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Summary. We investigate the connections between the path-valued process 
called the Brownian snake and nonnegative solutions of  the partial differential 
equation Au = u 2 in a domain of IR d. In particular, we prove two conjectures 
recently formulated by Dynkin. The first one gives a complete characterization 
of the boundary polar sets, which correspond to boundary removable singu- 
larities for the equation Au = u 2. The second one establishes a one-to-one 
correspondence between nonnegative solutions that are bounded above by a 
harmonic function, and finite measures on the boundary that do not charge 
polar sets. This correspondence can be made explicit by a probabilistic for- 
mula involving a special class of additive functionals of the Brownian snake. 
Our proofs combine probabilistic and analytic arguments. An important role is 
played by a new version of the special Markov property, which is of  indepen- 
dent interest. 
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1 Introduction 

The main goal of this work is to prove two conjectures recently formulated by 
Dynkin [7], which are related to super-Brownian motion and to the nonnegative 
solutions of the partial differential equation Au = u 2 in a domain of IR d. Our 
methods rely on the probabilistic analysis of the path-valued process introduced 
in [11] and studied in greater detail in [12, 13], which was recently called the 
Brownian snake by Dynkin and Kuznetsov [8]. As was already pointed out in 
[14], properties of solutions of  Au = u 2 in a domain are closely related to the 
behavior of the Brownian snake near the boundary of the domain. As a key 
tool, we establish in terms of this path-valued process a version of the special 
Markov property stated by Dynkin for superprocesses. This result has other 
important applications, see in particular [16]. On the other hand, we also use 
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purely analytic techniques inspired from the work of Baras and Pierre [2] on 
removable singularities for semilinear partial differential equations. 

Let us start with a brief presentation of the Brownian snake. This process 
takes values in the set of  all stopped paths in lR d. A stopped path in IR d is a 
pair (w, ~) where ~ E IR+ and w is a continuous mapping from IR+ into IR d 
that is constant over [~,oc) . We will systematically write w instead of (w, ~) 
although ~ is not determined by w. The point w(~) (the final position of the 
path) is denoted by ~. Fix a starting point x E IR d and denote ~ the set of all 
stopped paths with initial point x. The Brownian snake is the continuous strong 
Markov process with values in YCFx, denoted by (Ws, s > 0), whose distribution 
is characterized by the following two properties. 

(i) I f  ~s denotes the lifetime of Ws, the process (~,  s > 0) is a reflecting 
Brownian motion in IR+ (i.e. is distributed as the modulus of a linear Brownian 
motion) 

(ii) Conditionally on (~s, s > 0), the process (Ws, s > 0) is a time-inhomo- 
geneous Markov process, whose transition probabilities can be described as 
follows. Let s < s I and set re(s, s ~) = inf[~,jfr.  Then, 

(a) W~,(t) = Vg/t) ,  for every t E [0, m(s, s')]; 
(b) (W~,(m(s, s ' )  + t) - W / m ( s ,  s ' ) ) , t  > 0) is a standard Brownian motion 

in IR d stopped at time ~s' - m(s, sl), independent of W~. 
Notice that properties (a), (b) completely describe the conditional law of 

W~, knowing Ws (under the conditional distribution given (~,  r > 0)), so that 
(i) and (ii) provide a complete characterization of the process (Ws, s > 0). We 
refer to [11] for the detailed construction of this process. 

Heuristically one can think of W~ as a Brownian path in IR d started at x 
and with a random lifetime ~s. This lifetime evolves according to the law of 
linear Brownian motion reflected at the origin (a lifetime cannot be negative.) 
When ~, decreases, the path W~ is erased from its final point, and when ~ 
increases, the path Ws is extended, independently of  the past of  the process W. 

The connection between the Brownian snake (W~) and super-Brownian mo- 
tion can be stated informally as follows. Let c~ be the first time when the local 
time at 0 of  (~,  s > 0) becomes greater than 1. The paths W~, 0 < s _< ~ are 
exactly the historical paths of  a super-Brownian motion in IR d started at 6x 
(see [11]). 

A basic object for most applications is the excursion measure of (W~) away 
from the trivial path with lifetime 0 in ~/r (i.e. the path that consists only of  the 
starting point x). This excursion measure, denoted by Nx, can be described by 
properties similar to (i) and (ii). More precisely, (ii) remains valid under Nx, 
and the law of reflected Brownian motion in (i) is replaced by the It6 measure 
of  positive excursions of linear Brownian motion [12, Proposition 2.2]. We 
assume that Nx, or equivalently the lt6 measure, is normalized so that, for 
every e > 0, 

( ) '  Nx sup ~ > e 
s>0 = = ~ ' 

Notice that N~ is an infinite measure. 
Let D be a bounded domain in IR d, d > 2. We assume that D is sufficiently 

smooth, namely of class C 5 (see Sect. 3). Suppose that x E D. We are interested 
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in giving necessary and sufficient conditions on a compact subset K of 0D in 
order that, with positive Nx-measure, one of the paths W~ will exit D at a 
point of K. In terms of super-Brownian motion started at 6x, this means that 
one of the historical paths exits the domain D at a point of  K. To be specific, 
we set 

~ D  = { w x ( t )  - s >__ 0, 0 _< t _< r ( w ~ ) A  ~ , } ,  

where r(w) = inf{t > 0; w(t) ~ D} (inf ~ = oc). In other words, the set ND 
is the union of the ranges of the paths Ws stopped at their respective exit times 
from D (in the case when they do exit D). A compact subset K of 0D is called 
0-polar if 

Nx(~ D DK=#O) = 0 

for some (or equivalently for every) x E D. 

We say that K has positive capacity if  K 4= (0 when d == 2, and when d > 3 if 
K supports a nontrivial measure v such that 

f f v (dy )v (dz ) [y - z I  3-d < O0 if d > 4 ,  

1 
Joffv(dy)v(dz)l~ < oc if d = 3 .  

Otherwise, we say that K has zero capacity. 
The next result was conjectured by Dynkin [7]. 

Theorem 1.1 A compact subset K of  OD is &polar if and only if  it has zero 
capacity. 

The "only if" part of  Theorem 1.1 was already derived in [13]. Let us 
sketch the main ideas of this proof, because similar ideas play an important 
role in the present work. Assuming that K has positive capacity, let v be a 
nontrivial finite measure supported on K such that the previous condition holds 
(when d = 2, v can be any measure supported on K). Let h be the harmonic 
function in D associated with the measure v on the boundary. The law of the 
h-transform of Brownian motion started at x, stopped at its exit time from D, 
is a probability measure on the set of all paths that exit D at a point of  K. It 
can be checked that this probability measure has finite energy with respect to 
the Brownian snake. By standard results of  probabilistic potential theory, this 
implies that the set of all paths that exit D at a point of  K is not polar for 
(Ws), which is the same as saying that K is not 0-polar. 

The proof of the converse statement, which is given in Sect. 3 below, requires 
certain analytic estimates. For every x C D, set 

u(x) = 4 N x ( ~  D D K=#(~). 
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The function u solves the problem 

Au = u 2 in D ,  UlaD\I; = 0,  (1) 

where the condition ulOD\K -- 0 means that, for every x r OD\K, 

lim u( y ) = O . 
y---+x,yED 

More precisely, u is the maximal nonnegative solution of the problem (1) [13, 
Proposition 4.4]. We use analytic tools inspired from [2] to verify that if  K 
has zero capacity then any nonnegative solution of (1) must satisfy 

f u 2 ( y ) r ( y ) d y  < co ,  
D 

where r (y )  = dist(y, 0D). The proof of  Theorem 1.1 is then completed by an 
argument already used in [13] in the different setting of interior polar sets. 

The next analytic corollary follows from Theorem 1.1 and the previous 
observations. 

Corollary 1.2 The problem (1) has a nontrivial nonnegative solution i f  and 
only i f  K has positive capacity. 

The problem of finding sufficient conditions for the existence or nonexis- 
tence of nontrivial solutions of ( I )  had been studied previously by analytic 
methods (see [10, 18]), but only partial answers were obtained. In particular, 
Sheu [18] gives conditions involving the Hausdorff dimension of K, for the 
more general equation Au = u ~, c~ > 1. 

In Sect. 4, we study the normegative solutions of  Au = u 2 in D that are 
bounded above by a harmonic function. I f  u is such a solution, then there 
exists a minimal harmonic function h that dominates u, which is given by the 
equation 

1 
u(x) = h(x) - 7 f G(x, y ) u 2 ( y ) d y  , (2) 

Z D 

where G stands for the Green function of Brownian motion in D (see [7] and 
Proposition 4.1 below). Let P(x, y), x ~ D, y E 6D denote the Poisson kernel 
of D. Then positive harmonic functions in D are in one-to-one correspondence 
with finite measures on ~?D by the formula 

h(x) = f P(x, y ) v ( d y ) .  (3) 
aD 

The next result was also conjectured by Dynkin [7]. 

Theorem 1.3 Nonnegative solutions o f  Au = u 2 in D that are bounded above 
by a harmonic function are in one-to-one correspondence with finite measures 
on OD that do not charge sets o f  zero capacity. The correspondence is 9iven 
by formulas (2), (3). 

The difficult part of  Theorem 1.3 is to show that the measure associated 
to a solution does not charge sets of zero capacity. Our method is based on a 
probabilistic argument. We use the fimction u to construct an additive functional 
of  the Brownian snake, we then observe that the characteristic measure of this 
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additive functional does not charge polar sets and we apply Theorem 1.1. 
Following these ideas, one can reexpress the correspondence of Theorem 1.3 
in a more probabilistic way. The function u is given by 

u(x) = N~(1 - exp(-A v ) ) ,  (4) 

A v where ( s, s > 0) is the continuous additive functional whose characteristic 
measure is (h(x) times) the law of the h-transform of Brownian motion started 
atx.  

Formula (4) extends the probabilistic representation of the solution of the 
Dirichlet problem associated with Au = u 2 that was given by Dynkin [6] (see 
[12, Corollary 4.3] for the formulation in terms of (W~)). The previous results 
should also be compared with the paper [14], which gives a probabilistic rep- 
resentation theorem for all nonnegative solutions of Au = u 2 in the unit disk of 
the plane. The relationship between the results of [14] and those of the present 
work is discussed in Sect. 4. 

The proof of Theorem 1.3 makes a heavy use of a new version of the 
special Markov property stated by Dynkin [4, 5] for general superprocesses. 
This new version is stated and proved in detail in Sect. 2. Roughly speaking, 
the special Markov property gives the conditional distribution of the paths 
Ws after their exit time from the domain D conditionally on the a-field go 
that represents the information given by the paths before their exit time. More 
precisely, we define the "excursions" of the Brownian snake outside the domain 
D, and as in the classical setting we consider the point measure associated with 
these excursions. Then, conditionally on the a-field gD, this point measure is 
a Poisson measure with intensity 

f XD(dy)Ny( " ), 
30 

where X D denotes the exit measure from D (defined in [4, 5] for general super- 
processes, and in [12] for the Brownian snake (Ws)). Although our applications 
are concerned with the case of a space domain, we have chosen to present the 
special Markov property for the Brownian snake in its full generality, that is 
for a space-time domain. This generality is useful for other applications. In 
particular, the special Markov property for the process (Ws), in its general 
form, is needed in [16] to get an exact Hausdorff measure function for the 
support of two-dimensional super-Brownian motion at a fixed time. 

Let us finally comment on the connections between the present work and 
the related results, mainly due to Dynkin, for superprocesses. As is suggested 
above in a couple of examples, it is generally easy to translate our probabilistic 
results for the Brownian snake into equivalent statements concerning (histor- 
ical) super-Brownian motion. We think that the formulation in terms of the 
Brownian snake is often more tractable. For instance, the process A v in (4) 
is naturally interpreted as an additive functional of the Brownian snake, when 
the definition of the corresponding object for super-Brownian motion would be 
more involved. Our formulation of the special Markov property is somewhat 
more precise and more "trajectorial" (but also less general) than the one given 
in [4, 5]. A major drawback of our approach is that it only applies to the "finite 
variance" branching mechanism, or equivalently to the equation Au =- u 2 (see 
however [15] for snakes associated with a general branching mechanism). 
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2 On the special Markov property 

J.-F. Le Gall 

2.1 T ime- inhomogeneous  notat ion 

We use the notation of  [12], which has been briefly recalled in Sect. 1. How- 
ever, as we will work in a time-inhomogeneous setting, it will be necessary to 
extend the definitions of  [12] in the following way. We will consider stopped 
paths started at time t for any t > 0 (only the case t = 0 was considered in 
[12, 13]). A stopped path started at time t is a pair (w, (), where ( E It, ec)  and 
w is a continuous mapping from [t, oc) into IR d, that is constant on [(, oc). We 
will systematically write w instead of  (w, ~), as the value of  ( is usually clear 
from the context (the "lifetime" ( will then be denoted by ((w), and similarly 
the number t is written as t(w)). We also write ~ = w((),  which represents the 
final position of  the path w. We denote by ~U (t) the set of  all stopped paths 
started at time t (in the notation of  [12], ~/U (~ = ~/U) and by ~ the set of  all 
stopped paths. The set ~U is a Polish space for the metric 

d(w ,  w ' )  = It(w) - t w,)l + sup Iw(r v t)  - w ' ( r  v t')l + I (w> - 
r__>0 

For x E IR d, ~Vx (t) denotes the set of  all stopped-paths (w, ( )  started at time 
t, such that w ( t )  = x. In agreement with the notation of  [12], we write ~Vx = 
~Vx (~ Without risk of  confusion, we simply denote by (t, x) the trivial element 
of  ~xx (t) such that ( = t and w ( t )  = x. 

Denote by C(IR+, u/Vx (t)) the space of  all continuous functions from IR+ 
into ~x/(t). The canonical process on C(IR+, ~r163 is denoted by (Ws, s > 0) 
and (s denotes the lifetime of  Ws. For every w E ~/~x, the distribution of  the 
Brownian snake started at w is a probability measure on C(IR+, ~/f~) denoted 
by IPw (see [11, 12]). We also consider the distribution of  the same path-valued 
process stopped at time a = inf{s > 0, (s ~: 0}, which is a probability measure 
]P; on the subset C0(N+, ~ )  = {W E C(IR+, ~/f~); (s = 0 for s large}. Finally, 
the excursion measure Nx is a a-finite measure on C0(N+, ~J/x). 

We will make use of  the strong Markov property under Nx (see [12], Sect. 2). 
Let (ff~') denote the canonical filtration on C0(N+, "~g/~'), and let T be a stopping 
time of  the filtration (fit~ such that T > 0, Nx a.e. Denote by Ot the usual 
shift on C0(]R+, ~/Vxx). Then if F, G are two nonnegative measurable functionals 
on C0(N+, ~//s such that F is ff~.+ measurable, 

N x ( F  �9 a o Or) = Nx(FIE~vT( G)  ) . 

It will be useful to generalize the previous definitions to our time-inhomoge- 
neous setting. If  w C ~#4~ "(t), the stopped path w(t  + �9 ), whose lifetime is ((w) - 
t, belongs to ~/Vx. Then ]Pw is defined as the unique probability measure on 
C(IR+,~x (t)) under which the process ( W s ( t +  �9 ), s __> 0) has distribution 
1Pw(t+.). The probability measure IP~ is the law under ]Pw of  the process (W~) 
stopped at inf{s, (~ = t}. Finally, the measure Nt, x is the excursion measure 
of  (W~) outside the trivial path (t, x) (the law of  (W~(t + �9 ), s > 0) under 
Nt, x is Nx). Both ]P~ and Nt,  x are measures on the subset C0(IR+,~/Vx (0) of  
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C(IR+, ~xx "(0) determined by the condition {{~ = t for s large}. We set 

c 0 ( ~ + ,  f )  = UC0(~+ ,  < ( o ) .  
g, X 

The set C0(N+, ~//) is equipped with the topology of  uniform convergence 
(with respect to the metric d)  and the associated Borel a-field. 

It will be convenient to reformulate Proposition 2.5 of  [12] in our time- 
inhomogeneous notation. Let x E IR a and w C ~r Under IP~, we can con- 
sider the excursion intervals (cq, fii), i E J of  the lifetime process ( ~ )  above 
its minimum process. This means that (ei, fii) are all open subintervals of  
[0, a] such that ~ = {/~ = inf[0.~]~, and ~. > ~ for every s E ({xi, fii ). Define 
W (i) C Co(IR+, ~#/') by 

so that W(, i) C w(~i)" Then, Proposition 2.5 of  [12] is equivalent to the fol- 
lowing statement. 

Proposition 2.1 The point measure 

~ ( ~ w ( i ) (  ~ ) 
iEJ 

is under IP* a Poisson point measure with intensity 

((w) 
2 f dt Nt,w(t)( �9 ) .  

0 

Finally, we will use the following simple fact. Let w E ~/Ux and r C [0, ((w)). 
Then (w(t),  t > r) is an element of  ~/U (r), which we denote by w (ry. Similarly, 
if err = inf{s, ~s = r}, then for every s E [0, ar], (W,(t),  t > r) can be viewed 

as an element o f  W "(r), denoted by W~ (r). Then, the law under IP~ of  the process 
(w(~) ",Aor, s > 0) is lPw(r). This follows easily from the properties o f  the Brownian 
snake (or from Proposition 2.1). 

2.2 The exit measure 

In this section, we introduce the exit measure from a space-time domain and 
state its main properties. Most of  the arguments are similar to the case of  a 
space domain, which is treated in [12], and will only be sketched. We consider 
a domain /2  in IR+ x IR d and a point x E IR d such that (0, x) E f2. We denote 
by B a Brownian motion in IRd that starts at x under the probability Px, 
and we set z = inf{t > O, (t, Bt) ~ •}, where inf (0 = oo. We assume that 
Px(~ < oc) > 0. For w E ~//-(t), we also set 

z(w) = inf{r  >= t , (r ,w(r))  ~ f2}.  

We first work under the probability measure lPw, for some fixed w E ~/r For 
every s = > 0, we set 

~s = (~s - ~(ws))+ 
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(7, = 0 if  z(W,) = oc). Our assumption easily implies that 

O(3 

fds l{,;s>0 } = oc, lPw a.s. 
0 

(see the beginning of  the proof  of  Proposition 3.1 in [12]). We may therefore 
define for every s > 0 

c~ = inf r > O, f d u  1{7,>0} > s . 
0 

Proposit ion 2.2 The process (Fs, s > O) defined under lPw by the formula 
F~ = 7~s is a reflectin9 Brownian motion on IR+, started at (~(w~ - r(w))+. 

Proof This is exactly similar to the proof  of  Proposition 3.1 in [12]. For every 
e > 0, we introduce the stopping times 

T ~ = 0 ,  

S~ = inf{s > 0, ~ > z(W~) + e} ,  

T~ = inf{s > S~, ~ = v(Ws)}, 

S~+~ = inf{s > r~, ~ > z(w,)  + e} . 

The processes 

(7(sg+s)Ar~,s ~ 0), n = 1, 2 . . . .  

are then independent and distributed according to the law of  linear Brownian 
motion started at e (at e V (~(w) - z(w))+ for n = 1) and stopped when it hits 
0. The proof  is completed as in [12]. [] 

Denote by (L~ s > 0) the local time at 0 of  the reflecting Brownian motion 
(Fs, s > 0) (our local time is right-continuous in the space variable). The exit 
local time of  (W~), from the domain ~2, is then defined by the formula 

The process L~ is a continuous increasing process, that increases only on 
{s, ~s = z(Wx)}. The usual approximation of  Brownian local time by occupation 
times shows that, for every s > 0, 

1 s 
L~ = l i m - f d r  l{r(V/r)<~r<~(Wr)+e} , 

e--+0 ~ 0 

lPw a.s. (see Proposition 3.2 of  [12]). It is then clear that (L~, s > 0) is a 
(continuous) additive functional of  the process (Ws, IPN), viewed as a Markov 
process in r 

As in [12], we can use an obvious stopping argument to define the process 
(L~) under the measures IP~ or Nx. 
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Definition. The exit measure from f2, denoted by X a, is the random measure 
on IR+ x IR d defined under N~ or under IP; by the formula 

ff  

Ix  r dL ~ 
o 

where a = inf{s > 0, ~s = 0}. 

Because of  the properties of  L a, the measure X ~ is supported on {(~s, Ws), 
s >= 0, ~ = v(W~)} C 0•. By the same argument as in Proposition 3.3 of  [12], 
for any nonnegative measurable function (b on IR+ • IR d, 

Nx( (X ~, ~))) = Ex( l{+<oo} r . 

A simple translation in time will allow us to consider also the exit measure 
tinder the m e a s u r e s  ]Nt, x. I f  (t, x) r ~2, or if  (]R+ • ]Rd) \~  is polar for space-  
time Brownian motion started at (t, x), we take X ~ = 0 under Nt, x. Otherwise, 
we may apply the previous definition to the process (Ws(t + �9 ),s __> 0) and 
the domain ~t  = {(r, y )  E IR+ x IR d, (t + r, y )  C ~}.  We get a measure X (t)'~ 
supported on 0f~t, and the measure X a is under N t x  the random measure on 
It, oc) • IR d defined by the formula (X ~ (b) = fx( i) ,~ dy) r  + r, y).  We 
have again, for (t,x) C ~, 

Nt, x( (XQ r = Et, x(l{+<oo}~(v,B+)),  

where the Brownian motion B now starts at x at time t under the probability 
measure Pt, x. 

Let us fix (r,x) E f2 and work under the measure N~,~. In heuristic terms, 
we aim to prove that the paths W~ considered after their first exit time from the 
domain f2 are conditionally independent of  what happens before the exit time 
from the domain, given the exit measure which is supported on the boundary. 
To give a precise meaning to this assertion, we first introduce the a-field that 
contains the information given by the paths before they exit (L We let 

t/s = inf t, du l{;~_<+(w,)} > s 

and we define a (continuous) process WJ by W~ = W~, (this makes sense Nr,+ 

a.e.). By definition, the a-field go on C0(N+, ~##x (r)) is generated by W' and 

the collection of  all Nr,~-negligible sets of  C0(IR+,CU(f)). 

Proposit ion 2.3 The random measure X ~ is g~ 

Proof  Again by a suitable translation in time, we can restrict our attention to 
the case r = 0. It then suffices to treat the case when f2 is bounded. I f  not the 
case, we may find an increasing sequence of  bounded domains Q(n) containing 

(0, x), with f2 = lim ]" f2(n), in such a way that X Q = X~(n> for all n sufficiently 
large, Nx a.e., and go(n) C ga for every n. 

Assuming that Q is bounded, we have Et,~(z) < oo for every t,x. We will use 
a suitable approximation of  the exit local time. We let Qn be an increasing 
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sequence of  subdomains of  ~ containing (0,x), such that f2 = U~2,+ and for 
every n the closure g)~ of  Qn is contained in f2. Let r~(w) denote the exit time 
from f2,. Then, for every n and every continuous function (p on ~?f2~, 

<X n', (p) = lim ds l{~n(w,)<~ ~ <+,,(w,)+~}q0(~,, W~) 
e - - + 0  

= lim ds l{+~,(w~)<~,<~(v/~)++} l{+(v/~)>~,}cp(~, l ~ )  
g---+0 - -  - 

I ^ !  = lim du l{~(w,)<~, <~,(w~)+~:}cp(~ ., W , ) ,  
e - + 0  ~ 0 

where ~'  = inf{s > 0, ~', = 0} and ~'~ denotes the lifetime of  WJ. In the sec- 
ond equality, we used our assumption ~ C ~.  It follows that X a" is g~-  
measurable. To complete the proof, it suffices to check that the exit local times 
L~ "�9 converge towards L Q~ , Nx a.e., at least along some subsequence. 

Using Proposition 2.1, we can easily compute the potential o f  the additive 
functional L e. 

~C~v)A~(w) 
f ( w )  �9 a = ]Ew(L ~ ) = 2 f dt Nt,w(t)(L~) = 2(~(w) A z(w)) 

0 

by the previous formula for Nt, x((XQ,~}).  Similarly, the potential of  L a" is 
f . ( w )  = 2(~(w) A r . (w)) ,  so that f . ( w )  Y f ( w )  as n --+ oc. Furthermore, 

+ ~ Nx((L~) 2) = 2N~ s lEvfs(L~ 

= 4 N x  dL (~sAz  
\ 0  

= 4Ex(z) .  

f2 ~2 n using again the formula for Nt, x((X a, q~)). Similarly, one computes Nx(LoLo ) 
= N+((L~~ 2) = 4E~(r~), and it follows that L~" converges to L~ in L2(Nx). 

Standard techniques can then be used to verify that L~ ~ converges to L~ 
for every s > 0. For every s > 0, we set 

M~ = L~ + f (W,) ,  M 2 = L]" + f , , (Ws),  

so that Ms, M~' are continuous martingales under Nx (indexed by s E (0, oc)). 
Notice that Mo~ L~, M ~  e~ = ~ = L~ . By applying Doob 's  maximal inequality to 
the martingales M~++., M~+, (a > 0) and then letting a tend to 0, we get, for 
every c5 > 0, 

Nx ( sup lM~ - M:l > ,3) < 3-2Nx((L~ - L~n )2) . 
\ s > 0  

Hence there exists a subsequence nk such that 

lim sup ] M s - M ] k l = 0 ,  
k --+ cx~ s > 0  

N x a . e .  
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As we have already noticed that f , ( w )  increases to f (w) ,  we conclude that, 
N~ a.e. for every s > 0, 

lim L~ "k = L ~ .  
k---+ cx~ 

This completes the proof of  Proposition 2.3. [] 

2.3. The special Markov property 

We first define the excursions o f  (W~) outside the domain ~2. The terminology 
is a little misleading, since these excursions consist o f  paths that start on the 
boundary o f  ~2 but may come back into ~2. From now on, we work under the 
probability measure Nr, x, where (r, x) C ~2. The random open set 

{s ~ [0, 4 ,  ~(w~) < ~} 

may be written as a countable union of  disjoint open intervals (ai, bi), i C I. 
Here I is a suitable set of  indices, which may be empty, for instance if  none 
o f  the paths W~ reaches the boundary o f  ~2. For every fixed i E I,  we have 
z(W~) = z(Wai) = ~ai for every s E [ai, bi], and the paths Ws, s C [ai, bi] all 
coincide up to their exit time of  (2. This follows from the properties of  the 
Brownian snake, using arguments similar to those o f  the beginning of  the proof 
of  Proposition 3.1 in [12]. We let ~i denote the common value of  ~(W~) for 
s C [ai, bi] and set yi = W~ i = W~(z(W~)) for every s C [ai, bi]. We then define 

a random element W i of  C0(R+, ~(~i)]  by the formula yi  I 

w~(t )  = W(.,+.)Abi(t), t >= ~i, 

so that W~ is an element of  ~/~ (5i) with lifetime ~i yt s = ~(ai+s)Abi"  

The processes W i, i E I are the excursions of  W "outside" f2. As in the clas- 
sical situation, the labelling of  excursions is irrelevant, and one is interested 
in 

6w,  , 
i E I  

which is a point measure on C0(IR+, ~ ) .  

Theorem 2.4 For every nonnegative measurable function �9 on Co(IR+, ~//~), 

Nr, x ( e x p ( - i ~ c l ~ ( W i )  ) o ~ )  = e x p ( - f X ~ ( d t d y ) N t ,  y (1 -exp ( - cb ) ) )  . 

In other words, conditionally given ga, the point measure ~iEI  6Wi is a Pois- 
son measure with intensity f Y a ( d t  dy)Nt, y( �9 ). 

Proof First step. Without loss o f  generality, we treat only the case r = 0. For 

W C C0(IR+, ~ t ) ) ,  set h(W) = sup{~>__0} ~ - t, so that h(W) = 0 if and only 

if  W~ = (t, y )  for every s > 0. By construction, h(W i) > 0 for every i E I.  
Using monotonicity arguments, we may restrict our attention to the case when 
~b(W) = 0 unless h(W) > ~/, for some fixed ~/ > 0. There is then only a finite 
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number of  terms in the sum 
~ ( w  ~) 
iCI 

(notice that h(W i) = sup[ai, bd(~s-  z(Ws))). Moreover, by the monotone class 
theorem, it is enough to consider the case when ~b is bounded and Lipschitz 
continuous on C0(IR+, ~/g#) (recall that this set is equipped with the distance 
of  uniform convergence with respect to d). 

Recall the definition of  the stopping times S~, ir~ in Sect. 2. Under Nx, we 
slightly modify this definition by using the special convention inf 0 = a. Then, 
T~ < a if and only if  k =< N~, where N~ is a nonnegative integer. Note that 
~T~ = r(WT~) by construction, and that the paths W,, s E [S~, T~] coincide up 

to time ~T~. For k > 1, we set 

w~'~(t) = W(S~+s>T~(t), t >= ~ 

so that Wff ,k is a stopped path started at time ~v~ at Wv~, with lifetime 

~(S~+s)AT~- In particular, W ~,k E C0(IR+, r (~)) for r = ~v~ and y = W~-~. 

Lemlna 2.5 Under the previous assumptions on q~, 

lim ~ qs(W e,k) = ~ ~(Wi),  ]Nx a.e. 
0k=l icI 

Proof  We may suppose e < t/. There is only a finite number of  indices, 
denoted by i l , . . . , i t  such that h(Wi;) >= t 1. For every j E {1 . . . . .  l}, there is 
exactly one value kj = kj(e) E {1 . . . .  ,N~} such that S~j E (aij, bii), T~} = bij. 
Furthermore, 

= (s~s-%)+s �9 

Since for every j ~ { 1, . . . ,  l}, 

0 - ai: ) = 0,  

it follows easily that We, kJ converges to wij in the topology of  C0(IR+, ~U). 
Since we have also h(W e'k) < t/ if k ~ {kl , . . . ,k l} ,  the lemma follows. [] 

Lemma 2.6 (Second step) For any nonnegative E~ random vari- 
able Z, 

0 
Proof  We denote by ?~ the a-field generated by the processes (W(r~+s)As~+ 1 , 

s > 0), n = 0, 1, 2 . . . .  , augmented with the Nx-negligible sets. Clearly, go  c 
E~. Let p => 1 and let Z be of  the form 

Z = Z o . . . Z p _ I Y ,  
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where, for j E {0, 1,. . . . .  p - 1}, Zj is a measurable function of  (W(r~+s)As~+ I, 
s > 0), and similarly Y = G(Wr)+s,S > 0) for some measurable function 
G. In the following calculation, we use first the strong Markov property at 
Tp, and then the strong Markov property at Sp, observing that Wry, is a mea- 
surable function of  Ws~p (indeed, the path Wr~ coincides with the path Ws~ 
stopped at its exit time from (2). We have 

Nx(Zexp(--k=~lCrp(we'k))) 

=Nx(Zo...Zp-lexp(-~_l~(We'k))lE~zr~p(G) ) 

= Nx Zo...Zp_~ exp - ~ q~(W ~'k) lE~v,.p(exp(-~))lE~vr~ 
k = l  0 p 

= Nx Zo...Zp_2Yexp - ~ cb(W ~'k) , 
k=l 

where 

f = Zp_llEwo, P(exp(-dP))Y 

is a measurable function of  (Wrp_l+s, s > 0). In the second equality, we used 

the remark at the end of  Sect. 2.1. We can then repeat the argument, replacing 
p by p -  1 and Y by i?. By induction, we get 

Nx(Zexp(-k~_l~(W~'k))) = Nx (Zk~llEw;: ,k(exp(-q~)))  �9 

By the monotone class theorem, this formula holds for any nonnegative g~- 
measurable variable Z. Letting p tend to ec gives the desired result. [] 

Remark. The previous proof gives the more precise following statement. Con- 
ditionally given (W~' 1, ~,2 W~ , . . . ) ,  the variables W ~,j are independent, and also 
independent of  g0. Furthermore, the conditional distribution of  W ~''j is lP~w,j. 

Lemma 2.7 (Third step) Let 7 j be Lipschitz continuous and bounded on 
Co(N+, ~K). Then, 

lim sup sup IIEw(~lh(W ) ~ I?)- Nt, y(~lh(W) ~ ~/)l = O. 
g).LO t, y wE~/g.(~),O<d(w,(t, y ) )<3  

Proof By an obvious translation, we may restrict our attention to the case 
t = 0. Let us fix y E IR d. For every a > 0, we define a random variable Ta 
on C0(N+, ~Uy) by 

Ta(W) = inf{s > 0, ~s = a} 
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with the special convention inf ~ = or. We then consider the shift operator 0to 
defined on C0(N+, "/fy) by 

OrAw), = w r o + , .  

Obviously, 

lim 0 v a ( W ) -  W, Ny a.e., 
a--+0 

in the topology of  CoiN+, ~Uy). Therefore, 

lim [Ny(T[h(W) > q ) -  N y ( T o  Ora[h(W) > rl)l = O, 
a-~0 

and a translation argument shows that this convergence is uniform in y (the 
rate of  convergence only depends on the Lipschitz constant of  T) .  

However, by the strong Markov property at Ta, if a < tl, 

N ~ ( ~ e o 0 r o l h ( W )  > 7 )  (a) , �9 = = fP), (dw)]Ew,(TIh(W ) > rl) , 

where P(y~)(dw ~) denotes the law of  Brownian motion started at y (at time 
O) and stopped at time a, viewed as a probability measure on ~ y .  Now let 
w ~ ~ y  and take a = ~(,~). Assuming that ~(~,) C (0, tl), we get 

p~;(~'lh(w) __> 7 ) -  N ~ ( ~  o 0rolh(w) _-> ~)l 

< f P  )(dw') l lg;(TFh(W) _-> r l ) -  lgw,(TIh(W) > ~)1. 

We will use a coupling argument to verify that, if  T has Lipschitz constant 
K, and if w ~ E ~Uy is such that ~(w,) -~ ~0~), then 

IIE;(Tqh(w) > u) - 1Ew,(TIh(W) > r/) I =< gd(w, w ' ) .  (5) 

It then follows that, for a = ((w), 

I ~ ; ( T l h ( w )  >-- 7 ) -  N y ( T I h ( W )  > ~)l 

< I N , ( T l h ( W  ) > q ) -  N , ( T o  Or~lh(W) > t/) I +KfP(y~)(dw')d(w, w') 

< [gy(Tlh(W) > q ) -  N y ( T  o Orolh(W) > tl)] 

+ K(d(w,(O, y)) + fP}~,)(dw')d((O, y) ,w'))  

which tends to 0 as d((0, y),  w) ~ 0, uniformly in y. 
It remains to derive the bound (5). We use the notation of  Proposition 

2.1. Remark that, outside a ]P~-negligible set, the whole process (Ws) can be 
reconstructed from the Poisson measure ~ieJ  W(i) and the initial path w. We 

then define a new process ffz, whose lifetime process ~s coincides with {s, by 
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the following conditions. 
(i) For s E (cq, fli), 

w'(t) . i f t  < ~ ,  
W,(t) = w ' ( ; ~ ) -  w ( ~ )  + W (i) (t~ if t > ~, 

(ii) For s C N +\  U(~e, fli), P~(t) = w'(t A ~). 
Proposition 2,1 shows that the distribution of W under ~ is ]P~,. More- 

over, by construction, h ( W ) =  h(W) and d(W~, W~)<= d(w, w') for every 
s => 0, ]PL a.e. The bound (5) then follows easily. [] 

We can now complete the proof of Theorem 2.4. Recall that ~ ( W ) =  0 if 
h(W) < rl. We have then, for e < r/, 

N, 
I~ IEwo, k (exp( -e ) )  

k = l  

( ~ 1  ( ~ W( k(exp( q~,lh ) )  = e x p  log 1 -  ( l - ] E *  > r/)) 

since IP~(h > /7)= ~/t/ if ( ( , , ) -  t(w)= a. Then, 

log 1 - (1 - IE ,~(exp(-~P)lh > /7)) 
k = l  ~ ~- 

E IEL~,~-(1 - exp(- ~')lh >= r/) + O(e2N~). 
% 

Write t ~'k = ~rs f:,k = Wr~ for simplicity. From the continuity of the mapping 
s --+ Ws, it easily follows that 

~ k  
lim sup d(W~' ,(t ~'k, f "* ) )  = O, 
~-~o kc{l,, jv d 

Then, by Lemma 2.7, 

e )_] IE*~ k(1 - exp(-qs)[ 
k=l WO' 

= o ( c N ~ ) ,  

N x a . e ,  

N~ 
h > 17)-e ~ N(t~,Ly~,~)(1- exp(-~b)lh > /I) 

k = l  

The upcrossings approximation of local time gives more precisely, Nx a.e., 

N, 
I~=1 ~dLs lim ~ 3r~(ds ) = 1 t? 

~ D  

lim ,k(exp(-c0)) - exp -2~ N(~,Ly~,k)(1 - exp(-(P)) = 0.  
e,-~0 

1 g2 Nx a.e. Now note that eN~ converges a.e. to ~L~, by the usual approximation 
of local time by upcrossing numbers. Also note that Nt, y(h > q) = 1/(2t/). By 
combining the previous estimates, it follows that, Nx a.e., 
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for the weak convergence of measures. Set ~:(t, y)  = Nt, y(1 - exp(-q~)). Then 
tc is bounded and continuous, and by the previous observation, 

2a ~ N(t~,~,y+:.~(1 - exp(-~b)) = 2e ~ ~c(r Wrf) ---,fdL~ ~c(~,, W,) 
k = l  k = l  0 

= (x  ~, ~) 

by definition. 

Let Z be bounded and g~ Using Lemmas 2.5 and 2.6 we finally 
obtain 

Nx(z e x p ( - ~ q ~ ( w i ) ~  : l i m N x  ( Z  / /  e.~0 k. k=l 

: lim Nx (Z  kN_I~, 1Ew~ 'k (exp( -~ ) )  ) ~ . ~ 0  

= N~(Z e x p ( - f X ~ ( d t d y ) N t ,  y(1 - e - ~ ) ) ) ,  

which completes the proof. [] 

2.4 The time-homogeneous case 

In the applications developed below in Sect. 4, we will consider the case of 
a space domain D C IR d. We can then of course apply the previous results to 
the space-time domain 12 = IR+ • D. We will however use the special Markov 
property in a slightly different form. We keep the notation introduced in the 
beginning of Sect. 2.3, with the only difference that the excursions (W i, i C I) 
are now defined by 

Wj(t) = Z/(ai+~>bAzi + t), t >= O, 

in such a way that W i E Co(N+, ~yi)  (recall that yi = W~(z(Ws)) for every 

X C [ai, bi]). The exit local time will be denoted by L D = L~. We also consider 
the "spatial" exit measure from D, denoted by X D, which is simply the image 
measure of X • by the mapping (t, y)  -+ y. Clearly, X D is supported on 0D. 
Finally we write o ~D instead of C L xD. With this notation, the following result 
is then an immediate consequence of Theorem 2.4. 

Corollary 2.8 Conditionally on o ~D, the point measure ~ i c l  3wi is a Poisson 
measure with intensity fXD(dy )Ny(  �9 ). 

3 The characterization of boundary polar sets 

In this section, we prove Theorem 1.1. The arguments do not depend on Sect. 2. 
The first two subsections are devoted to analytic estimates concerning solutions 
of the problem (1). 
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3.1 Analytic estimates in the case of a half-space 

In this subsection, we consider the domain D :=  (0, oc) x IR m, where m = 
d - 1 > 2. We shall always identify the boundary 0D with IR m. I f  K is a 
compact subset of  8D, we denote by cap K the Newtonian (or logarithmic if 
m = 2) capacity o f  K viewed as a subset of  IR m. 

Proposition 3.1 Let u be a nonnegative solution of the equation Au = u 2 in 
D. Assume that there exists a compaet subset K of 8D such that cap K = 0 
and, for every x E 8D\K, 

lim u(  y ) = O . 
y---+x,yCD 

Then, for every bounded subset H of [0, oo) x IR m, 

O(3 

f f 1H(r, z)u2(r, z)rdrdz < oc. 
0 IR m 

Before proceeding to the proof of  the proposition, we need to establish a num- 
ber o f  preliminary estimates. To motivate these estimates, recall that in the 
notation of  [2], our assumption cap K = 0 is equivalent to Cl,2(K ) = 0. By 
Lemma 2.1 of  [2] we may find a sequence of  functions f ,  E C~(IR m) such 
that 0 < f ,  < 1, f ,  = 1 on a neighborhood of  K, and 

lira IIAlll,2 = 0 ,  
n ~ o o  

where [IfLI1, 2 denotes the usual Sobolev norm 

IIfH1,2 = f (1 4- 1~12)Lf(~)l 2 d~.  
~ m  

The outline of  the proof of  Proposition 3.1 is similar to that of  the proof of  
Theorem 2.1 of  [2]. We must however extend the functions fn  to [0, oc) x IR m 
and derive certain properties o f  this extension. 

To begin with, we consider a function g E C~(IRm), which is nonnegative, 
radial (i.e. g(z) = g(S) if Izl = ]z'l) and such that 

f g(z)d~ = 1. 
~:~ m 

Let f be another fixed function in C~(IR~) .  For every r ~ lR, z ~ IR m, we 
s e t  

(p(r, z) = f f ( z  + rz ' )g(S)dS.  
]p,m 

Then ~o C C~ x lRm), and, for r > 0, q)(r, �9 ) = gr * f (  �9 ), where gr(z) = 
r-mg(z/r). Also observe that ~o(0, z) = f (z) .  

The function q0 is in general not compactly supported. For this reason, we also 
consider a function p : IR ---+ [0, 1] o f  class C ~ ,  such that p(r) = 1 if 
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]r[ =< 1, p(r) = 0 if ]r I => 2 and we set 

~(r, z) = p(r)~o(~, z) ,  

so that @ E C~(]R • IRm). 

Lemma 3.2 There exist four positive constants C1,..., C4 that may depend 
on g and p but not on f ,  such that 

f 2  f~,(r, z) 2 dr dz < Clll IJ2, (6) 
D 

f Iv~'Pz+lVz2~'[ 2 +  \ & 2 j  rdrdz <= CRllfjl21,2 (7) 
D 

( & ) ) 2  ldrd  z < CgHfll~2 (8) f \Or] r D 

flVOI4rdrdz < C4Jjf[I21,2jlfjj 2 . (9) 
D 

Proof. The bound (6) is immediate. We simply observe that, for every fixed 
r > 0 ,  

f (p(r, z) 2 dz = f (Or * f ) ( z )  2 dz < f f ( z )  2 dz .  (10) 
~:{m IR m •m 

We then turn to the proof of  (7) and (8). We denote by ~b(r, 4) the Fourier 
transform in the variable z of  q)(r, z). Then, for r > 0, 

(~(r, ~) = 0 r ( r  = O(rr . 

Notice that 0 is radial, so that we can write 0(u) = 0(4) for I~l = u. Then, 

oo oo 

f drr f dr162 4)1) 2 = f dCj~141f(r f drrjO(rr 2 
0 ]R m N m 0 

= c f d~lCj2lf(r 2 , 
]R m 

where 
o~ 

C = fdrrJO(r)l 2 < oc. 
0 

The same calculation gives 

o(3 

f d r r  f d ~ ( ] r  I 1~3(r, 4 ) 1 )  2 = C f d{]f ( r  2 , 
0 ~,n  IN m 

with the same constant C. We conclude that 
oo 

f d r r  f dz(lVzqOl; + IVz2q~l 2) < Cljfll21,2 . 
0 1R m 

Clearly, the same bound holds if we replace (p by ~. 
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We then consider, for r > 0, 

(r, z) = ~r  * f ( z ) .  

We have 

A 

(r, 4)=  (~)f(~) = ~rO~(~)f(~)= Ir162 

where O'(r) stands for the derivative of r ---+ O(r). Hence, 

f d r  1 - fdz  (r,z) 
0 r Nm 

o o  

where C ' =  f dr r-llO'(r)[ 2 
o 

O<3 

= f d  r 1 f d~ i#lzl0'(rl~l)121f(~)12 
0 FIRm 

o 7,o = f d~ 1~]2lf(~)l 2 '(rlgl)l 2 
IRm 

= C' f de 1r162 , 
N m 

411 

< oc because 0 ' ( 0 ) =  0. We have thus obtained 

the inequality (8) with p instead of t). However, since 

(r, z) = f ( r )o (r ,  z) + p(r) (r, z ) ,  

and p'(r) = 0 for r < 1, the bound (8) follows immediately using (10). 

By similar calculations, 

oo (632{0 r, ) 2  oo 
f am f dz ~72 ( z) = f am f d~ 1~1410't(Fl~l)12~'~(~)12 

o o  

= f d~ ]~t41f({)12fdr rlO"(rl{l)I 2 
N. rn 0 

= c "  f d4 1~12lf(~)l 2 , 
N m 

where C" = fodrr lO' (r ) l  2 < oc. If we combine the latter bound with the 
V2 2 previous estimate for IVzPl m + zqO , we get the bound (7), with r replaced 

by (#. Again, since 

~2r , &0 02qo 
~r2(r, z) P'(r)q~ 

the bound (7) follows using (10) and (8). 
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It remains to prove (9). Note that IIg'll~ =< Ilfll~. For j = 1 . . . .  ,m, we inte- 
grate by parts to obtain 

f d r d z r  ~zj =3 f d r d z r ~ \ & y j  (?z2 

=< 311fll~ (f drdzr (~@~4~\~zjj) 

which gives the bound 

f dr dz r ( ~31~ ~ 4 

by (7). Similarly, 

f d r d z r ( O ~  4 

1/2 (D f ( (~21]/~ 2~ 1/2 
x d rdz r to z~  ) ) , 

~= 911fll~fdr&r ~ c~ 4 ) ~= 9Cl[fH~llfl2~,2, 

(0~/) 3 r ~2~ / 
= - f dr dZ ~F - 3 f dr dz r O \ ~r ~F2 

< [ [ f U ~ ( ( S d r d z r ( ~ r ) ) l / 2 ( f 4  dr dz 1 ( ~ ) r  2) 1/2 

+3 D f d r d z r ( ~ r  ~ )  f o d r d z r \ • r 2 ]  , 

and the desired result follows from (7) and (8). [] 

We need another lemma before proving Proposition 3.1. 

Lemma 3.3 Let u and K satisfy the assumptions of Proposition 3.1. Let F 
be a bounded subset of D and let V be a neighborhood of K in IR • IR". 
There exists a constant C such that, for every (r, z) C F\V, 

C 
u(r,z) < Cr, IVu(r,z)l ~ C, IV2u(r,z)l ~ - - .  

r 

Proof Without loss of generality, we may assume that V = (-c4 e) • O, where 
> 0 and O is a neighborhood of K in IR m. For z E IR m and r > 0, denote by 

B~ the open ball with center ( - 1 , z )  and radius r, and by/7~r the closed ball. 
We may then choose 6 < ~ so small that for every z E 1Rm\O, the closed 

-Z Z Z ball BI+ a does not intersect K. We set Uz = BI+a\B1. Let Vz be the unique 
nonnegative solution of the problem 

2 in Uz, = + o c ,  v~loa ~ = 0  Avz = G VzI~B~+~ 

(the existence and uniqueness of vz follows for instance from Theorem 7.1 of 
[1]). The maximum principle (see e.g. [6], appendix) ensures that u < Vz on 
DNUz. 
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By rotational and translation invariance, one may write vz(x) = 0(Ix - ( - 1 ,  z)[) 
for x C Uz, where the function 0 solves the differential equation 

0" + m - 1 01 = 02 

F 

on (1, 1 + 6), with the boundary conditions 0(1) = 0,0(1 + 6) = oo. Observing 
that r " - lO  ~ is then nondecreasing, one gets the bound 0(1 + r) < Cr for r C 
(1, 1 + (6/2)), for some constant C. It readily follows that u(r ,z)  < Cr for 
r E (0, 6/2), for every z E Nm\O. This gives the first bound of Lemma 3.3, 
since u is also bounded on any compact subset of D. 

The second bound follow from the first one by using the boundary gradient 
estimates of  [9], p. 40. The same argument can be used for the third bound, 
observing that v =- ~ u / 3 z j  (or Ou/&) solves Av = 2uv in D. [] 

Proo f  o f  Proposition 3.1 As explained after the statement of Proposition 3.1, 
we may find a sequence of functions f ,  E Cc~(lR m) such that 0 < f ,  < 1, 
f~ = 1 on a neighborhood of K, and 

lim ][ i n  111,2 = 0.  
?/--+0<3 

With each function f~,  we associate a function 0. as described before Lernma 
3.2. By construction, ~p. = 1 on a neighborhood of K in IR • IR m. Furthermore, 
the functions 6. satisfy the bounds of Lemma 3.2. 

Now let 7 E C~(IR • IR m) taking values in [0,1] and such that 7(r,z) = 
?(0,z) when Ir[ _< 1. We set ?. = 7(1 - ~ ) ,  so that ?. vanishes on a neigh- 
borhood of K in IR • IR m. By the bound (6) applied to ~., 7. converges to 7 
in L2(]R x IR m, dr dz). We will verify that 

sup fu274r dr dz < ~ .  
n D 

By Fatou's lemma, this implies 

fu274r dr dz < ~ ,  
o 

and the result of  Proposition 3.1 follows. 

It remains to prove (11). We start from the equality 

We integrate by parts in 

( l l )  

f uZ74rdrdz  = f A u 7 4 r d r d z .  
D D 

the right side. To this end, we observe that the integrals 

~2U 4 
fdrdzrs:~_27 ~, j = 1 . . . . .  d 
D az) 

converge absolutely, by Lemma 3.3 and the fact that 7n vanishes on a neigh- 
borhood of K in IR • IR m. This justifies the following calculation 

~2U 4 oo ~2 u oo 02 

o o ~m &) 
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Similarly, 

~2U 4 co ~U ~ co ~2 
fdrdzr~r2 Y n = - f dz f dr---g-Cry 4) = f dz f dru-~Trgr2(r'/4n) . 
D ~m 0 ~r Or N. m 0 

In the first integration by parts, we use the bound on Ou/Or provided by Lemma 
3.3, together again with the fact that 7, vanishes on a neighborhood of K. In 
the second integration by parts, we also use the boundary condition satisfied 
by u. 

Summarizing, we get 

f d r d z r A u y 4 : f d r d z ( r u A ( y 4 > + 2 u ~ ( ? 4 ) )  �9 

Since A(?~ 4) = 473A7~ + 12?2IVy,12, we have 

fdrdzrua  (74 ) < 4 drdzrue?{ drdzrCA?,) 2 
D 

(fD )1/2 (fD )1/2 2 4 drdzriVynl4 + 12 drdzru y. 

and similarly 

" #/ "~ 1'/2 ( ~'~n "~ ~1,/2 
fdrdzu~7 (74> < 4  tfDdrdzru2y6n) (Sdrdz  1 2 

t,+ r \ & )  ) 
Now observe that 

v ? .  = (1 - 4 , . ) v ?  - ? v 0 , , ,  

Thanks to the estimates (7)-(9) applies to 0n, and observing that cg?/~r = 0 
for I r] =< 1, we get that 

sup ( fdrdzr(d?n)  e fdrdzrlVynl4, j'drdz 1 (~?n~2~ , < C o ,  

for a certain constant Co independent of n. Finally, using the trivial bound 
76 < ?4, we have 

(D f )1/2 fue74rdrdz = f auy4rdrdz < 24C~/e u2?4rdrdz , 
D D 

and thus 
sup fu274rdrdz < 242C0, 
n D 

which completes the proof of (11 ) and of Proposition 3.1. [] 
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3.2. The case o f  a 9eneral domain 

We now consider a domain D in IR d, d ~ 3, such that D 4 = lR ~. We assume that 
D is o f  class C 5. This means that, for every x0 C OD, there exists a neighbor- 
hood U of  x0 in IR d, a neighborhood V of  0 in IR d-  1, a mapping h : V -+ IR of  
class C 5 such that h(0) = 0, Vh(0)  = 0, and an orthonormal system (el . . . .  , ea) 
in IR d so that 

U N D = U A  x = x o + ~ y j e j ; ( y l , . . . , y a - 1 ) E  V, ya > h ( y l , . . . , y d - l )  . 
j=l  

For y E D, we set r (y )  = dist(y, 0D) = inf(zc0D) ]y - zl. 
Recall from the introduction the definition of  a set of  zero capacity. 

Proposition 3.4 Let  u be a nonnegative solution o f  the equation Au = u 2 in 
D. Assume that there exists a compact subset K o f  ~D such that cap K = 0 
and, for  every x E OD\K, 

lim u( y ) = O . 
y---+x, yGD 

Then, for  every bounded subset H o f  D, 

f u 2 ( y ) r ( y ) d y  < oc .  
H 

Proo f  It is enough to check that, for every x0 C 0D, there exists a neighbor- 
hood O of  x0 such that 

f u 2 ( y ) r ( y ) d y  < oc .  
OND 

We fix Xo c OD and choose U, V, h, (el . . . . .  ed) as explained above in the def- 
inition o f  a domain o f  class C 5. We can then find 8 > 0 and a neighborhood 
V1 of  0 in IR d- l ,  with V1 C V, so that 

g 1 : =  x = xo + ~yJeJ ;  [ycl - h(yl  . . . . .  Yd-1)l < 8,(Yl,. . .  ,Y~- , )  C V1 
j= l  

d is contained in U. Then, if x = xo + ~ j = l y j e j  E UI, we have x E D if and 

only if Yd > h(yl  . . . .  ,Yd-1),  x E OD if  and only if Yd = h ( y l , . . . , y d - 1 ) .  

d Let x = xo + ~ j = l  yjej  E OD • UI. The inward-pointing unit vector normal to 

~?D at x is 

N x = N(yl,...,Yd_l) 
Oh 2 

Oh 

\ j=l 

1/2 

2:- ed )  . 
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We consider the mapping r/ defined from IR • I/1 into IR d by 

d - 1  

q(r, Sl . . . . .  Sd-1 ) = XO -]- ~ S j e j  4- h ( s  I . . . .  , S d - |  )ed 4- FN(s I ...... d - I )  " 
j = l  

Then t/is of  class C 4, q ( 0 )  = X0, and the Jacobian matrix of  ~/at 0 is inversible. 
By the inverse function theorem, there exists a neighborhood F of  0 in 1R • V1, 
a neighborhood O of  x0, which can be supposed to be contained in U1, such 
that ~/ is a C 4 diffeomorphism from F onto O. We may and will assume in 
addition that r/ is also a diffeomorphism from a neighborhood of  /~ onto a 
neighborhood of  0 (/~ denotes the closure of  F). Furthermore, we can suppose 
that F is of  the form 

F = ( - 6 , 6 )  • B(~_~)(0,6), 

where 6 > 0 and B(d_l)(0 , 6) denotes the ball o f  radius 6 centered at the origin 
in IR d-I  . Taking 6 smaller if  necessary, we can finally assume that for (r,s) C 
F, rl(r,s ) belongs to D if and only i f r  > 0 and in that case r = r(rl(r,s)), in the 
notation introduced before Proposition 3.4. We set ~ = q - I  and write O(y) = 
( r ( y ) , s l ( y )  . . . . .  sd I(Y)), in agreement with the previous notation. Notice that 
]Vr(y)] = 1 and V r .  U S / =  0 f o r j -  1 . . . .  , d -  1. 

Let f be a function of  class C 2 on D and let g = f o tl, which is defined on 
F+ :=  {(r,s) C F; r > 0}. For y E O, we can compute A f ( y )  in terms of  the 
partial derivatives o f  g at the point O(y). Straightforward calculations give 

02g ) (Ar(y))~rr(O(y)) 4- Lg(O(y)) A f ( y )  = ~r2(O(y ) + 

where the operator L only involves partial derivatives with respect to the vari- 
ables sj: 

d-  l ~a d- L c?2 g 
Lg(O(y))  = ~ A s i ( y ) - ~ - ( ~ ( y ) )  + ~ (Vsi �9 Vsi)  ( y ) ~ - ( O ( y ) ) .  

j = l  ' OSj i , j=l usiusj 

Note that the functions At(y ) ,  AS/(y),  V s j ( y )  are of  class C 2 since t/ and ~9 
are of  class C 4. 

We then define a function p on F by 

(li ) 
p ( r , s ) = e x p  ~ Aror l (u , s )du  . 

The function p is o f  class C 2 and is bounded below and above by positive 
constants. Notice that 

~?p 1 
- 2 ( A r o t l )  p .  

~r 
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Now consider the compact subset K of zero capacity of 8D. Denote by 
K '  the closure of r  rq O), which is contained in {0} x IR d-1. Viewed as a 
subset of IR d- l ,  K '  has zero Newtonian (logarithmic if d = 3) capacity (recall 
that r can be extended to a diffeomorphism from a neighborhood of O onto a 
neighborhood of/~). Let 7 be a function in C~(IR x IRd-1), whose support is 
contained in F and such that 7(r,s) = y(0,s) if [rl _-< a/2. With the function 7 
and the compact set K '  of zero capacity, we associate a sequence (7n) defined 
in the same way as in Sect. 3.1. 

Let u satisfy the assumption of Proposition 3.4. Then, if J(y) denotes the 
Jacobian of ~ at y, 

f u(Y) 2 (Tn o r r(y) dy <= C f u(y)2p o r (7~ o 0(y))4 r(y)J(y) dy 
OAD OND 

= C f u 2 o ~(r, s )p(r ,  S)Tn(r , s)4r dr d s ,  
F+ 

for a certain constant C. Set v = u o t/. Then, 

~2V ~V 

u 2 o q = A u o q =  ~r 2 +(Aroq)Sr  +Lv '  

and we have thus obtained the bound 

f u(y)2(VnOO(y))4r(y)dy <= c f  ( 82v ctv ) 
OnD r+ \ 8r2 + (Ar ~ ~l)~r + LV py4nrdrds . 

We will use integrations by parts to bound the right side of  the previous 
formula. To justify these calculations, we first observe that the analogue of 
Lemma 3.3 remains valid, with exactly the same proof. Hence, if A is a neigh- 
borhood of K ~ in IR x IR a--l, there exists a constant C' such that, for every 
(r,s) C F+\A, 

C ! 
v ( r , s )  <= Ctr, IVv(r , s )}  <= C', IV2v(r,s)l < - - .  

F 

We first consider 

~ 2 v 

F+ 
8v) py4r dr ds + (At o ~ ) ~  

( 82v 8p 8v'~ 

= f dsfdrrd2(pv)74 
B(d_ 1)(0,~ ) 0 C3r2 

o 82P 4 
- vJ + dr ds r~r2VT~ , 
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where we have used the definition of p in the first equality. On one hand, 

f dr ~32P 4 v+ dsr~r2VG <-- clv+f drdsrv74 

< c~ drdsrv27 drdsr 7 
V+ 
( f  ~( 4r )1/2 = < c2 u(y)2(7~ o y)) ( y ) d y  

O 

On the other hand, by two integrations by parts (using the previous bounds on 
v and its palatial derivatives), 

6 ~2 6 ~ F  6 ( ~ n x ~ 2 6  ,-32n, 
fdrr~r2(pv)y4 = 8fdrpw3, 4- 12fdrrpv72 \ Or ) 4- 4fdr rpv7=3 ~_~__~yn . 
0 0 0 0 

Since the function p is bounded, we can then argue exactly as in the proof of 
Proposition 3.1, using the Cauchy-Schwarz inequality. Thanks to the properties 
of the functions 7n, we obtain 

B(d_f( o,a) ds i dr r ~--~ (pv )74 

It remains to consider the term 

v_f d rv274) 1/2 = < c3 r ds 
+ 

<=c4( fu(y)2(Tn~ 
112 

f dr ds rLv p74 . 
/'__ 

We integrate by parts to get rid of the derivatives with respect to the variables 
sj (again, we use the previous bounds on the derivatives of v to observe that 
the integral is absolutely convergent). We get terms of the form 

f dr ds rvq)Ta=, f dr d= rvqo?• O~i , 
F+ F+ 

f dr ds 2 07,, 07= f dr ds rvqo73= 027= rvq~ ~si &j' &i&j ' F+ F+ 

where the functions ~0 are bounded over F+. Then, by exploiting once again 
the properties of the functions 7~, as in the proof of Proposition 3.1, we obtain 

/ f dr ds rLvp74 < cs f dr as rv27 
F+ \F+ 

< c6 f u(Y) 2 (Tn o t~(y)) 4 r(y) dy 
\OnD 
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By combining the previous bounds, we get 

(; f u(Y) 2 (7,, o 0 (y) )  4 r(y)  dy <= c7 u(y)2(Tn o ~t(y))4r(y) dy 
OAD o 

Hence, by letting n tend to o% 

f u(y)2(~ O I [ t ( y ) ) 4 r ( y )  d y  < 0 0 ,  
OnD 

which completes the proof of Proposition 3.4. [] 

3.3. The characterization of  boundary polar sets 

We will now prove Theorem 1.1. As points are not 0-polar when d = 2, we 
need only consider the case d > 3. Our arguments follow closely the p r o o f  
of Proposition 3.2 in [13]. We consider a bounded domain D of class C 5 in 
IR d. We have to prove that any compact subset K of 3D such that cap K = 0 
(in the sense of Sect. 3.2) is 0-polar. Recall that the converse follows from 
Corollary 4.2 of [13]. 

Let K be a compact subset of 0D such that cap K = 0. We will argue by 
contradiction. Suppose that K is not &polar. Then, if 

u(x) = N x ( ~  D N K)  

the function 4u is a nontrivial nonnegative solution of Au = u 2 in D. By Propo- 
sition 3.4, 

f u ( y ) 2 r ( y ) d y  < oo. 
D 

Denote by G(x, y)  the Green function for Brownian motion in D (killed at the 
boundary of D). By a classical bound, we have G(x,y)  < C(x)r(y),  where 
the constant C(x) depends only on x. Hence, we have also, for every x E D, 

fu(y)2G(x, y) dy < oo. 
D 

We now fix x E D and denote by HK the set of all stopped paths started at x 
that exit D at a point of K. If z(w) = inf{t > 0; w(t) ~ D}, 

HK = {w C ~ x ;  ~(w) < ~ ,  w(~(w)) ~ K}  . 

According to Theorem 4.5 of [13], the set Hx is an equilibrium set for the 
process (Ws) in i##x, killed when its lifetime vanishes. Moreover, the capacitary 
measure # of HK can be described as follows. Denote by #t the image measure 
of the restriction of # to stopped paths with lifetime greater than t, by the 
mapping w --+ (w(r A t),r > O) (#t is viewed as a probability measure on the 
set of all stopped paths with lifetime t). Also denote by Px t the law of Brownian 
motion started at x stopped at time t (viewed as a probability measure on the 
same set of stopped paths). Then, for every t __> 0, #t is absolutely continuous 
with respect to Px t, and its Radon-Nikodym derivative is 

d/& ( i ) dPtx = l(t<~(~))u(w(t)) exp - 2  u(w(r) )dr  . 
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Theorem 4.5 of  [13] also implies that 

f u ( w ( t ) ) d t  = oc, #(dw) a.e. 
0 

because the measure # has finite energy and therefore cannot give a positive 
mass to an Mx-polar set (see [13] for the definition of  Mx-polar sets). It follows 
that 

f # ( d w ) f u ( w ( t ) )  dt = oe .  
o 

On the other hand, by the previous observations, 

f#(dw)fu(w(t))dt = f dte; -2  u(w(r))dr 
0 0 

<= Ex dtu2(Bt = u ( y ) 2 G ( x , y ) d y  < oc .  
D 

We arrive at a contradiction, which completes the proof  of  Theorem 1.1. [] 

4 Solutions dominated by a harmonic function 

Throughout Sect. 4, we consider a bounded domain D in l id ,  d > 2, and G 
denotes the Green function of  Brownian motion in D. We denote by X D the 
spatial exit measure from the domain D (see Sect. 2.4). When D is smooth, or 
more generally when D is regular in the sense of  the classical Dirichlet problem, 
we have the following properties [6, 12]. I f  g is a continuous nonnegative 
function on •D, the formula 

u(x) = Nx(1 - exp(--(XD, g))) ,  x C D ,  

defines the unique nonnegative solution of  the equation Au = 4u 2 in D with 
boundary condition ul0 D = 9. Alternatively, u can be characterized as the unique 
nonnegative solution of  the integral equation 

u(x) = Ex(g(B~)) - 2Ex u2(Bt) dt , 

where ~ denotes as usual the first exit time from D. 

4.1 Preliminaries 

In this subsection, D is a general bounded domain in l i  d. 

Proposition 4.1 Let  u be a nonnegative solution o f  the equation Au = 4u 2 in 
D. Assume that u is bounded above by a function harmonic in D. Then there 
exists a unique harmonic function h such that, .for every x ~ D, 

u(x) = h(x) - 2 fG(x ,  y )u2(y)  dy. (12) 
D 
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The function h is the smallest harmonic majorant of  u. Conversely, i f  h is 
a 9iven nonnegative harmonic function in D, Eq. (12) is satisfied by at most 
one nonnegative function u. 

Proof Let u be a nonnegative solution of  Au = 4u 2 in D, which is bounded 
above by a harmonic function. Then, let (Dn) be an increasing sequence of  
smooth subdomains of  D such that /Sn C Dn+l and D = LJnDn. As u solves 
the equation in D~ with boundary condition ulaDn, we have by the previous 
observations, for x E D. ,  

u(x) = Ex(u(B~n) ) -  2Ex u2(Bt)dt , (13) 

with an obvious notation. This shows in particular that Ex(u(B~,)) increases as 
n ]" e~. If  k is a harmonic function such that u < k, 

Ex(u(B~))  __< Ex(k(Z~n)) -- k(x) .  

This allows us to set, for every x E D 

h(x) = lim T Ex(u(B~.)), 
nToo 

and the function h is harmonic in D. Passing to the limit in (13), we get 

u(x) = h ( x ) -  2Ex u2(Bt)dt , 

which gives (12). Clearly, h > u and h < k, which shows that h is the smallest 
harmonic majorant of  u. 

It remains to check the converse statement. Suppose that h is a given non- 
negative harmonic function in D and that u solves (12). It follows easily that 
u solves Au = 4u 2 in D. Let the sequence (D~) be as previously. For every 
integer n, let w~(x), x E D~ be the unique nonnegative solution o f  

w.(x) = h ( x ) -  2Ex w](Bt)dt , x E D. . 

Now observe that u solves Au = 4u 2 in D.  with boundary condition Ulas)" < 
hlaz)., so that the maximum principle ([6], appendix) gives u < w. in D..  

2 in Dn with boundary condition Similarly, since w~+l solves AW.+l = 4w.+ 1 
Wn+lleD, <= hinD,, we have w, > Wn+ 1. 

We can therefore set 

w~(x) = lim .L w~(x) > u(x).  
n T ~x~ 

Since w, > u, we have for x E Dn 

wn(x) <= h ( x ) -  2Ex uZ(Bt)dt , 
\ 0  / 



422 J.-F. Le Gall 

and by passing to the limit as n --~ ec, 

w(x) < h(x) - 2Ex uZ(Bt)dt = u(x) .  

We finally get u = w, which shows that u is uniquely determined by h. [] 

The next two subsections will be devoted to characterizing the harmonic func- 
tions h for which (12) has a solution. 

4.2 Construction o f  the solution associated with a 9iven harmonic function 

We now assume that D is a domain of  class C 2 and denote by P(x, y), x C 
D, y C ~3D the Poisson kernel of  D. I f  v is a finite measure on 6D, the asso- 
ciated harmonic function is defined by 

h(x) = Pv(x) = f P(x, y ) v ( d y ) .  
OD 

Recall from the introduction the definition of  compact subsets of  ~?D of  zero 
capacity. 

Proposition 4.2 Let v be a finite measure on OD and h = Pv. Assume that v 
does not charge the compact subsets o f  OD o f  zero capacity. Then Eq. (12) 
has a (unique) nonnegative solution u. 

Proof  We first assume that v satisfies the (stronger) assumption 

f f v ( d y ) v ( d z ) l y - z l  3-d < OG if d => 4 ,  

1 
- -  z f f v ( d y ) v ( d z ) l o g  < oc if d 3 .  (14) ly 

From the known behavior o f  the Green function and the Poisson kernel near 
the boundary, this assumption is equivalent to 

f d y G ( x , y ) h ( y )  2 < o o ,  (15)  
D 

for every x E D (see the proof o f  Corollary 4.2 in [13]). We use the sequence 
Dn and the functions wn of  the proof  of  Proposition 4.1. Recall that wn is 
defined on the subdomain D~ and solves 

) wn(x) = h ( x ) -  2Lx w~(Bt)dt , x C Dn. 
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The same argument as in the proof  of  Proposition 4.1 shows that w,+l(x) < 
wn(x) for x E D,.  We can therefore set, for every x E D, 

u(x) := lira ; w,(x) > O. 

We notice that, as n ~ oo, 

= f d y  G(x, y) u2(y), 
D 

where the passage to the limit 1s justified by dominated convergence, since 
wn < h and 

E~ h2(Bt)dt = f d y G ( x , y ) h ( y )  2 < oc, 
D 

by (15). Then, by passing to the limit in the integral equation satisfied by w~, 
we get that u satisfies (12). 

In the general case, we use Lemma 4.2 of  [2]. According to this lemma, any 
finite measure 0 on IR m (m = d -  1) that does not charge compact sets o f  
capacity zero is the increasing limit o f  a sequence 0p of  measures belonging 
to W-I'2(]Rm). For a finite measure Op, the condition Op E w - l ' 2 ( ~ x  m) means 
that 

d~10p({)l 2 
f < o e  

or equivalently, if  gl denotes the usual Bessel potential (see e.g. [17]), gl * 
0p C L2(IRm). It is then easy to verify that this condition is in turn equivalent 
to 

f f O p ( d y ) O p ( d z ) l y -  z] 2 - m  < o o  if  m > 3 ,  

1 
f fOp(dy)Op(dz)log l Y - Z l  < ~ if m = 2 .  

By using local charts on the boundary 0D, we deduce from the previous obser- 
vations that, under the assumption of  Proposition 4.2, v is the increasing limit 
o f  a sequence Vp of  measures on 0D that satisfy (14). By the first part o f  the 
proof, we can associate with every measure Vp the unique nonnegative solution 
up of  

Up(X) = hp(x) - 2fG(x,  y )uZ(y)dy ,  x C D,  
o 

where hp = Pvp. The sequence (hp) increases towards h. It easily follows that 
the sequence (Up) is also monotone increasing (we can introduce for every p a 
sequence W~,p defined as previously, and the maximum principle implies that, 
for every n, the sequence (W,,p, p ~ N )  is increasing). We then set 

u(x) = lira T Up(X) < h(x), 
p ---, oo 

and by monotone convergence we get that u solves (12). [] 
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4. 3 Harmonic functions associated with solutions 

From now on, we assume that D is of  class C 5, in order to apply Theorem 
1.1. We aim to prove the converse statement o f  Proposition 4.2. The following 
identity is a special case of  a formula recalled in Sect. 2.2. I f  g is a nonnegative 
measurable function on 0D, then, for every x C D, 

g x (  (X D, g) ) ~- Ex(g(Br )) .  (16) 

Proposition 4.3 Let u be a nonnegative solution of  Au = 4u 2 in D. Assume 
that u is bounded above by a harmonic function, and let h = Pv be the smallest 
harmonic majorant o f  u. Then the measure v does not charge the sets o f  zero 
capacity. 

Proof  In contrast to Proposition 4.2, we will use a probabilistic argument to 
prove Proposition 4.3. The basic idea is to use the solution u to construct a con- 
tinuous additive functional o f  the Brownian snake. The characteristic measure 
of  this additive functional can then be identified with the law of  the h-transform 
of  Brownian motion, where h is the smallest harmonic majorant of  u. However, 
this characteristic measure cannot charge sets polar for the Brownian snake and 
by Theorem 1.1, this implies that v does not charge sets of  zero capacity. From 
now on, we work under the assumptions of  Proposition 4.3. We fix a sequence 
(Dn) as previously. 

Lemma 4.4 There exists a random variable Z defined on Co(N+, ~ ' )  such 
that, for every x E D, 

Z--- lim (XD",h)--  lim (xD",u), Nx a.e. 

Furthermore, Nx(Z) = h(x), Nx(1 - e - z )  = u(x). 

Proof  Fix x E D  and choose no so that x E D ~  if n = no. By the special 
Markov property (Corollary 2.8), for n > no 

Nx((X D"+' , h)I eD" ) :-  f xD"(dz)Nz(  {X D"+I , h) ) = (X D', h) , 

because Nz((XD,+ 1, h)) = E~(h(Br I )) = h(z), by (16). Therefore, the sequence 

({xD",h),n > no) is an Nx-martingale. Observe that this martingale is iden- 
tically zero except on the set {X D'o + 0}, which has finite Nx-measure. The 
almost everywhere convergence of  (X D", h) then follows from well-known mar- 
tingale convergence theorems. We set 

Z =  lira (xD",h).  

We now turn to the convergence o f  (X D", u). Fix x E D and no as previously. 
By the results recalled at the beginning of  Sect. 4, we have 

u(x) = Nx(1 - exp(--{xD',u))),  x E Dn. 

We can then check that ( e x p ( - ( X  Dn, u)), n > no) is an N~-martingale. In fact, 
if  (Wi)ici are the excursions o f  (Ws) outside Dn, we get from the special 
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Markov property and the exponential formula for Poisson measures that 

Nx(exp(_{xDn+I,u))INDn)=Nx(exp(_~(xD,+I(wi),u)) gDn) 

= exp(-- f x  on (dz)Nx( 1 - e x p ( -  (X D"+I, u) ))) 

= e x p ( -  (X Dn, u)). 

Observe as previously that the martingale (exp(--{xD",u)), n > no) is iden- 
tically one except on the set {XDn0 +0} ,  which has finite Nx measure. The 
martingale convergence theorems imply the almost everywhere convergence 
of  e x p ( - ( X  D', u)). Hence, the sequence /X D", u) also converges a.e. towards 
a variable Z / with values in [0, oc]. Since u < h, we have Z'  < Z so that 
Z '  < oc, a.e. 

Let us check that Z = Z'. By Eqs. (12) and (16), we have 

Nx({XD%h) - {xD",u) )= 2Nx (fXD"(dz)E~ (iu2(B,)dt) ) 

= 2Ex t dt , 

which tends to 0 as n --+ oo. Here dominated convergence is justified by the 
bound 

Ex u2(Bt)dt < h(x) < oc 

that follows from (12). Using Fatou's lemma we conclude that Nx(Z - Z') = O, 
so that Z = Z I, Nx a.e. 

By passing to the limit as n ~ oc in the formula 

u(x) = Nx( 1 - e x p ( -  (X Dn, u) )) 

we immediately get u(x)= N ~ ( 1 -  e-Z).  It remains to prove that h(x)= 
Nx(Z).  This is less easy because it is not clear that (xD~,h) converges to 
Z in LI(N~). However Fatou's lemma gives 

Nx(Z) _-< l iminf  Nx( (XDn,h) ) = h(x) , 
n ----+ o o  

by (16) again and the harmonicity o f  h. We will verify that the function 
x --+ Nx(Z) is harmonic in D. Since u(x) = Nx(1 - e z)  < Nx(Z), it follows 
that Nx(Z) is a harmonic majorant o f  u, hence Nx(Z) > h(x), which completes 
the proof. 

Let us fix x C D and let O be an open ball containing x, whose closure is 
contained in D. Denote by (WJ,j C J) the excursions of  (Ws) outside O. By 
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construction, we have 

Z = ~ Z ( W J ) ,  Nx a.e. 
j E J  

Observe that there is only a finite number of nonzero terms in the previous 
sum, namely the terms corresponding to excursions that reach 0D. Then from 
the special Markov property and (16), 

Nx(Z) = N x ( f X ~  = E~(N~,7(Z)), 

where t 1 = inf{t; Bt ~ O}. The harmonicity of the function N~(Z) follows at 
once. [] 

Lemma 4.5 Let (L~") denote the exit local time of  the process (Ws) from the 
domain Dn. Set 

s 

A~ -- f dL~ n h(~*~) . 

0 

A n > O) converges Nx a.e. uniformly on Then, the sequence of  processes ( s, s = 
IR+, for every x E D. The limiting process is denoted by (As, s > 0). For 
every nonnegative measurable function q~ on ~.Ux, 

Nx (~dAs ~o(Ws)) = h(x)Ehx (~o(B<=.c)) , (17) 

where Ph x denotes the law of  the h-transform of  B started at x and we use 
the notation B<, to denote the stopped path (Bt, O < t <_ z) viewed as an 
element o f  ~x. 

Remark. We have A~  = (xD",h}, so that the convergence of A~  follows from 
Lemma 4.4. 

Proof For every integer n, we consider the excursions of (Ws) outside Dn 
(cf. Sect. 2.3). More precisely, we are only interested in a finite number of  
these excursions, namely those that visit ODn+l. Denote by IV[, i E In these 
excursions and by (a~,bT) the corresponding time intervals. We may take In = 
{1,. . . ,  l,} and assume that the excursions are ordered, in the sense that by < b~ 

if i < j .  By the special Markov property, conditionally on the ~-field gDn, the 
point measure 

iCIn 

is under Nx a Poisson measure with intensity 

f x D " ( d y ) N y (  �9 7~ { ~ N  aD~+l #:O}), 
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where ~ denotes the range of  if/, ~ = {ff/~,s > 0}. Together with Lemma 
4.4, this allows us to define, for every n and for every i r In, 

b~ 
Z(W/~)=  lim (xDm(w[~) ,h)= lim fdLD'~h(W )i  

d S S ra ----~ oo  rn ---+ e, O an 
i 

where the last equality follows from the definition of  the excursions W n and 
of  the exit measure X Din. 

We have therefore Nx a.e., for every n and every i E In 

2 i r l l  ( A ~ n  - Aamn) = z ( m i n ) .  

Claim. We have 
/ X 

0 a . e .  
n---+oo \ i C I n  

To prove the claim, recall that the smallest harmonic majorant of  u is con- 
structed as 

h(x) = lim Y Ex(u(B~.)) 
~l ----r O 0  

(see the proof  of  Proposition 4.1). Therefore, 

lim .[ Ex(h(B~.) - u(B~.)) = O. 
n ---* o o  

On the other hand, by the special Markov property and Lemma 4.4, 

Ex(h(B~.) - u(B~.)) = N x ( f X ~  (h(y)  - u (y ) ) )  

= N x ( f X D " ( d y ) N y ( Z  - (1 - e - Z ) ) )  

thanks to the elementary inequality a - 1 + e a > c(a 2/~ 1), valid for every 
a > 0, for a certain constant c > 0. The claim follows, since the sequence 

sup(Z( W/n ) 2 ) 
i~ In  

is clearly decreasing (any excursion outside Dn+l is "contained" in an excursion 
outside Dn). 

The almost everywhere convergence of  A~ will now follow easily from the 
claim. Notice that, for m > n,A'~ does not increase on lR+\Ui(a'/ ,b' /) ,  be- 
cause of  the support property of  the exit local time. Then, for t _>_ 0, if  j 
is the smallest integer such that b~ > t ( j  = In if  there are no such integers), 
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we have 
j 1 j 

~(Abm~-Amq) < At < ~(Abm~-Am,). 
i=1 i=1 

It follows that, for every t > 0, 

l im sup A t  - l i m i n f  A~ n < sup Z(W[). 
m--+ oc~ m---+ o o  i E In  

Since we also know that A m converges to a finite limit (by Lemma 4.4), we 
conclude from the claim that A~ converges to a finite limit, denoted by At, for 
every t > 0, Nx a.e. By construction At does not increase on lR+\Ui(a'/,b'7) 
and, for every n and every i r In, 

Ab~ - Ao 7 = Z ( W T ) .  

The claim then implies that At is continuous, Nx a.e. The a.e. uniform conver- 
gence o f  A] towards At follows from Dini 's  theorem. 

It remains to check formula (17). We may assume that cp is continuous and 
0 < q) < 1. We have 

O O  OO 

d A  n fdAs(p(W~) = lim f , qo(W~), Nx a.e. 
0 n ---+ oo 0 

so that, by Fatou 's  lemma, 

Nx s = < lira inf Nx dA~ qo( , 
n ~ o o  

Nx dA~ (1 - (p < lim inf  N~ dA n ( 1 - q~ 
n . - -+  o o  

By Lemma 4.4, we have also N x ( A o o ) =  h(x)= lim N ~ ( A ~ ) ,  and we can 

conclude that 

N~ dAs ~o = lira Nx dA n s ( p  
/~ ----+ OO 

Therefore, using Proposition 3.3 of  [12] (which is the "historical" version of  
(16)),  

Nx ~(p = lim Nx n s)qo 
n ~ o ~  

= lim Ex(h(B,,)~o(B<=,,)) 
/ I - - ->OO 

= lim h(x)Eh~(~o(B<=~,)) 

This completes the proof  of  Lemma 4.5. [] 
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We can now complete the proof of Proposition 4.3. Note that 

h(x)P) = f v(dy)P(x, y)P~ , 

where pD stands for the distribution of Brownian motion started at x and 

conditioned to exit D at y. In particular, the distribution of Br under h(x)Phx 
is P(x, y)v(dy). Also observe that P(x, y) > 0 for every x E D, y E 0D under 
our assumptions. 

Let K be a compact subset of 0D of zero capacity, and, for a fixed x ~ D, let 

HK'= {W C $/~; "C(W) < OO and w('c(w)) C K}.  

By Theorem 1.1, 

W ~ H K  for everys  > 0, Nx a.e. 

We then apply (17) with f = 1HK. It follows that 

O=Nx(fodAslItx(Ws) ) =h(x)Phx(B~EK)=flx(Y)P(x,y)v(dy),  

and we conclude that v(K) - O. [] 

Theorem 1.3 follows from Propositions 4.1-4.3. 

4.4 The probabilistic representation of solutions 

As a by-product of the proof of Theorem 1.3, we will now give a probabilistic 
representation of the solutions that are bounded above by a harmonic function. 
We need to introduce a (weak) definition of an additive functional. Recall 
from [11] that, for every fixed x E IR d, the process (Ws, lPw) is symmetric with 
respect to the measure 

Ms = f dt P~ , 
o 

where Px t denotes the law of Brownian motion started at x and stopped at time 
t. As usual, we write 

IP)x = f Mx(dw)lP* 
W " 

We denote by ~ the o--field on C0(lR+,CKx) generated by (Wr,0 N r < s), 
augmented with the collection of all ]PMx-negligible sets of ffo~. 

A (continuous) additive functional of the process (Ws, lP~) in ~#x is a continu- 
ous increasing process (As) on C0(lR+,~x), such that A0 = 0, for every s > 0, 
As is Ys-measurable and for every s,S > O, 

As+s, -- As + As, o Os, 1P~x a.e. and Nx a.e., (18) 

where 0s denotes the usual shift operator. 
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Proposition 4.6 Let u be a nonnegative solution of  Au = u 2 in D, which is 
bounded above by a harmonic function, and let h be the smallest harmonic 
majorant of  u. Then, for every x C D, 

u ( x )=Nx(1  - e x p ( - A ~ ) ) ,  

where (A),s > O) is the continuous additive functional of  (W~) characterized 
up to 1P~-indistinquishability by 

s 

A) = n~o~lim ofdLD" h(Ws) for every s > O, IP~, a.e. 

Furthermore, 

"c(w)AQw) 
* h IEw(Ao~ ) = 2 f h(w(t))dt, Mx(dw) a.e. (19) 

o 

Remark. By (19) and Proposition 1.1 of [13], we have 

"c(w)AQw ) 
* h lEw(Ao~ ) = 2 f h(w(t))dt  = U(l~)(w), Mx(dw) a.e. 

o 

where # = h(x)Phx (here/:x h is interpreted as a probability measure on ~xx), and 
U(#) denotes the potential of the measure # (see [13]). In this sense, we say 
that # = h(x)Phx is the characteristic measure of the additive functional (As). 
The formula of Lemma 4.5 

dAsh = 

is then classical (see e.g. [3, Lemma 2]). 

Proof Set 
s 

A~ = fdL~" h(W,) ,  
o 

as in Lemma 4.5. By this result, the sequence of processes (A~') converges uni- 
formly, N~-a.e. Fix any e > 0. Then Mx and the law of W~ under Nx( �9 [~ > e) 
are mutually absolutely continuous. It follows that the sequence (A~) also con- 
verges uniformly, lP~tx-a.e. We may take 

Ash = lim A~, 
n--~ oo 

on the ( ,~-measurable)  set where (A~) converges uniformly on IR+, and 
otherwise Ash = 0 for every s > 0. Clearly, Ash enjoys the desired measurability 
property. Moreover property (18) follows by passing to the limit in the analo- 
gous equation satisfied by A n. The formula u(x)= N x ( 1 -  exp ( - A ~ ) )  holds 
by Lemma 4.4 (remark that Z = A~ in the notation of this lemma). 
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It remains to check the identity (19). By combining (16) and Proposition 2.1, 
one easily gets 

~(w)A~(~) 

E~(A~) = 2 f dt h(w(t)), 
o 

where z,(w) = inf{t  > 0; w(t) ~ D,}. In particular, Mx(dw)-a.e., 

~(w)A~(~) 
* h * n IE~(A~) 2 f dth(w(t)), IEw(A~) < l iminf  = 

n---+ o o  0 

On the other hand, we also know that N x ( A ~ )  = h(x) = Nx(A~) .  By an ar- 
gument already used in the proof  of  Lemma 4.5, this implies that, for any fixed 
8 > 0 ,  

Nx(A~ - A~) = lim Nx(A~ - A'~). 
n - - - c o o  

Using the Markov property at s, we get 

Nx(IEw~(A~)) 2Nx dth(W~(t)) , Nx(lEw~(Aoo)) = lim = 
n ~ o o  

* h by monotone convergence. In view of  the previous bound on IEw(A~), this 
implies 

~(W~)/~ 
* h IEw~(Aoo)=2 f dth(W~(t)), N x a . e .  

0 

and (19) follows by exploiting the fact that Mx is absolutely continuous with 
respect to the law of  W~ under Nx( �9 I a > e). [] 

The paper [14] gives a probabilistic representation for all nonnegative solutions 
of  Au = 4u 2 in the unit disk of  the plane (it is plausible that this result can be 
extended to any smooth domain in the plane). In the case when D is the unit 
disk, the measure X D has a continuous density with respect to the Lebesgue 
measure on 0D. Denote by (Z(y), y E OD) this continuous density. Recall from 
Sect. 1 the definition of  An. Then, any nonnegative solution can be represented 
in the form 

u(x) = Nx(N D N K * 0) + Nx(l(evnK=0)(1 - exp(-fv(dy) Z(y)))), 

where K is a compact subset of  0D and v is a Radon measure on OD\K. More 
precisely, the previous formula gives a one-to-one correspondence between 
solutions u and such pairs (K, v). 

In this correspondence, solutions bounded by a harmonic function exactly 
correspond to pairs (K, v) with K = 0 (and therefore v is finite, because 0D is 
compact): The integral 

fv(dy)Z(y) 

can then be easily identified with h A ~ ,  where h = Pv. In this special case, we 
recover the results of  Theorem 1.3 and Proposition 4.6 (notice that there are 
no nonempty 0-polar sets when d = 2). 
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The combina t ion  o f  the results o f  [14] and o f  the present  paper suggest that in 
higher dimensions  one could obtain a representat ion formula of  the type 

u(x)  : N x ( ~  D N K : ~ O )  + Nx(l(~DnX=0)(1 -- e x p ( - A o ~ ) ) ) ,  

where K would  be a compact  subset o f  ~?D and (As) an additive functional  o f  
(Ws) associated with a Radon measure v on ~ D \ K  not  charging c~-polar sets. 
The proof  of  such a representat ion formula remains  an open problem. 

Acknowledgements. I thank E.B. Dynkin for suggesting the problems that are treated here 
and F. Murat for a useful conversation about the analytic methods of Sect. 3. I also thank 
the referee for his very careful reading of the paper. 

Note added in proof Dynkin and Kuznetsov have recently extended the analytic results of 
the present work to more general equations of the type Lu = u ~. 
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