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1 Introduction 

We are concerned with the heat kernel P~(x, y) of an elliptic second order differen- 
tial operator 

= � 8 9  2 + V  (1.1) 

on the sections of a vector bundle F over a compact Riemannian manifold M. Here 
V is a general connection on F, extended to F | T * M  by the Levi-Civita 
connection of M, and V is a section of End F. Subordination of the semigroup 
Pt = et~f to the scalar heat semigroup of the Laplace-Beltrami operator can be 
expressed very concretely by means of Wiener integrals over the path space of M: 

Pt(x, y) = pt(x, y)lEx'r't(%tet) �9 (1.2) 

Here, p~(x, y) is the scalar heat kernel, F x'y't is the law of the Brownian bridge from 
x to y in time t, Tot is parallel translation F~t--* Fxo according to V along the 
coordinate process xt, and et, a process in End F over xt, is defined by the linear 
covariant equation 

Det = et V(xt) Ot, eo = id . (1.3) 

This formula is well known, at least when Vis compatible with a metric on F. See 
for example [9]. It has been used to examine the small time asymptotics of P,(x, y). 

In this paper we obtain formulae of the same type for all the derivatives of 
Pt(x,  y). TO do this we develop further a method of Bismut [3] who showed that, for 
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the scalar heat kernel, 

t EPt  (x, y) = pt(x, y) IF, T M  ('Co, Qt) (1.4) 

for a certain process Qt in T* M over x, defined below. This formula permitted 
Bismut to show, for y close to x, that as t + 0 

tV~ Iogp~(x, y) ~ ~(0) 

where 7 is the unique geodesic from x to y in time 1. We have a similar result for the 
general case. 

Here is a sketch of the method. We use the Eells-Elworthy stochastic develop- 
ment to construct, from a single Brownian motion in 1R", a family of processes x,(x) 
in M depending smoothly on x e M, each xt(x) being a Brownian motion starting 
from x. Then, formally 

Pt(x, y) = lE[-%t(x) et(x) 6r(xt(x))] 

so 

V~ Pt(x, y) = IE [ V~'co~(X) et(x) 6~,(x~(x) ) ] . 

We use integration by parts in path space to remove the derivative from the delta 
function, thus obtaining a formula for the first derivative. This procedure can be 
repeated as often as one likes. 

Another method, which does not require integration by parts, has recently been 
used by Elworthy [-6] to obtain, independently, heat kernel formulae of a similar 
type. 

The formulae we obtain are not in any sense unique and, as the number of 
derivatives increases, they are not particularly simple. However our method of 
integrating by parts gives the simplest formulae we can find. Each formula, in 
common with (1.2) and (1.4), involves an average over the Brownian bridge of 
certain processes defined by covariant stochastic differential equations. The coeffic- 
ients of these equations involve only the curvature of 17, the potential V and their 
derivatives. Thus the formulae, though complicated, provide some insight as to 
how the given data in ~ affect the heat kernel and its derivatives. Also, the 
asymptotic result for small time shows that the formulae have some analytic 
power. 

2 Statement of the formulae and small-time asymptotics 

Let T~(0, ~ )  and x e M  be given. We are working towards formulae for 
17~,PT(X, y), 172pr(x, y), etc. Write IP x for the Wiener measure on the path space 
making the coordinate process xt a Brownian motion starting from x. The fibres of 
F are taken to be isomorphic to a fixed finite-dimensional vector space E. We 
denote by ut the horizontal lift ofx t  in GL(E,  F) starting from Uo. (We use the same 
notation ut for a horizontal lift of xt in GL(IR", TM).)  Then %t := u s u t  1 :Fxt --* F,~ 
is the parallel translation. The connection 17 is extended to tensor products in the 
usual way. The corresponding horizontal lift, for processes zt in End F over xt say, is 
provided by u;71zt = ui- lz tut ,  where the dot is used to avoid confusion with 
a simple composition of linear maps. 
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We introduce some new bundle valued processes over x~ by covariant stochas- 
tic differential equations 

(Dz,)i = 1 R(axt,  (zt)i) c3xt , 

Xt  = ( T -  t)zt  

(DWt)i = R(c~x,, (Xt)i) , 

(DO.~)~ = (z*, ~x~) ~ , 

ZO = id. ~ End T M  (2.1) 

(2.2) 

Wo = 0 e E n d F  | T * M  (2.3) 

Qo = 0 e T* M . (2.4) 

In (2. t), R ~ F(End T* M | T* M @ T* M) denotes the Riemannian curvature and 
in (2.3) R e F ( E n d F |  T ' M |  T ' M )  is the curvature of V. We shall continue 
to write R for the curvature of I7 and of the Levi-Civita connection, and any of 
their tensor products. We write Oxt for the Stratonovich differential and 
Dzt := ut. c3(u~. 1 zt) for the covariant Stratonovich differential. The calculus of these 
differentials is developed in [9]; see also [5]. The subscript i refers to an orthonor- 
real basis in T* M, the superscript i to its dual basis in TM, and z* ~ End T M  is the 
adjoint of zt. Since x~ is a Brownian motion, we have 

e(ax t ,  ") c3x, = - S(xt) & , 

where S e F(End TM)  is the Ricci tensor. So (2.1) may be written 

Dz~ = - �89 S(x~) z~ ~ t .  (2.5) 

We shall consider below the case where xt is a Brownian motion of speed e; then 
(2.1) still provides the process we want whereas (2.5) does not. 

For  bundles F and F '  we write C~(F,  F') for the set of smooth maps # : F  ~ F'  
with rcog = n where rc denotes projection on M. For  Vo~C~176  and V t e  
C ~ (F, F | T* M) consider the covariant equation in F over xt 

Dyt = Vo(yt) & + V1 (Yt) 3xt, Yo ~ Fx . (2.6) 

Introduce a derived equation in F | T* M over xt 

( D Yt) i = ~V'o(Yt) ( Xt)i Ot + 17Vl (Yt) ( Xt)i 63xt 

+ OVo(y , ) (Y t ) ,& + DZl (Y t ) ( r t ) ,  ax, 

+ Vl(yt) (DX,), + (OWt),y,  

Yo = 0 e F | T* M (2.7) 

where D V denotes the derivative in the fibre and VV the covariant derivative with 
respect to the base point. We call Yt the derived process of Yt. The solution of (2.7) 
and indeed of (2.6) may explode in a finite time. We introduce in the Appendix 
a class of graded linear equations (2.6) for which we show this cannot happen. The 
solution Yt of a graded linear equation will be called a graded exponential. 

We say that Yo is independent of x if, for all frames Uo over x, u o lYo does not 
depend on x. The examples we shall consider will involve either Yo = 0 or Yo = id. 
(F  being some space of endomorphisms), or some combination Yo = 0 G id. We 
can now state our fundamental result. 

Theorem 2.1 Let Yt be a graded exponential in F over (t, xt) with Yo independent of  x, 
and with derived process Yt. Then for all functions 9 ~ C ~ ( F, F) of  polynomial growth 

TV:,'IEX['corg(Yr)] = lEX[zor {(Qr)ig(Yr)  -- (WT) ig(yr )  + Og(yr)  ( rT)i}] . 
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The proof is given in Sect. 3. 
If we take F = M x 1R with trivial connection and 9 = f ~  rc w i th f a  C ~ ( M ,  IR), 

then the action of WT on F is as 0 and D9 = 0 so we obtain 

T E I E  x [ f (XT)]  = lEX[zoyQr f (xr ) ]  . (2.8) 

This implies for almost all y ~ M that 

TVxpy (x, y) = pr(x,  y) IE x'y'T [Zor QT] �9 (2.9) 

This is Bismut's formula [3, Theorem 2.14]. Lemma A.4 from the Appendix shows 
in particular that the expectation on the right of (2.9) depends continuously on y, so 
(2.9) in fact holds for all y ~ M. 

Our next application of Theorem 2.1 generalizes Bismut's formula to the vector 
case. Recall that we define et in End F over xt by 

Det = et V(xt)Ot, eo = i d . a E n d F .  (2.10) 

The derived process Et in End F | T* M is then given by 

( DEt)i = ( Et)i V(xt) Ot + et VV(xt) ( Xt)i Dt + [(D Wt)i, et] 

E0 = 0 ~ End F | T* M 

where [ , ]  denotes the commutator of endomorphisms. 

Theorem 2.2 For all x, y ~ M and T~  (0, oo ) we have 

T~7x'PT(X, Y) ~- pr(X, Y) ]EX'y'T ['GOT{ (QT)ieT -- ( WT)ie  T -~- (ET)i} ] �9 

Proof  Replace F by EndF,  y, by et and g(y) by ef(x), wi th fa  section ofF, to obtain 

TVxilE ~ [Zorer f (Xr) ] = ]E~[ZOT { (Qr)i e~ -- ( Wr)i er + ( Er)i} f (Xr) ] �9 

NOW condition on XT = y and apply Lemma A.4. [] 

We can also obtain formulae for higher derivatives. The simplest of these is the 
second order formula for the scalar case. The process z* satisfies the equation 

D z * =  - � 8 9  z* = id .eEnd  TM (2.11) 

which is a special case of (2.10). Hence its derived process, which we denote Z* ,  
satisfies 

(DZ*)I = - �89 (Z*)i  S(x,)Ot - �89 z* VS(xt)(Xt) ,  Ot + [(DW,),, z*] 

Z* = 0 e E n d T M  | T * M .  

Now Qt does not satisfy an autonomous covariant stochastic differential equation, 
so to obtain the derived process (~t of Qt we consider the autonomous system (2.11), 
(2.4) for (z*, Qt). We find that 

(DQ,)ij = {(Z*)j0xt + z*(DXt) j }  i -  {Qt(DWt)i} ,  

Qo = O c T * M |  T* M . 

Theorem 2.3 For all x, y ~ M and T~  (0, oo ) we have 

r ~ V~p~(x,  y) = p~(x, y)~'"~[~o~{0~ | Q~ + Q~ w~ + ~ } ] .  
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Proof In Theorem 2.1, take F = T ' M ,  yt = (z*, Qt) and g(Y)= Qf(x), with f e  
C| JR) to obtain 

TV~lEX[ZoTQrf(xr)] = IE~Ezor{Qr | QT + Qr WT + (~T}/(XT)-] �9 

By (2.8) the left hand side equals 

T 2 V 2 lE~Ef(xr)] . 

Now condition on xr  = y and apply Lemma A.4. [] 

We may rescale the time parameter in our formulae so that all integrals are 
taken over paths parametrized by the interval [0, 1]. This is appropriate when 
considering small-time asymptotics. We denote by ~'~ the law of Brownian motion 
of speed ~ ~ (0, ~ )  starting from x and by IP~ 'y'i the law of the Brownian bridge of 
speed e from x to y in time 1. Then we have a rescaled version of Theorem 2.1. 

Theorem 2.4 Let Yt be a graded exponential in F over (t, xt) with Yo independent of x, 
and with derived process IT,. Then for all functions g e C ~176 ( F, F) of polynomial growth 

Vx,]EX[zolg(y l )]  = ]EX[zol {(Q1/8)i g(Yt) - ( W 1 ) i g ( Y l )  + Dg(y~)( Y~),}3. (2.12) 

This formula is a straightforward deduction from Theorem 2.1. Alternatively, to 
obtain the formula directly, one can repeat the proof of Theorem 2.1. The only 

modification required is an extra factor of _1 in the Girsanov exponential, which 
e 

leads to the term Q~/e in the formula. 

Theorem 2.5 Suppose there is a unique minimal geodesic ~ from x to y in time 1, and 
write z~y:Fy ~ F ~  for the parallel translation along 7. Then for all N = O, 1, 
2 , . . .  we have 

t N V~Pt(x, y) 
lim 
,~o p~(x, y) 

Proof After rescaling time by a factor 
and zt are 

- T ~  | ~ (0 )  | . 

of e, the appropriate equations for e, 

Det = eet V(xt) &, 
g 

Dzt = - ~ S(x t )z t&.  

So et, zt and all the processes Xt, W,, Qt and Y, defined using z~, have a dependence 
on e, which we now make explicit. 

On iterating N times the rescaled integration by parts formula (2.12), we obtain 
a graded exponential y~ over (t, xt) with coefficients depending smoothly on e and 
a polynomial g (with values in End F | (T* M) | such that, for all f e  F (F) and 
all e ~ (0, oo) 

8N N x Vx lEt [Zol e~f(xa)] = lE~[zol e~f(xl)  | (Q])| + alE~ [Zol g(~, y ] ) f ( x l ) ]  �9 

We condition on xl = y and appeal to Lemma A.4 to deduce 

e N V~P~(x, y) 
- IE~ 'y'I [~ol e~ | (%1Q])|  + ~iE~,y,1 [%1g(~, Y]) ]  �9 (2.13) 

p~tx, 2;) 
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By Remark A.2, Lemma B.2 and Lemma B.4, we know that for all 6 > 0, as e $ 0, 

~, , , i  ~ - zxyl > ~ ]  - - '  0 IP~ [1%1e, 

Ie2 y'l [Izo~ Q~ - ~(0)1 > a ]  --, 0 

also 

sup m x'Y'l ~ [ l ~ o 1 | 1 7 4  < oo 
o<,__<~ 

sup IE~'Y'l[IrOlg(e,y])]] < oo. 
O<e_-<l 

So we can take the limit e~0 in (2.13) to prove the theorem. [] 

A different probabilistic approach to the behaviour of heat kernels and their 
derivatives in small time was given by Ben-Arous [1]. He considers only the scalar 
heat kernel, but investigates the more complex hypoelliptic case. Whereas we 
compare the derivatives of Pt (x, y) to p~(x, y) in small time, Ben-Arous' results give 
asymptotics for the derivatives of a hypoelliptic heat kernel in terms of the solution 
of a system of auxilliary transport equations. The relative asymptotics we obtain do 
not require x and y to be non-conjugate along their minimal geodesic and so apply 
to generic points of the cut-locus, even though the asymptotics of Pt (x, y) itself there 
are not well understood. The author is grateful to a referee for this comment and for 
the above reference. 

Example 2.6. We consider the special case F = M x IR and a~ = �89 A + X where 
A is the Laplace-Beltrami operator and X is a vector field on M. Then in the 
decomposition (1.1) we have V= d + <X," ), so parallel translation along xt is 
given by 

Zot = exp f <X(xt), 8x t )  . 
0 

Write pX (x, y) for the heat kernel of c~. Theorem 2.5 tells us that if there is a unique 
geodesic 7 from x to y in time 1, then for all N = 0, 1, 2 , . . .  

t n n x t_ I7~ p~ (x, y) 
lim = ~(0) | exp f <X(~t), 07t) �9 
t~O Pt( X, Y) o 

The reader may like to check the case where M is ]R n and X is a constant! 

3 Proof of Theorem 2.1 

We begin by computing formally the derivatives of certain processes defined by 
stochastic differential equations depending on a parameter. Then we show how 
Theorem 2.1 follows from the quasi-invariance of Wiener measure in IR" under 
certain transformations, where n is the dimension of the manifold M. The basic 
method goes back to Bismut [2]. The approach followed here is close to Bismut 
[33. 

Let xt be a Brownian motion in IR". Replace, if necessary, the bundle F by the 
tensor product F | TM,  and V by its product with the Levi-Civita connection. 
Then we can assume F has the form F' | T M  and V respects this product. Fix an 
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initial frame Uo e GL(E, F) also respecting this product structure. The stochastic 
development xt of fit in M through Uo and its horizontal lift ut starting from Uo have 
a global description in terms of the canonical 1-form 

O(V) = b/ -1  T c * ( V ) ,  VET,,GL(E,F) 

and the connection form co of V. In fact u, is the unique solution of the equations 

O(,~u,) = ~ ,  o (~u , )  = 0 

starting from Uo. 
If Yt is a process in F over x~, we write y~ for the process u~-1Yt in E: thus, for 

z~ and Wt defined by (2.1) and (2.3), ~ = u ; - l z t u ,  takes values in EndlR" and 
Wt takes values in End E | (IR")*. For simplicity we consider first the case where 
F = T M  and V is the Levi-Civita connection. Let e ~ IR" be given and recall that 
T~(0, oo) is fixed throughout. Define processes at in IR" and bt in EndlR" by 

at = - ~ t e / T ,  bt = - W t e / T  (3.1) 

and let 7(~) be the horizontal curve in GL(M)  defined by 

0 ~ =e ,  co = 0  (3.2) 

with 7(0) = Uo. Introduce a perturbed process 2~ in IR", starting from 0, by 

dX~ = e TM d ~  + datdt  . (3.3) 

Here d~t is the It6 differential. 
Let u~ be the unique solution of the equations 

O(Ouf) ~,2~, co(Ou~) = o 

starting from 7(t~). We shall show that 

P r o o f  o f (3 .4 )  Set U, = c~0 r 0t = O(Ut) and cot = co(Ut). We have 

; ~=o co(~u,~) = 0 

SO 

dO(~ut, U,) = dot - (btd~t + a t&)  

dco( Out, U,) = ~co~ . 

The connection has structure equations 

d O =  - - o A O  

d o =  - - o A o + ~ 2  
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where O is the curvature form, so we obtain 

OOt = btdxt + at3t + cot~Yt 

acot = ~(aut,  v~) = Ru,(a~t, 0t) 

where/~ is the equivariant representation of the curvature tensor. We know that 
0o = e and COo = 0, so these equations determine 0t and ~o~ uniquely. Substitution 
for at and bt by (3.1) and for 0t and ~ot by the claimed solutions (3.4) yields 

r  = - -  lTIZtsdx t - z t e c3 t  + l / V t s ~ f ;  t 

Off/re = R., ( O~t, 2re) .  

The Stratonovich to It6 conversion rule shows 

Wte~Y:, - ~ edxt = �89 ~ ff/,eOxt = �89 g,~ ( Oy:,, ;r Oxt . 

So, in covariant notation, we have to check 

( D X t ) i  = 1 e ( ~ x t , ( X t ) i ) O x  t _ ( z t )  i Ot  

(DWt)~ = R(t3xt, (Xt)i) 

and this follows easily from (2.1), (2.2) and (2.3). [] 
If we start with a general connection I7 on a general bundle F, extended to T M  

by Levi-Civita, then the perturbation of the Brownian motion x, remains the same 
and (3.4) remains true. 

Now suppose we define a process Yt in F over xt by the covariant Eq. (2.6) with 
Yo independent of x. Define a perturbed process yt ~ over x~ by 

Dyf = Vo(yf)~t + V~(yf)O:,f, /o  = yo(x~o). 

Then 35f:= (uf)- 1 yf satisfies 
- -  g - {  - f  

0yf = ~7o(uf, y f )0 t  + v~(ut, yt)Ox,,  Jo = ;o 

where 12o(U, y) = u -1 Vo(uy) and l?l(u, fi) = u -x Vl(uy)u.  We differentiate for- 

to see that f o e : =  T~-~E e=oyf satisfies the mally equation 

OY~ = T d V o ( U ,  ;gt)Ot + T d V t ( U t ,  Yt)<~xt + DVo(ut, Yt) Y ~  

+ DVI(ut ,  Y t ) f~  - Vl(ut, Yt)(s + ff'ted'Yt). 

Hence yO:= ut. ~o satisfies the covariant equation 

( D Y~ = VVo(Yt) ( Xt),  c~t + W l  (yt) ( Xt), t3xt 

+ OVo(y~)((Y~ + (w~),y,)~t + z)V~(y,)((~rO)~ + (W, k yO a~t 

- -  V~ (Yt) ((zt), <3t + (Wt), axt) - ( wt)i Oyt . 

Define Y't by (Y't)~ = (yo)~ + (Wt)~Yt. Then 

(BY':), = (BY~ + (OV/,),y, + (W,), Oyt 
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so Y', satisfies the Eq. (2.7). We have shown that 

~ - ~ e = O  ( C ~ u g t ) u t l y t = Y t , 9 .  (3.5) r a ((u,q-lyf) + r~o ~7 ~=o 

where f t  = u~ 1 Yt and Yt is given by  (2.7). 
The process at = - ~te/T is uniformly bounded on compact time intervals so 

~2 t lasl2ds} q , : = e x p { - f  j (as, d Y ~ , ) - ~ J  

defines a martingale. The process b, = - l/Vte/T takes values in skew-symmetric 
matrices, so e eb' is a rotation. Hence under the new probability measure Qe defined 
by 

dF & = q~ 

2~ is a Brownian motion. The law of ~ determines the laws of u~ and y~ but 
remember that u, e starts from 7(#), so for 9sC| F) of polynomial growth 

m[(u~) -1 ~ ( y f ) q f ]  = ~ (~ ) -  1 m ~,<~ [~o,g(y, ) ]  
and so 

~ = 0  = u v~m ~Do,g(y,)] (~). IE E(u;) 9(Y~) q~] 01 

Now Lemma A.3 allows us to take the derivative in Y inside the expectation and 
(3.4) and (3.5) enables us to express the derivative in terms of X,, W~ and Yr. 

We have 

~ 
=o (uf)-* o(y,q 

SO 

T~@ e=o (uf)-J O(Yet)qf 

= (u? 1 gg(y,))X,e + (u;-1Dg(yt)) f t e -  I~te(ut-*g(yt)) + (u?*g(y,))O.,e. 

Let g run over a basis of IR" to deduce 

E, IE"[Zo,9(y,) ] = ]Ef zot { VO(yt) ( Xt)~ + Dg(yO ( Yt), - ( W,)~9(Yt) + 9(Y,) ( Q,)~ } ] �9 

Finally, take t = T and note Xr = 0 to prove the theorem. [] 

Appendix A: Regularity results for graded exponentials 

We will obtain some regularity results for a nice class of covariant stochastic 
differential equations 

Dy~ = V(yt) axt. 
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Here we are given a semimartingale xt in M and V ~ C ~ ~ 1 7 4  and 
the solution y, is to take values over xt in the bundle F. We can rewrite this 
equation using a horizontal lift ut of xt in GL(E,  F): set 37t = u t l y ,  and 
V(u, ~) = u -1 V(uy)u,  then 

~Yt = r2(ut, 37~) ~:~. (a.1) 

These equations possess, for each initial value Yo, a unique solution up to ex- 
plosion. 

Suppose now there is a direct sum decomposition F = F 1 G"  " �9 | F k, respect- 
ed by the connection, and that the equation 

Dyt = V(yt)~?x~ (a.2) 

decomposes as 

Dy{ = AJ(Oxt)y] + UJ(~3xt)(yt~,. . . yt j - l )  (A.3) 

where, for j  = 1 . . . .  , k, A j e F (End F j | T* M) and UJ(x) (yl  . . . .  , y~- ~ ) is a poly- 
nomial in y~ . . . .  , y J- ~, depending smoothly on x, with values in F j | T * M .  Then 
we call (A.2) a 9raded linear equation and we call any solution a graded exponential 
over xt. The maximum degree d of the polynomials UJ(x), j = 1 , . . . ,  k is called the 
degree of Yr. 

We shall be mainly interested in the case where x~ is a Brownian motion, or 
a Brownian bridge, and where y~ is a graded exponential over the semimartingale 
(t, xt) in IR x M. More specifically we shall be interested in the case where yt in fact 
satisfies an equation of the form 

Dy~ = Vo(yt )& + V~(yt)Ox,.  

The class of such graded exponentials includes constants, exponentials such as 
e~ and z~ in Sect. 2, and other processes such as (z*, Q~) as in Theorem 2.3. 
Moreover, if Yt is a graded exponential with derived process lit, then 
(zt, Xt ,  Wt, Q~, yt, Yt) is also a graded exponential (see Eqs. (2.1), (2.2), (2.3), (2.4) and 
(2.7)). So Theorem 2.1 and its variant Theorem 2.4 are suitable for iteration. 

We return to the case of a general semimartingale xt in M. For a multi-index 
c~ = (cq . . . .  , C~k) we write 

y,*~ = (y~)| |  | (yf)| 

and 
k 

j = t  

The following result makes analysis of graded exponentials rather easy. 

Lemma A.1 Let Yt be a graded exponential over xt of  degree d. Then 
(y~ :  II ~lld < d ~) is a horizontal lift o f  x J o r  some connection. 

Proof. We extend the connection V and the covariant Stratonovich differential 
D to tensor products in the usual way. Recall (A.3) 

Dyl = AJ(Oxt)yi + U J ( a x t ) ( y r  y{-1) 

where A j is linear and U j is polynomial, of degree at most d. So we have 

Dyl = .4J(Oxt) ( y ~ :  I1~11 _-< #) 
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where A J is linear. The product rule shows that 

D((yl)  | = AJ'm( c3xt) (y?~. ]lc~l[ <= md j) 

with A i'm linear, and then 

D(Y~ ~) = A~(Sxt ) (y? '  :'[,t/~II < II~ll) 

with A ~ linear. Define a new connection on @)ll~n~a~(F1) | |  |  | by 
17" = V ~ - A ~, then (Y~':llc~ll <-_ d k) is the corresponding horizontal lift of xt start- 
ing from yo ~  [] 

Remark A.2 Lemma A.1, in conjunction with Lemma B.2 and Lemma B.4 below, 
provides LP-estimates and weak convergence results for graded exponentials over 
a Brownian bridge x, of small speed e > 0. More generally, as discussed above, we 
are interested in solutions of equations 

Dyt = Vo(Yt) Ot + V1 (y,) ax, 

which are graded exponentials over (t, xt). Lemma A.1 now provides a reduction to 
the case of time dependent horizontal lift with drift. As discussed in Remark B.3(i), 
the LP-estimates and weak convergence results still apply. 

The following result provides justification for the formal differentiation of 
graded linear equations carried out in Sect. 3. Recall that 2~ is defined by (3.3). Let 
7" [ -  1, 1] ~ GL(E,  F) and t/- [ -  1, 1] ~ F be given smooth curves with n7 = rcfl, 
and let Vo and V1 be coefficients of a graded linear equation. 

Lemma A.3 There exist maps 

(p :f2x [0, oo)x  [ -  1,1] ~ G L ( E , F )  

~:~2 x [0, oo)x  [ -  1, 1] ~ F  

with the following properties: 

(i) For each f e  [ -  1, 1], u~ = q~(t, f )  satisfies the equations 

O(Ou~) = 8.2~, ~(Su~) - 0, u~ = ~(~) (A.4) 

and y~ = ~(t, ~) satisfies the graded linear equation over x~ = hue' 

Dy~ = Vo(yfl~t  + V,(ye')axe', y~ = ~(~). (A.5) 

(ii) Almost surely and for all t ~ [0, oo), opt and ~bt are smooth in g s [ - 1, 1] and 
their derivatives satisfy the stochastic differential equations obtained by 
formal differentiation of (A.4) and (A.5). 

(iii) For any metric on F, for all t ~ [0, oo) and p ~ [1, oo ) we have 

sup ]E I~0M)l ~ + IOM)I ~ + a~ (~') + ~ (/)  p 
~'E[- 1,1] 

Proof. Fix a metric on F and assume that I7 is compatible with the metric. (The 
horizontal lift of any other connection V - A  satisfies a linear equation 
Dut = A(Sxt) ut which can be subsumed in (A.5), so we assume this without loss.) By 
Lemma A.1 we are reduced to the case where (A.5) is replaced by a linear equation 

Dy e, = {Ao(&) + A~(Sxf )}y f .  
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Now embed O(E, F)  as a (compact) submanifold in some IR N. We can rewrite 
(A.4) in the form 

with U e Coo(lR u, ~.U @ ( ~ x n ) * )  of compact support. Moreover 37~ := (u~)- i yt~ satis- 
fies 

where A(u) = u71A(x) .  The conclusions we seek now follow from Carverhill and 
Elworthy [4], for example. [] 

Lemma A.4 Let  Yt be a graded exponential in F over (t, x,) and suppose g e 
COO(F, IR) is of  polynomial growth. Then for all x ~ M  and Te(O, o9) the map 
Y ~ ]EX'Y'T [g(Yr)] is continuous. 

Proof  Let U be an open set in M whose closure lies within the domain D of 
a coordinate chart. Set 

h ( x , y ) = S 1  i f x ,  y ~ D  a n d x i < y i f o r  i = l  . . . . .  n 

otherwise. 

Note that, as y, ~ y, for almost all x e M 

h(x, y,,) ---* h(x, y) . (A.6) 

Write the Riemannian volume element as p(x )dx  ~ . . .  dx" within D. Construct 
a cut-off function Oe C~176 with 1v _-< ~ $1D and define 

0(x) a 
s - p(x) Ox ~ " " " Ox " f (x) '  f ~  Coo(M).  

Fixing y ~ U, take a sequence of functions hk ~ Coo(M) converging to h(', y) almost 
everywhere. Thenfk :=  5Yhk ~ 6y in the sense that, for all (p~Coo(M), 

f  o(x)fk(x) dx --, (p(y). 
M 

By an integration by parts procedure, similar to that used in the proof of Theorem 
2.1, used also in [8] in the case M = IR", we can find a graded exponential y'~, with 
values in F'  say, and a function g'~COO(F'O F', IR) of polynomial growth, such 
that, for al l f~Coo(M) and all 0 < t < T 

T" IE ~ [~Cef(XT) 9(Yt)] = IEX [ f (Xr)  g'(Y't, Y})] �9 

Hence for the sequence fk above, 

x ! t t lim T" IE~[fk(Xr)g(y,)]  = IE [h(xr)g  (y,, YT)] �9 
k--* oo 

F o r 0 < t < T w e h a v e  

lim lEX[fk(XT)g(yt)] = lim lEx[(Pv_tfk)(x,)g(yt)J 
k - * o o  k ~ o o  

= IF, ~ [PT-~(X,, y) g(y,)-I 

= p~.(x, y) ~ , y . r  D(yt ) ]  �9 
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Hence 
T" pr(x, y) IE ~'r'r [9(Y,)] = lEX [h(xr, y) 9'(Y', Y'r)] �9 (A.7) 

We know Y'z --+y) in LP(P x) for all p~[1, oo) by standard estimates, and y~ ~ Yr 
almost surely under ~,x,y,r. Since (A.7) holds for all 9 of polynomial growth, we see 
that (y,: 0 < t < T) is bounded in LP(IP x'y' r) for all p, hence yz --, Yr in LP(IW ' ~' r) 
and (A.7) extends to t = T. The result now follows from (A.6) and (A.7). [] 

Appendix B: Estimates on the Brownian bridge 

We are interested in the asymptotics as e $ 0 of parallel translation along 
a Brownian bridge of speed e. We shall use the following basic estimates. For all 
fie(0, oo), there is a constant C(M, fi)~(0, oo) such that for all x, y~ M  and all 
0< t__< l  

C(M' fl) { d2(x' y) } (B.1) 
pt(x, y) < t,/2 exp 2(1 + fl) t 

where d is the Riemannian distance. We need the lower bound only in asymptotic 
form 

d 2 (x, y) 
lira inf t logpt(x, y) > (B.2) 

t,o 2 

For (B.1) see Li and Yau [7, Corollary 3.1] and for (B.2) see Varadhan [10]. The 
following is a crude version of [7, Theorem 2.3]: there is a constant C(M) e(O, oo) 
such that, for all x, y, z s M  and re(0, oo) 

p,(z,y)<__p2t(x,y)exp{ct+C}. (B.3) 

We shall deduce from (B.3) another estimate which is implicit in [33. 

Lemma B.1 There is a constant C(M)e(O, co) such that for all x, y s M  and 
t e (0, oo) we have 

tl ~ logp,(x, Y)I < Ce ct. 

Proof We use Bismut's formula (2.9) 

t Vxp~(x, z) = p~(x, z) I t  . . . .  ' [to, Q,]. 

By integrating against pt(z, y) dz we obtain 

t ~p2,(x, y) = p2t(x, y) IF. x' y" 2~ [Zot Q,] . 

Let x, be the stochastic development of~t through Uo and let u, be the horizontal lift 
of xt starting from Uo. Then 

t 

O 
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where if* satisfies 

~e,* = - �89 e,* ~(uO or. 

and S(u) = u71S(x). Clearly we have 

l e*l <-_ Ce c~. 

But by an integration by parts 

SO 

58 = id. 

t 1 t 
f e*~d~, = e*~, + ~ f  e*g(Uj~sds 
0 

IzotQtl < Ce ct sup I x, I �9 
O<_s<_t 

Under IP x, the process )ct is a Brownian motion in JR" so for 2e [1 ,  oo) 

lPX sup I x s l > 2  < C e - C t .  
\ O<_s<_t 

We use the basic estimate (B.3) to deduce 

( ) ]px, y, 2t sup 12~1 > '~ ----< e c t + T - ~  

\ O<-s<t 

and hence 

]EX'y'2t(\ o<_s<_tsup ['2s[ ) <_ Ce ct. 

The lemma follows. [] 
Lemma B.2 For all x, y e M  and all p o l l ,  oo) 

sup IE~ 'y ' I  [ sup {[Tst[ p + [TtsIP}I ( 00. 
0<e__<l l_O<_s<_t<_ l 

Proof. The time reversal of a Brownian bridge is a Brownian bridge and parallel 
translation is invariant under time reversal. For s < �89 < t we have 

I'ctsl < I'ctl I I'q~l I'C�89 Izo~l 

so it suffices to show 

V 7 
sup E x 'y ' l  [ suP1 {[Zot[ v + [Zto[P}[ < o0. 

o<~<1 LO<t_-<~ A 

Fix an inner product on F and supposc for now that Vis compatible with this 
inner product. For  A s F(End F | T* M ) consider the linear equation in End F 
over xt 

Det = A(Sxt)et, eo = id. (B.4) 

We rewrite this equation using a horizontal lift ut of xt in O(E, F) as at (A.1) 

8gt = .~(u,) ~t 82,  go = id. 
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Note that [et[ = let[ and by compactness A(ut) is uniformly bounded. Under 
p~,y, 1 we have 

~xt = Obt + u~- z ~ Vlogp~(1 -t)(xt, y) & 

where bt is a Brownian motion in IR". The crucial estimate comes from Lemma B.I: 
fo r0_<t_<�89  

e[ I71ogp~(1 _o(xt, y)[ _<_ Ce 2c. 

The usual combination of Gronwall's Lemma and Burkholder-Davis-Gundy 
inequalities now shows for p ~ [1, oc) that 

sup IE~""l [ sup1 ,et ,Pl< oo. 
0 < e < l  L 0 < t < g  

Since e~-1 satisfies the equation 

V(eF 1) = - eF~A(t?x,), eo 1 = id. 

the same estimate holds for et - t  . Now ~to = et~to is the parallel translation 
corresponding to the connection F - A  and we obtain all connections in this 
way. [] 

Remark B.3 (i) The proof of Lemma B.2 applies also to the case of (time-depend- 
ent) parallel translation with drift. Replace M by IR x M and xt by (t, xt). Then we 
find at (B.4) an equation of the form 

Det = {Ao(t, xt) Ot + Al(t, xt)t~xt} e, 

which can be dealt with just as (B.4). The same remark applies to Lemma B.4. 
(ii) Consider a family of connections g~, e s [0, 1], depending smoothly on e, 

and write z]t for parallel translation with respect to V s. We can replace zst by z]t in 
Lemma B.2: we find at (B.4) an equation of the form 

De~ = A"(axt) e~ 

A ~ depending smoothly on 5, and the same proof applies. 
We denote a generic element of C([0, 1], M) by co and a generic element of 

C([0, 1], GL(E,  F)) by (5. Then x~(co) = cot and parallel translations and horizontal 
lifts are all functions of co, defined almost surely for each of the Wiener measures 
considered, also defined when co is absolutely continuous. Consider a family of 
connections I7,, as in Remark B.3(ii). For u e GL(E,  F) with ~u = x we wri te /~  for 
the law of (Z~oU:0 < t -< 1) under F~. Then for F:  C([0, 1], GL(E,  F ) ) - ,  IR con- 
tinuous and bounded and for A _ C ([0, 1], GL(E,  F)) closed, we know by Ven- 
tcell-Freidlin estimates that 

e,~0 r 

1 1 
where I , (c5)= ~ f  [cb~[Zds if c5 is the horizontal lift by I7 o of some absolutely 

U 

continuous path co in M, starting from u, and I,(c5) = oo otherwise. 

Lemma B.4 Suppose there is a unique minimal geodesic 7from x to y in time 1. Then 
for any metric on F and any q > 0, as e $ 0 

]Vx, y, 1([~.~1 _ ,.cOx (~)[ > / 7 )  ~ 0 . 
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Proof Choose a complete metric (distance function) p on GL(E, F). Fix Uo, ul e 
GL(E, F) with nUo = x and rcul= y. Then for every q > 0 there is a 6 > 0 such that 
ITS1 -- TO1(]))[ > Y/ implies either 

p ("C ~ 0 P ('t7 ~ 1 i oUO, Z�89 or u l , z  1 ( ? ) u l ) > 6 .  

By time symmetry it then suffices to show 

P~' " ~ (p(u~ , u ~ ) > ~ ) --, 0 
2 2 

We know that where u~ = ZtoUo. 

d]VX,y,1 _ p,/2(x�89 y) 

Set F(O5) = d2(7"co51, y) and A = {O5:P(O51, u~ --> 6}. Then by the basic estimate 
2 2 

(B.1), for all fie(O, oo) 

~p~,r, l ( p ( u ] ,  uO(~,)) > ,~) <= _ _  
2 2 

By Varadhan's estimate (B.2) 

(~/2) n/2 pe(x, y) 

lim infe logp~(x, y) > 
e$O 

and by (B.5) 

lim sup ~ 1og#~~ exp { 
~.0 

dZ(x,y) 

F ) \  
~} _<_ - inf {I~o(65)+ F(OS)/(1 + fi)) 

e(1 + f l ) ) /  ~A 

< - inf {I,o(O5) + F(OS)}/(1 + fl). (B.6) 
o3~A 

By the usual weak compactness argument, the infimum in (B.6) is attained, so, 
fl e (0, Go) being arbitrary, it suffices to show that for all O5 e A 

1,o(o5 ) + d2(Tzo31, y) > dZ(x, y)/2.  (B.7) 

Now 
1 

d2(x, z) = inf ~ / [~b~12 ds 

where the infimum is taken over aU absolutely continuous paths co with ~o = x and 
c~ 1 = z. Therefore I,o (O5) _-> d 2 (x, go51 ), SO equality in (B.7) would imply 

d2(x, zoo51) + d2(Tzo51, y) < d2(x, y)/2 

or 

inf I )103sl 2 ds < d2(x ,  y ) / 2  
0 
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where the inf imum is t aken  over  all abso lu te ly  con t inuous  pa ths  co with COo -- x, 
0) 1 = rc(51 and o l  = y. But we have assumed there is a unique min imal  geodesic 

7 f rom x to y in t ime 1 so this would  imply  ~zcSz = 71. M o r e o v e r  equal i ty  in (B.7) 

would  then also force I,o((5 ) = d 2 (x, 71 )- Since there is a unique min ima l  geodesic,  

this would  imply  ~zo5 s = ~ for 0 _< s _< �89 and then (51 = u~ which is imposs ib le  
2 

for & ~ A .  [] 
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