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Summary. Until now, denumerable Markov processes with instantaneous states 
have not been extensively considered, and so in this paper we present a detailed 
examination of the conservative uni-instantaneous (CUI) case. We determine 
criteria for the existence and uniqueness of a specific CUI pregenerator, and 
consider the general problem of constructing CUI processes. 

1 Introduction 

We consider the construction of a continuous-time homogeneous Markov process 
on a countable set E. A general reference for this research area is the new edition 
(and English translation) of Yang (1990); whilst a short description is given in Sect. 
7 of Chen and Renshaw (1990) whose definitions, terminology and notation we 
shall use throughout this paper. In particular, we note that a pregenerator is 
a matrix Q = (qifi i , j  ~ E) which satisfies the conditions 

0 < q ~ j <  + o o  ( i ~ j ;  i, j E E ) ,  (1.1) 

-- oo <qu  < 0  ( i ~ E ) , a n d  (1.2) 

2 qij <= -- qu ( ie  E); (1.3) 
j* i  

whilst a generator is a matrix Q = (q~j) defined on E x E such that 

lim P(0 - I - Q (1,4) 
t-*O+ t 

where P(t) is a standard (though not necessarily honest) transition function. 
Following Reuter we call a transition function P(t) (and also its resolvent, i.e. its 
Laplace transform) a "Q-process" if (1.4) holds, and we call a state i s E stable if 
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qi - - qu < + oe and instantaneous if ql = + oe. If all states are stable then Q is 
said to be totally stable. 

It is well-known that a generator must be a pregenerator, but the converse is 
not always true. The following three basic and important questions therefore arise. 

(i) Existence - Under what conditions does a given pregenerator become 
a generator? 

(ii) Uniqueness - If a given Q is a generator, under what conditions does there 
exist only one corresponding Q-process? 

(iii) Construction - How do we construct the Q-process via a given generator 
Q? Specifically, how do we construct all the corresponding Q-processes when the 
Q-process is not unique? 

These questions are of particular significance since in many problems we know 
only the infinitesimal behaviour, i.e. the pregenerator. 

Many results have been obtained for the case in which the pregenerator Q is 
totally stable. Perhaps the most important is the one which provides the answer to 
the existence problem. Feller (1940) proved that if Q is a totally stable pregenerator, 
then it must be a generator; i.e. there always exists a Q-process. Thus for totally 
stable Q we have 

pregenerator,*~ generator. 

Feller also provided a construction method to yield a standard transition 
function - called the Feller minimal process and denoted by F(t) = {f~,i(t)}. He 
showed that the minimal process F (t) satisfies both the "backward equation" 

df~j(t)/dt = ~, qikfkj(t) (Vi, j ~ E) (1.5) 
k~E 

and the "forward equation" 

dfij(t)/dt =- ~, fik(t)qkj (Vi, j ~ E) , (1.6) 
k ~ E  

and has the "minimal property" in the sense that for any Q-process P(t) = {p~(t)} 

Pij(t) >=fij(t) (Vi, j E E, Vt _-> 0). (1.7) 

In this paper, for a totally stable pregenerator (and hence generator) Q 
we shall always use F(t) and 4~(2)= {~01j(2)} to denote this minimal transition 
function and its resolvent, respectively: both are called the Feller minimal Q- 
process. 

Although there always exists at least one Q-process for a totally stable pregen- 
erator Q, there may be more than one Q-process even if we confine ourselves to 
those Q-processes which satisfy the backward and/or forward equation. The 
uniqueness problem for a totally stable generator has therefore attracted a lot of 
attention. It was first partly solved by Doob (1945) and Reuter (1957), and then 
completely solved by Hou (1974). Later, Reuter (1976) gave a new proof for Hou's 
theorem. It turns out that the uniqueness criteria is closely linked with the 
equations 

{(,~ - Q) u( ,z)  = o 
(1.8) 

0 __< u(,~) __< 1 
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and 

{ v(~)(2i - Q) = 0 
(1.9) 

0 < v(2) ~ E, 

where E denotes the space of absolutely summable vectors. 
We shall use ~'~-(Q), or simply JC{~-, to denote the solution space of (1.8). 

Similarly, 5~ - (Q) (or 5~ denotes the solution space of (1.9). It is well-known (see 
Reuter 1957) that the dimensions of the solution spaces of (1.8) and (1.9) are both 
independent of 2 > 0. We shall therefore use ~+ (Q) (or ~+) and ~+ (Q) (or ~+) to 
denote the dimensions of J/~- and ~ - ,  respectively. Moreover, we know that for 
Eq. (1.8) there exists a maximal solution which we shall denote by )((2; Q) (or)((2)). 
Using these symbols the uniqueness criterion can be stated quite briefly (see Hou 
and Guo 1988). 

For convenience, a totally stable Q-process P(t) which satisfies the backward 
equation (1.5), or in matrix form 

dP(t)/dt = QP(t) (t __> 0), (1.10) 

is called a B-type Q-process. Similarly, we call P(t) an F-type Q-process if P(t) 
satisfies the forward Eq. (1.6), i.e. in matrix form, 

dP(t)/dt = P(t)Q (t > 0). (1.11) 

Hence a B c~ F-type Q-process P(t) means that P(t) satisfies both (1.10) and (1.11), 
whence the Feller minimal process F(t) is a B ca F-type Q-process. Note that the 
equivalent (resolvent) forms of (1.10) and (1.11) are 

(2I  - Q)7t (2)  = I (2 > 0) (1.12) 

and 

~(2)(2I - Q) = I (2 > 0), (1.13) 

respectively, where 7t(2) denotes the resolvent of P(t). 
Many results have also been obtained for the third (i.e. construction) problem 

for totally stable generators. See, for example, Chung (1962), Williams (1964), 
Reuter (1959, 1962) and Yang (1990). Moreover a great many results exist 
for some specific totally stable Q-processes, e.g. birth-death processes. In contrast, 
however, few results have been obtained for the non-totally-stable pregenerator 
scenario. 

Perhaps surprisingly, a very difficult problem, namely the existence prob- 
lem for totally instantaneous Q-processes (i.e. all states are instan- 
taneous) has been solved, due to an elegant result of Williams (1976); see 
also Rogers and Williams (1986). Analysis of some examples of the totally 
instantaneous case can be seen in Blackwell (1958) and Kendall (1958). 

With regard to the so-called mixing case, i.e. both stable and instantaneous 
states exist, to our knowledge only several examples have been studied. The first 
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mixing pregenerator considered (letting the state space E be non-negative integers) 
w a s  

where 

- ~  1 1 1 ... 

ql - ql 0 0 .-. 

q2 0 - q2 0 ... 

q3 0 0 - q3 "'" 

(1.14) 

qj>O (j>=l). (1.15) 

This example was provided by Kolmogorov (1951), and analysed by Kendall and 
Reuter (1954) (see also the discussion of Chung 1967). Kendall and Reuter proved 
that if 

(1/qj) < + ~ , (1.16) 
j = l  

then Q1 is a generator, and they constructed an honest process for when (1.16) 
holds. We shall call the pregenerator (1.14) a K-pregenerator.  

Later, Reuter (1969) considered the more general pregenerator 

] - oo bl bE b3 "" 

ql - qt 0 0 

Q2 = q2 0 - q2 0 (1.17) 

q3 0 0 -- q3 

m 

where 

and 

He pointed out that if 

b j > 0  

qj>O ( j > l )  (1.18) 

and ~ b~ = + oo.  (1.19) 
j = l  

(bj/qj) < + Go (1.20) 
j = l  

then QE is a generator, and that when (1.20) holds true there exists only one honest 
process but infinitely many non-honest processes. He gave the construction of all 
these processes. The pregenerator (1.17) satisfying (1.18) and (1.19) will hence be 
called an R-pregenerator. 

Note that the above two examples pose the interesting question as to whether 
conditions (1.16) and (1.20) are necessary. 

Another example, considered by Williams (1967), comprised a pregenerator 
Q = (qij; i,j ~ E} for which there exists a state b ~ E such that 

lim inf qb3 > 0 .  (1.21) 
j ~  
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He proved that for this type of pregenerator there exists an honest Q-process 
iff 

and 

q , j = q , <  + oo (V i~Ekb) ,  (1.22) 
j~E\i  

ql, jcpjk()~) < + oO (2 > 0), (1.23) 
j, keE\b 

where ~ (2 )=  {q~jk(2);j,k~E\b} is the Feller minimal process related to 
Qb = {qij;i,j ~ Ekb}. A pregenerator which satisfies both (1.21) and (1.22) will be 
called a W-pregenerator. 

Note also that the uniqueness and construction problems remain open for 
W-pregenerators. 

In this paper the mixing case will be discussed. More specifically, we shall 
consider the case where the given pregenerator Q = {qifi i, j ~ E} satisfies the 
following three assumptions. 

Assumption L There exists a state b ~ E such that qb = + oo and qi < + 
(Vi ~ E\b). 

Assumption 11. ~ qbj = + co. 
jEE\b 

Assumption IlL ~ q~j = qi (Vi ~ Ekb). 
j~g\ i  

Let us call a pregenerator which satisfies these assumptions a Conservative 
Uni-Instantaneous (CUI) pregenerator. The corresponding Q-process (tran- 
sition function or resolvent) is also called a CUI Q-process. Some known 
results are presented in Sect. 2, and Sect. 3 provides results for general uni- 
instantaneous processes. Existence and uniqueness criteria are given in 
Sects. 4 and 5, respectively, whilst the construction problem is discussed in Sect. 6. 
Lastly, examples are discussed in Sect. 7. Occasionally we shall omit Assumption II 
and/or Assumption III, though not Assumption I. A pregenerator (generator, 
process) which satisfies only Assumption I is called uni-instantaneous, or simply 
UI. 

CUI is an important mixing type of pregenerator, since in many applications 
involving uni-instantaneous processes (such as branching processes with instan- 
taneous immigration) the specified pregenerator is usually CUI. Thus the analysis 
of CUI Q-processes has considerable significance both in theory and application. 
Moreover, examples of the mixing case previously discussed in the literature, such 
as K-, R- and W-pregenerators, are all CUI pregenerators. Thus our discussion will 
include most of the known results for the mixing case. 

For a CUI pregenerator Q = {q~j; i,j ~ E}, let N = Ekb, and c~b = {qbj;j ~ N} 
and fib = {q jb ; j~N}  be the row and column vectors on N. Write 
Qb = {q~j; i, j ~ N}. Then Q can be written in the form 

Q =  /~ Q~ /~ Q~ �9 (1.24) 
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It is easy to see that Qb is a totally stable pregenerator (and hence a generator) by 
Assumption I. Furthermore, Assumptions II and III give 

and 

respectively. 

e b l =  + oo , (1.25) 

fib + Qb 1 = 0 ,  (1.26) 

2 Preliminary results 

The fundamental tool used in our analysis is the Resolvent Decomposition 
Theorem. This is detailed, for example, in Sect. 7 of Chen and Renshaw (1990). For 
convenience, the three main results, i.e. Theorems 7.7, 7.8 and 7.10, of that paper are 
listed below. We stress that these theorems can be applied to any generator by 
slightly changing the statements and proofs, i.e. none of Assumptions I, II and III 
are mandatory. 

Theorem 2.1 Suppose R(2) = ( r i j ( 2 ) ;  i,j ~ E} is a Q-process defined on E x E, where 

I - q b  ab l ,  b i s a s t a t e o f E ,  a n d N = E \ { b } .  the 9enerator Q = fib Qb 
Then R()O can be uniquely decomposed into 

R(2)=  0(2) +rbb(2) 4(2) 

where 
~(2) is a Qb-process , 

~/(2) 6Hq, and ~(2) eKq,,  

r < 1 - 2~,(2)1, 

lim ,bl(2) = ~b and lira 24(2) = fib, 

rbb(~) = (C + ~ + ~<~(~), 4>) -1 

where 4 = lira 4(2) and C is a finite constant such that 
~ 0  

C > lim 2<~(2), 1 -- ~>, and 
A--* ao 

C + lim 2<~(2), 4> = qb �9 

So if qb = + ~ ,  it follows that 

lim 2(q(2), 4> = + ~ or, equivalently, 
) . ~ c o  

lira ,~<~(2), 1> = + ~ .  

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 



CUI denumerable Markov processes 433 

I f  R(2) is honest then we have further that 

r = 1 - 2~,(2)1, (2.11) 

rbb(2) = (2 + 2(q(2), 1)) -1, and (2.12) 

C = 2(~/(2), 1 - r  (2.13) 

i.e. 2(~/(2), 1 - r  is independent of 2. 

In the following two theorems we shall confine ourselves to the case of 
qb = + o 0 .  

Theorem 2.2 Suppose Q = {q~j; i,j e E} is a given pre-generator defined on E x E 
where 

I - O h  % 1  and q b -  --qbb= + 00 .  
Q = fib ab 

Then Q is a generator if there exists a Qb-process ~(2), together with a pair of  q(2) and 
r which satisfy 

n ( 2 ) ~ H  0 and r e K o ,  (2.14) 

r __< 1 - 2g , (2)1 ,  (2.15) 

lim 2r/(2) = % and lim 24(2) = fib (2.16) 
~--* oo ~.--+ oo 

where % = { q b j ; j e N }  and f l b = { q j b ; j e U } ,  

lim 2(r/(2), 1) = + oo , and (2.17) 
3.---~ oo 

lira 2(r/(2), 1 - ~) < + oo (2.18) 

where ~ = l i m ~ o  4(2). Furthermore, if the above conditions hold true then choose 
a constant C such that 

C > lim 2(q(2), 1 - r  (2.19) 
. 1 .~  oO 

and let 

rbb(2) = (C + 2 + 2(r/(2), 4 ) ) -1  (2)0) and (2.20) 

[: ~ R(2) = ~p(2) + rbb(2) r 

where ~k(2), 4(2) and r/(2) satisfy the above conditions (2.14)-(2.18). Then R(2) as 
defined in (2.21) is a Q-process. 

If we are interested only in honest  processes then the following theorem applies. 

Theorem 2.3 Suppose Q is a given pregenerator defined as above. I f  there exists 
a Qb-process ~(2) and a row-vector tl(2) (2 > O) which satisfy 
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7(2) e H~,, (2.22) 

lirn 27(2) = ~b where ~b = (qbj ; J ~ N) ,  (2.23) 

l i m 2 ( 1 - - 2 ~ ( 2 ) l ) = f i b  where flb = (qjb;j ~ N) , and (2.24) 
2--*0o 

lim 27(2)1 = + oo , (2.25) 
.~--* oo 

then Q is a generator and there exists an honest Q-process. This honest Q-process can 
be constructed simply by lettin 9 

rbb(2) = (2 + 2( , (2 ) ,  1))  -1 (,~ > O) 
and 

R ( 2 ) = I ~  ~(0~)1 + r b b ( 2 ) [ l _ ~ O ( 2 ) l l E l ' " ( 2 ) ' ] "  

Recall that H~, and K, which appear in the above three theorems are defined 
(see Chen and Renshaw 1990) by 

H e = {,(2); 0 < 7(2) ~ f .  7(2) - ,(#) = (/2 - 2),(2)$(#); 2. # > 0} (2.26) 

and 

Kq, = {~(2); 0 <_ ~(2) < 1, ~(2) - ~(#) = (# - 2)~0(2)~(#); 2, # > 0 ) ,  (2.27) 

where ~(2) is a process (not necessarily totally stable). In particular, if ~(2) is the 
totally stable Feller minimal process 4(2) with totally stable generator Q, then the 
elements H ,  and K~ have the following representational form. 

Lemma 2.4 (Reuter 1959, 1962) Let q0(2) be the Feller minimal Q-process with the 
totally stable generator Q. Then 

(i) , (2) e H ,  iff 

7(2) = ~ ( 2 )  + #(2) (2.28) 

where c~ > 0, ~b(2) ~ l (2 > 0), t~(2) ~ He and 0(2) ~ s Furthermore, we have 

7(2) (21 - Q) = c~, with 

7(2)+0 and 2r/(2)~c~ ( 2 T ~ ) .  

(ii) ~ (2) ~ K,  iff 

~(2) = ~(2)fl + ~(2) (2.29) 

where fl > 0, 4~(2)fl < 1 (2 > 0), ~-(2) e K,  and ~-(2) ~ J{+.  Furthermore, we have 

(21-- Q)~(2) = fl, with 

~(2)$0 and 2~(2)--+fl (2Too) .  

3 Some results on general uni-instantaneous Q-processes 

Before giving existence criteria for CUI Q-processes, we shall first derive some 
results for general UI Q-processes. We assume that the pregenerator Q satisfies 
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Assumption I only (i.e. not necessarily Assumptions II and III). Then the pregener- 
ator Q can be written as 

Q =  qb Qb 

where b~E ,  N = E \ b ,  qb= +00, ~b={qbj;J~N}, f lb={qjb; jeN} and Qbis 
a totally stable pregenerator on N • N. 

According to Theorem 2.1, for each UI Q-process R(2) there exists a unique 
Qb-process ~'(2) for which Theorem 2.1 holds. So we may view R(2) ~ ~(2) as 
a map. We shall call 71(2) the restriction process of R(2), and R(2) an expansion 
process of ~v(2). Note, however, that expansion processes are not usually unique. 

We first give a necessary condition for the existence of a UI generator. This 
establishes an interesting relationship between the existence of a process with 
instantaneous states and the uniqueness of a process without instantaneous states. 

Theorem 3.1 Suppose Q is a UI 9enerator as above. Then the totally stable Qb- 
process is not unique. 

Proof We assume that the Qb-process is unique, and then derive a contradiction. 
Since Q is a UI generator, there exists a Q-process R(2), say. Let its restriction 
process on N • N be 7t(2). Then 7J(2) is a Qb-process. But the Qb-process is 
unique, and so any Qb-process must be the Feller minimal Qb-process ~(2). Thus 
7J(2) = ~(2). Now by Theorem 2.1 the Q-process R(2) can be decomposed into 

[0001 [, R(2)= ~/i(2) +rbb(2) 4(2) 

Moreover, the following results hold true 

t/(2) EH~ and 4(2) e K e ,  

lim 2t/(2) = ~b where ~b = (qb2; j ~ N} , 
),---~ o0 

o =< ~(~) =< 1 - ~ r  

(3.2) 

(3.3) 

(3.4) 

lim 2(t/(2), 4} = lim 2(t/(2), 1} = + ~ where 4 = lim 4(2). (3.5) 

Now by Lemma 2.4, (3.2) yields the representation 

~/(2) = ~ ( 2 )  + f/(2) (3.6) 

where lim~_~2q(2)= c~ and # ( 2 ) e ~ ( Q b ) .  Comparison with (3.3) then gives 
= ~b, whence (3.6) can be written as 

r/(2) = "b~(2) + ~/(2). (3.7) 

Since the Qb-process is unique, it follows from Reuter (1957) or Hou (1974) that 
either the minimal Feller Qb-process is honest or else ~+ (Qb) = 0. If the former, 
then by (3.4) we have 4(2) = 0, and thus 4 = 0, in contradiction to (3.5). If the latter, 
then #(2) = 0 and so (3.7) can be further written as 

i? (2) = ~b ~(2). (3.8) 

Now if ~bl < + oo, then by (3.8) we obtain limz.oo 2(q(2), 1} < + oo, which 
contradicts (3.5); whilst if~bl = + oO then by (3.2) we obtain ,b~(2) ~ ~, whence by 
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Lemma 12.2.4 and Theorem 12.1.1 of Hou and Guo (1988) the Qb-process is not 
unique which is again a contradiction. [] 

Since the uniqueness criterion for totally stable processes is well-known, we can 
extract information on the existence of uni-instantaneous processes through 
Theorem 3.1. For example, we can immediately obtain the following simple 
corollary. 

Corollary 3.2 Suppose Q is a UI pregenerator. I f  supi~N ql < + cO, then Q is not 
a generator. 

In particular, for Markov processes with a finite number of states no state is 
instantaneous - see Proposition 2.17 of Cinlar (1975). 

Another necessary condition for the existence of the UI process is as follows. 

Theorem 3.3 Suppose Q is a UI 9enerator. Then we have 

0~b~(2 ) ~ ~ (k/)~ > 0),  (3.9) 

i.e. 
qbjq~jk(2) < + ~ (V2 > 0) (3.10) 

j ,  k ~ N  

where ~(2) = {q~jk(2); j, k e N} is the Feller minimal Qb-process. 

Proof Since Q is a UI generator there must exist a Q-process R(2). By Theorem 2.1, 
this R(2) can be written in the form of (2.1), where (2.2)-(2.13) hold true. In 
particular, there exists a Qb-process 7/(2) and a row vector r/(2) such that 

r/(2) e H ~  and (3.11) 

lim 2r/(,~) = ~b �9 (3.12) 
2---~ oO 

Now by definition, (3.11) means that 

~/(2) - ~/(~t) = (/~ - 2)r/(2)7'(/~) 0 ,  # > 0), and (3.13) 

t/(2) e E (V2 > 0). (3.14) 

Letting 2---, ~ in (3.13), and noting (3.12) and that r /(2)~ 0 when 2 ~ ~ ,  we 
obtain by Fatou's Lemma that 

t/(2) __> ~bTJ(2). (3.15) 

But 7/(2) is a Qb-process and 4(2) is the minimal Qb-process. Hence 7~(2) > ~(2), 
and so by using (3.14) and (3.15) we obtain 

0~b~(J, ) =< ~b ~(,~) ~ / / ( 2 ) � 9  ~ . (3.16) 

Result (3.9) now follows. [] 

Remark. Although condition (3.9) is trivial when ~b 1 < + O0, it is a key condition 
when ~b 1 = + oo ; see the existence criterion for CUI processes in the next section. 

We shall call a UI Q-process R(2) = {ru(2); i, j e E} an almost B-type Q-process 
if 

2rij(2) -- 6ij = ~ qikrkj(2) (Vie N, Vj e E ) .  (3.17) 
k ~ E  
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Similarly, we shall call a UI Q-process R(2 )=  {ru(2);i, j ~ E} an almost F-type 
Q-process if 

2ru(2) - a u = ~ rik(2)qkj (Vie E, Vj e N) .  (3.18) 
keE 

An almost B n F-type UI process R(2) then means that R(2) satisfies both (3.17) 
and (3.18). Note that in (3.17) we require only i e N, and not i e E. Similarly, in 
(3.18) we require only j ~ N. Note that (3.17) and (3.18) are equivalent to the 
(transition function) forms 

dpu(t)/dt = ~ qikPkj(t) (Vie N, Vj E E) (3.19) 
keE 

and 

dpij(t)/dt = ~ P,k(t)qkj (Vi ~ E, Vj ~ N) , (3.20) 
keE 

respectively. 
The following simple lemma will play an important role in what follows. 

Lemma 3.4 Suppose R(2) = {rij(2);i,j ~ E} is a UI process with the generator Q as 
defined above. Then 

(i) R(2) is an almost B-type Q-process iff its restriction process ~(2) is a B-type 
Qrprocess, 

(ii) R(2) is an almost F-type Q-process iff its restriction process ~().) is a F-type 
Qb-process, 

(iii) R(2) is an almost B c~ F-type Q-process iff its restriction process 7-'(2) is 
a B c~ F-type Qb-process. 

Proof We need only prove (i), since the proof of (ii) is similar, whilst (iii) is 
a consequence of (i) and (ii). Suppose R(2) = {rij(2); i,j ~ E} is a UI process with 
generator Q. We need to prove that it satisfies (3.17) iff its restriction 7-'(2) satisfies 
(1.12), i.e. 

2~u(2) - 6u = ~ q,k~k~(Z) (Vi,j ~ N ) .  (3.21) 
ken  

Suppose R(2) satisfies (3.17), i.e. 

2rib(2) = qibrbb(2) + ~ qikrkb(2) (Vie N) 
ken (3.22) 

)~rij()O -- 6ij = qibrbj(J,) d- Z qikrk)(•) (Vi,j e N) . 
ken  

Substituting the decomposition form (2.1) into (3.22), and noting that rbb()O > 0, 
then shows that (3.22) is true iff both 

'~i("~) ~- qib d- E qik~k('~) (Vie N) (3.23) 
keN 

and 

;4'~(;0 + ;t~(2)rbb('~)~j(;t) -- a~j 

= qibrbb(2)rlj(),)+ ~ qik~bgj(2)+ ~, qik~k()Orbb(2)rlj(2) (Vi, j ~ N )  (3.24) 
keN keN 

hold true. Substituting (3.23) into (3.24) now shows that (3.21) is true. 
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Conversely, suppose (3.21) is true. In order  to prove (3.17) we need only prove 
(3.23), since (3.17) then follows from the equivalent relations 

both  (3.21) and (3.23)r (3.23) and (3 .24 )~  (3.22) ~(3 .17) .  

However  (3.23) can be proved as follows, in a manner  similar to Reuter (1957). 
Since ~(2) is a B-type Qb-process 

2~(2) -- I = Qb~(2),  (3.25) 

whilst 4(2) e K~,, i.e. 4(2) - r = (# - 2)~(2)~(#). Thus on using (3.25) we see that  

(21 - Qb)~(2) = (21 -- Qb)[I + (# -- 2)~p(2)1~(#) = (~I -- Qb)~(I ~) (2, # > 0) ,  

(3.26) 

which means that  (21 - Qb)~(2) is a constant  column vector, i.e. independent  of 
2 > 0. Permissibility of using the associative law in (3.26) can be easily verified. 
Not ing  that  2 4 ( 2 ) ~  fib and ~ (2 ) [0  when 2 ~ oo (see (2.5)), then shows this 
constant  vector to be fib, or 

(21 -- Qb)~(2) = fib where fib = {qlb; i e N}  . (3.27) 

The component  form of (3.27) is just (3.23). [] 

4 Existence criterion for conservative uni-instantaneous Q-processes 

Suppose Q is a C U !  pregenerator  as defined in (1.24)-(1.26). Then  one of the basic 
results of this paper  is the following existence criterion. 

Theorem 4.1 The following statements are equivalent: 

(i) Q is a generator, i.e. there exists a Q-process; 
(ii) there exists an honest almost B c~ F-type Q-process; 

(iii) V2 > 0, C~b~(2) e Y, i.e. 

qb/Pjk(2) < + Oe (V2 > 0) ; (4.1) 
j ,  k e N  

(iv) ~2o > 0, ~b~(20) ~ ~, i.e. 

qbjq~jk(20) < + ~ . (4.2) 
j ,  k e n  

Proof  (iii) ,:=> (iv) follows from the resolvent equation, ( i i )~  (i) is obvious, whilst 
(i) ~ (iii) follows from Theorem 3.3. Thus we need only prove that  (iii) ~ (ii). 

Suppose (iii) holds true. We shall show that  the conditions of Theorem 2.3 are 
satisfied. Indeed, the required Qb-process will be chosen as the Feller minimal 
Qb-process ~(2), whilst the required row vector 0(2) will be chosen as 

~7(2) = ~b~(2).  (4.3) 

It is easy to see that  such a chosen 0(2) satisfies 

17(2) - ~(~) = (~ - 2)q(2)~(~)  (2, ~, > 0) .  

Combining this with condit ion (iii), i.e. q(2) ~ g, then shows that  requirement  (2.22) 
holds true. Requirement  (2.23) is obvious from (4.3), whilst (2.24) becomes 
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limx, ~ 211 - 2~(2)1] = fib. The latter follows from (1.26) and the well-known fact 
that lim~_~o~2[1-24~(2)1] = - - Q b l .  From (4.3) it is easy to see that 
lima-~o~ 2//(2) = ab, which on using Fatou's Lemma and (1.25) yields 

lim 2 t I (501~%1= + 0 9  , 
,~--* oo 

which is precisely requirement (2.25). Since all the requirements of Theorem 2.3 are 
verified true, by this theorem there must exist an honest Q-process. Moreover, (4.3) 
and Lemma 3.4 show that this process is almost B c~ F type. Statement (ii) is now 
proved. [] 

Remark. Note that (ii) in Theorem 4.1 takes the strongest form, i.e. it includes 
all types of existence. Thus condition (4.2) (or (4.1)) guarantees not only a Q- 
process hut also an honest Q-process which satisfies both equations (3.17) and 
(3.18). 

Although the existence criterion has been given in Theorem 4.1, verifying 
the existence condition (4.1), which involves the Feller minimal process rather 
than the pregenerator Q itself, is not easy in all cases. We shall therefore provide 
some easy-to-check conditions (necessary, as well as sufficient) which involve 
only the elements of the pregenerator Q. First we provide a simple necessary 
condition. 

Corollary 4.2 Suppose Q is a CUI generator. Then 

[qbJ(1 + qj)] < + 09 �9 (4.4) 
j~N 

Proof  Use (4.2) with ,~o = 1, together with the well-known inequality 

E q)iJ(~) ~ q 9ii(~) ~ (I], "q- qi) -1 (Vi ~ N) .  [] 
j~2V 

Now we provide an easy-to-check sufficient condition. 

Theorem 4.3 Suppose Q is a CUI pregenerator. I f  both 

[qbj/(1 + q j)] < + 09 (4.5) 
jeN 

and 

[qbj(qj -- qjb)/( 1 + qj)] < + 09 , (4.6) 
jEN 

then Q is a generator. That is there exists a Q-process as well as an honest Q-process. 

Proo f  By Theorem 2.10.5 of Yang (1990) 

)- ~ ~,j0.) = 1 - )(,(2) - ~ ~b,k(2)dk < 1 -- dA,(2)d, 
jeN ken 

s 1 - [d,/(2 + q,)] = (2 + qi - q,b)/(2 + q,) (Vi ~ N) .  
Thus if 

[qbj(2 + qj -- qjb)/(Z + qj)'] < + 09 , (4.7) 
jeN 

then (4.1) holds true. However, it is easy to see that (4.7) holds iffboth (4.5) and (4.6) 
hold true. [] 
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Note  that  condit ion (4.5) in Theorem 4.3 is actually necessary by Corol lary 4.2. 
Thus the "essential" sufficient condit ion is (4.6) which is, of course, not  necessary. 
However,  in some cases (4.6) will be automatical ly satisfied. 

Corollary 4.4 Suppose Q is a CUI  pregenerator satisfying 

sup (qj -- qjb) < + oV . (4.8) 
j eN  

Then Q is a generator iff 

[qbJ(1 + qj)] < + oe . (4.9) 
j a n  

Proof. Since condit ion (4.8) guarantees that (4 .5 )~  (4.6), the conclusion follows 
from Theorem 4.3 and Corol lary 4.2. [] 

Although (4.8) is a strong assumption, it does apply to some pregenerators.  For  
example, both  K- and R-pregenerators  (see Sect. 1) satisfy (4.8). Indeed, in these two 
cases 

qj - qjb, whence sup (q~ - qjb) = 0 .  
j~N 

Thus (4.9) is an "iff" condit ion for K- and R-pregenerators to be generators, 
In order  to get better necessary, as well as sufficient, conditions, we shall rewrite 

Theorem 4.1 in an equivalent form. To  do this we first note (Feller 1940) that  for the 
totally stable generator  Qb the Feller minimal process (b(2) can be obtained by the 
following iterative procedure.  Let  

�9 (1)(2) = diag{2 + qi;i e N} 

~0("+1)(2) = ~(1)(2) + ~(")(2)H(2) (n > 1), 

r T 05(,~) (n T 
where / / (2 )  = {//ij(J,);i,j ~ N} has elements 

0 

and 

+ oo ) ,  (4.10) 

if i = j  
(4.11) 

if i 4 : j .  

We shall call {q~(")(2); n > 1} the Feller Asymptot ic  Sequence associated with 
the specified totally stable generator. We are now in a position to state 

Theorem 4.5 Suppose Q is a CUI  pregenerator. Then it is a generator iff 

sup C~b~(")(2)l < + Oe , (4.12) 
n > l  

where ~0(")(2) (n => 1) is the Feller Asymptotic Sequence associated with Qb. 

Proof. By (4.10), it is easy to see that  

sup ~b4~(")(2)1 = lira eb~(")(2)l = C~b~(2)l , (4.13) 
7 1 > 1  n ~ o O  

and so the result follows directly from Theorem 4.1. [] 

Remark. By (4.2) and (4.13) we see that  (4.12) holds true for all 2 > 0 iff(4.12) holds 
true for some 2o > 0. We therefore often take ,~ = 1. 
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Corollary 4.6 Suppose Q is a CUI generator. Then 

~br < + oO (Yn_> 1, V2>_0). 

In particular, 

Proof 
(4.14). 
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(4.14) 

Z [[qbi/(2 + qi)] + 2 qbiqij/[(2 + qi)(2 + qJ)]J < + Oe . (4.15) 
i~N j~N\ i  

Result (4.14) is obvious from (4.12), whilst (4.15) is just the n = 2 case of 
[] 

Remark. Since ~(")(2) ~ (n ~ ov ), we can generally obtain better and better neces- 
sary conditions through (4.14) as we use larger and larger n. For example, it is easy 
to construct a CUI pregenerator which satisfies (4.4) but not (4.15). 

Theorem 4.7 Let Q be a CUI pregenerator. I f  there exists n > 1 such that 

2 qbiIl--  2 ~!~)(ft)qkbl < q-O~ , (4.16) 
i~N k~N 

then Q is a generator. In particular, if 

i~N 1 k~N\i  1 

then Q is a generator. 

Proof Result (4.16) follows from Theorem 4.1, Theorem 2.10.5 of Yang (1990) and 

2(2) + ~ ~O~k(2)qkb > ~ (") ~ik (2)qkb (Vn_--> 1), 
k e N  k~N 

whilst (4.17) is just condition (4.16) when n = 2. [] 

As in Corollary 4.6, we can obtain successively better sufficient conditions if we 
use successively larger n in (4.16). 

Using Theorem 4.5 we can obtain another simple sufficient condition. 

Theorem 4.8 I f  Q is a CUI pregenerator satisfying 

[qbJ(1 + qj)] < + ~ , (4.18) 
yeN 

and if there exists a 20 > 0 such that 

sup ~ [qzj/(2o + qj)] < 1, (4.19) 
i~N j~N\ i  

then Q is a generator. 

Proof Note that 

Let 

~b~("+~)(2)l = ~b~(~)(2)l + ~b~(")(2)H(2)l. (4.20) 

6)(2) = sup ~ [qij/(2 + qj)] �9 (4.21) 
i~N j~N\ i  
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Then by (4.11) we obtain H(2)l < O(4)1. Whence use of (4.20) yields 

~b~(n+l)(2)l --< ~b~(1)(2)l + O(2)~b~(n)(2)l (Vn > 1). (4.22) 

Note that condition (4.18) guarantees that ~b~(1)(2)1 < + m (V2 > 0). SO (4.22) 
together with condition (4.19), i.e. O(2o) < 1, yields 

F ~b~b(")(2o)l < 0k(2o ~b~~ (Vn_-> 1). 
I_ k=O 

Thus Vn, ~b~")(20)1 < + ~ .  Whence as 0(40) < 1, we obtain 

,_->lsup{~btP(n)(20)I) ~ I k=O ~ ok(20)l~b~tl)(~)l = - [ 1 -  O(20)]-l~b~b~l)(20)l < + ~ "  

The theorem now follows from Theorem 4.5 (see the remark which follows it). [] 

Note that condition (4.18) is necessary. So if condition (4.19) is satisfied for some 
CUI pregenerator, then condition (4.18) becomes the "iff" condition. 

Let us consider one particular kind of CUI pregenerator for which Theorem 4.8 
applies. A CUI pregenerator Q is called bias-bounded if there exists a constant 
M such that 

qij < m (Vi +j; i , j ~ N ) .  (4.23) 

Moreover, if it further satisfies (1.21), i.e. it is also a W-pregenerator, then we shall 
call it W-bias-bounded. Note that R- and K-pregenerators are trivially bias- 
bounded, whilst K-pregenerators are also trivially W-bias-bounded. 

Lemma 4.9 Suppose Q is a bias-bounded CUI pregenerator satisfying 

(1 + qj)-i < + ~ . (4.24) 
j~N 

Then there exists 2o > 0 such that 0(2o) < 1 where 0(2o) is defined in (4.21). 

Proof. Condition (4.24) yields ~j~N(2 + qj)-I < + 0o (V2 > 0), and hence 

inf (4 + q j)- 1 = 0 .  

j ~ N  

Combining this with (4.23) we obtain 

O ( 4 ) = s u p  ~ [qij/(2+qj)]=<Msup ~ ( 4 + q j ) - i  
i~N j~N\ i  i~N j~N\ i  

Thus if we can show that there exists 2o > 0 such that 

M 2 (20 + qj)-~ < 1, (4.25) 
j~N 

then O(2o) < 1 as required. 



CUI denumerable Markov processes 443 

However, expression (4.25) is obviously true because of condition (4.24). Indeed, 
if M = 0, then (4.25) is trivial. Whilst if M > 0, then (4.25) is equivalent to 

(20 + q j ) - i  < M - 1  (4.26) 
jEN 

But condition (4.24)guarantees that 

b-', (,~ + q j)-1 < + oo (v,~ > 0).  
j~N 

Whence on noting that (2 + qj)- 1 is a monotone function of 2 > 0, the Monotone 
Convergence Theorem yields 

lim ~ (2 + q j ) - i  = ~ lim (2 + q j ) - i  = O. 
2~oo j~N j e N - ~  

So as M-1 > 0, it is easy to find 2o > 0 such that (4.26) is true. [] 

Theorem 4.10 Suppose Q is a bias-bounded CUI pregenerator which satisfies both 

[qbj/(1 + qj)- l]  < + ~ ,  and (4.27) 
j~N 

y, (1 + qj)-i  < + c~ . (4.28) 
j e N  

Then Q is a generator and (4.27) is actually necessary. In particular, if Q is 
a W-bias-bounded CUI pregenerator, then it is a generator iff (4.27) holds true. 

Proof. The first part of the theorem follows from Theorem 4.8 and Lemma 4.9; 
whilst the latter part follows from the fact that, for a W-pregenerator, 
(4.27) =~ (4.28) and that (4.27) is necessary. [] 

5 Uniqueness criterion for conservative uni-instantaneous Q-processes 

In this section we provide the criterion for the uniqueness of CUI Q-processes: this 
is the second main result of this paper. When we discuss the uniqueness problem, 
we shall, of course, assume that the existence condition (4.1) is satisfied, i.e. we 
assume that the given Q is a generator. 

First we point out that in contrast to the totally stable case, non-totally-stable 
generators (not necessarily uni-instantaneous state generators) always relate to 
infinitely many Q-processes. Indeed, we may make the following claim. 

Proposition. Suppose Q is a non-totally-stable generator. Then there always exist 
infinitely many Q-processes. 

Since this proposition is well-known, there is no need to give a proof here. 
[A proof may be obtained by using Theorem 2.1 (see Corollary 7.9 of Chen and 
Renshaw 1990)]. However, although there always exist infinitely many Q-processes 
for a non-totally stable generator, the honest one may be unique. Thus there arises 
a non-trivial and interesting uniqueness problem for honest non-totally-stable 
Q-processes. We shall discuss this problem for the CUI generator. 

Recall that a CUI pregenerator Q can be written in the form 

qb -- oo eb 

Q =  fib Qb fib Qb ' (5.1) 
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where Qb is a totally stable generator which satisfies both 

Oct,1 = + ~  , 
and 

/~b + Qbl = 0 .  

Since Qb is totally stable, we may define ~/~ (Qb), ~ +  (Qb), Lf~-(Qb) and ~+ (Qb) (as 
in Sect. 1). We repeat that J//~- (Qb) denotes the solution space of the equation 

{ (~I  - Qb)u(~) = 0 
0 ___ u(,~) __< 1 (5.2) 

and m+ (Qb) denotes the dimension of J//~- (Qb), whilst Av~ - (Qb) denotes the solution 
space of the equation 

v(2) (2I - Qb) = 0 
(5.3) 

0 < v(2) E ~ , 

and z+ (Qb) is the dimension of 5r (Qb). As noted previously, both ~ +  (Qb) and 
~+ (Qb) are independent of 2 > 0. 

In order to construct the uniqueness criterion we require a concept of the 
sub-space of Jr (Qb). Let a be any row vector on N. Then the solution space of the 
equation 

{ 0~I - Q~)U(2) = 0 

a U(2) < + oo (5.4) 

0 < u(,~) __< 1 

is denoted by Jg~-(Qb; a). It is easy to see that . / ~  (Qb; a) is indeed a subspace of 
Jr (Qb) (in the sense of linear space), and that the dimension of this sub-space is 
also independent of 2 > 0. We may call it an a-conditional sub-space since it is 
usually dependent on the vector a. We use m+ (Qb; a) to denote the dimension of 
this a-conditional sub-space, (which is independent of 2 > 0). If a l  < + oo, then, of 
course, the a-conditional sub-space coincides with the original space d//~-(Qb)- 
However, if al  = + oo, then this a-conditional sub-space may be a proper sub- 
space. We shall just encounter the latter case when we discuss the uniqueness 
problem for the CUI generator. 

We are now ready to provide the following uniqueness criterion. 

Theorem 5.1 Suppose Q is a CUI 9enerator as (5.1). Then the honest CUI Q-process 
is unique iff the following two conditions hold simultaneously: 

(i) ~ +  (Qb;ab) = 0 ,  

(ii) ~+ (Qb) = 0 ,  

namely both Eqs. (5.3) and (5.4) have only a zero solution. Moreover, if the honest 
Q-process is not unique, i.e. if either O) or (ii) is not satisfied, then there exist infinitely 
many honest Q-processes. 

Proof Let R(2) = {rlj(2); i,j ~ E} be an arbitrary honest CUI Q-process. Then by 
Theorem 2.1, R(2) can be uniquely decomposed into 

= + 1 1 R(2) I :  ~k (02)] rbb(2' Ir  [ ' t/(2,] (5.5) 
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where: 

~b(4) is a Qb-process ; (5.6) 

q(4) e H~ ; (5.7) 

~(~) = 1 - ~g , (4 )1  ; (5.8) 

lira 2r/(4) = ~b and lira 2~(2) = fib ; and (5.9) 

r~b(,~) = (~ + 4<~(,~), D )  - 1  . (5 .10)  

Note that (5.8) and (5.10) follow from the honesty condition. Thus if we can prove 
that ~(2) and r/(4) in (5.5) have a unique form, then the Q-process R(4) is also 
unique. 

First, we prove that ~(2) must be the Feller minimal Qb-process ~(4). Indeed, 
any CUI Q-process R(2) must be almost B-type (because CUI generators satisfy 
(1.26)), whence by Lemma 3.4 ~0(2) must be a B-type Qb-process. So by Theorem 
2.12.1 of Yang (1990) ~(2) can be written as 

g,(2) = ~P(2) + B(2) (5.11) 

where 
4B(4)1 ~ J g ]  (Qb). (5.12) 

Moreover, (5.7) and (5.9), together with Fatou's Lemma, yield 

That is, 

Hence by (5.11) 
2~b ~(4)  1 < + ~ . 

~b2B(2)l < + ~ . (5.13) 

Combining (5.12) and (5.13) shows that 2B(2)1 is a solution of Eq. (5.4). So 
from condition (i) of our theorem, 2B(2)1 -= 0, whence B(2) = 0 since B(2) > 0. 
It then follows from (5.11) that g,(2) must be the Feller minimal Qb-process 
~(2). 

Second, we prove that q(4) in (5.5) is also unique. Since we have proved that 
g,(4) is the Feller minimal Qb-process, Lemma 2.4 together with (5.7) yields 

t/(4) = a~(4) + 0(4) (5.14) 

where ~ = limz_~o 4q(2) and 6(2) ~ ~ (Qb). By (5.9) we know that ~ = ab. More- 
over, condition (ii) yields 0(2) = 0. So r/(4) can be written as 

(4) = ~b ~ ( 4 ) .  (5 .15)  

Thus the form of q(2) is also unique. The proof of sufficiency is now complete. 
To prove necessity we first note that if condition (ii) does not hold, then Eq. (5.3) 

has a non-zero solution, 0(4), say. Moreover, without loss of generality, we may 
further require that this f/(2) e H~ (see Reuter 1959, or Hou and Guo 1988). Choose 
any constant k > 0, and let ~0(4) = ~(4) and ~/(4) = ~b~(4) + krT(4). Then together 
with (5.8) and (5.10) we can construct R(2) as in (5.5). It is easy to show that such an 
R(4) is an honest Q-process, whence different k yield different honest Q-processes. 
Since there are infinitely many ways to choose k > 0, the honest Q-process is not 
unique; in fact there exist infinitely many of them. 
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If condition (i) does not hold, then Eq. (5.4) has a non-zero solution, ~-(2), say. 
Moreover, it is easy to show, without loss of generality, that we may further assume 
that ~-(2)e Ke. Then on using this ~-(2), we can construct infinitely many B-type 
Qrprocesses (see, Reuter 1959). Each of them, r say, will satisfy 

~b~(2)l < + oO (5.16) 

since ebO(2)l < + oO (existence condition (4.1)) and c~b~-(2)< + oc (since 
((2) e J//~ (Qb;ab)). Now choose any such B-type Qb-process, and let ~/(2) = ebO(2). 
Then on using (5.8) and (5.10) again we can construct R(2) as in (5.5). By noting 
(5.16) it is easy to show that such an R(2) is well-defined, that it is an honest 
Q-process, and that different ~(2) generate different Q-processes R(2). Thus Q- 
processes are not unique and there exist infinitely many of them. This concludes the 
proof of the necessity of both conditions (i) and (ii), together with the last part of the 
theorem. [] 

Since Jr is a sub-space of d//~ (Qb), we have ~+(Qb;C~b) < ~+(Qb)' 
Thus an immediate corollary of Theorem 5.1 is the following sufficient condition. 

Corollary 5.2 Suppose Q is a CUI generator satisfying ~ +  (Qb) = ~+ (Qb) = O. Then 
the honest Q-process is unique. 

Note that K- and R-generators satisfy the condition of Corollary 5.2 
On the other hand, even i f ~  + (Qb) > 0 we may still have m+ (Qb;C~b) = 0. It is 

interesting to note that for W-generators the latter is always true. 

Lemma 5.3 Suppose Q is a W-generator.  Then + �9 (Qb, b) = O. 

Proof. We must prove that Eq. (5.4) has only the zero solution for a W-generator. 
Suppose not, i.e. there exists a non-zero solution, ~-(2) = {~-i(2); i e N}, say. Let 
supi~N ~-~(2) = e(2). Then c(2) > 0. Now let 

~'(2) = (().)/c(2), i.e. ~(~) = ~(2)/c(2) (Vie N) .  

Then it is obvious that 

0 < ~(~) < 1; (hi - Q)~(2) = (21 - Q)~(2)/r = 0;  

and that 

= < + 

In short, ~(2) is also a non-zero solution of (5.4). Note that 

sup ~'i(,~) = 1. (5.17) 

Since ~b ~(2) < + O0, we have 

t i m  = 0 .  
j ~ c o  

But Q is a W-generator, and thus satisfies 

lira inf qbj > 0 .  
j ~  oe 

So we must therefore have 

lira ~j(2) = 0 .  
j ~  oo 
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Thus there exists a finite subset G of N such that 

sup ~ ( 2 ) < 1 .  
i~N\G 

Comparison with (5.17) then yields 

sup ~',(2) = 1. 
i~G 

Since G is a finite set the above supremum must be attained in a state h, say. So as 
~'(2) is a solution of Eq. (5.4), and hence a solution of Eq. (5.2), whilst X(2) is the 
maximal solution of Eq. (5.2), we have 

1 = ~h(2) < )?h (2) < 1.  

Thus )(h(2) = 1. NOW using Theorem 2.10.5 of Yang (1990) we obtain 

0 < &~Ohh(2) < & Y', (Phi(&) = 1 - ~ q~hk(2)dk 
j ~ N  k~N 

- 2 h ( 4 )  <__ 1 - 2 ~ ( 4 )  = 1 - 1 = o (;~ > o).  

Hence q~hh(2) = 0 which is a contradiction. [] 

For W-generators the uniqueness condition is therefore quite simple. 

Theorem 5.4 Suppose Q is a W-generator. Then the honest Q-process is unique iff 
~+ (Q~) = o. 

Proof. Follows from Theorem 5.1 and Lemma 5.3. [] 
If we are only concerned with almost F-type Q-processes for general CUI 

generators, then the uniqueness criterion is also quite simple. 

Theorem 5.5 Suppose Q is a CUI generator. Then the following statements are 
equivalent. 

(i) there exists only one honest Q-process which satisfies Eq. (3.18); 
(ii) there exists only one honest Q-process which satisfies both Eqs. (3.17) and 

(3.18); 
(iii) ~+ (Qb) = O . 

We shall omit the proof of Theorem 5.5 since (i) <=~ (ii) is obvious, whilst (i) <=> (iii) 
is actually a by-product of the proof of Theorem 5.1 together with Lemma 3.4. 

6 Construction of conservative uni-instantaneous Q-processes 

Suppose Q is a CUI generator. Then, as before, Qb is a totally stable generator. We 
shall assume that the Feller minimal Qb-process ~(2), the entrance element )( and 
passive element X ~ namely 

X ~ = lim 2~b(2)1 and 27 = lim )((2), (6.1) 
2 ~ 0  ~,~0 

are all known since they can be easily constructed via Qb. Moreover, it is well- 
known that for any 7(2) e H~ 

a ~ = 2(r/(2), X ~ (6.2) 
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is independent of )~ > 0 and finite. In particular, if 0(2) e ~ -  and 0(2) e H~, then 

6 ~ --- 2(0(2), X ~ (6.3) 

is finite and independent of 2 > 0 (see Yang 1990). 
We are now ready to present the following construction theorem. 

Theorem 6.1 Suppose Q is a CUI generator. Let ~()~)= {q)ij(2);i,j~N) be the 
Feller minimal Qb-process. Choose any ~-(2)~ J/f+(Qb) such that ((2)~ K~, i.e. 
0 < ~(2) < 1, which satisfies 

~-(2) - ((/~) = (# - 2)q0 (2)~-(#), (6.4) 

and choose 0(2) ~ 5r (Qb) which satisfies both 0(2) e H~, i.e. 

0(2) - f/(#) = (/z - 2) f/ ()0 ~P (~t), 0 < 0(2) s E, (6.5) 

(c% Jf - ~-) < + oe (6.6) 

and W~ = 2(000, X - ( )  1" W < + o9 . (6.7) 

Now choose a constant c such that 

c>=(ab, X ~ 1 7 6 1 6 3  W (6.8) 

where X ~ X and 6 ~ are defined by (6.1) and (6.3), respectively, and ~-= limz~o ~-(2). 
Finally, let 

t/(2) = abe(2) + #(2), (6.9) 

~(2) = ~(2)flb + ((2), and (6.10) 

rbb().) = (C + 2 + 2(t/(2), r  (6.11) 

where ~ = lima-.o r Then 

R(~) = ~(~) + r~(~) ~(~) 

is a CUI Q-process. 
Conversely, if ~ + (Qb; ab) = 0, then every CUI Q-process may be constructed in 

the above manner. 
The Q-processes are honest iff both 

and 

hold in the above construction. 

(()~) = 3f(2) (6.13) 

c = ( ,b ,  X ~ + ~o (6.14) 

Proof Condit ion (6.5) and existence condition (4.1), together with Lemma 2.4, 
show that  ~ (2) defined in (6.9) satisfies 

r/0o ) E H ~ .  (6.15) 

Similarly, conditions (6.4) and (6.8), together with Lemma 2.4, show that  ~(2) 
defined in (6.10) satisfies 

4(2) ~ K~.  (6.16) 
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Moreover, (6.9), (6.10) and Lemma 2.4 also show that 

lim ;~r/(2) = ~b and lim 24(2) = fib, 
.;t--* 0o ,;t ~ 0o 

whilst 

(6.17) 

In addition, 

and 

where 

r/(2)~H~ and r  

lim 2q(2) = as, lim 24(2) = fib, 
2--*0o 2 ~ 0 o  

and 

rbb(2) = (C + 2 + 2<r/(2), 4)) -1 , (6.24) 

where ~ = l im~o 4(2) and c is a finite constant such that 

c > lira 2(t/(2), 1 - ~>. (6.25) 

Lemma 2.4, together with (6.22) and (6.23), now yields the representations of t/(2) 
and 4(2) as 

t/(2) = ~b~b(2) + q(2) (6.26) 

4(2) = 4~(2)flb + ~-(2), (6.27) 

where q(4) ~ 5e~ (Qb) c~ H~ and ~-(2) ~ d g l  (Qb) ~ K~. From (6.27) we obtain 

4 = Crib + ~ ,  (6.28) 

(6.22) 

(6.23) 

~(2) =< 1 - 2rP(2)l (6.18) 

is obvious through C(2) _-< s and (6.10). That 

lim 2(t1(2), 1} = + ~ (6.19) 
2---}03 

follows directly from the fact that ~bl = + ~ .  Note also that (6.6), (6.7) and (6.8) 
guarantee that 

lim 2(~/(2), 1 - ~} < + oo . (6.20) 
2--~ 0o 

Results (6.15)-(6.20) show that all the requirements of Theorem 2.2 are satisfied, 
and so R(2) as constructed in (6.12) is a CUI Q-process. That (6.13) and (6.14) are 
the "if and only if" conditions for the constructed CUI Q-process being honest 
follows from Theorem 2.3. 

Conversely, suppose that ~+(Qb;c~b)= 0 and R(2) is an arbitrary CUI 
Q-process. From the proof of Theorem 5.1 we know that ~ +  (Qb; cob) = 0 leads to 
the restriction process of any CUI Q-process R(2) being the Feller minimal 
Qb-process q~(2). Thus by Theorem 2.1, R(2) can be uniquely decomposed into 

R(2) = ~(2) + rbb(2) ~(2) 
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where 

F = lim ~(;,) and ~-= lim ~-(2). (6.29) 
2 ~ 0  ~ - o 0  

Whilst substituting (6.26) and (6.28) into (6.25) yields 

c > lim 2<eb~(,~), 1 - F/~b -- ~) + lim 2<#(2), 1 -- F/~b -- ( > .  (6.30) 
,q,---~ oo ) ,~oo  

Now by Lemma 2.11.2 of Yang (1990) and the basic Assumption II it is easy to 
show that 

1 = X ~ + X + F/~b. (6.31) 

Whence substituting (6.31) into (6.30) yields 

c > lim 2<c~b~(2), X ~ + J~ - ~-} + lim 2(0(2), X ~ + X - ( > .  (6.32) 

By (6.2) we know that both 2<ebcb(2), X ~ > and ,~<#(,~), X ~ > are finite constants; the 
former is <c~b, X ~ whilst the latter is ~o. Thus (6.32) leads to 

c > <~b, X~ + ~o + lira 2<~b~(2), X -- ~-) + lim 2<q(2), X -- ~-). (6.33) 

However c is a constant, hence both limits in the right hand side of (6.33) must be 
finite. Results (6.6), (6.7) and (6.8) now follow. [] 

Theorem 6.1 tells us that provided ~ + (Qb;"b) = 0, the construction problem of 
CUI Q-processes has been completely solved. Since ~ + ( Q b ) = 0  leads to 

+ (Qb;~) = 0, the construction problem for the case of ~+(Qb)= 0 is therefore 
also solved. For  example, if Qb is lower triangular (not Q itself!) then all the 
Q-processes can be constructed via Q by Theorem 6.1. In particular, we can easily 
construct all the Q-processes for K- and R-generators. 

Moreover, even if ~+(Qb) is non-countable, we may still have ~+(Qb;"b) = 0. 
For example, we see from Lemma 5.3 that for the W-generator we always have 

+ (Qb; ") = 0 no matter how complicated the Martin exit boundary of Qb is. So the 
construction of all Q-processes for W-generators is solved as well. This is, at first 
sight, a surprising result since even for the familiar totally stable Q-process we can 
construct only for the case where the Martin exit boundary is finite. 

When both m+ (Qb; Ctb) = 0 and ~+ (Qb) = 0 (but ~+  (Qb) may be arbitrary), the 
construction is particularly simple. We present it here in order to emphasize its 
concise and precise nature. 

Corollary 6.2 Suppose Q is a CUI 9enerator which satisfies both ee+(Qb) = 0 and 
eae+ (Qb; ab) = O. Choose a constant c such that 

and let 

where 

c > <~b, X~  (6.34) 

1 
(6.35) 

rbb(2) = [c -- (ab, X~  + 2 + 2ab~()~)l] -1 (6.36) 
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Then R(2) is a CUI Q-process. Conversely, every CUI Q-process can be constructed 
in the above manner. The honest CUI Q-process, R*(2), say, is unique and can be 
constructed by simply taking the equality in (6.34). Furthermore, R*(,~) is maximal in 
the sense that for any other CUI Q-process R(2) 

R*(2) > R(2) (V2 > 0).  (6.37) 

Proof All the conclusions follow from Theorem 6.1 except (6.37). However, (6.37) is 
obvious on noting that the construction of all the Q-processes depends only upon 
a constant. [] 

7 Examples  

In this section, we present some examples to illustrate the results of the last three 
sections. 

Example 1 - K-pregenerator (see (1.14)). Here E = {0, 1, 2 , . . .  } and b = {0}. 

Theorem 7.1 Suppose Q is a K-pregenerator as in (1.14). Then 
(i) Q is a generator iff 

~ 1 / ( 1  + q3) < + oo , or equivalently 
j = l  

(7.1) 

• 1/qj < + oe . (7.2) 
j = l  

(ii) When Q is a generator, there exists only one honest Q-process, together with 
infinitely many non-honest ones. All of them can be constructed as follows. Choose 
a constant c e [0, oo ), let 

p(,~) = c + ,~ + ,~ 1/(,~ + qj) 
j = l  

and then let 
F 
| p (2) if i = j = 0; 

Jp(2)/(2 + qj) if i = 0, j > 0; (7.3) 
/ 

rij(2) = }p(2)qi/(2 + qi) if i > 0, j = 0; 

~5~j/(2 + qi) + p(2)q~/[(2 + @(2 + qj)] if i > 0, j > 0 . 

Then R(2) = {rij(2); i,j >= 0} is a Q-process. When c = 0, we obtain the unique honest 
Q-process. 

Proof See Corollaries 4.4, 5.2 and 6.2, together with the fact that  for a 
K-pregenerator, Qb is triangular, and so the Feller minimal Qb-process 
~b(2) = {(pi3(2)} takes the form ~o~j(2) = 5~j(2 + q~). Note  that  (7.1)r obvi- 
ous. [] 

Example 2 - R-pregenerator (see (1.17)-(1.19)). Here, again E = {0, 1, 2 . . . .  } and 
b = {o} .  
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Theorem 7.2 Suppose Q is an R-pregenerator as in (1.17) (1.19). Then 
(i) Q is a generator iff 

~, b J(1  + qj) < + ~ . (7.4) 
i=l  

(ii) When Q is a generator, there exists only one honest Q-process, together with 
infinitely many non-honest ones. All can be constructed as follows. Choose a constant 
c ~ [0, ~ ), let 

p().) = c + 2 + 2 b j ( 2  + qj) , (7.5) 
J 

p (2) if i = j = 0; 

~p(2)bJ(2 + qj) if i = 0, j > 0; (7.6) 
rlj(2) = ]p(2)qi/(2 + q~) if i > 0, j = 0; 

[ 5 i j / ( 2 + q / ) + p ( 2 ) q i b J [ ( ) . + q / ) ( 2 + q j ) ]  if i > 0 ,  j > 0 .  

Then R(2) = {rli(2); i ,j  >= 0} is a Q-process. When c = O, we obtain the unique honest 
Q-process. 

Proof The same as Theorem 7.1. [] 

Remark 1 From Theorems 7.1 and 7.2, we see that  for both K- and R-generators 
construct ion depends only upon a non-negative constant.  It is easy to see that  if 
cl _-> c2 >= 0, then the corresponding processes, RI().) and R2(2), say, satisfy 

RI(~,) ~ R2(2) (V2 > 0) .  

Thus we can set up a natural  order  relationship between them. In particular, the 
unique honest  process which corresponds to c = 0 is maximal. There is, of course, 
no minimal process. This is a remarkable feature of Q-processes with instantaneous 
states, and contrasts to the totally stable case for which there always exists 
a minimal process but  no maximal one. 

Remark 2 In contrast  to K-pregenerators,  for R-pregenerators  condit ion (7.4) is 
not  equivalent to condit ion (1.20), i.e. 

~, (b j /q j )< + oo . 
j = l  

We can easily provide an R-pregenerator  which satisfies (7.4) (and thus a generator) 
but  not  (1.20). For  example, let 

q 2 , = l / ( 2 n ) ;  q 2 n - l = 2 n - 1 ;  b2 ,= l / (4n2 ) ;  b 2 , - l = l / ( 2 n - 1 )  ( n ~ > l ) .  

Then E b j - - +  ~ ,  E b J ( l + q j ) <  + oo, but  Ebj /q j=  + ~ .  Thus for a 
K-pregenera tor  Q, condit ion (1.16) is an "iff" condit ion under  which it becomes 
a generator,  whilst for an R-generator  condit ion (1.20) is sufficient but  not  neces- 
sary. This provides the answer for the necessary condit ion problem for K- and 
R-pregenerators  (see Sect. 1). 

and then let 
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Remark 3 It is interesting to ask what will happen if Ebj < + oo for the Q of (1.17) 
(it is, of course, no longer a CUI pregenerator). It turns out that it is never 
a generator - proved by using Theorem 2.1. 

Example 3 - W-pregenerator (see (1.21)-(1.22)). 

Theorem 7.3 Suppose Q is a W-pregenerator as in (1.21)-(1.22). Then 

(i) it is a generator iff (1.23) holds true; 
(ii) when Q is a generator, the honest Q-process is unique iff~+(Qb) = 0, whilst all 

the Q-processes can be constructed as in Theorem 6.1. 

Proof See Theorems 4.1, 5.4 and 6.1. [] 

Example 4 - CUI branching pregenerator. Let E be non-negative integer. A pregen- 
erator Q = {qi~} defined by 

{~~ oo if i = j  = 0 

~j if i = 0 and j > 1 
qij = " j-i+1 if i > 1 and j _>_ i - 1 

otherwise , 

where 

(7.7) 

c~j>0, ~ c~j= + ~  , and 
j = l  

(7.s) 

- oo <bl__<0, b j _ - > O ( j ~ l )  

is called a CUI branching pregenerator. 

and ~, bj = 0 ,  (7.9) 
j = O  

Theorem 7.4 Suppose Q is a CUI branching pregenerator as defined in (7.7)-(7.9). 
Then 

(i) Q is a generator iff ~ ~ c~jq~k(2 ) < + oO (2 > 0) 
k = l  j = t  

where ~()~) = {(pij(2)} is the Feller minimal Qb-process; 
(ii) when Q is a generator there exists only one honest 

~+(Qb; eb) = 0; and 
(iii) there exists only one honest almost F-type Q-process. 

Q-process iff 

Proof It is easy to show that ~+(Qb) = 0 for a CUI branching pregenerator (see, 
for example Lemma 3.1 of Chen and Renshaw 1990); whence (ii) and (iii) follow 
from Theorems 5.1 and 5.5, respectively, whilst (i) follows from Theorem 4.1. [] 

The unique honest almost F-type Q-process in (iii) is usually called a Markov 
branching process with instantaneous immigration (BPII). Further discussion on 
this process can be seen in Chen and Renshaw (1990). 
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Example 5 - CUI birth-death pregenerator. Let E be non-negative integer. 
A pregenerator Q = {qi j}  defined as 

where 

- -  0(3 

Ctj 

b~ 
qij = 

ai 

- ( a i  + bi) 

0 

if i = j = 0  

if i = 0  a n d j > l  

i f i ~ > l  and j = i +  1 

if i >  1 and j = i - 1  

if i = j >  1 

otherwise , 

ct~>0, ~ c 9 =  +oo  and 
j = l  

0 < a ~ < + o o ,  0 < b i <  +oo  ( V i > I ) ,  

is called a CUI birth-death pregenerator. 

(7110) 

(7.11) 

(7.12) 

For a CUI birth-death pregenerator Q, Qb is an ordinary birth-death gener- 
ator. So one can analyse this Qb-birth-death process (see, for example, Feller 1959). 
In particular, one can define the natural scalar {zi; i > 1}, the boundary point z, i.e. 

z = lira zi,  (7.13) 
i---~ oO 

and the standard measure {#j}. Through these one can define the boundary point 
z as being regular, entrance, exit or natural. One can further define 

i 

mi = (zi+l - zi) ~ #k, and (7.14) 
k = O  

Ni=  ~ mj. (7.15) 
j= i  

Note that using the results of the last three sections, together with known 
results on the ordinary birth-death process (see, again, Feller 1959), we can further 
analyse the CUI birth-death pregenerator to obtain the following theorem 
(detailed analysis and proof have been omitted). 

Theorem 7.5 Suppose Q is a CUI birth-death pregenerator as in (7.10)-(7.12). Then 
(i) Q is a generator iff the boundary point is regular or exit and, for Ni defined in 

(7.15), 

~ ~iNi < + ~ ; (7.16) 
i = 1  

(ii) when Q is a generator and the boundary point is exit, then there exists only 
one honest almost F-type Q-process whilst the general honest Q-process is unique iff 

c~bR(2 ) = + ~ ; (7.17) 
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(iii) when Q is a generator and the boundary point is regular, then there exist 
infinitely many honest Q-processes as well as infinitely many honest almost F-type 
Q-processes. 

A discussion on the existence p rob l em for C U I  b i r t h - d e a t h  p regenera to rs  can 
also be seen in Tang  (1987). 

Genera l iz ing  the results  of this pape r  to the case of finitely m a n y  ins tan taneous  
states, t hough  not  s t ra ight forward ,  involves no essential  difficulty. 
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