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1 Introduction 

We are concerned with very general classes of stochastic Navier-Stokes equa- 
tions. The generality, in comparison with the existing literature, lies in the 
assumptions on the diffusion term. Precise assumptions and references to the 
literature are given in Sects. 3 and 4; there we distinguish three classes, depend- 
ing on the diffusion operator and the space dimension. The aim of the paper 
is to prove the existence of  marfingaIe soIutions to these evoIufion equations 
over finite time interval, and the existence of stationat 7 solutions, understood 
in the martingale sense (as defined in Sect. 4). When the transition semigroup 
is well defined, the law at any given time of a stationary solution is an invari- 
ant measure; further comments on the existence of invariant measures for such 
equations are given below. 

One of the main novelties of this paper is the compactness method used 
to prove the existence results mentioned above. This method is well suited for 
stochastic Navier-Stokes equations, but it is also of interest in itself and we 
believe it is applicable to other classes of  equations. 

The existence of martingale solutions of  stochastic evolution equations, fur- 
ther called martingale solutions, by compactness methods requires, in the usual 
approaches, either non-trivial estimates on the modulus of  continuity of  the 
approximating solutions (cf. [23, 18]), or the use of  factorization of stochastic 
integrals (cf. [14, 15, 10]). In the deterministic case (cf. [17]) the compactness 
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method for nonlinear partial differential equations is somewhat easier: when 
L p bounds on the approximating solutions have been proved, the approximat- 
ing equations readily give us estimates on the derivatives, and this implies 
strong convergence of some subsequence. This strategy does not extend to the 
stochastic case since the solutions are not differentiable. We propose here a 
method based on fractional Sobolev spaces that allows us to treat stochas- 
tic equations in a way completely similar to the deterministic case. However, 
we emphasize that this method is easier than the previous approaches based 
on estimates of the modulus of  continuity, but is close to the factorization 
method, also because the latter is related to fractional derivatives in some sense 
(cf. [25]). Anyway, the present exposition in completely independent of  the 
factorization method. 

As to invariant measures, a main difficulty to obtain their existence in cer- 
tain examples is to prove that the family of  the laws at different times of a 
solution is tight. A second difficulty is that for certain equations, like Navier- 
Stokes equations in dimension greater than 2, o1" other equations with just con- 
tinuous and bounded nonlinearities, where we have some lack of uniqueness 
and continuous dependence on initial conditions, it is not clear how to define 
the transition semigroup and prove that it is Feller; thus the usual Krylov- 
Bogolyubov approach to the construction of invariant measure cannot be em- 
ployed a priori, and even the concept of  invariant measure becomes ambiguous. 
We overcome these two problems by showing that a stationary martingale so- 
lution can be constructed as the limit of stationary solutions of  approximating 
finite-dimensional problems. With this approach it is sufficient to show that the 
family of laws 

{5~(un(t)) : t > 0, n > 1} 

is bounded in probability (or that the random variables are uniformly bounded 
in some LP(~2;H)  for a suitable p). See Sects. 3 and 4 for the notations. When 
the transition semigroup is well defined, we readily have existence of invariant 
measures. Related ideas were presented in [24, 9], but our proofs are different. 

A further novelty is contained in the proof of  existence of stationary mar- 
tingale solutions when the correlated noise is of cylindrical covariance. See 
also [11]. 

2 Preliminaries 

2.1 A l emma on I to  integrals  

Let H be a separable Hilbert space (norm 1. I, inner product (., .)). Given 
p > 1, c~ E (0, 1), let W~,P(O, T ; H )  be the Sobolev space of all u E LP(O, T ; H )  
such that 

T T lu(t ) _ U(s)Ip 
f f [7-_-s[1~ p d t d s  < oc 
0 0 
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endowed with the norm 

r r r I n ( t ) -  u(s)iP 
P Ilullw=,~(o:;H> -- f lu(t)lp dt + f f Ti-~ll~-~p dtds. 

0 0 0 

Let (~2,~, {~.~t}t>o,P) be a stochastic basis (with expectation E), let K be a 
second separable Hilbert space, and let w(t) be a cylindrical Wiener process 
with values in K, defined on the stochastic basis. Denote by L2(K,H) the set 
of Hilbert-Schmidt operators from K to H. 
For any progressively measurable process f C L2(~2 • [0, T];L2(K,H)) denote 
by I ( f )  the Ito integral defined as 

t 

I ( f ) ( t )  = f f ( s )  dw(s) t E [0, T ] .  
0 

Clearly I ( f )  is a progressively measurable process in L2(~2 x [0, T];H).  

Lemma 2.1 Let p > 2, ~ < �89 be given. Then, for any progressively measur- 
able process f E LP(Q x [0, T];Lz(K,H)), we have 

I ( f )  C LP((2; W~'P(O, T ;H ) )  

and there exists a constant C(p, ~) > 0 independent o f f  such that 

T 
P E I I I ( f ) l l  w=,~(o,r; H) < C(p, ~)E f IIf(t)llP2(K,.)dt. 

0 

Proof We shall denote by C a generic positive constant independent of f ,  
but depending on p and c~. The quantity P E[ I(f)]w~,p(0 r-H) is the sum of two 

terms. The first one, gl[I(f)llP~(o,r;s+), is bounded by CgllfllPp(o, T;L2(K,H)) by 
Burkholder-Davis-Gundy inequality. As to the second term, we have 

) r r E I fL, f ( a )  dw(~)l~ 
Efr fr I I ( f ) ( t ) . . . .  . - I(f)(s)tP dtds f f i t _s l ,+=  ~ dtds 

o o I t - s l  I+~p o o 

< c f f  it_sl~+=" dtds 
0 0 

r V iq$(t) _ ~b(s)[ ~ 
<_CE f f . . . .  dtds 
- -  0 0 i t - - s [  l + ~ p  

(we have used Burkholder-Davis-Gundy inequality at the second step) where 

t 

~ ( t )  = f I If(~)l l~(K,  H f l a  - 
0 
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Let us now distinguish two cases. If p > 2, we can continue the previous 
inequalities by 

p 

< GElid,11 ~- : 2~,s w 2(0, r;~.) 

_P 

< CEliOll ~ p 
= W~,~- (0,T;~R) 

p 

d~b ]P (o,r;e) P <__ CE ~ + CEN4,11�89 
L 2 (0,T;N) 

- -  r E  S d<, + CS f IIfO  at 
0 ' 0 

T 

e e l  IIf(o-)llP2(K, md~ .  
0 

The proof is complete for p > 2. If p = 2 we continue the inequalities above 
by 

r r E f;~vtt I[f(~r)lp~2CX, H)da 
: C f f  i t_si t+2 ~ dtds  

0 0 

and by elementary application of Fubini theorem this term is bounded by 

T 

CE fl[f(G)ll~z<K,.)da . 
0 

The proof is complete. 

2.2 Compact embedding o f  certain function spaces 

The previous lemma will be used together with the following compactness 
results, which represents a variation of the compactness theorems of [17], Ch. I, 
Sect. 5, and [22], Sect. 13.3. 

Theorem 2.1 Let Bo c B c B1 be Banach spaces, Bo and B1 reflexive, with 
compact embeddin 9 o f  Bo in B. Let p E ( 1 , ~ )  and c~ E (0,1) be given. Let 
X be the space 

X = LP(O, T; Bo) N W~'P(0, T; B1 ) 

endowed with the natural norm. Then the embedding of  X in LP(O, T; B) is 
compact. 
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Proof Step 1. First assume B = B1. Similarly to [22], let us define the oper- 
ators Ja in LP(O,T;Bi), i = 0,1, a > 0, by setting 

1 s+a l ] g(t +s)d t ,  Jag(s) = "~ sJa g( t )d t  = ~ a  _ a  

where we set g(t) = 0 if t is not in [0, T]. Clearly, for given a, Ja is a bounded 
linear operator from LP(O,T;Bi) to C([O,T];Bi), i =  0,1 (see the details in 
[22]). 

Let ~ C X be a bounded set of  functions. We have to prove that ~ is 
relatively compact in LP(O, T; B1 ). 
Let us prove that Jag -+ g in LP(O, T; B1 ), as a --+ 0, uniformly with respect to 
g E ~q. Indeed, 

]Jag(S) - g(s)[~l < ~ - a  

1 
1 

(2a)~ 

that implies 
T 

f [Jag(s) - g(s)[PldS <= 1 
0 

Since It] < a in the integral, we have 

T 

f Igag(s) -- g(s)l~lds 
0 

Ig(t + s) - g(s)lBxdt 

1 

__< 

Since N is bounded in W~'P(O, 
gence result. 

T a 

f f tg(t + s) - g(s)l;i 
0 - - a  

dt ds . 

~a~pf ] 1 
o a ~ ]g(t + s) - g(s)]Pldtds 

1 ~  T ~ 1 
< ~a P f J ~ [ g ( t  + s ) -  g(s)[Pldtds 

0 - - a  

1 ~ r r  1 
=< ~a  p of of ir _ ~ll+~plg(r)- g(s)lPldrds 

aUP ,7 P 
2 w W c ~ , p ( O , T ; B 1 )  �9 

T; B1 ), we obtain the claimed uniform conver- 

In [22] it is easily proved that, given a, the set JaN is relatively compact in 
C([0, T];B1). Along with the previous uniform convergence result, this implies 
that N is relatively compact in LP(O, T; B1 ). 

Step 2. Let us remove the assumption B1 = B. In [17] the following inter- 
polation result is proved: for each a > 0 there exists a constant C~ > 0 such 
that 

IxtB <= alxlB0 + C~[XIB1 

for all x C Bo. 
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If  u, is a weakly convergent sequence in X, converging to some u we have 
to prove that un converges strongly to u in LP(O, T;B). The case u = 0 is 
sufficient. But since 

[un [LP(0, T; B) ~ e lUn [LP(O,T; Bo) § C~,[un [LP(0, T; BI ) 

it is sufficient to prove that un converges strongly to 0 in LP(0, T;B1). This 
has been proved in step 1, completing the proof of  the theorem. 

Theorem 2.2 I f  B1 C B are two Banach spaces with compact embedding, and 
the real numbers ~ c (0, 1), p > 1 satisfy 

~ p > l  

then the space W~'P(O,T;B1) is compactly embedded into C([O,T];/~). Simi- 
larly, i f  the Banach spaces Ba . . . . .  B, are compactly embedded into B and the 
real numbers 

~1 . . . . .  ~, ,E(O, 1), p l , . . . , p ,  > 1 

satisfy 

then the space 

o~ip i > 1, Vi = 1, . . . ,n  

mcq'Pl (0, T;B1) + . . .  + WT"'P"(O, T;Bn) 

is compactly embedded into C([O, T];/~). 

Proof  The space W~'P(0, T; B~ ) is continuously embedded into C/([0, T]; B1 ) 
for all 7 E (0, c~p - 1). Thus, if a set f# is bounded in W~'P(0, T; B1 ), it is 
bounded in C7([0, T];B1). It follows that the functions in f# are equiuniformly 
continuous in C([0, T];B1) and then in C([0, T];/}); and for each s E [0, T] the 
set 

{ f ( s )  : f E f#} 

is bounded in B1 and thus relatively compact in/~. We can apply Ascoli-ArzelA 
theorem to conclude that f# is relatively compact in C([0, T];B).  

The proof of  the second part is trivial. 

3 Stochastic Navier-Stokes equations 

3.1 Definitions 

Let D be a bounded open domain of  IR d with regular boundary ~D. We con- 
sider the d-dimensional stochastic Navie~Stokes equation in D 

~u( t,x ) 
~t Au(t,x) + (u(t,x) �9 V)u( t ,x )  = - V p ( t , x )  + f ( t , x )  + G(u, ~)(t,x) 

(1) 
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t E [0, T], x E D, with the incompressibility condition 

divu( t , x )  = O, t c [O,T], x C D  (2) 

the boundary condition 

u ( t , x ) = O ,  t C [ O , T ] ,  xE~?D (3) 

and the initial condition 

u(O,x) = uo(x), x E D .  (4) 

Here {(t,x) is a Gaussian random field, white noise in time, subject to the 
restrictions imposed below, and G is an operator acting on noise and solution, 
that we shall specify in different forms in the three cases at the end of this 
section. 

We consider the usual abstract form of equations (1)-(4) .  Let ~U be the 
space of infinitely differentiable d-dimensional vector fields u(x)  on D with 
compact support strictly contained in D, satisfying divu(x) = 0. We denote by 
V~ the closure of ~ in [H~(D)] d, for ct > 0, and we set in particular 

H = Vo, V = V1. 

We denote by ]. ] and (., .) the norm and inner product in H. Identifying H 
with its dual space H' ,  and identifying H '  with a subspace of V~ (the dual space 
of V~) we have V~ c H C V~, and we can denote the dual pairing between V~ 
and V~ by (., .) when no confusion may arise. 

Moreover, we set D ( A ) =  [HZ(D)]dA V, and define the linear operator 
A : D(A)  C H ~ H as Au = - P A u ,  where P is the projection from [L2(D)] a 
to H. Since V coincides with D(A1/2), we can endow V with the norm 
]]u H = ]A1/Zu]. The operator A is positive selfadjoint with compact resolvent; 
we denote by 0 < 21 =< 22 =< ..- the eigenvalues of A, and by el,e2,. . ,  a 
corresponding complete orthonormal system in H of eigenvectors of A. We 
remark that Ilull 2 > 2,]xl 2. 

We define the bilinear operator B(u ,v )  : V x V --+ ( V  A [La(D)]a) ' (cf. [17], 
Lemma 6.1, Ch. I) as 

(B(u, v ) , z )  = f z ( x )  �9 (u(x)  �9 V ) v ( x ) d x  
D 

for all z E V A [Ld(D)] d (it can be extended by continuity to other combinations 
of functions spaces). By the incompressibility condition we have 

(B(u, v), v) = o, (g(u, v) ,z)  = - ( B ( u , z ) ,  ~) 

By [24], B can be extended to a continuous operator 

B : H  • H --~ D(A -~)  

for certain e > 1. 



374 F. Flandoli, D. Gatarek 

In place of Eqs. (1) - (4)  we shall consider the abstract stochastic evolution 
equation 

du(t) + Au(t)dt + B(u(t), u(t))dt = f ( t )d t  + G(u(t))dw(t), t E [0, r ]  
(5) 

u ( 0 )  = u 0 .  

Here we assume that 

(i) w(t) is a cylindrical Wiener process in a separable Hilbert space K defined 
on the stochastic basis (g2,@, {~}t__>0,P) (expectation denoted by E) 
(ii) for some Hilbert space Y, with H C Y, G is a mapping from V to L2(K, Y) 
(iii) u0 E H and f C L2(0, T; V'). 

Assumption ii) has only the role of a general framework and it is not sufficient 
to study Eq. (5). Additional assumptions on G will be imposed in the three 
different cases developed below. 

Remark. It is not difficult to generalize the previous equation including a non- 
linear operator F(u) subject to usual hypotheses that lead to the existence of 
weak solutions, and a time dependent operator A(t) in place of A subject to 
classical variational hypotheses. These extension are not considered here for 
sake of simplicity. 

Definition 3.1 We say that there exists a martingale solution of the equation 
(5) if there exists a stochastic basis (~2, ,~-, {~}t~[0, rl, P), a cylindrical Wiener 
process w on the space K and a progressively measurable process u : [0, T] x 
f2 ~ H, with P-a.e. paths 

u(., co) E C([0, T]; D(A-~)) A L~ T; H) 71L2(0, T; V) 

such that P-a.s., the identity 

t t 

(u(t), v) + f (Au(s), v)ds + f (B(u(s), u(s)), v)ds 
0 0 

= (uo, v) + f ( f ( s ) , v )ds+ G(u(s))dw(s),v 
0 

(6) 

holds true for all t E [0, T] and all v C D(A~). 

Recall that a function 

g E L~(O, T;H) • C([0, T];D(A-~)) 

belongs to H for all t E [0, T], and is weakly continuous in H (see [21], 
p. 263). Thus, for a martingale solution in the previous sense we also have 

u(.,co) E C([O,T];Hw) P-a.s. 

where C([0, T]; Hw) denotes the space of H-valued weakly continuous functions 
on [0, T]. 
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3.2 Case t: regular diffusion coefficient 

The results of  this section are essentially covered by [7]. In addition to the 
hypotheses of  the previous section, assume that 

(G.1) G : H -+ L2(K,H) is continuous and 

for some positive real numbers 20 and p. 

Theorem 3.1 Under assumption (G.1) there exists a martingale solution of 
the equation (5). 

d be fixed, so that Proof Step 1. Let ~ > 

D(A~) C [H~(D)] d C [C(D)] a . 

We have 
V~ c D ( A ~ ) c  V c H c  V 'CD(A ~ ) C  V_~. 

Moreover, B is locally Lipschitz from V to D(A ~ ). Let Pn be the operator 
from D(A-~ ) to D(A ~ ) defined as 

B 

Pnx = ~(x ,  ei)ei x CD(A-~) 
i--1 

(we denote by <-) also the dual pairing between D(A~) and D(A-~)). Its re- 
striction to H is the orthogonal projection onto the space spanned by e l , . . . , en .  
Moreover, it satisfies. 

<Pnx, y) = <x,P,y) 

for all x, y E D(A ~ ). 

Let Bn(u, u) be the Lipschitz operator in PnH defined as 

Bn(u,u) -- Xn(u)B(u,u) u C P~H 

where fn : H ~ ]R is defined as Z~(u) = O~(]ul), with On : IR ~ [0, 1] o f  class 
C ~ , such that fn(u) = 1 if  [u[ =< n, Xn(u) = 0 if [u[ > n + 1. 
Consider the classical Faedo-Galerkin approximation scheme defined by the 
processes un(t) C PnH, solutions of  

{dun + Au~dt + PnBn(u~,u~)dt = P~f(t)dt + P~G(u~)dw(t), t E [0, T] (7) un(O) = Pnuo. 

Since all the coefficients are continuous and with linear growth in P~H, this 
equation has a martingale solution un E L2(~2; C([0, T];PnH)). 
One can now prove that there exist two positive constants Cl (p) ,  C2, for each 
p > 2, such that 

E( sup lug(s)[ p) < Cl(p) (8) 
O<=s<=T 

T 

E f [[u~(s)[]2ds < C2 (9) 
0 
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for all n. The proof  is rather classical (although in the present generality we 
cannot refer to other works) and thus it will be postponed to Appendix 1; we 
do this also because in the appendix the proof  of  (8) and (9) will be given as 
a byproduct o f  more general estimates needed later in Sects. 3.3 and 4.1. 

Step 2. Decompose now u, as 

t t t 

u~(t) = P, uo - f Au~(s)ds - f P,B~,(u,(s),u,(s))ds + f P~f(s)ds 
0 0 0 

t 

+ f t'~, ~(~,(,)) dw(~) 
0 

= J,] +J2(t) § § § (10) 

We have 
EIJ2 1 2 ~ C3 

2 2  < C 4 Ell J;, I[wi,2(O,T;V Q = 

by (9), 
4 2  < C 5 

for suitable positive constants C3, C4, C5, where, for a generic Banach space B 
and a real number p > 1, WI'p(0, T; B) denotes the space of  all u C LP(O, T; B) 
such that g~ 37 ~ LP( O,T;B); clearly WI,P(O, T;B) c W~'P(O,T;B) for all ~ E 
(0,1)  and p > 1. 
As to J~, from Lemma 2.1, the uniform assumption (G1) on G, and (8), we 
have 

El[j,52 ]lw~,2(0, r;u) < C6(cr 

for all 0r ~ (0,�89 and for some constant C6(cr > 0. Finally, since D(A~)C 
[L~(D)]  a, and then 

I{B(u,u),v)[ ~ Clul {lull IA~vl, 
for some constant C > 0, as to ,/3 we have 

whence 

uC V, vCD(A~) (11) 

IIP'B~(u~'u~)[12L2(O,T;D(A ~)) 
T 

C 7 sup lu~(t)12fllu~(x)ll2ds 
O < t < T  0 

T 

IIJ~ll 2 ~ _< c 2 sup lun(t)l 2f Ilun(s)l[2ds 
WI'2(O'T;D(A 2 )) O<t<=T 0 

for some constants C7, Cs > 0. This implies, by (8) and (9), 

<= C8 c~C7~21(2)C2. EIIJ~]IW~,2(O,T;D(A ~)) 

Collecting all the previous inequalities we have 

I1~/ _-< c9(~) E n]]w=,2(0, r;D(A_~) ) 
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for all c~ E (0, 1), and for some constant C9(~) > 0. Recalling (9), this implies 
that the laws 6('(u~) are bounded in probability in 

L 2 ( 0 ,  T ;  V )  (-'1 W e ' 2 ( 0 ,  T;D(A-~ ) )  

and thus that the family S ( u n )  is tight in L2(0, T;H), by Theorem 2.1. 
Arguing similarly on the term J~, on the basis of  the estimate (8), we apply 

Theorem 2.2 and have that the family s is tight in C([0, T];D(A-P/2)), 
d (we can choose c~ at the beginning such that c~ < fi). Thus for all given fi > 

we can find a subsequence, still denoted later by un, such that 5~(un) converges 
weakly in L2(0, T;H) A C([0, T];D(A-~/2)). 

Step 3. Fix fi > all2. By Skorohod embedding theorem (cf. [16] p. 9), there ex- 
ists a stochastic basis (/21, ~-1, {~7~ }tc[0,r], p l )  and, on this basis, L2(0, T; H )  M 
C([O,T];D(A-~/2))-valued random variables ul,un,1 n => 1, such that u nl has 
the same law of  u, on L2(O,T;H) f~C([O,T];D(A-~/2)), and u~--+u 1 in 
L2(0, T;H) VI C([0, T]; D(A-13/2) ), P-a.s. Of  course, for each n, 

2 '(u~)(C([0, T];P~H)) = 1 

and by (8) and (9) we have 

E (  sup [u~(s)l p) < CI(p)  
O<=s <=T 

T 

E f Ilu (s)ll2ds C 2 
0 

for all n, and all p > 2. Hence, we also have 

ul(. ,co) C L2(0, T; V) YlL~176 P-a.s. (12) 

and u~ --+ u 1 weakly in L2(C2 x [0, T]; V) (the identification of  the limit as u 1 
is easy, and also the fact that the whole sequence converges). 

For each n > 1, the process M,~(t) with trajectories in C([0, T ] ; H )  defined as 

t t t 
1 1 M2(t ) = ul(t) - P.u~(O) + f Au~(s)ds + f P.B.(u.(s),u.(s))ds - f P. f (s)ds  

0 0 0 

is a square integrable martingale with respect to the filtration 

with quadratic variation 
t 

((M2))t = f ds. (13) 
0 

Indeed (see [10], Sect. 8.4), for all s < t E [0, T], all bounded continuous func- 
1 and un tions on L2(O,s;H) or C([O,s];D(A-P/2)), and all v,z C ~ ,  since u n 

have the same law, we have 

E ( ( M z ~ ( t )  1 1 - M,, (s ) ,  v ) (o(u , l [o , , ] )  ) = 0 ( 1 4 )  
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and 

E((  (M~ (t), ,)(M.' (t), z) - (M: (s), v)(M~ (~), z) 

t 

- f(G(u~(~))*Pnv, G(u~(a))*Pnz)da)~(u~l[O,s]) ) = O. (15) 
s 

We can take the limit in (14) and (15). All terms in (14) and (15) are uni- 
formly integrable in (~ (see (8), (G1), (13)), and converge P-a.s. (in appendix 
2 we shall prove, in particular, that 

;j'P,~Bn(u~(s),u~(s))ds, v )~{ iB(u l ( s ) ,u l ( s ) )ds ,  v ) (16) 
0 

for all t and v, P-a.s.). Then we obtain that for all s < t E [0, T], all bounded 
continuous functions on LZ(O,s;H) or C([O,s];D(A-P/2)), and all v,z E ~ ,  we 
have 

E((MI(t) - Ml(s) ,  v)O(u 11[o,~,])) = 0 (17) 

and 

E(((Ml(t),v)(Ml(t),z) (MI(s),v)(MI(s),z) 

t 

- f(G(u'(~))*v, c(ul(~))*z)d~)r 11E0,s~)) = o 
s 

where Ml(t) is defined as 

(18) 

t t t 

Ml(t) = ul(t) ul(O) + f Aul(s)ds + f B(ul(s);ul(s))ds - f f ( s )ds .  
0 0 0 

(19) 

This identity must be interpreted, P-a.s., as an identity in C([0, s];D(A -~/2)); 
note in particular that, by (11) and (12), B(u 1, u I) ~ Ll(0, T;O(A-fl/2)). 
From (17) and (18), with v,z E D(A~/2), we see that A ~/2Ml(t) is a square 
integrable martingale in H with respect to the filtration 

(~r = G{ul(s) ,  s =< t} 

with quadratic variation 

t 

((A-~/2M1))t = f A-~/ZG(ul(s))G(ui(s))*A-/~/Zds. (20) 
o 

The conclusion of  the proof, by a representation theorem for martingales, is 
the same as in [10]. 

3.3 Case 2." coercive diffusion coefficient 

The result of  this section extends results of  [3, 4, 6, 8], which were limited to 
d = 2(d ~ 4 in [6]) and operators G satisfying a skew-symmetry condition of  
the form (G(u)k,u) = 0 for all u C V, k E K. 
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Assume 

(62) G : V ---+ L2(K,H) is continuous, 

2(Au, u) -]G(u)122(K,/_/) > ~llull 2 - ,tolul 2 - p 

for all u E V, and for some real numbers t/E (0, 2], 2o and p; for each v C ~U 
the mapping u ~-+ G(u)*v extends by continuity to a continuous mapping from 
H to K, and there exists a constant C(v) > 0 such that 

I G ( u ) * 4  =< C(~)(lul 2 + 1), u E H .  

For r /=  2 we find the estimate of assumption (G1) (but there we assumed 
strong continuity of G on H).  

Remark. The typical application is to linear operators that, in the concrete 
formalism of Eq. (1), have the form 

N 
a(u, r = 2 ((hi(x) �9 V ) . ( t , x )  + e'(x)u(t,x)) dpi(t) 

i=1 dt 

where fll , . . . , fiN are independent standard Brownian motions, b I . . . . .  b N are 
Coo vector fields in D, c 1 . . . .  , c x are C ~ scalar fields in D, and 

2 a ~ j -  ~ b}(x)b~(x) ~,~; >= <~12 
j,k=l i = l  

for all ( C IR d. In abstract notations, K = ] R  N and 

N 
G(u)k = P ~  ((b i �9 V ) u + c i u ) k  i, k = ( k  1 . . . . .  k N) EK, u E V .  

i=1 

The definition of martingale solution is the same as in Sect. 3.1. We have: 

Theorem 3.2 Under assumption (G.2), there exists a martingale solution to 
problem (5). 

We do not develop the proof in all details, since it is similar to the proof of 
Theorem 3.1. Only the way to prove the basic estimates (8) and (9) is slightly 
different, but the proof given in appendix 1 is in fact given under the more 
general bound of assumption (G2). The lengthy assumption (G2) is imposed 
only to take the limit in the quadratic variation of the martingale Ml( t )  defined 
in step 3 of the proof of Theorem 3.1. 

3.4 Case 3." cylindrical noise 

In contrast to the previous sections, here we develop an example where the 
covariance of the coloured noise is not nuclear (but even not an isomorphism, 
since the space dimension is 2). The result of  this section extends a result of  
[12], relative to the case of  additive noise. In addition to the hypotheses of  
Sect. 3.1, here we assume that 
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(D3) d = 2 ,  

(G3) there exists fl0 E (0, �88 such that G is a bounded linear operator from 

H to D(A-�88176 A-�88 L2(K,H) for each u E H, and the mapping 

u ~-+ A-�88 from H to L2(K,H) is bounded and continuous. 
If fi0 ~ ~, this problem would be covered by the assumptions of Sect. 3.2. 

Remark 1. If for all u E H the operator A�88176 is a bounded linear 

operator in H for some ~ > 0, and the mapping u H A�88 is bounded 
and continuous from H to L(K,H), then assumption (G3) is satisfied (since 
we are in space dimension 2). Indeed, from the Hilbert-Schmidt embedding 

of the Sovolev space HI+2~(D) into C(D), e > 0, it follows that A-�89 -~ is an 
Hilbert-Schmidt operator in H. Therefore, 

~+e.--+~ A �88176189 ' ' eet 4 OG(u) 

= A-�89188 

is Hilbert-Schmidt when A �88176 is bounded. 

Remark 2. An example of operator G satisfying condition (G3) above is the 
operator defined as 

(x) 

j=l 

with the coefficients aj(u) equicontinuous on H, satisfying the condition 

2 
k )~)_0")2/~ < OO (21) 
j=l 

for some fl0 > 0, where 
:=  sup 

ucH 

The definition of martingale solution given in Sect. 3.1 must be modified here 
since in general we cannot expect that u takes values in V (compare with 
[12]). We say that a martingale solution of Eq. (5) consists of a stochastic 
basis (~2, J~, {~t}t~[o,T],P), a cylindrical Wiener process w(t) on the space K, 
and a progressively measurable process u : [0, T] • Q ---+ H, with P-a.e. paths 

2 1 
u(., ~o) C C([O, T];D(A-~)) N L~ T;H) N L (0, T; D(A~ )) 

such that P-a.s. the identity 

t t 
(u(t), 4)) + f(u(s),A(o) ds = {uo, q~) + f(B(u(s), 0), u(s)) ds 

0 0 

' ( i  ) + f ( f ( s ) ,  4))ds + G(u(s))dw(s), 0 
0 

(22) 
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holds true for all t C [0, T] and all ~b E ~U. Note that for regular vector fields 
u and ~b we have 

(B(u, u), ~) = -<B(u, ~p), u) 

and the latter expression extends by continuity to u E D(A j ) and q5 E V, since 

D(A�88 C [L4(D)] 2 by Sobolev embedding theorem in two dimensions. This 

motivates the definition. Note that v C ~/# implies v C D(Ai-~~ so that the 
last term in (22) is well defined since 

' T  

f G(u(t))dw(t)  
0 

takes values in D(A-  �88 +~o ). 

Remark. We make an observation on the method of  proof  of  the following 
theorem. We cannot prove uniform estimates on the approximating solutions 
un by Ito formula as in the previous cases, since the noise is not nuclear 
covariance. Then we proceed initially as in the additive noise case (cf. [12]) 
and work with the system 

dz(t) 4- (A 4- e)z(t)dt  = G(v(t) 4- z( t))dw(t) ,  z(O) = 0 
(23) 

dr(t) 4- Av(t)dt  4- B(v + z, v 4- z )d t  = f ( t ) d t  4- ~z(t)dt, v(O) = uo 

with a given ~ > 0. For the purpose of  this section it is sufficient to take ~ = 0, 
but we develop the estimates in general so that the arguments of  Sect. 4.2 
will be more transparent, without repeating the same computations. Of  course, 
the second equation in (23) can be interpreted as a deterministic differential 
equation depending on the random process z. 

Theorem 3.3 Under the assumptions (D.3) - (G.3) ,  there exists a martingale 
solution to problem (5). 

Proof Let B,  be defined as in Sect. 3.2. Equation (7), considered under the 
assumptions of  the present theorem, has a progressively measurable global so- 
lution u~ E L2(~; C([O,T];P,H)). Let z, be the solution of  the equation 

dz,, + (A 4- ~)z, dt = P,G(u,)dw(t) ,  z,(O) = 0 

with a given ~ > 0. Let v, = u, - z , .  The pair (z,, v ,)  is a progressively mea- 
surable solution, with 

(Zn, Vn) E L2(~; C([0, T];PnH)) • L2(Q; C1([0, T];PnH)),  

of  the system 

dz, 4- (A + ot)z, dt = P,G(v,  + z , )dw(t) ,  z,(O) = 0 
dr, + Av,dt  + P,B,(v~ + z,, v, + zn) dt (24) 
= P, f d t  4- ~z, dt, v,(O) = P, uo. 

We can rewrite the equation for z, in the mild form 

t 

zn(t)  = e-t(A+~)Pnzo -}- f e-(t-s)(A+~)PnG(un(s) ) d w ( s )  . 
o 
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Therefore, for all p > 1, by Burkholder-Davis-Gundy inequality 

~o 
EIA~-Tz~( t ) I  p 

[A�89188176 ) ~) 

e-(t~)~ ) P )  
( t_  s)l_~ods < C2(p,~) (25) 

for all n => 1 and t C [0, T] (cf. [19], Theorem 6.13, Ch. II). 
Moreover, denoting by C a generic positive constant independent of t7, since 

-{B.(v. + z.,zo),v~} = +(B~(v. + z.,v~),z.) 
1 1 1 2 

<= cllv, ll(lA~v,P IA-4zn 1@ IA~z.I ) 

<= Cllvnll~lv,1�89188 l + cIIv.lJ IA�88 2 

__< 111v,112 + Ctv.IXlA�88 4 + ClA �88 zn[ 4 4 
from 

we have 

+ IIv.II 2 + Ifl~, + ~llv.ll 2 + cc~21z.I 2 

a dj~ol ~ 

< CIv,,]RlASznl + CIA~z,, + Ifl~,, + 

whence, by Gronwall lemma, 

Iv,,(t)l 2 < ef~ClA�88 lp, uol 2 

t ot 1 4 
+ feJ~ClAZz'(~)l (CIA�88 4 + Ifl  2, + C=21z,12)ds 

0 

e f O  ClA4zn(~r)14 [U0I 2 -~- f(ClA~z~l 4 + Jfl~, + c~21z,,12)ds 
0 

and also 

T T 
_1 4 f[jv,(s)ll2ds <= C f(llv~12lA�88 4 + IA4z, l + Ifl 2, + Cc~2lz~12)ds. 

0 0 

(26) 
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The bound (25) implies that for all e > 0 there exists R1 > 0 such that 

(i, ) P A�88 > R1 < s Vn > l .  (27) 

Therefore we deduce that there exist Rz,R3 > 0 such that 

P( sup ]vn(t)] 2 > R2) < 8 Vn > 1 (28) 
tc[0, T] 

P(illv~(s)[[2ds > R 3 ) < e  V n >  1. (29) 

Finally, from the identity 
t t 

z,(t) = - f Az,(s) ds + f P,G(v, + z,)dw(s), 
o o 

the boundedness of G, and (25) with p = 4, we deduce 

EIIz, 4 
II c(p) 

W//, 4(0, T; D ( A -  4 )) 

for all fl C (0, �89 Moreover, from the equation for v, and the previous inequal- 
ities (27)-(29)  we deduce that there exists R4 > 0 such that 

P dt ds > R4 < s Vn > 1. (30) 

By the compactness Theorems 2.1 and 2.2, the family of the laws of (z,, v,) 
in 

4 1 L (0, T;D(A~ )) n C([0, T];D(A -1 )) • L2(0, T;H) • C([0, T];D(A -1 )) 

is tight (in fact, we have continuous functions with values in more regular 
spaces, but this is unessential). It follows that u, is tight in 

L2(0, T; H) N C([0, T]; D(A-1) ) . 

The rest of the proof is similar to step 3 of the proof of Theorem 3.1, and 
can be developed either on the pair (z~, v~), yielding a martingale solution of 
system (23) (which in turns gives us a martingale solution of (5)) or directly 
on u,. We make some remarks on the latter approach. 

1 Processes u, are given by Skorohod embedding theorem, and the processes 
M~(t) are introduced on H by setting 

t t t 

M2(t ) = u~(t) - u~(O) + f Au~(s)ds + f P, B~(uln, Uln)ds - f P, f ( s )ds .  
o o o 

One proves that MJ(t) is a martingale with respect to the filtration 

= <= t }  
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with quadratic variation 

t 

((M2)), f a 1,  = P, (u~)G(u,) P, ds.  
0 

To take the limit in the equations corresponding to (14) and (15), no estimates 
1 of  uniform integrability on u n are necessary, since G is bounded. In the limit 

we have 

t t t 

M 1 (t) = u I (t) I U 1 (0) 47 f Au 1 (s) ds + f B(u 1, u I ) ds - f f ( s )  ds 
0 0 0 

identity in C([O,T];D(A-1)) (for instance), and A - I M I ( t )  is an H-valued  
continuous martingales with quadratic variation given by 

t 

((A-1M1}) t = f A  1G(ul)G(ul)*A- 'ds .  
0 

The conclusion is classical. 

4 Stationary martingale solutions 

In this section we prove that the equations considered in the previous cases 
have a martingale solution that is a stationary process in H.  In the eases 1 
and 2, we say that a stationary martingale solution over [0, oo) consists o f  a 
stochastic basis (~2,Y,{~t}t__>0,P), a cylindrical Wiener process w(t) in the 
space K, and a progressively measurable process u : [ 0 ,  o c ) x  (2--+ H ,  with 
P-a.e. paths 

u(., co) G C([0, T];D(A-~)) N Lee(O, T ;H)  n L2(0, T; V) 

for all T > 0 (thus also u(.,co) C C([O,T];Hw)), u is a stationary process in 
H ,  such that P-a.s. the identity 

t t 

(u(t), v) + f (Au(s), v)ds + f (B(u(s), u(s)), v)ds 
T 7; 

= (u(r),v) + f ( f ( s ) , v ) d s  + a(u(s))dw(s),v . (31) 
z 

holds true for all t > z -> 0 and all v E ~ .  Of  course it is equivalent to take 
just r = 0. 

The definition in the case 3 is similar, taking into account the differences 
between the two cases over finite time horizon. 
To analyze stationary solutions we shall always assume that f is constant: 

f c  V ' .  

4.1 Cases 1 and 2 

Consider first case 1. 
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Theorem 4.1 In addition to the hypothesis (G.1), assume that 

221 > 20 

where 21 is the first eigenvaIue of  A. Then there exists a stationary martingale 
solution. 

Proof Consider the approximation scheme defined in Sect. 3.2, with u0 = 0. 
Let Gm be Lipschitz continuous function such that Gm ~ P,G uniformly on 
bounded sets in P~H. Let u m be a solution of the following equation 

du~ + (Aum + PnB,(u m, u m) - P , f )  dt = Gm(um)dw(t), 

u~(O) = o .  

By (35) with ~/= 2 (since we are under the assumption (G1)), and the in- 
equality I]xt] 2 > 21]x] 2, x E V, we have 

d m 
~tE([un ]P) q- 21p(1 -- e)E(luml p) 

) - 1)20 + e l / I  2, E(lug'lP)+C(e,p,p)(lf[ 2, + 1). 

Thus, if 221 > 20, there exists a > 0 and p > 2 such that 

1 
21p(1 - e) > ~p(p  - 1)20 + al/[ 2, 

and therefore, by Gronwall lemma, we have 

E(lum(t)l p) < C, Vt > 0,n > 1 (32) 

for some constant C > 0. This implies that the process urn(t) is bounded in 
probability, and thus, by the Krylov-Bogoliubov method there exists an invari- 
ant measure #m for Eq. (7). Since the family ~q'(u m) is tight on C([0, T];P,H), 
we can tend with m to infinity deriving that there exists a stationary solution un 
of Eq. (7). We can construct a stochastic basis ( f2 ' ,Y'{~- '} t>0,P ' )  and, on this 
basis, a cylindrical Wiener process w'(t) with values in K, and ~-measurable  
Phil-valued random variables Uo, ~' with laws #n, satisfying 

/ / p = ~_ E(lu0,~] ) < C, Vn > 1 

(E' is the expectation in the new stochastic basis). The corresponding solutions 
u'n(t ) of Eq. (7) are stationary processes in P~H. Endow L12oc(0, cx~;H) by the 
distance 

d2(u, v) = k ~ ( ] u  - VlL2(0,<H)A 1) 
k = l  

and, similarly, C([0, ~];D(A-~ )) by the distance 

oo 1 

doo(u,v) = ~ ~ - ( l u -  v I fl A 1) 
k = l  C([O,k];D(A g )) 
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(fl > d/2 as in the proof of theorem 3.1). We can repeat the bounds of the 
proof of Theorem 3.1: note that, on one side, there exists ~ < �89 such that 
ctp > 2 (to apply Theorem 2.2); on the other side, the estimates (8) and (9) 
depend only on E'(]u~, n]P) (see Appendix 1 ), which are equibounded. Then we 
obtain that the laws of u~, are tight in 

L~oc(0 , oc; H)  n C({0, r D(A-13/2)). 

To this end, note that the convergence with respect to d2 + doo is equivalent 
to the convergence on every finite time interval; then, if a set 

C L~oc(O, oo;H ) N C([O, oo];D(A-~)) 

has the property that for all k the set 

~ = {ulE0,,j : u �9 ~ }  

is compact, then ~ is compact in 

L2oc(0, cx~;H) N C([0, c~];D(A ~ )).  

1 Let u~, u 1 be given by Skorohod embedding theorem, as in that proof. Since u n 
is stationary in H, u 1 is also stationary in H. Indeed, by the a.s. convergence 
in C([O, oo];D(A-P/2)), u 1 is stationary in D(A-1~/2); but, for all t, ul(t) are 
H-valued random variables; this fact readily implies that u l is stationary in H. 

The process u I is a martingale solution, by the same proof as in the previous 
section. Note that in the definition of M~(t) and MS(t) we have only to replace 
Pnuo and u0 by 1 un(0) and uS(0) respectively, that converge one to the other in 
D(A-~/2). The theorem is proved. 

Uniqueness results for solutions of the stochastic Navie-Stokes equation 
considered here have been proved under certain assumptions (for non-trivial 
results for [20], [5]); in such cases it seems possible to define the transition 
semigroup and obtain, as a byproduct of our results of existence of stationary 
martingale solutions, the existence of invariant measures in the classical sense. 

Finally, consider case 2 of the previous section. 

Theorem 4.2 In addition to the hypothesis (G2), assume that 

q21 > 20. 

Then there exists a stationary martingale solution. 

The proof is entirely similar to the previous case, and will be omitted. 

4.2 Case 3 

In the proof of Theorem 4.1, we have seen that the main point is the uni- 
form estimate (32). Since in this section we deal with noise that does not 
have nuclear covariance, we cannot apply successfully the Ito formula, and the 
proof of an estimate of the form (32) is more complicated. The proof that 
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we present here has also been applied to Burgers equation in [11]. Restricted 
to additive noise, it simplifies the argument of  [12], that moreover does not 
extend, apparently, to the coloured noise case. 

Theorem 4.3 Under assumptions ( D 3 ) - ( G 3 ) ,  there exists a stationary mar- 
tingale solution. 

Proof Consider Eq. (7), as in the proof  of  Theorem 2.3, and choose u0 = 0. It 
is straightforward to see, as in the previous two cases, that the family of  laws 
S(un( t ) ) ,  t > O, is tight in H ,  for all given n > 1. By Krylov-Bogolyubov 
method, there exists an invariant measure #n for Eq. (7). We shall prove be- 
low that the family /~ is bounded in probability in H.  Then, considering the 

/ stationary solutions u~ as in Theorem 4.1, the bounds of  the proof  of  Theorem 
' is tight in 3.3 (with a = 0 fo r  instance) show that u~ 

L~o~(O, oc;H ) A C([O,c~];D(A i ) )  

and the conclusion of  the proof  is the same as in Theorem 4.1. 
Hence we have to prove that /& is bounded in probability in H.  It is sufficient 
to prove that the family 

{ 2 e ( u . ( t ) ) .  t __> 0, n => 1} 

is bounded in probability in H.  Fix e > 0. Let c~ = c~(e) be given below, and 
let (zn, vn) be the solution of  system (24). Note that z~ and Vn depend on c~, 
while ~ does not, and u~ = vn + z~ for each ~. 
Note that estimate (25) holds true with the constant C2(p, ~) uniform in t > 0 
a n d n  > 1, and 

C2(p, ~) ~ 0 (33) 

as ~ ~ oc. Therefore, it is sufficient to prove that there exists M > 0 such that 

(34) P(Iv~(t)l  2 > M )  < 

for a l l t  > 0 a n d n  > 1. 
Recall now (26). For all M > 1 we have 

~-  ( I d  12 V M )  = l{ivnl2>M} l d]v.l 2 
dt l~ [v~l 2 dt 

( 1 IlVnl'2 +C' Alzn]4) 
= l{Iv~12>M} " 2 Ivnl 2 

( ,4 2) c l f l  2, + ClA~znl + cc~2lz~l 
q- |{IVnl2>M} Iv,,I 2 

<= 21 --~l{ivnl2>M} 4- CIA�88 4 

1 2 1 4 + ~(Clflv, + CIAaz,] + C~21z,12). 
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Since v ~ ( 0 ) =  P.uo = 0, we deduce 

P(Iv.(t)[ 2 
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• 4 > M )  < CE(IA4znl ) 

+ (Cl/12~, + CE(IAZz.[ ) + C~2E(Iz.12)) 

< c3c2(4~) + ~-(c3[f[  2, + c3G(4=)  + C3 c~2C2(2~)) 

by (26), for some constant C3 > 0. Recalling (33), we can find 7 such that 

2 g 
:T~ G G ( 4 ~ )  < 5," 

Then, for M large enough, (34) is satisfied. The proof  is complete. 

Appendix 1 

We prove several bounds used in the paper. We first prove (8) and (9) under 
the bound in assumption (62) ,  which is more general than the bound in (G1). 
Thus we shall cover simultaneously the cases of  Sects. 3.2 and 3.3. Moreover, 
we consider Eq. (7) with more general initial conditions u0,n that are ~ 0 -  
measurable random variables, to cover also the bounds required in Sect. 4.1. 
By Ito formula, for all p > 2 we have 

1 
dlu.(t)l  p < plu~(t)tp-2<un, du~) + ~ P ( p  - l)lu.(t)[P-21P~G(u,,)l~2(K,H)dt. 

Since <B~(u.,u~),u.) = 0, using (62)  we have 

dlu.(t)l  p + p[u.(t)lp-211u.pl2dt 

<= p}u.(t)] p 2 ( f , u . ) d t  + p lu . ( t ) ]P-e(G(un)dw( t ) ,u . )  

1 
+ ~ p ( p  - 1)[u.(t)lp-2(2olu.(t)l  2 + p + (2 - ,l)lI~.l?)dt. 

Thus, for all e > 0, 

1 
dlu.(t)l p + lu.(t)lP-Z(p - p~ - ~ p ( p  - 1)(2 - rl))llu.[[2dt 

<= plu.(t)lP-=~[fl2v, dt + p{Un(t)lp-2(G(un)dw(t),un> 

1 
+ ~ p ( p  - 1)lun(t)lP-2(2olu~(t)l 2 + p )d t  (35) 

< p ( p -  1)2o+glf(t)[2v , ]u.(t)[ p 

+ c(~, p, p)(If(t)}}, + 1) + plu.( t)I~-2<o(~.)aw(t) , . .> 
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for some constant C(e, p, p) > 0 (we have used the young inequality: 

ab < ~-a" + .@b / 
F Ft~-i- 

a,b,e > O, r > 1,1/r+ 1/# = 1). Choose e > 0 such that 

1 
p - p ~ - ~ p ( p -  1 ) ( 2 - r / )  > 0 .  

Then 

,(1 ) 
E(lun(t)l p) <=E(luo,,,lP)+ fo ~ p ( p -  1)2o +<f(s)l~, E([un(s)lP)ds 

If  

t + c(~,p,p)fo (If(s)l~, + 1) ds. 

supE(luo, n] p) < c~ 
n 

from Gronwall lemma there exists a constant C > 0 such that 

E(lu.(t)lP ) <= C, Vt E [0, T],n ~ 1 . 

Using this bound in (35) we also obtain 

T 

E f lu,(t)lp-211u~(t)il2dt <= C, Vn ~ 1 
0 

for a new constant C > 0. For p = 2, this completes the proof o f  (9). 

By Burkholder-Davis-Gundy inequality, for some constant C > 0 we have 

389 

(36) 

(37) 

EoS~P<_ t ) PlU~(a)lP-2(P~G(u~(a))dw(a),u~(a)) 
0 

<= cpe \o<_s~_,( suP I..(s)l~ (i  lu"(s)l~-2(X~ 

1) 
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= 2 \o~,zt / 

1 t 2 2 t 
+ C2p2e.fAo sup lu,(s)l ~ do+ ~C p pEflu,(s)l~-~ds 

0 O<-s<-a 0 

t 

+ Cp2(2-  ~)Ef lu~(s)lp-2]lu,(s)[F2ds 
O 

< E( sup [u,(s)lP)+Cp2~oEf sup lun(x)lPd~+C 
"~ 0 <-s<-t 00<_s<_a 

for some constant C > 0, in virtue o f  (36) and (37). Thus by (35) we have 

E( sup I~(s)l  p) 
O<_s<~t 

r (1  ) (  ) 
< E([uo,,,[ p) + f ~p (p -  1)2o + ~lf(s)[~, E sup [u.(r)[P ds 

0 \O<-r<_s 

t 

+ C(z,p,p)f ([f(s) l  2, + 1) ds 
0 

1 t 
+ =e(  sup I~(s)l p) + cp2;ooE f sup I~(~)lpd~ + c .  

Z O<s<_t 00<~s<-a 

By Gronwall lemma, we get (8). 

Appendix 2 

Here we prove (16). We have 

= - Z,(un(s))(u ,)I(u,,)j ~xidX ds 
O D  

that converges P-a.s. to 

- ).f(ul),(u')j~x dXdS= e(u~(s), u'(~))d,~,~ 
O D  

This happens because, on a set o f  P-measure 1, 

1 1 1 Zn(Unl(Un)i(U.): ~ (U 1 )~(ul )/ (38) 

in LI(D x [0, T]). To prove (38), take any subsequence nk; there exists a sub- 
sequence vh of  nk such that u I --+ u 1 vh a.s. on [0, T] with values in L2(D). 

Therefore X,h(ulvh) converges to 1 a.s. on [0, T], and the convergence is uni- 

fomaly bounded by 1. Since u 1 converges to u 1 also in L2(D • [0, T]), it is Vh 
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easy by triangle inequal i ty  to see that (38) is true for the  subsequence vh. This 
implies that it is true for the whole sequence. 
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