €. (i, v) weakly as m — co. But then
im inf{Qpm, Yl >*> Z lim inf{ @y 2™ Z <@, 4ul ™"

for each n. Hence, letting n — oo, we obtain
liminf{Q,, 3wl ™*> = <Q, I** ,

and this proves (3.40).
According to a duality theorem for marginal problems,

inf <Q, Xmﬁ’t> = sup _ [<.u=f> + <Va g>]

Qe (1, v) S®gE yml™
f,9eCp

(Kellerer [10], Theorem 2.6 and Proposition 1.33; cf. also Theorem 2.7 and
Remark 2.8 above). The expression on the right does not exceed

sup[<v, 9> — <u, sup Lg(y) — 2™ (5 y)]ﬂ .
geCo

We next show that this supremum may be restricted to nonnegative functions
geD, g#0. Denote the expression under the supremum by H(g) . Since
H(g) # H(g + const), it suffices to take the supremum over strictly positive g€ C,,.
Now fix ge C, with g = const > 0 arbitrarily and choose a sequence (g,) of non-
negative continuous functions with compact support so that g,1g pointwise. Then

Hig) < liminf H(g,) .

This shows that we may restrict ourselves to nonnegative functions ge Cy, g # 0,
with compact support. But each such function can be approached uniformly by
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nonnegative functions from 2, and we arrive at the desired result. Hence, we have
shown that

inf  <Q, yul®> < sup [(v, g — <u, sup[g(y) — xm(y)l_s’t(';y)]ﬂ
Qe (u, v) gz °",’f [} y

for each meIN and all u, ve 4.
Putting all things together, we see that the proof of inequality (3.39) may be reduced
to the verification of

u@®,.f> - <ﬂ(S), sup AR Xm(y)l_s”(';y)]> < §.u(+) (3.41)

for u(-)e %, meN, and all nonnegative f€ Z, f # 0. Given a non-empty open set
G <R we introduce semi-norms |- ||$ ,, (u, u)e 4 x [s, t], by setting

IK&SOP
P = sup —=2 -, e,
W™= 50 v
supp f =G
and define a functional .S?;G: %, — [0, 0] by
_ I _
Serl(u(-):= 3 S i) — (L )| S, s+0-) du (3.42)

if u(-) is absolutely continuous and S2;%(u(-)):= + oo otherwise. Note that, for
G=R4 || ¢, and 5% coincide with || ... and S2,, respectively.

It will turn out later that inequality (3.41) is satisfied even if the functional S2, is
replaced by the smaller functional S2;"®), where U(K) denotes an arbitrarily small
open neighborhood of the set K := Ks,,( f) which is defined as follows:

K (f):= {xelR": min I*'(x;y) £ ||f Il}- (3.43)
uels, t]
vesupp f

Here supp fand | f|| denote the support and the sup-norm of f, respectively. By
convention, I**(x; y) := 0 for x = y and I**(x; y) := oo otherwise.
Let us introduce the functions

h(x, u): =sup [fB) — I*'(x; )] (344

and
R (x, u): = sup LfO) — I (55 1)] (3.45)

(x,u)e R?x [s, £]. By convention, 0-cc =0 on the right of (3.45). Note that
h(z) = h™(t) = f for large m. Thus, for such m, the expression on the left of (3.41)
may be written in the form {u(f), A™(£)> — {u(s), K™(s)>.

Summarizing the above considerations, we have found that the proof of the
inequality S < S° may be reduced to the following lemma.

Lemma 3.11 For p(-)e%,,,, all nonvanishing nonnegative functions fe %, and all
sufficiently large m, we have

<u(®), K@)y — <pls), B(s)y < 897 (u(+)) (3.46)
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where U(K) denotes an arbitrary open neighborhood of the set K = K ( f) given by
(3.43) and h'™ is defined by (3.45).

To derive the key inequality (3.46), we will proceed as follows. In the next
lemma we will prove that the set K is compact and does not change if we modify the
coeflicients (a, b) outside of a large ball. Moreover, the support of the function A is
contained in K x [, t], and h ‘behaves well’ under the mentioned modification of
(a, b). After that we will show for bounded coefficients that the function h is
a viscosity solution of a Hamilton-Jacobi equation. Together with
supph<K x [s, t], this observation then yields inequality (3.46) for bounded
smooth coefficients (Lemma 3.13). Note that this is yet another way to prove
Theorem 3.2 under Assumption (BS). Now the very rough idea is that the expres-
sions in (3.46) do not change ‘for the worse’ if we modify the coefficients (a, b)
outside of the above mentioned large ball. Note that the functional on the right will
not change at all. This observation allows in (3.46) to pass from bounded to
unbounded coefficients.

Let us mention that the compactness of K is crucial for the sketched approach.
This is the reason why we have had to switch to ‘time-reversed’ objects. Otherwise
we would have to consider the set (3.43) with I replaced by I which, in general, is not
bounded. For the last claim the reader is referred to the corresponding note in the
proof of part a) of the next lemma.

The proof of Lemma 3.11 will be broken down into several steps. To begin with,
let us introduce the following boundedness and uniform continuity condition.

Assumption (BU). The diffusion and drift coefficients (4, b) are bounded and
uniformly continuous and the diffusion matrix a is uniformly non-degenerate.

Note that this assumption differs from Assumption {BS) in Sect. 3.2 by drop-
ping the requirement that the diffusion coefficients possess bounded continuous
spatial derivatives of first order.

Now fix u(-)e¥,,;, meN, and a nonvanishing nonnegative function fe &
arbitrarily. We will assume without loss of generality that y,, = 1 on supp fand, in
particular, h™)(t) = 1. We first collect some properties of the set K and the functions
h and h™ defined by (3.43), (3.44), and (3.45), respectively. Let Bg denote the open
ball in R? with center O and radius R.

Lemma 3.12 a) The set K is compact.
b) Suppose that the coefficients (a, b) satisfy Assumption (BU). Then the function h is
nonnegative and continuous, and

supp he K x[s, t] .

) Suppose that the coefficients (a, b) satisfy Assumption (BU). Let {(a,, b,)} be
a sequence of diffusion and drift coefficients having the same properties. Label each
object associated with (a,, b,) with the subscript n. Suppose that a, — a and b, — b
uniformly on RY x [s, t]. Then

h,, = h uniformly on R x [s, £]
and
K, = U(K)

for each neighborhood U(K) of K and dall sufficiently large n.
d) Let (a, b) denote arbitrary diffusion and drift coefficients satisfying the Assumptions
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(D1)YA(D3). Then there exists R > 0 such that the following holds true. If (G, E) is a pair
of diffusion and drift coefficients which satisfy Assumption (BU) such that (d, b)
coincides with (a, b) on Bg X [s, t], then

K=K and K™ >h,

Here K and h are defined in the same way as K and h, respectively, but with respect to
the coefficients (4, b) instead of (a, b) .

Proof. a) Under the Assumptions (D1) and (D3), the function I**(x; y) is continu-
ous in the variables (u, x, y)e[s, 1) x R* x R%. Moreover, if u, ¢, x, — X, y, = y, and
x % y, then I*~*(x,; y,) — co. Recall that I**(x; y) = 0 for x = y and I"**(x; y) = ©
otherwise. From these properties and the compactness of supp f one easily con-
cludes that the minimum in (3.43) is attained and the set K is closed. Suppose that
K is not compact. Then we find points x, with |x,| = oo, y,esupp £, and u,€[s, )
such that

155y x,) = I (3 y) S IS -

Remembering . the definition (3.33) of I®**'""n(y,;x,), we find functions
P € Cs,s+t—u,, Wlth QD,,(S) = Vn (P,,(S +1— un) = Xp, and

Is,s-i—z—un(@n) = Is,s+t—un(y"; xn) .

Because of Assumption (D3), (ii), we may continue ¢, to a function ¢, € C; , so that
@n(u) = b(@,(u), u) for ue[s + t — u,, t]. Then also

Is,t((Pn) = Is’s+t—“"(yn;xn) .

Hence, I ,(¢,) remains bounded as n — oo. Thus, since the level sets corresponding
to the rate function I,, are compact (cf. Remark 3.3 b)), the sequence (¢,) is
bounded in C;,. But this contradicts our assumption that |x,| — co.

If we had not switched to ‘time-reversed’ objects, then we would have had to use
the compactness of the level sets of I, instead of I, ,. But in a time-homogeneous
situation, I, , corresponds to a diffusion with diffusion matrix a and drift vector

— b which, under our general assumptions, may explode. Moreover, the associated
Jevel sets might be unbounded in which case our proofs would break down.

b) Since the drift coefficient b is bounded and continuous, there exists a solu-
tion of ¢@(v) = b(p(v),v), vels, s +t — u], with (s +t —u) = x for each (x, u)
eR4x[s,t]. Hence, for each (x,u)elR¢x[s,t], we find some y with
I“*(x; y) = I®T'7%(y; x) = 0. This implies the nonnegativity of k. If h(x, u) > 0,
then there exists y esupp f such that

fo) — I y) >0,

ie. x belongs to K. This shows that the support of 4 is contained in K x [s, t].
Taking into account the above mentioned properties of I**(x; y), one also easily
checks that h is continuous.

c) We first remark that, under our assumptions on (a,, b,) and (a, b) ,

L (X yu) = T3 ) (3.47)
for u, - u, x, — x, and y, — y except in the case when u =t and x = y. Set
M,(x):= min I*'(x;y), xeR%.

uels, t]
yesupp f
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Using the definition of I*!(x; y) = I$*T*~*(y; x) as a minimum over path integrals
and taking into account the assumptions on (a,, b,) and (a, b), one easily checks
that M,(x) — oo as |[x| — oo uniformly in n. This means that the sets K, = {xeR%
M(x) < |||} are bounded uniformly in n. Therefore, in order to show that
K, < U(K) for each neighborhood U(K) of K and all sufficiently large n, it will be
enough to check that x, e K, and x, — x together imply x € K. For each »n, we find
u,els, t] and y,esupp f such that

Lt y) S £

We assume without loss of generality that u, — u and y, — y. Because of (3.47), this
yields

sy < If1 -

Thus, since ue[s, t] and yesupp f, the point x indeed belongs to K.

We next prove that &, converges to h uniformly. By the assertions a) and b), h is
continuous, supp h= K x [s, t], and supp h, € K, x ['s, t]. Recall that the sets K, are
bounded uniformly in #. Hence, it will be enough to check that

B (X, 1) = h(x, u)
for x, —» x and u, — u. If u % ¢, then we may use (3.47) to obtain
By ) 2 f (9) = L' (a3 9) = S () — T (x; )
for each yeRY, ie.

liminf h,(x,, u,) = h(x, u) .

R=> a0

This inequality is also true for u = t. Indeed, in this case I“(x,;x,) — 0, and
therefore

kn(xm un) gf(xn) - I_;z‘mt(xn; xn) "’f(X) = h(x’ t) .
Let us now prove the opposite inequality
lim sup h,(x,, u,) < h(x, u) .

Since k is nonnegative, we assume without loss of generality that h,(x,, u,) > 0 for
all n. Then we find y, esupp f such that

hn(-xns un) =f(yn) - Fn‘mt(xn; yn) .

Since f has compact support, we may also assume that y, — y for some yesupp f.
Then, using (3.47) once more, we obtain

lm sup hy(x,, un) < f(0) — 1*(x; 1) < h(x, u) .

d) According to Lemma A.3, we may choose R so large that for any pair (4, 5) of
diffusion and drift coefficients with the mentioned properties

Dy o i—lSUPP £l F1) = B c41—u(supp £l )B4, (3.48)

s < u < t. Using the representations of I****~*(y; x) and I~ 4(y; x) as minima
over path integrals, we conclude from (3.48) that K = K.
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Let us now show that h™ > h. Since *m has compact support, the function

h®™ is nonnegative. Because of this and

K(x, ) 2 f(x) = B, 1),  xeRY,
it suffices to check that

h (x, u) = h(x, u)

for all (x, u)eIR? x [s, t) with 7z(x, u) > 0. For such (x, u), we find yesupp f with

hx w) = f () — B+ 7). >0, (3.49)
and there is a path ¢ e C;  4,—, With @(s) =y, (s + t — u) = x, and

Py = Lgemao) < 1/

Hence, ¢ belongs to q;s,sﬂ_u(supp LI By (3.48), this implies that the path ¢ is
entirely contained in the ball Bg. Therefore, since (g, b) (a,b) on
Bgpxls, s+t —u], I+, —.(¢p) coincides with I, ;,,_,(¢p), and we arrive at

Is,s+t u(y, X) ; Is,s+t—u(y; x) .
Substituting this in (3.49), we finally obtain
h(x, 1) SO) = 205 %) < H(x,w) O

Next we show that the assertion of Lemma 3.11 is valid for bounded smooth drift
and ediffusion coefficients. More precisely, we have the following lemma.

Lemma 3.13 Let Assumption (BS) be satisfied. Then
), h(1)) — <us), h(s)y £ S27F (u(+)) (3.50)
Jor each open neighborhood U(K) of the set K.

Before proving this lemma, let us remark that the function h defined by the
variational expression (3.44) turns out to be a viscosity solution of the Hamilton—
Jacobi equation

0 - 1
<£ + $1?>h(u) + _2-|Vs+t—uh'(u)|3+t—u = Oa uE[S, t] > (351)

with ‘initial datum’ A(¢) =, cf. Crandall and Lions [3] and Lions [11]. Thus, if
h were smooth, then we would obtain

{u(e), h(1)y — <u(s), h(s)y
= e}, b)) — <uls), his)

- (. (£ + 22 b0+ JV.vr- )

IIA

= [ du [<u(u (0wt > — 3 <u(u), |Vs+,_.,h(u>|3+t-,,>]
1
2

1<) — (ZO*u), hw)
d
S Ve by
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Since supp h< K x [s, t] (Lemma 3.12 b)), the last expression would then not exceed
S VE) (u(+)), and this would imply (3.50). Unfortunately, these arguments fail to be
rigorous because of the non-differentiability of h. Note also that the uniqueness
conditions of Crandall and Lions [3] are not fulfilled for (3.51). In the following
steps the above approach will be made precise by adapting the ‘vanishing viscosity
method’ to our situation, cf. e.g. Lions [11].

Given ue[s, t] and ¢ = 0, we define the operators

2

0
Z U( la j

1]1

Zb( W,  uelstl,

i=1 a

where a(-,u):=a¥(:,s +t—u) and b¥(-,u):=b'(-,s +t— u). Note that for
e =0 this 001n01des w1th our previous deﬁmtlon of £0. We further consider
functionals S»¢:%,,— [0, 0], ¢ =0, which are defined in the same way as
52,9 but with 3 o replaced by &£, see (3.42). To prove Lemma 3.13, we need the
following statement which is a shght modification of Lemma 3.7.

Lemma 3.14 Let Assumption (BS) be satisfied. Let G and H be nonempty open
subsets of R? such that G is compact and G = H. Then

lim sup lim sup S% (g ) < SH (u(-)) -
80 0
Proof of Lemma 3.13 1° Let U(K) and V(K ) denote open neighborhoods of K such
that V(K) is compact and V(K) = U(K). Let g: R? x s, t] = R be a C* function
with supp g = V(K) x [s, t]. Then, similar to the computations immediately after

the statement of Lemma 3.13, we find that

Cus(t), g () — {uels), g(s)

Y f du<.u6(u) ( + $e>g(u) +3 IVs+t—ug(u)|s2+t—u>

f' [Kia(t) — (L) ps(w), g(u) |2
<,u¢5(u)9 |Vs+t—ug(u)|s2+t-*u>

for all 6 > 0 and & > 0, where as before pus(u) = ks * u(u). Hence, remembering the
definition of S&/®, we obtain

Cuslt), 90 — <uals), (8 < SO us(-))

1
<Z
T2

2 fdu<ua (), (a + =5“)9!(14) + le+:—ug(u)|§+t—u> : (3.52)

In fact, this inequality is valid for all geCF'(R%x[s,£]) with
supp g = V(K)x [s, t].

29 Because of our assumptions on (g, b), the martingale problem for { Peuels, t1}
admits a unique solution {PZ ;(x,u)eR?x[s,t]} on C,, for each &> 0. Let
E3 , denote expectation with respect to P; ,. For each & > 0, the function

Ré(x, u) ;= e*log EX ,exp{e 2f(x(t))}, (x,w)eR?x[s ], (3.53)
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is the unique bounded solution of the Cauchy problem

a - 1
<51; + 33)”’(”) + §|Vs+t—uh£(u)|s2+t—u =0, uelst], K@)=f. (3.54)

Recall that the initial datum is the non-vanishing nonnegative function fe & which
was fixed after Lemma 3.11. Let n: C,, — IR? denote the projection defined by
n{p) := ¢(t), p € C;,,. The measures P; , satisfy the Freidlin-Wentzell large devi-
ation principle (Theorem 3. 1) Hence, by the ‘contraction principle’, for each
uel[s, t) the family {P: ,on; ; xeRY ¢ > 0} of probabilities on R? forms a large
deviation system with rate function I** and scale £~ 2. Therefore, applying the
Laplace-Varadhan method and remembering the definition (3.44) of the function A,
we derive from (3.53) that

h*>h  boundedly and pointwise on R? x [s, t] (3.55)

as ¢ —0.
3° We now apply inequality (3.52) for

g(x, 1) = 6 (x)ha(x’ 1,

where 0 < 6 < 1 and { is a C* function such that 0 £ { < 1, { = 1 in a neighbor-
hood of K, and supp { = V(K). As a result, we obtain

s, T )y — Speols), CHE(9)) < 071857 (s )
1! 0 = 0
+ Esfdu <#a(u),<£ + gﬁ)(lhs(u)) + EIVs+t—u(Ch£(u))lf+t—u> :

For each ue[s, t], i(u) - h(u) boundedly and pointwise as ¢ — 0 by (3.55), and A(u)
is continuous and supp h(u) = K by Lemma 3.12 b). Since { = 1 on K, this implies
that (h*(u) — h(u) boundedly and pointwise as ¢ — 0. Moreover, ps(u) — u(u) weak-
ly as 6 — 0. Therefore

Lim Tim [ Cag(e), CR(ED> — <uts(s), CH(s)>] = <o), B(@)> — Cuals), h(s))

and this limit coincides with the expression on the left of (3.50). On the other hand,
according to Lemma 3.14,

lim sup lim sup Sel O usl+) £ SHPO W) .
o—0 £~

Thus, in order to finish the proof of Lemma 3.13, it only remains to check that

) ! J - 6
limsup | du <Ma(u),<a + fﬁ)(cmu)) + 5|vs+,_u(5h£(u)>|§+t_u> <0 (356
for all 6e(0, 1) and & > 0. We therefore fix 6 (0, 1) and § > O arbitrarily. We have
A (4 ()|

1
é Clvs+t—uh(u)|sz+t—u + 1—'_0|Vs+t—uclsz+t—u(he(u))2 .

DI =
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Taking also into account that A® satisfies equation (3.54), we see that the verification
of (3.56) reduces to the proof of

lim [ dupalu), ZiChw) — (Likw) =0 (3.57)
and
lim [ dut s Vi 1ol -l )7 = 0. (3.58)

To prove (3.57), we remark that
Cus(w), ZiCh W) — (LR W) = {ulw), RSW)

where

50 w) = fdyks(x — WZEOGIH(y, u)

_Afdy Y [k,,(x— W&, ) “”} ‘Do)

111

This is a result of integration by parts under the assumption that the diffusion
matrix a is continuously differentiable with respect to all spatial variables. Because
of this, (3.57) now turns out to be straightforward from the fact that A*—h
boundedly and pointwise as ¢ — 0 and the observation that the supports of h(u) and
the derivatives of { are disjoint. The same argument yields (3.58). [

We now want to remove the differentiability assumption imposed on the diffusion
coefficients by means of approximation.

Lemma 3.15 Let (a, b) be a pair of diffusion and drift coefficients satisfying Assump-
tion (BU). Denote by {(ay, b,)} a sequence of diffusion and drift coefficients with the
same properties. For each n, let the functional S2°¢ be defined in the same way as
56 := 829 but with respect to (a,, b,) instead of (a, b) . Assume that a, — a and
b, — b uniformly. Then

lim sup 87> €(u(-)) < S (u(-))

n— o
for each non-empty open set GS IR

Proof. This is a modification of step 3° in the proof of Lemma 3.7. Roughly
speaking, instead of comparing k; % %7 f with #?(ks % f) and k; % |V, f|? with
|V,(ks % f)|?, one has to compare £"f with £ f and (V{,_,f1%,-,)* with
[Vosemuf |2+:—u, respectively. Here V@, |-|® and £ %" are defined in the same way
as V, ||, and #°, respectively, but with (a, b) replaced by (a,, b,). Moreover, one
only considers functions fe & with the additional property that supp f < G. The
details are left to the reader.

Lemma 3.16 The assertion of Lemma 3.13 is valid without the differentiability
assumption on the diffusion mairix a, i.e. with Assumption (BS) replaced by Assump-
tion (BU).

Proof. Consider a sequence {(a,, b,) } and a pair (4, b) of diffusion and drift
coefficients satisfying Assumption (BS) and (BU), respectively. Suppose that a, — a
and b, — b uniformly. Label each object associated with (a,, b,) with the subscript n.
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Let U(K) denote an arbitrary open neighborhood of K. We may apply Lemma
3.13 for (a,, b,) instead of (a, b) to obtain

(), )y — <ps), hals)y < S U ()

for large n. Here we have also used that, as a consequence of Lemma 3.12 ¢), U(K)
is a neighborhood of K, for large n. Letting n — oo and applying Lemma 3.12 ¢)
and Lemma 3.15, we arrive at

{u(e), h(@)y — <uls), h(s)) < 8V (u(-)),
and we are done. [

We are now in a position to switch from bounded to unbounded coefficients and
therefore to finish the proof of Lemma 3.11.

Proof of Lemma 3.11 Let (a, b) be arbitrary diffusion and drift coeficients satisfying
the Assumptions (D1)—(D3). Let U(K) be a bounded open neighborhood of K. We
choose R and bounded coefficients (&, b) as in assertion d) of Lemma 3.12. We
thereby assume without loss of generality that U(K) is contained in the ball Bg. Let
h and K be also as in Lemma 3.12 d). Since (a, b) = (4, b) on U(K)x[s, ] and
K = K, the functional §2,Y® will not change if we replace the coefficients (g, b) by
(d, b) (and K by K) Hence, we may apply Lemma 3.16 with respect to the
coefficients (4, b) to obtain

Cule), By — Culs), b)) < ST (u(-) . (3.59)

Recall that A(r) = h™(¢) = fand that &(s) < h™(s) by Lemma 3.12 d). Substituting
this in (3.59), we arrive at the assertion of Lemma 3.11, [

The proof of Theorem is now complete.

4 McKean—Vlasov interaction

In this subsection it will be shown that our large deviation result for empirical
processes of independent diffusions (Theorem 3.2) carries over to diffusions with
mean field interaction. We will deal with large systems of coupled diffusions which
interact via the empirical measure continuously entering the drift vector.

Let U: R?> R be a nonnegative twice continuously differentiable function
such that U(x) — oo as |x| — co. Given R > 0, let .#, denote the subspace of
A consisting of all p for which (u, U> £ R, and let ¥ denote the space
C([0, T']; M g) furnished with the uniform topology. We introduce a space .# ,, of
admissible probability measures and a corresponding space €, of measure-valued
paths by setting

My:= ) Mz and  Fui= ] bx.

R>0 R>0

We equip both spaces with the strongest topology which induces on .4 and %y,
respectively, the given topology for each R > 0. Concerning the topological prop-
erties of these non-metrizable spaces, the reader is referred to Appendix B in
Gartner [9].
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We consider diffusion operators
d 2

L) = Z a(-) + Z bi(: ”)a -,

i34f
= oxlox! &

nweM,, €20 By ||, and Vx we will denote the Riemannian norm and the
Riemannian gradient in the tangent space at x e R? associated with the diffusion
matrix {a”(x)}. We impose the following conditions on the diffusion matrix
a(x) = {a"(x)} and the drift vector b(x; ) = {b'(x; p)}.

Assumption (M1). The maps a: R - R*@R? and b: R? x .# , - R? are continu-
ous. For each xR the matrix a(x) is symmetric and strictly positive definite.

Assumption (M2). There exists a constant A = 0 such that
1
u, LHWU + EWUIZ) =M Up

for all probability measures x4 on IR with compact topological support and all
ee(0, 1).

Assumption (M3). For each ji(-)e¥%, there exists a constant 4 2 0 such that
1 _
L p)U + EIVUI2 S AU

for all te[0, T] and all e€(0, 1).
Assumption (M4). For each ji(-) €%, the function

T
Cuoau(-) > [ <p@), (- ) — b(-; fW)I*> dt [0, o]
0

is sequentially continuous at point u(-) = f(*).

For each NeNN and each ¢€(0, 1), we consider an N-particle system of interac-
ting diffusions which is given by the solution {P}% xe(R%"} of the martingale
problem for the diffusion operator #™-¢ acting on functions fon (R%" according to

PNEf(x) =Y Ei(% Y 5xi>f(x), X = (xq,...,xy)eRHY.
k=1 i=1

Here PY%, xe(IR%), are probability laws on C([0, T']; (R%)") and #}(u) is the
operator #*(u) acting on the variable x,. It was pointed out in Dawson and
Gdirtner [4], Sect. 5.1, that, as a consequence of the Assumptions (M1) and (M2),
the martingale problem for £~ ¢ is well-posed for each Ne NN and each ¢e (0, 1).
Given Ne N, ¢€(0, 1), and an N-particle empirical measure

1 N
=— 3 0, oo, xyeER? 4.1
N2 Ok X Xn @.1)
we denote by 25¢ the law of the empirical process associated with our N-particle

system starting at . Itis defined as the image of the measure P;¢ ., with respect
to the continuous map

.....

1 N
C([05 T:|9 (Rd)N)a(xl(')a EREC ] xN(')) H( —]\_f Z 5x (t)>6%oo-
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Let further 4" stand for the subset of .# ,, consisting of measures of the form (4.1).
To formulate our large deviation result, we introduce functionals S*
% — [0, 00],0 < ¢ < 1, by setting

1 T
S () =3 Of l(e) — L2 (@) p®) e dt (4.2)

if u(-)e¥, is absolutely continuous and S*(u(-)):= + oo otherwise. Here the
norms || - ||, are defined as in (3.6) but now with respect to our time-homogeneous
diffusion matrix a. We also define the level sets

V(s p) = {u(-)eb : u0)e s, S(u(-)) < p}, ASMy, p=0.
We are now ready to state our result.

Theorem 4.1 Let the Assumptions (MI1)(M4) be satisfied. Then {235 pe ¥,
NeN,ee(0,1)} is a special large deviation system (with respect to the map
p(+ )= u(0)) with rate function S° and scale Ne~2 as N — oo and & — 0. The level sets
YO(A"; p) are compact in €, for all compact subsets A" of M ., and all p = 0.

In Dawson and Gértner [4], Sect. 5, it was shown that, for fixed ¢ (0, 1), the family
{PN-5ue M, NeN} forms a special large deviation system with rate function
£ 2S% and scale N. This assertion was proved by ‘freezing’ the interaction ji(-) in the
drift vector which made it possible to reduce the ‘local’ large deviation bounds to
that for non-interacting diffusions governed by the ‘frozen’ operators

P= P(a0), te[0,T7. 4.3)

This idea also works well in studying large deviations for N - oo and ¢ >0
simultaneously. Since the changes consist in obvious modifications only, we will
not present the details here. Instead, for the orientation of the reader, we will state
the corresponding lemmas without proof.

The first step consists in proving the following lemma.

Lemma 4.2 For all positive numbers v and p there exists a compact set A in
%, such that

limsup N7'e*log sup PY(G,\A)< —p.
IZ:SO ueM o MY

The proof of this lemma relies on the fact that sets of the form
H =Crn (\ A,

are compact in ¥, for any R > 0 and all sets 27", of the form

Hy={pu()ebs:u(") ek, },

where { f,; neIN} is a countable dense subset of & in the sup-norm and K, neNN,
denote compact subsets of C([0, 77]; IR). Lemma 4.2 can therefore be derived from
the next two lemmas which make essential use of Assumption (M2).
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Lemma 4.3 Given positive numbers r and R, we have

sup PN%,\%r) < exp{ — Ne"*Ry}

ueM Y

for all NeN and ¢e(0,1), where Ry:= Rexp{ — AT} —r and 1 is taken from
Assumption (M?2).

Lemma 4.4 Given R > 0, p > 0, and a function fe 9, we find a compact subset K of
C([0, T; R) such that

P o(6r\Ay) < exp{ — Ne~?p}
forall NeN, ee(0, 1), and pe #", where
Hpi={pu()eb:{u(*).feK} .

Lemma 4.2 allows us to reduce the proof of Theorem 4.1 to the consideration of
‘local’ large deviation bounds. To obtain these bounds we fix a(:)e ¥, arbitrarily
and consider the operators .#; defined by (4.3). The Assumptions (M1) and (M3)
guarantee that the martingale problem for {3 te[0, T} admits a un1que solution
{P% ; (x,) e R*x [0, T} on Co,7 = C([0, T],]R") for cach e€(0, 1). P , is a prob-
ability on Cy, ¢ concentrated on paths pe Cy y with ¢(s) = x for se[O t]. Given
NeNN and ¢€(0, 1), let 9’ ¢, ue.#", denote the laws on C([0, T];.#) of the
empirical processes of N 1ndependent diffusions governed by the operators 5. As
a consequence of Assumption (M3), condition (3.9) in Remark 3.3 e) is fulfilled in
the situation considered here. Hence, we may apply Theorem 3.2 to conclude that
{PNe;ue MV, NeN, 86(0 1)} is a special large deviation system as N — oo and
¢ — 0 with scale Ne~2 and rate function S° given by (4.2) for ¢ = 0 except that #?
is replaced by #°. Note that S°(i(-)) = S°(i(+)). Fix NeN, £€(0,1), and
X = (xq, .. xN)e(]Rd)N arbitrarily. Then, by the Cameron-Martin-Girsanov
Theorem, the measure PY'® is absolutely continuous with respect to
P¥t:= P (® - QP% o, and

dpY-e 1
dpe CXP{MJI\‘M ) <<MN’£>>T} ,

where M™* is a continuous local P}*-martingale with quadratic characteristic
t
Mo (x(+)) = Ne™2 f xpslb (3 Vaw) = DO AW))1* > du .

Here ve:= N"'y¥[ 10,, denotes the empirical measure of the configuration
X = (xl, ,xN)e(Rd)N Because of Assumption (M4), this allows to obtain the
following ‘local’ large deviation bounds from the corresponding bounds for the
‘frozen’ probabilities 221°.

Lemma 4.5 Given uye 4 and pe M ,,, suppose that uy — u in M .. Then the
following assertions are valid for each i(-) €€, with u(0) =
a) For each open neighborhood ¥~ of () in €,

limsup N~ 'e?log Zi5(¥"y = — S°(a(-)) .
N—-w
£—=0
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b) For eachy > 0 there exists an open neighborhood ¥~ of i(-) in € ,, such that
limsup N~ 'e2log ZY.5(¥) < — S°(a(*) +y (4.4)

N->w
£—=0

provided that S°(i(-)) < oo. If §°(iu(+)) = oo, then this assertion holds with the
expression on the right of (4.4) replaced by — .

We remark that in the proof of assertion a), in order to switch from the topology on
C([0, T]; #) to the topology on ¥, = C([0, T];.# ), we have also applied
Lemma 4.3 with 2)°° replaced by 22°° and Assumption (M2) replaced by Assump-
tion (M3).

Finally, the relative compactness of the level sets P°(4"; p) follows by a combi-
nation of Lemma 4.2 and Lemma 4.5 a). That these sets are closed can be deduced
from the representation of S°(u(-)) in the form (3.13)~(3.14) with #? replaced by
ZL°(u()).

We close this section with a few remarks on the McKean—Vlasov equations
related to our empirical processes. For each ¢, 0 < ¢ < 1, the weak solutions u(-)
€%, of the McKean—Vlasov equation

Al = LXu@)yu@, te[0,T],

coincide with the zeros of the corresponding rate function S°. The Assumptions
(M1) and (M2) imply that there is at least one solution for each initial datum p(0)
e# , and each ¢€[0, 1), see Gértner [9]. But our assumptions do not ensure
uniqueness. We refer to Scheutzow [13] for a discussion of uniqueness and
non-uniqueness in the degenerate case ¢ = 0. Adequate uniqueness conditions for
¢ # O can be found e.g. in [9], Sect. 2.3. These conditions also ensure uniqueness for
¢ = 0 under the additional assumption that the degenerate Fokker—Planck equa-
tion

o) = L(a@yu@,  tel0, 17,

admits a unique weak solution u(-) € C([0, T]; #) for each initial datum u(0) € .#
and each ji(-) €%, This is certainly true if the vector field b(x; p) is continuously
differentiable in x.

Let p°(-) and u°(-) denote weak solutions of the McKean-Vlasov equation for
the operators #%(-} and #°(-), respectively. Assuming uniqueness for 0 <& < 1
and using results from [9], one also readily checks that y*(+) — p°(+)in €, ase — 0
provided that u#(0) — u°(0) in A4 .

A. Appendix

A1 HMN (X )-sequences

Let X be a completely regular Hausdorff space, and let (Xy) be a sequence of
subsets of X such that each point in X is the limit of an X y-sequence. Denote by
A (X) the space of Radon probability measures on X equipped with the topology
of weak convergence. Given M, N e N, denote by .#-¥(X) the subset of M-point
empirical measures on Xy. In the following we assume that X and (X ) satisfy the
Metrizability Hypothesis of Sect. 2.
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Proposition A.1 Each measure in M (X ) is the weak limit of an M™-¥ (X )-sequence as
M,N — co.

Proof. Fix pe.#(X) arbitrarily. We must find measures pu™ Ve #™Y(X) with
pMN 5 pin #(X). Since u is a Radon measure, there exists a sequence of compact
subsets K; = K, < ... of X such that u is concentrated on ( J, K,. We can therefore
write p in the form

w=Y t, (A1)

where, for each r, u, is a measure which is concentrated on K,.

Now fix reN arbitrarily. Let (£,) be a sequence of independent K,-valued
random variables with joint law g, (- )/u,(X). According to the strong law of large
numbers,

1 Mer(}

as M — oo for each fe C(K,), where [x] denotes the integer part of xR and C(K,)
is the space of continuous functions on K,. Since K, is metrizable (by the Metriza-
bility Hypothesis), the space C(K,) is separable. Because of this, (A.2) implies the
weak convergence

1 [M;i(xn

— Oe,—rlr as.

M m=1 ¢

In particular, there exists a sequence (x,,,) in K, with

1 ™M uzr:(X)]
= Byl (A3)
M m=1

weakly as M — co.

Let X (K,) be the metrizable set introduced in the Metrizability Hypothesis, and
let p, be a metric on X (K,) which generates the subspace topology of X. Using the
Metrizability Hypothesis and the compactness of K,, we see that Xy n X(K,) is
non-empty for all sufficiently large N and p,{x, Xy 0 X(K,)} -0 as N — co uni-
formly in xe K,. For each m and each N, we can therefore select a point x5, € Xy
such that x¥, € X(K,) for all sufficiently large N and all m and

0,8, Xp) >0 uniformly in m

as N — oo. Together with (A.3) this implies that
1 M)

M

M.N . _
Hy =

8t (A4)

m=1

weakly as M, N — oo. Note that pM¥(X) =< u(X) and p*¥(X) - pu(X) as
M, N — oo for each r. Therefore ¥ 1*V(X) < land ¥ """ (X) > 1as M, N > co.
Now we define

k
PN = Y N 4 2R (A.5)
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where x§ is an arbitrary point in Xy and ky, y is a nonnegative integer making
¢™ ¥ into a probability measure. By construction, u™'¥e.#4™-¥(X)forall M, NeN
and ky y/M — 0 as M, N - co. Passing in (A.5) to the limit as M, N - c and
using thereby (A.4) and (A.1), we find that

w5y in H(X)as M,N— o,

and we are done. [

A.2 Freidlin—Wentzell estimates

The objective of this appendix is to prove Theorem 3.1. From Wentzell [18],
Theorem 4.3.3, we know that the assertion of Theorem 3.1 is valid under the
following hypothesis.

Assumption (W). The diffusion matrix a: R*x [0, T] - R*®@R? and the drift
vector b: R x [0, T] - IR? are bounded and uniformly continuous. The matrix a is
symmetric, positive definite, and uniformly non-degenerate.
Our idea consists in reducing the general case (Assumptions (D1}+(D3) of Sect. 3.1)
to that of Wentzell by changing the drift and diffusion coefficients outside of a ball
with center 0 in such a way that the new coeflicients satisfy Assumption (W). If the
ball is sufficiently large, then this change will not influence the considered large
deviation quantities.

In the sequel, B will denote the open ball in R? with center 0 and radius R, and
B%°1 will stand for the set of functions on the interval [u, v] with values in Bg.
We first prove the compactness of the level sets.

Lemma A.2 Let the Assumptions (DI) and (D3) be satisfied. Then the sets &, (K; p)
are compact for 0 £ s < t £ T, all compact sets K = R?, and all p = 0.

Proof. 1° The Assumptions (D1) and (D3) imply the corresponding assumptions
for the time interval [s, t] instead of [0, 7], cf. Remark 3.3 b). Therefore it will be
sufficient to consider s = 0 and ¢ = T only.

2° We show that the function I: Co 7 — [0, c0] is lower semi-continuous. Suppose
that ¢, = @ in C,, 7. We choose R so large that the paths ¢,, ne N, and ¢ belong to
the ball Bz. We replace the coefficients ¢ and b by new coefficients @ and b,
respectively, so thata =dand b = bon By R X [0, 7] and d and b satisfy Assumption
(W). Then the associated rate function I is lower semi-continuous. But [ ((p,,) =
I(¢,), neN, and I(p) = I(p). Hence I (9) < liminfI(p,).

3° Now fix a compact set K = R? and p = 0 arbitrarily. By Assumption (D3), the
set ®(K; p) is bounded and non-empty. Thus, ®(K; p)< BT for some R > 0.
Replacing a and b by d and b respectively, as in step 2° and denoting the associated
level set by fD(K p), we find that ®(K; p)= @(K; p). Since @(K; p) is compact,
@(K; p) is relatively compact. From step 2° we know that &(K; p) is closed. Hence
@(K; p) is compact. [

We next show that &, (K; p) coincides with (53,,(K; p) for sufficiently large R.

Lemma A.3 Let the Assumptions (DI) and (D3) be satisfied. Let a compact subset
K of R? and p = 0 be given. Then there exists R_> 0 such that the following holds
true. For any diffusion and drift coefficients (d, b) satisfying Assumption (W) and
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coinciding with (a, b) on Bg x [0, T'], we have
b, (K; p) = &,,,(K; p)<BEY, 0<s<i<T,

where &, (K; p) and 5s,,(K; p) denote the level sets associated with (a, b) and (@, B),
respectively.

Proof. We fix a compact set K = R? and p = 0 arbitrarily.
1° We show that

@, (K; py= B for0<s<t£T (A.6)

provided that R is sufficiently large. Suppose the contrary. Then we find a sequence
of functions ¢,:[s,,t,] > R? with 0 <5, <, < T, @,(s.)€K, I, (¢,) < p and
l@,(t,)] = co. In accordance with part (i) of Assumption (D3), we may continue
¢, to a function , € C, 1 by setting Y, (u) = @,(s,) for ue[0, 5,1, ¥, = @, on [s,, t,],
and choosing i, on [t,, T] as a solution of lﬁ,,(u) = b(y(u), u), ue[t,, T]. Then, on
the one hand, I(y,) remains bounded for n — oo, i.e. the sequence (i/,) belongs to
&(K; p) for some j > p. But, on the other hand, the sequence (i,,) is unbounded in
Co, 1, and this contradicts part (i) of Assumptlon (D3).

2% We choose R so large that (A.6) is fulfilled. Let (4, b) be diffusion and drift
coefficients which satisfy Assumption (W) and coincide with (a, b) on Bg x [0, T'].
Fix 0 < s <t < T arbitrarily. Recall that I, and I, denote the rate functions
associated with (a, b) and (@, b) respectively. It remains to check that @S AK; p)
coincides with @, ,(K; p). Since I, , and I, , coincide on B, it will be sufficient to
erlfy that not only &, ,(K; p) but also & ,(K; p) is contained in B%. Suppose that

@, (K; p)¢ B Then we find a function ¢ € qjs ,(K p)and ue(s, t] such that |o(v)]

< R for ve[s,u) and |p(w)| = R, ic. I, (¢) = I, ,(¢p) < p and ¢ ¢ B Therefore
ped, (K; p)\B* which contradicts (A.6). [

Proof of Theorem 3.1 The compactness of the level sets was shown in Lemma A.2.
Fix xeR% p =0, and ¢ € Cy 1 with ¢(0) = x arbitrarily. Let x*e R? be such that
x* — x as ¢ = 0. Denote by U(ep) and U(@(x; p)) bounded open neighborhoods of
@ and ®(x; p), respectively (cf. Assumption (D3)). It suffices to check that

lim inf £*log P%.(U (@) = — (@) (A7)
£—=0
and
lim sup &? log P5(Co, r\U(®(x; p))) < p (A8)
=0

{cf. Freidlin and Wentzell [8], Chap. 3, Theorem 3.3).

We choose R > 0 so that U(p) and U(®(x; p)) are contained in BY" ") and the
assertions of Lemma A.3 are valid for K = {x} and certain coefficients 4 and b. This
means that I(g), ®(x; p), and the probabilities on the left of (A.7) and (A.8) will not
change if we replace a and b by d and b, respectively. But, according to Wentzell
[18], Theorem 4.3.3, the bounds (A.7) and (A.8) hold for the diffusion processes
with diffusion matrix @ and drift vector b instead of a and b, respectively. This
proves (A.7) and (A.8), and we are done. O
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