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Summary. We show that, if we allow general admissible integrands as trading 
strategies, the three dimensional Bessel process, Bes 3, admits arbitrage possibili- 
ties. This is in contrast with the fact that the inverse process is a local martingale 
and hence is arbitrage free. This leads to some economic interpretation for the 
analysis of the property of  arbitrage in foreign exchange rates. This notion (rel- 
ative to general admissible integrands) does depend on the fact, which of  the 
two currencies under consideration is chosen as num6raire. The results rely on 
a general construction of strictly positive local martingales. The construction is 
related to the F611mer measure of a positive super-martingale. 

Mathematics Subject Classifcation (1991)." 90A09, 60G44, 46N10, 47N10 

Introduction 

In our paper Delbaen-Schachermayer [DS1], we showed that the inverse of  the 
Bes 3 process, an example of a strict local martingale, doesn't  allow arbitrage 
possibilities. In the present paper we investigate the Bes 3 process itself. The 
methods used in Delbaen-Schachermayer [DS 1] show that with respect to simple 
integrands, the Bes 3 process satisfies the no-arbitrage property. It is therefore 
not unreasonable to investigate if also with respect to general admissible inte- 
grands, the Bes 3 process keeps this no-arbitrage property. We show that this is 
not the case, i.e. the Bes 3 process permits arbitrage with respect to general ad- 
missible integrands, and we will show that there is a general statement behind 
this phenomenon. 

We will make use of  the notation and definitions as in the book by Revuz 
and Yor [RY]. Especially for the definition of Bessel processes, the theory of 
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continuous martingales and Girsanov transformations, we will use this book as 
the basic reference. 

The authors want to thank Michel t~mery and Marc Yor for helpful discus- 
sions. 

1 Construction of strictly positive strict local martingales 

Let us first introduce some notation. We will use a filtered probability space 
(f2, ( ~ ) 0 < t < l , P ) ,  where the filtration J is supposed to satisfy the usual as- 
sumptions. This means that ~Y0 contains all null sets of ,;:z~ and that the filtration 
is right continuous. 

The continuous martingale M (with respect to P),  defined on the interval 
[0,1] has value 1 at time 0 and is supposed to be P uniformly integrable. Most 
of the time we suppose that it has a strictly positive probability to become zero. 
The stopping time T is defined as 

T = inf{t I Mt = 0}. 

If the martingale does not hit zero then T is simply equal to 1. The measure 
R is defined on ~ as the measure with Radon-Nikodym derivative equal to 
Mr = dR/dP.  From the optional stopping time theorem it follows that on , ~  the 
Radon-Nikodym density is simply MtAr. We remark that if P[Mr > 0] < 1, the 
measure R is only absolutely continuous with respect to P.  A local martingale that 
is not a uniformly integrable martingale will be called a strict local martingale. 
This terminology was introduced by Elworthy, Li and Yor [ELY], where an 
analysis of strict local martingales is given. 

We shall always denote by N the process defined as 

10' Nt = Mt - ( 1 / M , ) d ( M , M ) , .  

It follows from Lenglart 's extension of the Girsanov formula (see, e.g. Revuz-Yor 
[RY] p.303 or ILl) that N is an R- local martingale and that 

dMt = dNt + M--Td(Nt,Nt) 

is the Dob-Meyer decomposition of  the semi-martingale M under R. 
The usual setting in the applications of probability theory to mathematical 

finance is that of  a stochastic process S describing the (discounted) price of a 
stock. A basic problem then is to decide whether there is an equivalent local mar- 
tingale measure for the process S and to investigate the set of all such measures 
(see, e.g. Delbaen-Schachermayer [DS2] and references given there). 

The idea of this paper i s t o  turn things upside down. The role of the price 
process S will be taken by the process M under the measure R. 

If P and R happen to be equivalent then, of course, the process M (considered 
with respect to R) admits at least one equivalent martingale measure, namely P.  
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The interesting aspect arises if R is only absolutely continuous with respect to 
P,  but not equivalent to P.  In this case P fails to be an equivalent martingale 

measure for the process M (considered with respect to R), as P is not absolutely 
continuous with respect to R. If we can deduce from martingale representation 
arguments that P is the only candidate for a martingale measure, then we may 
conclude that there is no R-equivalent  martingale measure. As a consequence 
we deduce that M under R does not satisfy the property of No Free Lunch with 
Vanishing Risk, a concept introduced in Delbaen-Schachermayer [DS2] and for 
locally bounded semi-martingales equivalent to the existence of  an equivalent 
local martingale measure. We will show that in the case under consideration, M 
(seen under R) allows arbitrage for general admissible integrands. As shown in 
Delbaen-Schachermayer [DS2] this is strictly stronger than the non-existence of 
an R-equivalent  local martingale measure. 

The reason for proceeding in this way lies in the fact that it is well suited to 
analyse Bessel processes and allows to exhibit a general phenomenon occurring 
in this setting. Let B = (Bt)0<t be a one-dimensional standard Brownian Motion 
starting at B0 = 1 and defined on (Y2, (~)o<_t,P).  We define T as the first instant 
the Brownian Motion B hits 0 with the convention that T = 1 if B did not 
hit 0 before time t -- 1. The process M is defined as M = B 7", the Brownian 
Motion stopped at time T. By ( .~)  we denote the natural filtration generated 
by M. Clearly M is the P -mar t inga le  associated to a P-abso lu te ly  continuous 
measure R on . ~  whose density is given by Ml = Mr. As the probability that M1 
equals zero is strictly positive, R fails to be equivalent to P.  Under the measure 
R the continuous martingale N, as defined above, is a stopped Brownian Motion 
since (N ,N) t  = ( M , M ) t  = t. The natural filtration, under the measure R, of the 
process N is the filtration .~-t augmented with the subsets of {MT = 0}. Under 
R, the process M satisfies the differential equation 

1 
dMt = dNt + 77-. dt. 

Mt 

It is therefore a Bes 3 process starting at the point 1. 

In addition, in the present example we have martingale representation theo- 
rems at hand, which will allow us to carry out the program sketched above. 

The previous description of the Bes 3 process is well known, see for instance 
Revuz-Yor [RY] p. 294 and Ex 1.2.2, question 2 p. 419. This description 
is an example of  a more general procedure known as the construction of the 
h-process .  In Biane-Yor [BY] this construction was used to study properties 
of  the "m6andre brownien". In order to keep a more general framework and, in 
particular, to be able to derive results for Bessel processes of dimension ~5 ~ 3 we 
place us in the more general framework of  an arbitrary P -  absolutely continuous 
probability R on .~1 and the associated processes M and N defined above. 

Theorem 1. I f  R is absolutely continuous with respect to P but not equivalent to 
P, then the process 1/Mr is a R - s t r i c t  local martingale. 
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Proof Under the measure R, the process M is a special semi-martingale that is 
decomposed as Mt = Nt + fo 1 /M,  d ( M , M ) ,  into its local martingale part and 
its predictable component. Under R, the process M is almost never zero and 
therefore 1/M is also a semi-martingale. Stochastic calculus shows that under 
R, we have 

d(1/Mr) = - 1~Mr 2 dUt 

and hence it is a local martingale. Since it is positive it is a supermartingale under 
R. To see that it is not a martingale, it is sufficient to remark that ER[1/M1] = 
P[MtAr > 0] < 1. [] 

Remark. The passage from P to R poses the subsequent technical difficulty: the 
filtration (,-.~') does not satisfy the usual assumptions with respect to R. But this 
problem is not hard to fix: the filtration ( ~ )  defined as -~r = q(.~t, all subsets of 
{Mr = 0}) satisfies the usual assumptions. An easy exercise on monotone classes 
shows that for every ( :~)-predictable  process H,  there is a (~ ' ) -pred ic tab le  
process K such that {~t I Ht ~ Kt} C {MT = 0}. For later use it is also useful 
to remark that the natural filtrations of M and N under R are the same. 

Theorem 2. l f  the martingale M has the , Y - p r e d i c t a b l e  representation proper O, 
with respect to P then the R - l o c a l  martingale N also has the 5~r 
representation property with respect to R. Consequently 1 /M also has the .%c_ 
predictable representation property with respect to R. 

Proof See Th 12.22 in Jacod's book,[J]. [] 

Corollary. I f  M is a local martingale with the . Y - p r e d i c t a b l e  representation 
property under P and if  R and P are equivalent, i.e. P[MT = 0] = 0, then 1 /M 
has the . Y - p r e d i c t a b l e  representation property under R. 

Before we formulate the next theorem we recall the notion of simple in- 
tegrands, of general admissible integrands and of no-arbitrage. (see Delbaen- 
Schachermayer [DS2]) 

Definition. We say that a predictable process H is simple if  it is o f  the form 

n - I  

H = ~ fk llr~,r~+~l 
k=0 

where 0 < To <_ TI . . .  <_ Tn <_ 1 are stopping times and fk are .Trrk measurable 
functiOns. A predictable process H that is S - i n t e g r a b l e f o r  a semi-martingale S 
is called a -admissible (for a E ~ )  if  H . S >_ - a .  We say that S satisfies the no- 
arbitrage property with respect to simple integrands if  for  H simple predictable 
and such that (H �9 S)j >_ 0 almost surely, we have that (H �9 S)l  = O. The semi- 
martingale S satisfies the no-arbitrage property for  general admissible integrands 
if  H admissible and (H - S)1 >_ 0 a.s. imply (H �9 S)I = O. I f  the underlying 
probability measure P plays a role, we add the phrase "with respect to P "  
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Remark. Simple integrands are not necessarily admissible. 

We remark that if S allows arbitrage for simple integrands, then the simple 
predictable process used to construct the arbitrage can be taken (see Delbaen- 
Schachermayer [DS1]) of the form H = f  llv0,T~l where To _< Tl are two stopping 
times and where f is ~r0 measurable. When we split f into its positive and its 
negative part, we immediately see that we can either take f = - 1  or f = 1. 

From this it easily follows that a strictly positive process S satisfies the no- 
1 satisfies the arbitrage property for simple integrands if and only if the process 

no-arbitrage property with respect to simple integrands. We warn the reader that 
if we look at arbitrage with respect to admissible simple integrands the statement 
is no longer true. An example will be given below. 

T h e o r e m  3. If M has the ~'-predictable representation property for P and if 
P [MT- = 0] > 0, then the process M seen under R, admits arbitrage for general 
admissible integrands. 

Proof Take the real number c~ so t h a t f  = I(MT>0} --O~I(MT<0} satisfies Ep[f]  = 
0. Since P[M~ = 0] > 0, such an c~ exists and we have that c~ >_ 0. By the 
representation property there is H predictable such t ha t f  = (H .M)1 and H .M _> 
-c~ almost surely with respect to P.  It follows that under the measure R the 
integrand H is admissible (the process (H �9 M)  is bounded from below by -c~) 
and produces an R almost surely positive outcome I(MT>0}- [] 

Corol lary.  The Bes 3 process in its natural filtration permits arbitrage. 

Proof This follows easily from the theorem and the construction of the Bes 3 
process given above. [] 

Remark. As shown in Delbaen-Schachermayer [DS1] the inverse of  the Bes 3 
process satisfies the no-arbitrage property with respect to simple, not necessarily 
admissible, integrands. The Bes 3 process therefore also satisfies the property of  
no-arbitrage with respect to simple integrands. 

Remark. The problem whether or not M is arbitrage free under R is tricky 
and depends on the kind of arbitrage used. Under the measure P,  M is a uni- 
formly integrable martingale and hence arbitrage free in any reasonable sense 
and in particular for simple bounded integrands. Under the measure R, the sit- 

I i s  a R - l o c a l  martingale and hence satisfies the uation changes. The process ~- 
no-arbitrage property with respect to general admissible integrands. Under the 
measure R, the process M however might allow arbitrage opportunities with 
respect to simple admissible integrands. 

This in turn implies that ~-, a local martingale under R, allows arbitrage 
with respect to simple, not necessarilir admissible, integrands. (see Delbaen- 
Schachermayer [DS 1 ] for another example in this direction). 

The following example is another illustration. On a probability space with a 
Brownian Motion B, endowed with the natural filtration, we define 
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f0 f0' S, : e x p (  1 / V ~  - u ) d B , , -  1/2 1 / ( 1 - u ) d u ) .  

We stop S when it hits either 2 or 0. Since St tends to 0 almost surely when t 

tends to 1, the stopping time is well defined and the resulting stopped process 

is a bounded non-negative martingale. The measure R is defined as dR = ST dP. 
Under R, the process S admits arbitrage with respect to simple admissible inte- 

l is a strict R - l o c a l  martingale. grands. Indeed $1 - So = 1 under R. The process 
1 I is realised by a simple integrand but it is not an Under R the outcome s~--; - s~ 

outcome of an admissible integrand. 

In the general setup of theorem 3, M satisfies the property that for stopping 

limes U < V, f = Mv - Mu <_ 0 R a.s. implies f = 0, R a.s.. We can see this 
i > 0 R a.s. But under R, as follows. The relation f _< 0 implies that My Mu -- 

the process I /M is a positive local martingale and hence a supermartingale. We 
1 i 0 R a.s. and 1 ] < 0. This implies that Mv Mu therefore obtain ER[Av Mu -- 

hence f = 0 R a.s.. 

To analyse the converse situation w e  suppose that there are two stopping 

times U _< V such that R a.s. we have My - M u  >_ O. By definition of R and by 
the no-arbitrage property of M (under P )  we necessarily have that {My - M u  <_ 
0} C {MT = 0}. This means that when at time U there is still a possibility to 
lose money, it is only due to the fact that M can become zero. 

Theorem 3 as well as the example given above, illustrate what can happen if 
we only took at survivors. In statistics one encounters the phenomenon of  survivor 

bias when dealing e.g. with outperformance of stocks and when investigating the 
efficient market hypothesis. If a sample of today 's  stocks or mutual funds is taken 

and if the history of the corresponding returns is analysed, the statistician in fact 
only looks at survivors. The stocks, mutual funds, investment opportunities that 

performed very badly did not survive and the sample suffers from survivor bias. 
(see e.g. Ross [R]). The example given is such an illustration. By looking at the 

trajectories that survived we were even able to obtain arbitrage with respect to 
simple integrands. 

Theorem 3 shows the general case. Arbitrage with respect to simple inte- 
grands is not always possible (see the case of the Bes 3 process) but with respect 

to general integrands, arbitrage is present. 

2 Converse theorems 

The preceding situation is more general than it first looks. This section is devoted 

to a converse of theorems 1 and 3. We will show that under certain conditions, 
a strictly positive strict local martingale has the same distribution as the ones 
obtained from theorem 1. We will also show that if L is a strictly positive strict 
local martingale that satisfies the predictable representation property, then the 

conclusion of theorem 3 always holds. When we deal with the distribution of  a 
process we mean the image measure on a natural space of  trajectories. Because 
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we also need an extension theorem for measures we need a space that is big 

enough. 

The construction is an interpretation of the construction of the F611mer mea- 
sure of a supermartingale.(see F611mer [F], Az6ma-Jeulin [AJ] and Meyer [M]). 
So the methods we use are standard. However in our approach the supermartin- 
gale is a strictly positive continuous local martingale and this simplifies the 
construction and allows us to use a natural space of trajectories. Referring to 
Meyer [M] we add an extra (absorbing) point to the state space R§ i.e. we will 
work with the compact space [0/x~]. 

The space of  trajectories is the space C ~  [0,1 ] of  continuous paths co defined 
on the time interval [0,1] with values in [ 0 , ~ ]  and with the extra property that 
if ~(t)  = cxD then w(s) = ~ for all s >_ t. The set C ~  is a Borel set of  the space 
of all continuous functions from [0,1] into [0,ec] endowed with the topology of 
uniform convergence. 

The evaluation functionals are denoted Lt, hence Lt(~) = ~(t). They take 
values in [0 ,~] .  The filtration generated by the process (Lt)0<t<l is denoted 
by .~gt ~ the superscript meaning that we do not saturate this filtration in order 
to satisfy the usual conditions. The results of  F611mer, [F] and especially the 
presentation in Meyer, [M] can be translated into the following theorem. We 
only give a sketch of the proof. 

Theorem 4. I f  R is a measure on C [0,1] such that L is a strictly positive strict 
local martingale, then 

1 (i) there is a probability measure on C a  [0,1 ] such that M = -L is a P martin- 
gale. 

(ii) we may choose P in such a way that the measure R is absolutely continuous 
with respect to P and its Radon-Nikodym derivative is given by dR -- M1 dP. 

(iii) if L has the predictable representation properly with respect to R then 
M has the predictable representation property with respect to P. In this case the 

1 process -s seen under the measure R, allows arbitrage with respect to general 
admissible integrands. 

Proof The measure R is defined on .~ ]~  and is such that the process L is 
a strictly positive strict local martingale. The strict positivity of L results in 
R[LL = 0] = 0. The stopping times T~ are defined as the first hit of the level n, 
T, = inf{t I Lt >_ n}/~ 1. It is easy to see that T, is a stopping time for the 
filtration -~J6 ~~ Also l i m , ~  T, = T, where T = inf{t I Lt = ~ }  A 1. The sigma 
algebras -~J6'~, are increasing and their union generates ~ = ~ 1  ~. 

The stopped processes L r" are bounded continuous martingales for the mea- 
sure R. On each of  the sigma algebras ~ ,  we define the measure Pn as 
dP, = Lr, dR. By the martingale property we have that P,+l restricted to ~ ,  
is precisely Pn. We obtain in this way an additive set function P defined on 
[.-J,>l ' ~ -  This additive set function is sigma additive and can be extended to 
a true probability measure on . ~ .  [] 
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Theorem 5. Let (Q,(.~)0<t<l ,R') be a probabili O' space with a filtration that 
satisfies the usual assumptions. Let L' be a strictly positive, continuous, strict 
local martingale. Assume that ~ is the natural filtration o f  L ~ and that L' has the 
predictable representation property. Under these assumptions, the process 1/L'  
allows arbitrage with respect to general admissible integrands. 

Proof We define a mapping ~: J'2 ~ C a  as follows ~b(w)(t) = L~(w). Since L' is 
almost everywhere continuous the mapping �9 is well defined (if needed we first 
throw away a set of measure zero). The mapping ~ is measurable and induces a 
measure R on .=~o. We now apply the theory above and since the filtration ,3 z" 
satisfies the usual assumptions we see that for each t the mapping ~ is measurable 
for the couple .~5~[-,~ff.  The process L defined on Coo is strictly positive, it 
is a strict local martingale and has the predictable representation property. (Here 
we use that . Y  is the natural filtration generated by U). We therefore obtain an 
,~R_pred ic tab le  process H that is admissible and that produces an arbitrage 
opportunity. The mapping H t = H o ~b is . 7 -p red ic t ab le ,  is admissible and 
produces arbitrage for the original process I /L ' .  The proof is now complete. [] 

3 Bessel processes 

In this section we will apply the previous theorems to the particular case of  Bessel 
processes of dimension ~ > 2. (from now on ~ will denote a real number that is 
strictly greater than 2). It is known that if X is a Bessel process of  dimension 
6, starting at X0 = 1, then L = X 2-6 is a strictly positive strict local martingale 
(see Revuz-Yor [RY] p.418 ex 1.16). It is easy to see that the local martingale L 
has the predictable representation property with respect to the natural filtration 
generated by X. Also the method of Delbaen-Schachermayer [DS1] for the case 
6 = 3 can be adapted and this yields that L satisfies the no-arbitrage property 
with respect to simple integrands. The results of the preceding section therefore 
immediately yields the following: 

Theorem 6. I f6  > 2 and X is a Bessel process of  dimension 6, then L = X 2-6 is 
1 allows arbitrage with respect to general admissible a local martingale such that Z 

I do not allow arbitrage with respect to simple integrands. The processes L and 
predictable integrands. 

Although the preceding result is satisfactory for applications in finance, it 
would be nice if we could give an interpretation of the martingale M needed 
to construct L. More precisely we want to make the construction of the pre- 
ceding section more transparent. The main ingredient for this is the Girsanov 
transformation for Bessel processes. The theory is developed by Yor [Y] and in 
particular the formula (2.c) there, relates Bessel processes, from dimension ~ > 2 
with Bessel processes of (possibly negative) dimension 4 - & An application of 
these results immediately gives: 
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Theorem 7. I f  ~ < 2 and under the measure P,  X is a Bes ~ process starting at 

1 and stopped at the f irs t  time T when X hits zero, then under the measure R 

defined as dR = X 2 - ~  dP,  X is a Bes 4-~ process. 

For ~ = 3 we find the following situation. Let M be a Brownian Motion 
started at M0 = 1 and stopped at zero (i.e. a Bes 1 stopped at zero). The process 
M under the measure dR = M1 dP is a Bes 3 process. Theorem 5 now shows that 
M allows arbitrage for general admissible integrands. This result was the main 
reason for developing the theory of  sections 1 and 2. Again the construction is 
an example of  an h-process. 

4 Additional comments  

We gave one way to construct strictly positive strict local martingales X such that 
1 allows arbitrage opportunities. Financially this means that betting on the ex- x 
change rate ECU/$ does not yield arbitrage opportunities for a European citizen, 
but for an American citizen, there are such possibilities. This is counter-intuitive 
but there is an explanation. For simple predictable strategies there are no arbi- 
trage profits for both agents. When general admissible integrands are allowed 
then one of the agents can make profits. The reason can be found in the restric- 
tion that the strategy has to be admissible. This restriction is not independent of  
the change of currency. So one agent can use admissible strategies (buying and 
selling) that have no equivalent admissible translation (selling and buying) for 
the other agent. 

In Delbaen-Schachermayer [DS3] we discuss the arbitrage property when the 
num6raire is changed. The results given there extend the previous results. The 
method however is related to our paper [DS2] and is more involved than the 
construction of strict local martingales given here. 

We finally remark that Theorem 5 can be proved directly, i.e. without using 
the projective limit construction, Of course proceeding that way does not indi- 
cate how strict local martingales arise in a natural way. We also remark that the 
counterexample constructed in [S] or [DS4] yields a continuous local martingale 
L and a uniformly integrable strictly positive martingale Z such that L Z  is a 
uniformly integrable martingale, Since Z = ( l /L)  ( L Z )  is a martingale, we find 
that 1/L has an equivalent martingale measure. This example shows that in the- 
orem 5, the hypothesis that L has the predictable representation property cannot 
be dropped. 
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