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Summary. Recent literature on functional estimation has shown the importance of 
kernels with vanishing moments although no general framework was given to build 
kernels of increasing order apart from some specific methods based on moment 
relationships. The purpose of the present paper is to develop such a framework and 
to show how to build higher order kernels with nice properties and to solve 
optimization problems about kernels. The proofs given here, unlike standard 
variational arguments, explain why some hierarchies of kernels do have optimality 
properties. Applications are given to functional estimation in a general context. In 
the last section special attention is paid to density estimates based on kernels of 
order (m, r), i.e., kernels of order r for estimation of derivatives of order m. 
Convergence theorems are easily derived from interpretation by means of projec- 
tions in L 2 spaces. 
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1 Introduction 

Before entering into a very general context we will introduce hierarchies of higher 
order kernels through the simple and understandable example of density estima- 
tion. Let (Xi)i~ be a sequence of real-valued independent random variables with 
common unknown density f Consider the standard Parzen-Rosenblatt kernel 
estimate: 

f"(x)=~..,=l \ h. / 

where (h,)n~ is a sequence of positive real numbers tending to zero and K is 
a measurable function integrating to one. The bias off,(x) is 

Ef . (x)  - f ( x )  = f [ f ( x  - hu) - f ( x ) ]  K(u)  du . 
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If the pth order derivative off(p > 2) exists and is bounded in a neighbourhood of 
x a Taylor series expansion gives 

p -  1 ( _  l~k 
Eft(x) - f (x)  = 2 hkk~--~.' f(k~(x)fukK(u) du + O(h'). (1.1) 

k = l  

Formula (1.1) shows the importance of kernels with vanishing moments. K is 
said to be of order p if fuK(u)du =fu2K(u)du = . . .  =fuP-lK(u)du = 0 and 
fuPK(u)du is finite and non null. For a kernel of order p the bias is O(hP). The first 
consequence of the theory introduced in Sect. 2 is that kernels can be grouped into 
hierarchies with the following property: each hierarchy is identified by a density Ko 
belonging to it and contains kernels of order 2, 3, 4 . . . .  which are products of 
polynomials with Ko. Examples of hierarchies and algorithms for computing each 
element of a hierarchy from the "basic kernel" Ko are presented in Sect. 3. Section 
4 gives a technical result about sequences of hierarchies. Subsection 5.1 is devoted 
to properties of roots of higher order kernels. Let us now suppose that we want to 
use a kernel of order p to reduce the asymptotic bias but that we also want to 

f(x) fK2(u)du (Singh minimize the asymptotic variance which is equivalent to 

1979). We have to choose K of order p so as to minimize the criterion fK2(u)du 
(with some additional conditions that remove degenerate cases). Our description of 
finite order kernels provides a powerful portmanteau theory for such optimization 
problems: 

�9 it suffices to solve the problem for the basic kernel Ko in order to obtain 
a hierarchy in which every kernel will optimize the criterion at its own order. We 
recall that Ko is a density, thus a positive function, which makes the problem easy 
to solve. 

�9 our proofs explain why a kernel has optimal properties: we write the value of 
the criterion for this kernel as the difference between the value for a general kernel 
of the same order and an explicit positive functional. 

The multiple kernel method which can be applied in any context of kernel 
estimation (e.g. probability density, spectral density, regression, hazard rate, inten- 
sity funct ions , . . . )  is described in Sect. 6. It provides an estimate minimizing 
a criterion over the smoothing parameter h and the order of the kernel. This is 
applied to density estimates in Sects. 6 and 7. 

Let us now turn to a more general and technical setting. When smoothing data 
by a kernel-type method two parameters have to be specified: a kernel K and 
a window-width h. As far as only positive kernels are concerned, it is known that 
their shape is not of crucial importance whenever h is chosen accurately. Unfortu- 
nately curve estimates built from positive kernels are usually highly biased and the 
improvement of kernel-type estimates requires kernels of order r (Schucany and 
Sommers 1977; Schucany 1989). When fitting data with such kernels the problems 
facing us will be: 

�9 How to choose simultaneously the order of the kernel and the window- 
width? 

�9 How to choose the shape of higher order kernels? 

To deal with these practical questions we first address the following theoretical 
one: 
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�9 Is it possible to build hierarchies of kernels of increasing order associated 
with an "initial shape" from which they inherit their properties? 

The answer is affirmative: the initial shape will be determined by a density Ko and 
each kernel of the hierarchy will be of the form K~(x) = ~Y'r(x, O) Ko(x) where ~ r  is 
the reproducing kernel of the space of polynomials of degree at most r imbedded in 
LZ(K0). It is equally easy to deal with kernels K~ ") of order (m, r), i.e., kernels of 
order r for estimating derivatives of order m (as defined in Sect. 2); they can also be 
written as products of Ko with polynomials and therefore inherit the properties of 
Ko: any choice of shape, support, regularity conditions (such as continuity, differ- 
entiability, etc.) or tail heaviness is possible. This possibility of choice is one of the 
main points of the present theory, in accordance with papers that try to dismiss the 
commonly held idea that practically, the kernel characteristics are at best second- 
ary. In particular some asymmetric kernels are known to overcome boundary 
effects (Gasser and Miiller 1979a, Mfiller 1991). Our framework provides easy ways 
of solving optimization problems about kernels. We give two examples: minimum 
variance kernels and minimum MISE kernels for which calculus of variations is not 
understood at a comfortable intuitive level. We show how the old results can be 
thought of as simple projection plus remainder in L 2 space and extend them to any 
order. Indeed ifKo is optimal in a certain sense, each kernel of the hierarchy has an 
optimality property at its own order. Two hierarchies have already appeared in the 
literature: the Legendre and Gram-Charlier hierarchies were studied by Deheuvels 
in 1977. The latter has recently been reexamined by Wand and Schucany (1990), 
under the name of gaussian-based kernels; a paper by Granovsky and Mfiller 
shows that they can be interpreted as limiting cases of some optimal kernels. We 
extend this last property. 

A natural extension of the concept of positivity to higher order kernels is the 
notion of minimal number of sign changes. This has been introduced by Gasser and 
Miiller (1979a) to remove degenerate solutions in some optimization problems. 
Keeping the initial density Ko unspecified we give in Sect. 5 very general properties 
about the number and the multiplicity of roots of our kernels. It turns out that 
kernels of order (0, r) and (1, r) defined from a non-vanishing density K0 have only 
real roots of multiplicity one. 

Up to now the methods for building kernels used some specific arguments 
based on moment relationships and gave no natural link between the initial kernel 
and the higher order ones. This is the case for the following properties: 

�9 if K(x) is of order 2, (3 K(x)+ xK'(x))/2 is of order 4 (Schucany and 
Sommers 1977; Silverman 1986). This has been generalized by Jones (1990). 

�9 Twicing and other methods (Stuetzle and Mittal 1979; Devroye t989): 
if K(x) is of order s, 2K(x) - (K,K)(x) is of order 2s and 3K(x) - 3(K,K)(x) 
+ (K, K ,  K)(x) is of order 3s. On the contrary, our framework makes clear the 
relationships between kernels of different orders in the same hierarchy. 

The relevant computational questions are easy to solve: two kernels of the same 
hierarchy differ by a product of K o and a linear combination of polynomials which 
are orthonormal in L2(Ko) and are therefore very easy to compute. When the 
Fourier Transform is used, choosing Ko in a clever way may considerably reduce 
computational costs. 

The selection of the order of a Parzen-Rosenblatt kernel was first considered by 
Hall and Marron (1988) in the case of density estimation. By performing a mean 
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integrated squared error analysis of the problem, they investigated theoretical 
properties of kernels with Fourier transform e x p ( - r t f )  and proposed cross- 
validation as a method for choosing the kernel order and the smoothing parameter. 
We define here a multi-stage procedure for constructing curve estimates based on 
increasing order kernels and leading to a data-driven choice of both the order and 
the window-width which applies to a wide variety of smoothing problems. In the 
last part we will focus on density estimates based on hierarchies of kernels for 
which strong consistency results are available (Berlinet 1990). The interpretation of 
these estimates by means of projections provides exponential upper bounds for the 
probability of deviation. 

2 Definition of Ko-based hierarchies 

A common construction of finite order kernels is obtained through piecewise 
polynomials (Singh 1979; Mfiller 1984 and Gasser et al. 1985) or Fourier transform 
(Devroye 1987; Hall and Marron 1988). We shall be mainly concerned here with 
products of polynomials and densities; it turns out that almost all reasonable 
kernels are of this type. 

Throughout the paper V,(r > 0) will denote the space of polynomials of degree 
at most r. Unless otherwise stated integrals will be taken with respect to the 
Lebesgue measure on IR. 

A measurable function K is said to be a kernel of order (m, p) ~ N 2, m ___ p - 2 ,  if 

f 
0 f o r j s { 0 , . . . , p - 1 }  a n d j # m  

f xJK(x)  dx = m! for j = m 
C o #  0 for j = p.  

Kernels of order (m, p) are used to estimate mth derivatives of functions with 
a reduced bias (typically of order h p, h being the window-width; see Sect. 7 below in 
the case of density estimation). 

A kernel of order (0, p) is simply called a kernel of order p: it integrates to one, 
has a finite non null moment of order p and its moments of order 1 to (p - 1 )  
vanish. A new and useful characterization of kernel order is given in the following 
lemma by means of evaluation maps for derivatives in function space. 

Lemma 1 A function K is a kernel of order (m, p) if and only if 

VPe Vp_ 1 fP(x)  K(x)dx = P(")(O) 

and fxPK(x)dx  = Cp # 0.  

Proof. Let P ~ Vp_ 1. Let us suppose that K is of order (m, p) and expand P in 
P ( i ) ( O )  e i . . . . .  

= ~i=o i! Taylor series. This gives fP (x )K(x )dx  p-1 _ j x  ~ tx )ax  = P(~)(O). 

d~(#) 
The converse is true since Yj < m - -  = 0 

dx m 

dm(x m) 
- - = m !  

dx ~ 

d"(x j) j !  
V j > m  

dx m ( j  -m)!  
x J -m . [ ]  
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In other words if K is a kernel of order (m, p) the linear form on Vp_ 1: 

P - , f P ( x )  K(x)dx 

is nothing else than the evaluation of p(m) at the point zero. This suggests 
introducing Reproducing Kernel Hilbert Subspaces (RKHS) of L z spaces (Berlinet 
1990) and more particularly polynomial spaces, because on such spaces the evalu- 
ation maps have nice representations in terms of orthonormal bases. We will see 
that a convenient general structure for the construction of hierarchies of higher 
order kernels can be established from RKHS theory, through using a succession of 
reproducing kernels applied to a "basic kernel". 

Let Ko be a density function (called the basic kernel) and let V be a RKHS of 
L2(Ko): 

V, endowed with the scalar product (~, ~ ) =  fq~(x)~(x)Ko(x)dx is a Hilbert 
space of real functions and there is a function J~C~(x, y) (the reproducing kernel) such 
that 

Vx E IR, X(x ,  . ) �9  V 

Vq~ �9 V, Vx �9 IR, f ~/g(x, u) q)(u) Ko(u)du = ~o(x) (reproduction property). 

The existence of ~ is equivalent to the continuity on V of all the evaluation forms 
f ~ f ( x ) .  If (q~i)~ c N is an orthonormal basis in V we have: 

Vx �9 ~1, X (x, .) = ~ qh(x) q)i(.) (convergence in V and pointwise). 

If Ko has finite moments up to order 2r, then I1, is a RKHS of L2(K0)just  like any 
finite dimensional subspace of functions. Let (Pi)0 _< ~ _<r be the sequence of the first 
(r + 1) orthonormal polynomials in L2Ko (see Sect. 3 below), let m � 9  and let 

(m) i PI'n)(y)Pi(x) " X ,  (x, y) = 
i = 0  

Note that o~f,(")(x, y) = ~ Pl")(y)P~(x) since Pi is of exact degree i. ~ ' ) ( . ,  y) 
i = m  

represents (in V,) the derivation of order m as stated in 

Lemma 2 Vq~eL~(K0), f~o(x)~r")(x, y)go(x)dx d~(rL(~~ " ~x ~ tY) where Hr is the 

projection from L2(Ko) onto V,. 

Proof Let Q(x) = ~'~=oeiPi(x) be any polynomial of degree at most r: 

fQ(x)~r")(x,  y)Ko(x)dx = i ~iPI")(Y) = Q(')(Y). 
i = 0  

Now, let q~�9 and//,(~o) be the projection of ~o onto V~. As ~ " ) ( . ,  y) lies 
in V~ 

dm(H'(qJ)) (y) . [] 
fcp(x)Jl~')(x, y)Ko(x)dx = fH,(~o)(x)Jl~')(x, y)Ko(x)dx = dx m 

Theorems 1 and 2 show that the product ~ ' ) ( . ,  0)Ko(.) is precisely the form 
under which any reasonable kernel of order (m, r + 1) can be written. A real 
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function g is said to have a change of sign at a point z if there is r />  0 such that g(x) 
does not vanish and keeps a fixed sign on Jz - t / ,  z[ (almost everywhere) g (x) does 
not vanish and keeps the opposite sign on ]z, z + t/[ (a.e.). 

Theorem 1 Let K be an integrable function with a finite number N > 1 of sign 
changes at distinct (ordered) points zl, z 2 , . . . ,  zs at which it is differentiable. I f  
K keeps (a.e.) a fixed sign on the intervals ] - 0% zl [, ]z l ,  z2[ . . . .  , ]ZN, + o0[ then 
there is a constant A and a density Ko such that 

IV 

VxelR, K(x) = Ago(x)  1-I (x --zi).  
i = 1  

Proof. Let e be + 1 or - 1  so that eK(x)I-[i~ 1 (x - z i )  be a non-negative function 
(a.e.) and let H be the function defined as follows: 

N 

H(x) = eK(x) ]-I (x - z i )  -1 if x ~ {Zl, z2 . . . .  , zN} 
i = 1  

H(zj )=eK' (z j )  [ I  ( zJ - z i )  -~ f o r j = l , . . . , N .  
l<=i<N 

i # j  

H is non-negative (a.e.) and has a finite moment of order N. Thus Ko = H / f H  is 
( N - -  �9 a density and Vx~lR, K(x) ego(x) V[~=l(x z i ) ) fH [] 

Theorem 2 Let P be a polynomial of degree at most r, Ko be a density with finite 
moments up to order (2r + 1) and Jlr be the reproducing kernel of V~ in LE(Ko). Then 
P(x)Ko(x) is a kernel of order (m, r + 1) if and only if 

Vx ~ IR, P(x) = ~5=)(x, O) 

fxr+~ P(x)Ko(x)dx - -  C r +  1 =1= O .  

Proof. Writing a polynomial R(x) of V~ in the basis 1, x, x 2 . . . .  , x r and applying 
Lemmas 1 and 2 one gets: 

f R(x) P(x) K o (x) dx = R (")(0) = f R(x) of ~'~)(x, O)Ko (x) dx . 

Thus [P(.)  - ~m)( . ,  0)] is orthogonal to V~ and the necessary condition follows. 
The converse is obvious. [] 

Theorem 2 suggests the following definition: 
Let Ko be a density and (Pi)i~1 c • be the sequence of orthonormal polynomials in 
L2(Ko). The hierarchy of kernels associated with Ko is the family of kernels: 

JK~")(x, O)Ko(x) = f Pl")(O)Pi(x)Ko(x), (r, m) s I  2, r >_ m.  
i=m 

Note that ~ is embedded in L2(go) and Jf~")(., 0) is well defined if and only if go  
has finite moments up to order 2r. The set I may be reduced to {0}, as it is the case 
when go  is the Cauchy density. I is always equal to an interval of N with lower 
bound equal to zero. 

Each kernel X(ff(x,  0)Ko (x) with finite and non null moment of order (r + 1) is 
a kernel of order (m, r + 1). 
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We actually obtain a hierarchy of sets of kernels, the initial set being the set of 

densities ( ~ K o  ( h ) ) ,  h > 0 and a rescaling of the initial kernel does not affect this 

hierarchy, as stated in the next theorem�9 

Theorem 3 K(.) is a kernel of order (m, p) with pth moment equal to Cp if and only if 1() 
for any h > O, ~ K "- is a kernel of order (m, p) whose pth moment is equal to 

h h 
hP-"Cp. Let (K~ )(.)) be the hierarchy of  kernels associated with Ko(.). Then, the 

hierarchy associated with -~ Ko ~ is the family of kernels K~ ") . 

Proof. The first assertion follows from the following equality: 

(h) vj {0, . ,  p}fx',-a- K d x  = h - fxJK(x)dx �9 
�9 �9 h 

the second one from the fact that, for any polynomial P of degree at most r, we 
have: 

f p ( x ) ,  l j{.~m) x_, x l fp(hu).,~m>(u, 

Each kernel to be used to smooth data is determined by K0, h, p and m. To choose 
the shape (for instance following optimality arguments) and the smoothing para- 
meter one chooses a suitably rescaled version of Ko. To choose (m, p) one moves 
along the hierarchy. The order of these operations has no importance. Bearing this 
in mind, we will continue to speak simply of kernel hierarchies. 

3 Computational aspects 

Only straightforward methods of numerical analysis are needed to calculate these 
kernels and the associated curve estimates. The orthonormal polynomials can be 
computed by means of the following relationships: 

P.(x) = Q.(x) II Q. I[ = (fQZ(x)Ko(x)dx) 1/2, Vn6N�9  LI Q. II' 

Qo(x) = 1; Qa(x) = x - f x K o ( x ) d x ;  Q.(x) = (x - a . ) Q . _  l(x) - ft. Q.-z(X), n > 2 

fxQ2"-*(x)K~ and ft. fQZ- l (x )K~ 
with a. = fQZ_~(x)Ko(x)d x = fQZ_z(x)Ko(x)d x . 

The associated kernel K(7 ) of order (m, r + 1) is given by: 

K~m)(x) = ~ Pi(x)Pl")(O)Ko(x). 
i = m  

When Ko is symmetric, we have 

Qo(x) = 1; Ql(x) = x; Q.(x) = xQ._l(x)  -/~.Q._2(x), n > 2 
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and Vn e N, Q2n is even and Q2n+ 1 is odd. Therefore, in that case, the condition 
f x '+ lK~r" ) ( x )dx  = C,+ ~ + 0 can be satisfied only, if (r + m) is odd; this last condi- 
tion entails that P~m)(0) = 0 and ~m ' (x ,  0) = ~ 2 1 ( x ,  0). 

The reproducing kernel can be computed either iteratively or by means of the 
Christoffel-Darboux formulas, when the Q~'s are known explicitly: 

l f Q,+I(x)Q,(y)-Q,+I(y)Qr(X)) 
gx • y, or y) = i=oi Pi (x )P i ( y )  = IIQ, II2\ x 

Vx, igOr(X, X) = ~ [Pi(x)]  2 = 1 i=o II Q,.II ~ rQD+~(x )Q, (x )  - Q , + l ( x ) Q ; ( x ) ] .  

3.1 Determinantal  expressions 

To give an explicit formula for ..,~((m), we introduce some notation: for k => 1 and any 
sequence # = (Pi) of real numbers, let us denote by M~ the Hankel matrix of order 
k built from #q, #q+ 1,. �9 �9 #q + 2,-2, and by H~ its determinant: 

M~= 

#q  # q + l  "'" ] 2 q + k - 1  

[r 1 

t f l q + k -  1 "'" ]Aq + 2k_ 2 

, H~, = det(M~).  

Finally, let Hq, , ( x ) ,  x ~ lit, m ~ { 1 , . . . ,  k} be the determinant of the matrix obtained 
from Mk q by replacing the mth line by 1, x, x 2 . . . .  , x k-  1. We will suppose that all 
the principal minors of M~ 1 are different from zero. 

Theorem 4 Le t  # = (#i)o <= is  2s 

Then Vx ~ IR, 

Vk6N, 

Vk6N, 

V k 6 N ,  

Vx ~ lR, 

be the sequence o f  (2s + 1)f irs t  moments  o f  Ko.  

0 0 
Vk e N ,  Qk(X) = Hk  + 1, k + 1 (X) /Hk 

II Q~ II :~_,o :uo~1t2 t.i,l k + l / . t  Jt k ) 

f lk  0 0 0 2 = H k H k - 2 / ( H k - 1 )  

Pk(X) o = Hk+I,k+I(X)(HOHO+I) -li2 

K ~m) (x) = m! H~ 1,,,, + l (x) Ko (x) l H~ , �9 

Proof. The first four equalities are well known and easy to check (Br6zinski 1980). 
Now, writing K~")(x) in the basis 1, x, x 2 . . . .  , x '  and applying the definition of 
a kernel of order (m, p) yields a linear system in the coefficients of K ~ ) ( x )  with 
matrix M ~ 

Straightforward algebra gives the result. [] 

Remark.  The determinantal form of ~ m ) ( x )  can be used either in practical com- 
putations with small values of r, or in theoretical considerations, for instance to 
show that the kernels derived in Gasser et al. (1985) are those of Legendre and 
Epanechnikov hierarchies (we give a direct proof in Sect. 5 below). 
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3.2 Examples 

Any choice of Ko, with finite moments up to order 2r (r > 1), provides a sequence of 
kernels K~m)(x)= 3f~')(x, 0) Ko(x). This choice, possibly made from the obser- 
vations, has to be further investigated, especially when information is available on 
the support o f f  As we shall see in part 5, optimal densities (in a sense to be defined) 
give rise to optimal hierarchies. 

(a) Ko(x) = �89 ll(x) leads to piecewise polynomial kernels: Legendre kernels. 
(b) Ko(X) = �88 x2)+ is the basic kernel of the Epanechnikov hierarchy. 

(a) and (b) are particular cases of the Jacobi hierarchies obtained with 
Ko(x) = a ( 1 -  x)~_ (1 + x)P+. 

/ ' ) i t \  

 ,ves r, se to O . a m  (c) 
\ 

kernels when k = 1. The derivatives of the orthonormal polynomials are in 
this case linear combinations of a bounded number of polynomials of the same 
system. 

/ 2  /~  + 1 ~  -1 
, otx  =  ives to La u0  e k  ne,s w on 

\ r "  \ r"  / / 

= 0 and fl = 1. 

' ) (e) Ko(x)=Aexp - - f l )  4 - ~ ( x - f l ) 2  (~>__0;7>0ifc~=0) .  

This family of distributions is characterized by the same property as in (c) with 
a number of polynomials less than or equal to two. 

Some of these kernels have been discussed in detail in the literature (Deheuvels 
1977a). Numerous results concerning orthogonal polynomials with weights, such 
as those given above and many others, can be found in Freud (1973); Nevai 
(1973a, b, 1979); Br6zinski (1980). 

4 Sequences of hierarchies 

Now study how different hierarchies of kernels and different families of densities 
approximate each other. Let Ko and K0,t, Y e N, be densities associated with 
families of orthonormal polynomials (Pi )~  and (Pi, t ) ~ .  From Theorem 4 it is 
clear that the convergence, as Y tends to infinity, of the moments of K0,t to the 
corresponding moments of Ko entails the convergence of the coefficients of P~,t to 
the coefficients of P~ and therefore each element of the Ko-hierarchy can appear as 
a limiting case of the K0/-hierarchies. From the Lebesgue dominated convergence 
theorem it follows that the condition of convergence of the moments is fulfilled 
provided that the functions IK0,t(x)l, YeN, are bounded by a function with 
corresponding finite moments and K0, t tends to Ko almost surely. As an example, 
Theorem 5 below shows that a number of hierarchies with unbounded support can 
appear as limiting cases of hierarchies with compact support. 

Theorem 5 Let I K~mh be the hierarchy of kernels associated with the density: 
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where go is a positive function such that exp( -  go(x)) has flnite moments of any order. 
Then 

VxelR, lira K(m)/x ~ K~")(x) 

where (K~ m)) is the hierarchy associated with the density Ko(x) = A/x/~ e x p ( -  go(x)). 

Proof The key idea is that for any positive function go we have: 

VxelR, VE>l ,O<=exp(-go(x) ) - (1-go(: ) )~ ,v(x)<e<X~exp(-xe)  

where (xt) lies in ]1, 2[ and satisfies lime~ + ~ x~ = 2. Therefore, if go is such that 
exp ( -  p(x)) has moments of any order, the conclusion follows from the Lebesgue 
theorem. [] 

Application of Theorem 5 to Example (c) above and its extension to Example (d) 
are straightforward. A particular case is the Gauss hierarchy with initial kernel 

(270-1/: exp - ~ -  which is the limit, as ~ tends to infinity, of the hierarchies 

x2y 
associated with the densities At 1 - ~ - ]  ~ < ~. Indeed, Theorem 5 makes a wide 

family of analytical kernels appear as limiting cases of compact support kernels 
with attractive properties (Granovsky and Mfiller 1991). 

5 Optimality properties of higher order kernels 

5.1 Roots of higher order kernels 

A natural extension of the concept of positivity to higher order kernels is the 
concept of minimal number of sign changes. This has been introduced by Gasser 
and Mfiller (1979a) to remove degenerate solutions in some optimization problems. 
They have proved that kernels of Examples (a) and (b) have a minimal number of 
sign changes ((p -2 )  for a kernel of order p). Mimicking their proof, such results 
can be extended to all commonly used hierarchies, once Ko has been specified. The 
polynomials ~P ('~) ~ p -  l(X, 0) do have orthogonality properties, but with respect to non 
necessarily positive definite functionals and the classical properties of roots of 
orthogonal polynomials cannot be carried over. Letting K0 unspecified we give 
hereafter very general properties about the number and the multiplicity of roots of 
our kernels. Theorems 6 and 7 are technical. Their corollary states that kernels of 
order (0, r) and (1, r) defined from a non-vanishing density Ko have only real roots 
of multiplicity one. 

Theorem 6 Let K o be a density of probability, let r > 2, m ~ [0, r -  1] and (Pi)0 �9 i�9 
be the sequence of the first (r + 1) orthonormal polynomials in La(Ko). The polynomial 
X~m)(x, 0) = ~= ,~  plm)(0)P~(X) (of degree d ~ F1, r]) has at least one real root of odd 
multiplicity. 

Proof. As Ko is a density of probability, the equalities 

fzf  )(x, 0)Ko(x) dx = 0 (m > 0) 

and fx2X~~ O)Ko(x)dx = x 2 I~=o = 0 
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show that oU~")(x, 0) has at least one real root where it changes sign. [] 

Theorem 7 Let ri be the multiplicity of each real root z~ of JC~")(x, O) and let qo be the 
sum of the numbers [rJ2] (brackets denote the integer part). 

~ either m is even, 2m < r and 2qo = d + m + 1 - r  
Then (or 2 q o < m i n ( d +  l - m ,  d + m + l - r ) .  

Proof Jl~m)(x,O)=(u(x)v(x) where u ( x ) = ~ I ( x - z i )  2E''/2] and v(x) are poly- 
i 

nomials of degrees 2qo and (d -2qo) respectively. We have 

Vq~N, fx2qv(x)~m~(x, O)Ko(x)dx = fx2qu(x)[v(x)]2 Ko(x)dx > O. 

The first integral would vanish if we had 2q + d - 2qo ~ r and (m <= 2q - 1  or 
m > 2q + d -2q0).  Therefore no integer number q _>_ 0 satisfies 

m + l < 2 q _ _ < r + 2 q o - d o r 2 q < m i n ( r + 2 q o - d + l , m + 2 q o - d ) .  

The first condition is equivalent to 

(m is even and m + l = r + 2 q o - d )  
o r  

(r +2qo - d  < m + 1) 

while the second one is equivalent to 

(r + 2 q o - d  + 1 _< 0) 
o r  

(m +2qo - d  < 0). 

Since r >= d and qo >= 0 the condition (r + 2qo - d + 1 = 0) cannot be satisfied. The 
conclusion follows. [] 

Corollary. I f  m 6 {0, 1}, Jf'(,m)(x, 0) has only real roots of multiplicity one. 

Proof Ifme{O, 1},2qo<_<d+l-r<__lthusqo=O. [] 

Remark. Kernels of order (0, r) and (1, r) may have roots with multiplicity higher 
than one if Ko has such roots or if ~ " ) ( x ,  0) and Ko(x) have roots in common. An 
example of order (0, 3) with a root of order two has been presented by Mammitzsch 
(1989). 

5.2 Two optimal hierarchies 

Our description of finite order kernels turns out to be a powerful tool in the search 
for asymptotically optimal kernels. It enables production of very short proofs and 
confirmation of a conjecture claimed by Gasser et al. (1985). 

The functionals to be minimized are the same in almost all nonparametric 
estimation problems (cumulative distribution function, density, regression, spectral 
density, hazard function . . . . .  and derivatives) and lead to two important families 
of kernels: minimum variance and minimum MISE hierarchies. 
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5.2.1 Minimum variance hierarchy. Minimum variance kernels of order (m, r + 1) 
on [ - 1 ,  1] are solutions to the following variational problem: 

W(K) = f KZ(x)dx is minimized 
(P1) -i 

subject to VPG V~ f P(x)K(x)dx = P(m~(O). 
- 1  

They are known to be uniquely defined polynomials of degree (r - 1) with (r - 1) 
real roots in [ -  1, 1], symmetric for m even and antisymmetric for m odd. Explicit 
formulas have been derived for their coefficients in Gasser et al. (1985) as men- 
tioned above. We show that the minimum variance family of order (m, r + 1) 
kernels is identical to the hierarchy associated with the density Ko(x) = �89 [- 1, :l (x) 
which is the minimum variance kernel of order (0, 2). 

Theorem 8 The solution to problem (P1) is given by: 

K ~")(x) = ~ PI m' (0) P, (x) ~ r - :,i l(x) 
i = m  

where the Pi's are the orthonormal polynomials in L2(~[_1,11), i.e. the Legendre 
polynomials. 

Proof Let o~f',(")-(:~,O) = E,= mr  x/~pl,,)(O)v/~pi(x) and Ko(x)= �89 Then, 

by Theorem 2, K~)(x) = 3((~")(x, 0) Ko(x) is a kernel of order (m, r + 1). Let K be 
an other polynomial kernel on [ - 1 ,  1] of order (m, r + 1). K has necessarily 
a degree d greater than r and has the same first (r + 1) coordinates as ~r~')(x, 0). 

Thus K(x) = oY~m)(x, O) + ~ eiPi(x) Ko(x) 
i = r + l  

= W ~ ~Pi(x)Ko(x) �9 
i = e +  1 

This shows that K~r~)(x) is the unique solution to problem (P1). [] 

5.2.2 Minimum MISE hierarchy. Gasser et al. introduced polynomial kernels for 
which they proved optimality up to order 5 and conjectured the same property for 
any order. This conjecture can now be proved using the unifying variational 
principle introduced in Granovsky and Mfiller (1991). We give here a general very 
simple proof. The minimum MISE family of order (m, p) kernels is identical to the 
hierarchy associated with the Epanechnikov density: (3/4) (1 - x 2 ) +  which is the 
minimum MISE kernel of order (0, 2). 

Minimum MISE kernels of order (m, r + 1) on 1-- 1, 13 are solutions to the 
following variational problem ((r + m) is supposed to be odd): 

(P2) 

subject to 

T(K) = K 2(x) dx x,+: 
- 1  - 1  

1 

VPG V~ f P(x)K(x)dx = P(m)(0). 
- 1  

is minimized 
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Theorem 9 The polynomial solution to problem (P2) vanishing at the ends of [ -  1, 1] 
is given by: 

K~Z)(x) = ~ Plm)(O) Pi(x)(3/4)(1- x2)+ 
i=m 

where the Pi's are the orthonormal polynomials in LE(Ko) with Ko(x)= (3/4) 
(1 -x2)+.  

Proof. Obviously, K~ ") satisfies the condition. The functional T is invariant under 

scale transformations K ( . ) ~ + 1 K ( h ) .  Therefore we have to compare W(K~ m)) 

with W(RKo) where R is a polynomial such that 

f-1 Xr+IR(X) KO(X)dX -~" fl xr+lK~m)(x)dx 
1 

VP~ V~ f P(x)R(x)Ko(x)dx = Ptm)(o) . 
-1 

It turns out that (R - ~m)(x, 0)) is orthogonal to V~+I in L2(K0). Now, 

W(RKo) = f (RKo - KV)) 2 + W(K~ m)) + 2 f KV)(x)(R(x) --~'X r"r(""tX, O) )Ko(x)dx . 

As Ko is symmetric, K~ m) is of degree (r + 1) at most. Thus 
W(RKo) -- f (RKo  - K~m)) 2 + W(K~ ~) and the conclusion follows. [] 

Granovsky and Mfiller (1989) proved that K~ m) minimizes the same criterion over 
the set of square integrable kernels of order (m, p) with a fixed number (p -2 )  of 
sign changes on JR. 

6 The multiple kernel method 

Let us suppose that a function f (e.g. a probability density function, a spectral 
density function, a regression function, an intensity function,. . .)  has to be estim- 
ated from a sample of points and that a criterion C has been chosen to judge the 
accuracy of any kernel estimate f,: C is a score function of the sample estimating 
some measure of deviation between f, and the true unknown function f Once the 

sample is given, C is a function of the rescaled kernel hm + 1 r . The initial 

kernel Ko is chosen regarding the asymptotic behaviour of C. 
As an example one can think of the problem of density estimation from 

a sample X1 . . . .  , X, of independent random variables with common density f. 
If the criterion is the MISE (Mean Integrated Squared Error) = E (f(f,(x) - f (x))  2 dx) 
where f,(x) is the standard Parzen-Rosenblatt kernel estimate 

1 =~ 1 ~f'r (X ..-h Xi ,0 )  Ko ( ~ h X i )  built from the sample, a natural choice for Ko 

is the Epanechnikov optimal kernel, or a nearly optimal kernel (under suitable 
assumptions on f, see Epanechnikov 1969). A natural choice for C is the L2 

cross-validation criterion: f f ~  (x) dx --2 ~ f,, i(Xi) wheref,, i is the kernel estimate 
h i =  1 
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based on the ( n -  1) observations different from X~. For relevant discussion and 
references, see Berlinet and Devroye (1989). Once Ko has been chosen one can 
compute for any order r the value h~ of the smoothing parameter optimizing (at 

least over a grid G ) C [  1--2--/- K (m)[-]l\ "] Let C~ be the value of C at the optimal h,. 
\ h  ' '+ t  ' \ h , ] , ] "  

Then, the optimal order ~ in a bounded interval [0, R] is defined so as to optimize 

C ~ o v e r [ O , R ] a n d t h e c o r r e s p o n d i n g r e s c a l e d k e r n e l ~ K ~ m ~ ( ~ ) i s u s e d t o b u i l d f ~ .  

The multiple kernel method can also be used with estimates f,,, and f~,~ of 
different orders r and s to provide best smoothing parameters h, and h~ at these 
orders as proposed by Devroye (1989): h~ and h, are chosen so as to minimize for 
instance the L t distance between f~,r and f~,,. 

7 The estimation procedure for the density and its derivatives 

As in Sect. 6 above let X1 . . . . .  X~ be independent random variables with common 
unknown dens i tyfand cumulative distribution function F. We give in this section 
some specific properties of estimates off, F and of derivatives o f f  based on higher 
order kernels. These estimates can be interpreted by means of projections in L 2 

spaces. Let f~(x)=~-~ j ~  Kr be the standard kernel estimate of f built 

from the kernel Kr(x) = J~ff,(x, O) Ko(x). Let ~, be the measure with densityf~ and/Tt, 
be the empirical measure associated with the sample. Theorem 10 shows that 
estimating the measure #(A) of a Borel set A with a kernel like K, and smoothing 
parameter h is nothing else than deriving the best L2-approximation with weight 
Ko of the function ~ (A  - h.) by a polynomial HA of degree at most r and taking 
HA(O) as an estimate of/~(A): 

Theorem 10 For any BoreI set A, we have #,(A) = HA(O) where 

HA = arg minf(rc(u) -- fi ,(A -- hu) )2 Ko(u)du . 
~ Vr  

n 

1 ~1 ~a(Xj + hv)~ff,(v, O)Ko(v)dv . (7.1) Proof. re(A) = f nj= 

The integral in (7.1) is the value at 0 of the projection of -1 ~ ~A(Xj + h.) on the 
ni=i  

subspace V, i.e. the solution of the following problem: find ~ in V~ minimizing 
the norm of (re(.)- ~ , (A-h . ) )  and evaluate n at the point O. The conclusion 
follows. [] 

Now let us see how to handle the deviation 

( f('~)(x) - f ~) (x) ) = (f(m)(x) -- Ef~m)(X) ) + ( E f~m)(x) - f ~")(x) ) 

between the mth derivative of f a n d  its standard kernel estimate. Let us suppose, as 
it is usually the case, that the function d(.) = f ( x  - h.) belongs to L2(Ko). Theorem 
11 gives the relationship between the expectation off~")(x) and the function d and 
provides an exponential upper bound for the probability of deviation: 
pr([f(~m)(x) - Ef(~m)(x)[ > ~). 
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Theorem 11 Let f(,m)(x)-nhY"+lj ~-,-I \ . ~  / ( ~ J )  be the 

dard kernel estimate of the mth derivative of f Suppose that the function 
d(.) = f(x - h.) belongs to L2(Ko) then the expectation of f~m)(x) is the value at 0 of 
the mth derivative of the polynomial Ph such that Ph(h.) is the projection of d on V~. I f  
moreover I K~m) I is bounded by the constant M(m, r) we have: 

{ _ e2nh2(m+ l) ~ 
Ve > 0, Pr(]f(,m)(x) - P(h")(0)l > e) < 2exp } M - - 5 ~ , ~  j .  

Proof. Ef(nm)(x):(hl~g,m'(h),f)(x): l f f ( x  - hv) Y~m)(v, O) Ko(V) dv 

1 dm(ph(hv)) = p~hm)(0). 
E f("m)(x) - ~m d--~ [~: o 

The inequality is a consequence of Lemma 1.2 in (Mc Diarmid 1989). [] 

We have a similar result for F,(x) when the function F ( x -  h,) belongs to 
LZ(Ko). Now,  once Ko is specified deterministic approximat ion  theorems in 
L2(Ko) give the behaviour  of ( f(")(x)-  Ef(~m)(x)). Thus weak or strong (using 
Borel-Cantell i  lemma) convergence theorems can be easily derived for f~m)(x). 
Strong consistency results covering a wide class of density estimates were given in 
(Berlinet 1990). They can be applied in the f ramework of this paper to hierarchies of 
density estimates. 

Acknowledgements. I wish to thank Professor J.S. Marron and two referees for helpful comments 
about the presentation of this paper. 
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