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1 Introduction 

In this paper consistency of bootstrap is compared with asymptotic normality~ 
This is done for linear statistics of n i.i.d, observations. It is shown that bootstrap 
works asymptotically under the same assumptions as a normal approximation 
with estimated variance (Theorem 1). This result is extended to the case of inde- 
pendent but not necessarily identically distributed observations (Theorem 2). 
Moreover, bootstrap with a Poisson random sample size is considered. This 
bootstrap procedure is a special case of a class of resampling plans called wild 
bootstrap which have been proposed for the non i.i.d, case. We show that boot- 
strap works as long as the same holds for wild bootstrap (Theorems 3 and 4). 

2 Results 

Let us first consider samples Xn=(X, ,  1 . . . .  , X,. ,)  of n i.i.d, variables with un- 
known distribution P,. We study the following bootstrap procedure for estimat- 
ing P(T,(P,)- T,(P,)< t), where Pn is the empirical distribution based on the sam- 
ple. The bootstrap estimate is P* (T,(Pn*) --T,(P,)< t). Here P* denotes the condi- 
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tional law P(.. .IX,).  /~,* is the empirical distribution of a bootstrap sample 
~ _ _  #= ~ . X,  - (X,, 1, ..., X , , , ) ,  that is, given X,,  the bootstrap sample X* is an i.i.d, sample 

with distribution P~. For fixed P,, = P and T, = T an elegant proof of the con- 
sistency of bootstrap can be found in Gill (1989) for asymptotically linear func- 
tionals. In Mammen (1992 a, b) a simple treatment of higher-order properties 
is given for smooth functionals. 

In this paper we consider the case of a linear functional T,(Q)= Sg~(x) Q(dx). 
Put ~ ,=  T,(/~). For fixed T,= r a n d  P~=P it is known that bootstrap is (weakly) 
consistent if and only if g(X~,l) belongs to the domain of attraction of the 
normal law (see Hall (1990); Gin6 and Zinn (1989); Cs6rg5 and Mason (1989); 
Athreya (1987); and Knight (1989)). In our approach we allow everything to 
depend on n. There are two reasons for doing this: first, as a first step into 
the direction of studying an arbitrary sequence of statistics 7",; second, because 
it makes it easier to judge if the asymptotic results apply for a finite sample 
size n. We will show in the following theorem that asymptotic normality is 
necessary and sufficient for consistency of bootstrap. The proof will be based 
on the following simple argument. If bootstrap works, the bootstrap estimate 
of the distribution of the standardized functional must be asymptotically equiva- 
lent to a sequence of non-random distributions. We will show that for this asymp- 
totic equivalence it is necessary and sufficient that the absolute maximal sum- 
mand max Ig~(X~,i)l is of smaller order than the sum T,. This Lindeberg-type 

l <i<_n 

condition implies the asymptotic normality of ~v. Note that we do not have 
to treat the two cases E g Z (X,, ~) < oo and E g2 (X,, ~) = oo separately. 

Theorem 1 Consider a sequence X , , ,  . . . .  , X , , ,  of i.i.d, variables with distribution 

P,. For a function g, consider ~,=T~(/~)-1  ~ gn(Xn, i). Consider a bootstrap 
--n i = l  

sample X *  1, ..., X*,,  with empirical distribution P,*. Denote T,* = T,(P*). Then 
for every sequence t, the following assertions are equivalent: 

(i) There exist a. with 

d~ (Z(~.-  t,,), N(O, ~.~))40. 

1 n 

(ii) d~ (~<o(~_ t,), N(0, S,Z)) --+ 0 (in probability), where S, z = ~ f  • (g,(X,, i ) -  L) 2. 
I t ,  

i = 1  

(iii) d~o (~~ (L  - t,), s ( ~  - L)) ~ 0 (in probability). 

Here d~ denotes the Kolmogorov distance and s is the conditional law 
~ ( . . . I X , , 1 ,  . . . ,X , , , ) .  I f  (i), (ii) or (iii) hold then t, can be chosen as 
#+  E(g , (X , , i ) - IO l(Ig,,(X,,~)-/~l<na,) where # is a median of the distribution 
of g,(x,,  1). 
Remark 1 Under the additonal assumption of 

~;1 E l g . ( X . , i ) _ t .  I l ( [ g . ( X . , i ) _ t . [ > n a . ) ~ O  ' 

the sequence t. can be replaced by E(i".)= T.(P.). Then according to the theorem 
bootstrap works as an estimate of P(T.(P~)--T.(~)<t) if and only if the same 
holds for the classical approximation N(O, S.2). It can easily be shown that, 
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under the conditons of the theorem, bootstrap of the studentized functional 
also works. 

Remark 2 For g~(x)=x the sequence t, is equal to T(P d) where P/is the distribu- 
tion of X'~,i=I~+(X,,i-I*) I(]X~,~-/~I<nG) where now /~ is a median of the 
distribution of X,, ~. If (i), (ii) or (iii) hold then one can show that P(X',,i=X~,~ 
for 1<_iNn)-+ 1, i.e. asymptotically one cannot distinguish if a sample comes 
f r o m  P. or  P.'. 

Remark 3 The equivalence of (i) and (ii) is well known and due to Raikov 
(1938) (see also below). We have included condition (ii) here because it is more 
natural to compare the bootstrap procedure and the normal approximation 
with estimated variance N (0, $2). 

Remark 4 A simple example where the conditions of the theorem are not fulfilled 
is given by the following triangular array: 

1 
0 with probability 1 - -  

/7 

g .  ( x , ,  ,) = 1 
1 with probability 

Then T. converges weakly to a Poisson distribution with mean 1. This does 
not hold in the bootstrap world, because for instance 

P(s (T* - T.)= ao)> P(g.(X~, 1) . . . . .  g.(X~,n)=0)=(1 -n-X)" ~ e-* >0  

for n-+ oo. 
We get another example where the conditions of the theorem are not fulfilled 

by taking fixed g . = g  and P.=the distribution of g(X., 1)= R where P belongs 
to the domain of attraction of a stable law (see Athreya (1987); Knight (1989)). 

Remark 5 In case of nonlinear functionals T, asymptotic normality does not 
imply consistency of bootstrap. A simple example is the Hodges estimate (Beran 
(t982)). Other examples are U-statistics T~= ~" Wn(Xi, X~) which are pure (i.e. 

i . j  
E(W,(Xi, Xj)[Xi)=E(W~(Xi, Xj)[ Xj)=0 for iq=j) and where the kernel W~ may 
depend on n. For simple conditions under which U-statistics are asymptotically 
normal see de Jong (1987). An example is ~ , = n ~ S ( f h - - K h . f )  2 dx where 
f = F '  is the underlying density and where fh is a kernel estimate with kernel 
Kh(u) = 1/h K(u/h). Note that ~, is asymptotically a pure U-statistic: 

gn = h21/2 (Kh, ~. Kh.)(0) + 2 Un (Xi,  Xj)  - E(U, (X i, Xj)[Xi) 
i~-j 

- E(U. (X , ,  Xj) I X)  + EUo(X,, X j) + o / 1 ) ,  
where 

U~(Xi, X ;) = h~/2 n- 1 (Kh,, Kh~) (X i - -X  j). 

The asymptotic normality of T, for h,--+0 has been proved by Hall (t984). 
Bootstrap does not work here. Indeed, one can easily show that: var*(7"d*) 
- 3  var(Tn)~ 0 (in probability), i.e. the bootstrap variance estimate is not consis- 
tent. This example for inconsistency of bootstrap may seem artificial, because the 
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knowledge of the underlying density is used in the construction of the statistic, 
but not in the resampling step of the bootstrap procedure. A mathematically 
related example which makes more sense statistically can be found in H/irdle 
and Mammen (1990). There the L2-distance between a nonparametric kernel 
regression estimator and a parametric regression estimator is proposed as a 
goodness-of-fit test statistic of a parametric regression model. It is shown, that 
bootstrap does not estimate the distribution of the test statistic consistently 
on the hypothesis. The test statistic is asymptotically equivalent to a pure U- 
statistic and asymptotically normal. 

Although in the bootstrap procedure an i.i.d, model is mimicked, bootstrap 
works also for models with independent but not necessarily identically distrib- 
uted observations. This has been observed first in Liu (1988) and Liu and Singh 
(1991). In the next theorem we show that here again bootstrap works as long 
as the normal approximation with estimated variance is asymptotically consis- 
tent. 

Theorem 2 Consider a sequence X,,  1 . . . .  , X, , ,  of independent random variables 
with distribution P,,i. For a function g, we define T, and T* as in Theorem 1. 
Then for every sequence t, the following assertions are equivalent: 

(i) There exists a sequence G such that for every ~ > 0 

(2.1) sup P (  g ' (X" ' i ) - t"-  >_~)-+0 (asymptotic negligibility), 
l <_i<_n \ l  n ( Y n  - -  

(2.2) ~ ( E l  -g"(X''~)-t" 1 (  g" (X ' ' i ) - t "  < e ) ] ) 2 ~ 0 ,  
= 1 \ k n a ,  \1 h a .  

and 

(2.3) do~ ( ~ ( L  - t.), N(O, a~)) -~ O. 

(ii) The normal approximation with estimated variance works: 

(2.4) doo (~qf (7", - t,), N (0, $2)) --* 0 (in probability), 

where again S 2 1 ~ (g,(X,,i)-- L) a. 
- -  n2 

i=1 

(iii) Bootstrap works: 

(2.5) d~o (•  (~F,- t.), ~ *  (7"* - L)) -+ 0 (in probability). 

For understanding why bootstrap works also for non i.i.d, observations let 
us introduce another resampling plan. Consider a Poisson variable N with 
E N  = n which is independent of (X,, 1 . . . . .  X,,,). Given X,,  1, ..., X,,  ~ and N = k 
we generate (conditionally) independent variables X,* 1, ..., X* k with conditional 

i_ (X*  ~ distribution P,. We write II,,i=n-1gn(Xn,~) and Y*.=n-,,~ g,~ ,,o. We consider 

7~*'"= Y,*l + ... + Y&. 
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Then ~*(]F *'e Nn ~F.)can be used as an estimate of Lf(T.- t . ) .  We show 

that this estimate works under the same assumptions as bootstrap. 

Theorem 3 For a sample X., 1 . . . .  , X., .  of independent observations and a func- 
tional T. as in Theorems 1 and 2 the following assertions are equivalent for every 
sequence tn: 

(i) doo(S(T.-t.), s  ~.))-+0 (in probability), 

(ii) doo (Sf ( L -  t,,), ~ *  (7"* , ' -  N L)) ~ 0 (in probability). 

We have introduced bootstrap resampling with Poisson random sample size, 
because this resampling plan has the following nice interpretation. Denote 

Nj= # { l _ i N N :  X*.,i =X.,;}. 

Suppose that the X., 1 . . . .  , X., .  are pairwise different (a.s.). Then the N~'s are 
independent Poisson variables with ENj = 1 (a.s.). Furthermore 

L *,P- N- L= 2 N(y.,-L/.) 
n j= l  

= ~ (Nj-  1)(Y.,;- L/n) (a.s.). 
j= l  

We write this as 

(2.6) Tff= i g. w, 
j= l  

where Y.W= (N~- 1) (Y.,;- L/n). 
Because of E(Nj -  1)= 0 and E(Nj -  1) 2 = E(N~-- 1) 3 = 1 one gets for the condi- 

tional expectations of yW n,J  

(2.7) E* y w= 0, 

(2.8) E* ,~ yW~2., ;, = ( y., J _ 5F./n)2, 

and 

(2.9) E * ( Ynw, j )  3 =- ( Yn,  j - -  L/n)  3. 

Resampling plans with (2.6), ..., (2.8) have been introduced in Beran (1986) and 
Wu (1986). They have been called in H/irdle and Mammen (1990) wild bootstrap 
for the following reason. s could be interpreted as an estimate of ~(Y., j  
-E Y.,i)" This estimate is based on only one residual Y.,;-T./n. Condition (2.9) 
has been introduced by Liu (1988) and Hfirdle and Mammen (1990) to improve 
the rate of convergence of the wild bootstrap estimate. We consider the following 
class of wild bootstrap procedures: 

(2.10) Choose a distribution Q with E(Z[Q)=O and E(ZZlQ)= I. 



444 E. Mammen 

(2.11) Generate i.i.d, variables Z w . . . . .  Z w with distribution Q and put 

Z r w. 
n , J ,  

j=l  

where y W = z}V(y,,j_ L/n). 

(2.12) Estimate ~ ( ~ -  t,) by 2'*(T,W). 

The next theorem shows that this class of wild bootstrap estimates works under 
the same conditions as bootstrap. 

Theorem 4 Consider a wild bootstrap procedure of the form (2.10), ..., (2.12) with 
f ixed Q. Then for a sample X,,  1 . . . . .  X , , ,  of  independent observations and a 
functional T, as in Theorem 2 the following assertions are equivalent for every 
sequence t n : 

(i) d ~ ( ~ ( ~ . - t . ) ,  5P*(T.*- •))-*0 (in probability), 
(ii) d~ (~ (T . - t . ) ,  5r (in probability). 

Note that this class of resampling procedures contains as special cases bootstrap 
with Poisson sample size (Q=Sq(N~-I)) and the normal approximation 
N(0, S 2) (Q =N(0, 1)). 

3 Proofs 

We give only the proofs of Theorems 2 and 4. Theorems 1 and 3 follow immedi- 
ately from Theorems 2 or 4, respectively. A direct and simpler proof of Theo- 
rem 1 can be found in Mammen (1992 c). In the proof we make repeated use 
of the following version of the central limit theorem (see Gnedenko and Kolmo- 
gorov (1954) and Araujo and Gin6 (1980)). 

Theorem (Central limit theorem) For samples (Y~, 1, ..., Y,,,,,) of independent 
observations the following statements are equivalent: 

(i) It  holds that 

(3.1) 

and 

(3.2) 

• Y.,i~ N(O, 1) (indistribution) 
i=1 

sup P(IY,,il >~) ~ 0 Ve>0. 
l <<_i<n 

(ii) There exists "c >0 with: 

(3.3) 

(3.4) 

(3.5) 

• EYn, i,~--~0, 
i = 1  

~ E(Yn, i ,~-  EYn, i,~)2--~ l, 
i = 1  

~ P(IY~,iI>z)~O re>O, 
i= l  
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where Y.,i,,= Y.,i l(IY.,il <z). 

Proof of Theorem 2 

Proof of "(i)~(ii)".  This implication follows from the following classical result 
due to Raikov (1938) (see also Theorem 5 on p. 143 in Gnedenko and Kolmogor-  
ov (1954)): 

Theorem (Raikov): Suppose Y~, ~ . . . . .  Y.,. are independent random variables with 
distribution P., i. I f  the Y., ~ are infinitesimal, i.e. 

sup P( IY . , , I>~ )~0  r e > 0 .  
1 <-i<n 

then the following assertions are equivalent." 

(i) There exists a sequence u. with 

(3.6) ~ Y~,,-u.--* N(O, 1) 
i = 1  

(ii) It holds that 

(3.7) ~ (Yn,  i - E  Yn, i 1 (I Y.,*I < 1)) 2 ~ 1 
i = 1  

(in distribution), 

(in probability). 

S ~  =- Y . , i - n  - 1  Y . , j  
i = 1  j = l  

= E2.--n - 1 . , ~  Y,,, = l + o e ( 1 ) .  
i = 1  i 

Proof of "(i i)~(i)".  (2.3) follows trivially: Note  that according to (ii) there exist 
(nonrandom!) measures Q~ with 

d~ (Q., N(0, $2)) --* 0 (in probability). 

This implies that for a sequence of positive numbers an one gets (S . -a . ) /a .  ~ 0 
(in probability). Therefore (2.3) follows. It remains to show (2.1) and (2.2). Put 
again Y.. i = (g. (X., i) - t.)/(na.). 

This implies 

We use Raikov's theorem with u. = 0 and Y., i--(g. (X., ~)- t.)/(n an). Then (2.2) 
can be written as 

(E Y.,, 1 (I Y.,ii < 0 )  2 -~0. 
i = l  

Therefore we get from Raikov's theorem 

~ Y ~ i  ~ 1 (in probability). 
i = 1  
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Proof of(2.1). We have to show for every e > 0  

(3.8) sup P(I Y.,~l_>_ e)-~O. 
l <_i<_n 

Suppose that (3.8) does not hold and that without loss of generality for an 
e > 0  

(3.9) P(I Y~, 11 =e) ~ 6 >0. 

We know ~ y2._} 1 (in probability) because of S,/~,2 2 ~ 1 (in probability). This n , t  

i = 1  

implies P ( IY , , I [< I )~  1. Therefore, by going to subsequences of (n), we can 
assume that there exist measures Q1 and Q2 with 

(3.10) Y,, 1 ~ Q1 (in distribution), 

(3.11) i Yn, i -+Q2 (in distribution). 
i = 2  

Because of ~ Y, , i~N(0,1)  (in distribution) this implies Q~.Q2=N(0,1). 
i = 1  

According to a result of Levy (see, e.g., Feller 1966), p. 498) therefore (21 and 
Q2 are Gaussian: 

(3.12) 

and 

(3.t3) 

Q a = N (m, s 2) 

Q2=N(-m, 1 - s  2) for some m and s. 

We apply now again ~ Y~ ~ 1 (in probability). An application of the necessary 
i = 1  

conditions of the law of large numbers (see Sect. 27 in Gnedenko and Kolmogor- 
ov (1954)) shows that this implies: 

(3.14) ~" P([y2i--%,i[ > 1)~0 ,  
i = l  

(3.15) ~ Ely.2 _~,,, 2 l(iy2 _v,,il<l)_,O, 
i = l  

and 

(3.16) ~, E ~..2.,,, __. 1, 
i = 1  

where ~'.,i= Y.,i l(IY~i-'c.,il < 1) and %,i~med(~q~ Here, for a distribution 
Q we write z~med(Q) if 0.5 =< Q (X __< z) and 0.5 = Q(X>z).  
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Suppose without loss of generality -c., 1 ~ r. Then y.2.,1 ~ z (in probability). 
With (3.10) . . . . .  (3.13) one gets 

(3.17) Y., 1 ~ m (in probability) 

and 

(3.18) i Y,,i-~N(-m, 1) (in distribution), 
i=2 

i.e. s2=0,  m2=z. Note that Im[>0 because of (3.9). With (3.14) and (3.16) one 
can follow 

(3.19) ~, Y. i~N(-m, 1) 
i=2 

and 

(in distribution) 

(3.20) ~, E ~2i--+ 1 - m  2. 
i=2 

But (3.19) contradicts (3.20). This can be seen from the version of the central 
limit theorem given above. The central limit theorem implies for a z >0  that 

EY~i>= ~ EY~i,~>>= ~ E(}rn, i,~-EYn, i,r) 2--r 1, but this contradicts (3.20). 
i=2 i=2 i=2 
This shows (2.1). 

Proof of (2.2). We have to show 

n 
V (EY.,,, 3 2 0, 

i=1 

where Y,, i,, = Y,, i 1 (I Y,, il < e). Raikov's theorem implies 

i ( Y n ,  i -  EYn, i, 1) 2 "-~ 1 (in probability). 
i=1 

Because of ~ (~Zn, i)2--4" 1 (in probability) one gets 
i=1 

(3.22) - - 2  i Yn, iEYn, i, ldF i (Egn, i,I) 2---~0 ( in p r o b a b i l i t y ) .  
i=1 i=1 

Condition (3.5) of the central limit theorem implies that there exists a sequence 
e, ~ 0 with 

(3.23) ~ P(Y,,i* Y.,/,~.)--,O 
i=1 
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and 

(3.24) 

This shows 

~, var(Y,,i,~,) ~ 1. 
i=1 

(3.25) 
i=1 i=1 

= Z (EY.,,,~~ Z (Er..~,~)~+o.(1), 
i=1 i=1 

where we have used 

and 

• (EYn, i - -  gn, i, J 2 - - * O ,  
i=1 

var Y.,i,~ EY.,i,~ <= var(Y.,i,~.)(EY.,i,~.)2=O(e~) 
i i=1 

=o(1), 

(EY., i . j  2 -  ~ (EY..i, 02 ~ 0 .  
i=1 i=1 

(3.4) and (3.5) show ~ (EY,,i, 1) 2 --')" 0. This implies (3.21). 
i=1 

Proof of "(i)~ (iii)". Put again Y,. i = (g, (X,, i)- t,)/(n a,). From the proof of "(i)=~ 
(ii)" we know already 

2 ~  ( 1 ~  )2 
(3.26) S~=a. Y . , i - -  Y.,j =cr.Z(l+op(1)) �9 

i=1 I// 

For (iii) we have to show conditions (3,3), ..., (3.5) of the central limit theorem 
for bootstrap samples. Put 

X* 1 ~ g.(X.,j) 
gn( n , i ) - - ~  j= l 

y*~= 
/'tO- n 

Now choose e . ~ 0  such that ~ P(lY.,il>e.) -~0. Then P(P*(IY.*il<2e.)= 1)--} 1. 
i=1 

For (3.4) note that with probability tending to 1 for every z > 0: 

h E *  (Y.*~.~ - E*  Y.*,, 3 2 = h E *  ( Y . * , -  E *  V.*~) 2 
2 2 = S./~. = 1 + Op(1) (see (3.26)). 
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Proof of "(iii)~(ii)". Without  loss of generality suppose g. = id. In disagreement 
with old notation we put Y., i= X., i/n and Y., i - X . ,  in. We suppose 

(3.27) 

(3.28) 

med 1/ , 30, 

p(l~,l < 1)> 1/2, and P([~,l < 1)< 1/2. 

(3.27) and (3.28) can be achieved by replacing Xn, ~ by c, X,. i-4-b,, for appropriate 
constants Cn and b,. The proof of (i) is given in several steps. 

Step I. First we show 

(3.29) lira sup ~ P(IY,,iI>6)< +o0 V6>0.  
n i = l  

In particular, (3.29) implies that the bootstrap observations are asymptotically 
negligible in the following sense: there exist 6, ~ 0 with 

(3.30) P(P* (1Y,*jl > 6,) < 6,) ~ 1. 

Proof of (3.29). The sequence Y(T,) is shift-compact, i.e. there exists a sequence 
s, such that ~f(T, -s , )  is tight. This follows from (3.28) with Theorem 1 on 
p. 407 and Proposition 1 on p. 420 in Le Cam (1986). Because of (3.28) also 
2f(~,) is tight. Therefore there exists a measure Q such that for a subsequence 
ni 

(3.31) ~ ( L )  ~ Q. 

We apply the following concentration inequality (see Theorem 1 on p. 407 in 
Le Cam (1986) and Esseen (1966)). 

Theorem (Concentration inequality): For n independent random variables 
Z~, ..., Z,  put S=Z1 + ... + Zn. Let #~ be a median of Zj. Then for z > 0  

(3.32) sup P(x _< S _< x + r) 
x 

_-< P(IZ~-#~I >~c 
Li= 1 

Because of (3.28) there exists a sequence x, with 

c=P(x.<= 7".=< x. + 6/2) > 0. 

Then, because of (2.5), 

(3.33) P*(x,_-< ~ - -  T.+t .< x.+6/2) 

=c+op(1). 
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The concentration inequality (3.32) implies with/2 = med(Y,, 2, .--, Y,,,) 

(3.34) @ {i:1Y.,~ -/21 > c5/2} = nP* (1Y*~-/21 > 6/2) 

<=87r, c -Z  +op(1). 

(3.34) and (3.27) imply 1/2[ < 6/2 with probability tending to one. Therefore 

{i:1Y,,,~1> ,5} <8~c-  2 +%(1) (3.35) 

and, furthermore, 

(3.36) supE # {i:1 ~,~[ ~6 )  
n 

= s u p  ~ P(IY., i l>6)< +oe.  
n i=1 

This shows (3.29). 

Step 2. We show now that the Y., ~'s centered around their medians are asymptoti- 
cally negligible: 

(3.37) sup P(IY,, i-- tz , , i l>~)~0 forevery e>0 ,  
l <_i<_n 

where ~,, iemed(&~ i)). 

Proof of (3.37). Suppose, that (3.37) does not hold and that 

(3.38) P([Y~,,-#,, ,[  > e) => 6 

for some e, 6 > 0 and n large enough. 
We consider now bootstrap samples with Poisson random sample size. For 

this we generate a Poisson variable N with E N = n  which is independent of 
(X,, 1, ..., X,,,). Given N = k and (X,, 1, --,, X,, ,)  we generate k random variables 

X * I ,  ..., X*,,k with distribution ~ .  Let m ,=  ~ Y, , j l ([Y, , j[<6,) /~ {j:[Y,,j[<cS,} 
j = l  

where 6 , ~ 0  is chosen such that (3.30) is fulfilled. For  Z * . = X * / n  we write n , J  

T,*' P = g,*~ + ... + Y,*k. According to a result of Kolmogorov (see Proposition 5, 
p. 431 in Le Cam (1986) (3.30) implies that 

(3.39) dL(Sf* (~* -- nm,), ~ *  (T*' e _ Nm,))  --, 0 (in probability), 

where dz(Q1, Q2) denotes the Levy distance, i.e. the infimum of the numbers 
such that 

- -  ~"~ Q1 { ( - -  00, X--/2] } 

<=Q2 {(-oo, x] } <=Q~ {(-oo, x +~]} + ~. 

As in Sect. 2 we consider also another representation of 7"*'1'. Suppose for 
simplicity that the X,, 1, ---, X, , ,  are pairwise different (a.s.). Define as in Sect. 2 

Ns= # {1 < i N N :  X.,i=X*~,j }. 
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Then T*'P= ~. Nj. Y~,j. The Nj's are independent Poisson variables with ENj.= 1. 
j = l  

Consider a new random variable X'.,. with distribution S ( X . , . )  which is inde- 
pendent of (X., ~, ..., X.,.). Denote 

n - 1  

2 Y.,j+u. Y;,., 
j = l  

where Y:,  = X',,,/n. Then, because of (3.31) and (2.5), 

dL(L#+(~*'e-Nm,) ,5~*(~*'V-Nm,))-- ,O (in probability), 

where ~ +  denotes the conditional distribution 5r 1, ..., X . . . .  X'n,,). Using 
(3.31) and arguing with characteristic functions one gets: 

Y~,, - Y,,',, --+ 0 (in probability). 

This contradicts (3.38). Therefore (3.37) is proved. 

Step 3. We strengthen now the result of Step 2 to 

(3.40) lim ~ P([Y~,i-#.,iI>e)=O Vs>0. 
n i = 1  

Proof of (3.40). Suppose that (3.40) does not hold. Then for a 6 > 0 and for 
a subsequence n/(for simplicity suppose (n 0 = (n)) 

(3.41) lim ~ P(IY.,/-#../E>6)=C>O. 
n i = 1  

Recall from Step 1 that C <  + oQ. (3.37) implies that for n large enough 

(3.42) P{IY~,/-#. , /I>6}<P{IY., /I>6/2 } for l_<i_<n. 

Therefore one gets 

(3.43) 0 < lira inf ~ P(l Y,, i] > 3/2) 
n ~ c o  i = 1  

<l im sup ~ P([Y,,/I >3 /2)<  + co. 
n ~ ~  / = 1  

For k > 0 consider the event 

Ak, n = { #e {i:jY.,/I > 6/2} = k, [med(Yn, 1, ..., Y~, n)l < 3/4}. 

We show now that for every ko > 0 

(3.44) li~n infP (Bko,,) > 0, 
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where Bko ,n = Q) Ak,.. 
k > = k o  

For (3.44) note first that Mn= @ {i:]Yn, i--#,,il >6} is asymptotically Poisson 
distributed with parameter C: I P(M, = k) ~exp  ( - C) Ck/kl -~ O. Because of (3.42) 
for n large enough the random variable Mn= #e {i:IYn, i] >6/2} is stochastically 
larger than M n. This implies 

lim infP (2Q n > ko) > 0. 
n --~ oo 

Furthermore, P(lmed(Y,, 1, ..., Y,, ,)[ < 5/4) > P( :~ (i: I Y., il > 6/4} < n/2) > 

l - g ( R n  -1 ~/ ( IY, , i1>6/4))>1 - sup P(Ig,, i l>6/4)~ 1, because of (3.29). So 
i = 1  1 < - i < - n  

for every ko the intersection Bko,, of the two events (M,_->ko) and 
(Imed(Y,, 1, -.., Y~,,)I < 6/4) has eventually probability larger than a positive con- 
stant. 

Consider now ~,* = Yn*l + ... + Y*,. Then for every k0>0  on the event Bko,, 
one gets with the concentration inequality (3.32) for all x 

P* (I r~* - xl _-< 6/8) 2 

<87~[nP*([Yn*l- med(Y,, 1, ..., Y,, n)] > 6/4)]-1 

<8~[np*(lY*l l> 6/2) ] -1 

< 8 ~ k o  1. 

This implies for every ko > 0 on Bko,, 

P* (l :/'* -- T,,, + tnl _-< 1) < (8/6 + 1) (8 ~ ko 1)1/2. 

Because of (2.5) and (3.44) this shows 

P(I~,I < 1)-~0. 

But this would contradict (3.28). This shows (3.40). 

Step 4. We show now that T, is asymptotically normal: There exists a sequence 
an, bounded away from 0 and + ~ ,  and a sequence un such that 

(3.45) do~ (~(Tn), N(un, a2)) -* O. 

Note that then (3.28) implies that also u. is bounded away from 0 and + oo. 

Proof of (3.45). Set Zn,~= Yn,~- P,,~. For  ~ > 0 we put 2n,~ = EZn,~,~, p2, 
=E(Z ,  i~--),nO 2 and gn[i=(Zn, i,~-#n,T)/(npn,~ ), where Zn, i,~=Zn, il(lZ,,i[<='C). 
For the asymi~totic normality of T, it suffices to show that Vn, i= V,l,i fulfill the 
conditions (3.3), ..., (3.5) of the central limit theorem. We show first: 

(3.46) (npn,~) is bounded away from 0 for every z > 0. 

Proof of (3.46). Suppose that (3.46) does not hold and assume for simplicity 

t h a t n p , , ~ O f o r a z > O .  Th i swou ld implyvar  Zni,~ =np 2.,=<2np.~r~O., 
\ i =  1 " / " 
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Therefore ~ Z,,z,~-n2,, ,-*O (in probability). Because of P(Z,,i,~=Z,,~ for 
i=1 

i=1  . . . .  , n)--+ 1 (see (3.40)) this implies L-n)~ . ,~ -  ~ #,,,~= ~ Z.,i-n2.,~-~O(in 

probability). But this would contradict (3.28). i= 1 ~= I 
(3.46) implies that IV,,i] is uniformly bounded. Therefore (3.3) and (3.4) hold 

for V,,~ for z large enough. It remains to show (3.5). But this follows from 
(3.40) and 

(3.47) 2., 1 ~ 0. 

Proof of (3.47). Choose e with 0 < e < l .  Then ]2.,1-2.,~]<P(lZ..i]>e)--+0 be- 
cause of (3.40). Therefore 12., 1] = e + o(1) because of 12.,el < e. 

That a.  is bounded away from + oo follows from (3.28). 
Step 5. We show now that the maximal summand max II1.,~I is of lower order 

than the sum 7",: 1 ~ ~ ~ .  

(3.48) ~ P(IY~,~[ >e) --*0 
i=1 

for every e > 0. 

Proof of (3.48). We know dL(5~* (T* - nm,), LP* (~F*' e _ N m,)) --* 0 (in probabili- 
ty). This implies that 

(3.49) dc(2 '* (T* 'P- (N-n)  m . -  T .+t . -u . ) ,  N(O, a~))~O 
(in probability). 

n 

~.  v N Remember that . ' - m. = ~ Nj. (Y~j-m.)  is a sum of (conditionally, given 
j = l  

(X., 1, .--, X.,.)) independent variables. Using Levy's result that the convolution 
of two distributions (21 and Q2 c a n  only be normal if Q1 and Q2 are  normal 
one gets 

sup I Y,, j -  m,I ~ 0 (in probability). 
J 

Because of m, ~ 0 (in probability) this shows 

(3.50) sup II~.,~-u./n]--+0. 
l < _ i ~ n  

(3.50) and (3.40) imply (3.48). 

Step 6. We show now 

(3.51) d~ (s (•* - L), N(0, $2))--, 0 (in probability). 

But this follows easily from the result of the last step by an application of 
the central limit theorem. (3.51) and (2.5) imply (ii). 

Proof of Theorem 4. The proof can be carried out with the same approach 
as in the proof of Theorem 2: For the proof of "( i )~(i i )"  one remarks first 
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that consistency of bootstrap implies assertion (i) of Theorem 2 (asymptotic 
normality of ~)  and one proceeds then similarly as in the proof of the inclusion 
"(i)=*-(iii)" of Theorem 2. The proof of "( i i )~(i)"  can be done using the same 
steps as in the proof of the inclusion "(iii)=>(ii)" of Theorem 2. Let us shortly 
mention two modifications. 

In Step 1 choose #emed(Q)  and 6 with 

c (,5) = Q (IN - #1 ~ (6/2) 1/2) > O. 

Then one uses instead of (3.34) 

# {i: I Y~,i- L/nl >= (6/2) 1/2} 

< C(`5) -1 ~ P*(IY,, , -  T,/nl I/W-~l =>`5/2) 
i = 1  

/i 

= C (6)-1 ~ p ,  (I y W_ reed (s (yW))[ > `5/2) 
i = 1  

~87ZC 2C(6)-l q-op(1). 

In Step 3 one does not need the Poissonisation because one can immediately 
apply the argument given at the end of this step. 
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