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Summary. We consider a one-dimensional linear wave equation with a small mean
zero dissipative field and with the boundary condition imposed by the so-called
Goursat problem. In order to observe the effect of the randomness on the solution
we perform a space-time rescaling and we rewrite the problem in a diffusion
approximation form for two parameter processes. We prove that the solution
converges in distribution toward the solution of a two-parameter stochastic differ-
ential equation which we identify. The diffusion approximation results for one-
parameter processes are well known and well understood. In fact, the solution of
the one-parameter analog of the problem we consider here is immediate. Unfortu-
nately, the situation is much more complicated for two-parameter processes and we
believe that our result is the first one of its kind.

Mathematics Subject Classifications (1991): 60H15

1 Introduction

Let us consider the Goursat problem for the one-dimensional wave equation:

*u 0%u (e, %)
— — — = ¢&a(t, x)u
ot 0x?
on the domain defined by 7 >|x| and with the boundary conditions
u(t,7)=u(—1,7)=1for t 2 0.

We assume that the field of dissipation a(z, x) is a mean zero random field. We
are interested in the limiting regime of small dissipation. This is the reason for the
presence of the small parameter &>0. Setting s=71+4+x, t'=71—Xx,

X (s, t') = u(t, x) and F(s',t') = a(r, x) the problem becomes:
X
—— =¢F(s,t) X 1
soap = P 1) (1)
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for (s,t) in the first quadrant s, ' = 0. The boundary conditions read
Xy 0=Xo,+=1for all &, ' 2 0. We want to observe the fluctuations of the
solution (remember that F is centered). To do so we change the scale and we work
with the new variables s’ = s/e and t' = t/e. The partial differential equation can

now be rewritten in the form:
2X: 1 st
=-F|-,-}X*? 2

dsot ¢ (8’8) @

with the same boundary conditions X§ ; = Xi , = 1. We emphasize the depend-
ence upon the small parameter ¢ by using the notation X , for the solution. Also, we

shall use the notation:
t
Fe(s,t)= F <f, —>
g e

and we rewrite the partial differential Eq. (2) as the integral equation:
1 s t
Xio=1+=[ [F(u,v)X} dudv. (3)
€0 0

We are interested in the limiting behavior of the solution X in the limit ¢ v 0. We
believe that it is possible to prove the existence and a characterization of a limiting
process X under fairly general conditions on the field F(s, t). In order to avoid
technical difficulties we shall restrict ourselves to a particular case. Our goal is to
prove that results of the diffusion approximation type can be proved for hyperbolic
partial differential equations and two parameter processes. We do not aim at
generality for the technicalities of the two parameter stochastic calculus get in the
way and make the problem extremely difficult. We shall concentrate on a very
simple model. We choose to work with a random field F of the form:

F(s,t) = Z Z Zioli—1,0xp-1,0(51)
k=1¢=1
where { Z, ,,k 2 1,/ = 1} is an independent family of centered identically distrib-
uted random variables. Again, for the sake of simplicity we shall assume that the
support of the common distribution is bounded. In other words we assume the
existence of a positive number M satisfying:

ZedsM, k21

almost surely. We shall denote by ¢? the common variance of the Z,_;’s. The main
result of the paper is the following:

Theorem 1.1 For each S >0 and T >0 the distribution of {X%,; 0<s<S,
0 < t £ T} converges weakly as &¢ x 0 on the Banach space C([0, S]x [0, T7) of real
valued continuous functions on [0, §1x [0, T'] toward the distribution of the unique
solution {X;,;; 0 < s < 8;0 =t < T} of the Stratonovich equation:

dXs,tZGXs,todWs,t (4)

with the boundary conditions Xo ;= X5 0 = 1. Here W, is a standard Brownian
sheet over the positive quadrant.
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The corresponding problem for one-parameter processes is a simple particular case
of the classical results going under the name of diffusion-approximation:
ax: 1
= —=F(t/e)X*
g

w7

with the initial condition X§ = 1. Here one could assume that:

F(t)= Z Zilp—1,9(0)
k=1

where {Z;:k = 1} is an independent family of centered identically distributed
random variables. Again, we denote the common variance of the Z,’s by . This
equation has a unique solution. It is obviously given by the formula:
1 T
X% =exp [7 fF(s/s)ds].

&0

The functional central limit theorem implies that the process

{6”1/2 ftF(s/s)ds; t= 0}

converges in distribution toward a process {oB,; t 2 0} where {B,;t =0} is
a standard Brownian motion. Since the exponential function is continuous, the
solution process X ® converges in distribution toward the process X, = exp{ o B;]
which is the unique solution of the Stratonovich equation:

dX,=0X,°dB,

with the initial condition X, = 1. In particular {X,; ¢ = 0} will be a continuous
functional of {B; t > 0}.

This is not the case any longer for two-parameter processes and a straightfor-
ward generalization of the one parameter case cannot be expected. Indeed, the
usual characterizations of the limit process as a Markov process of the diffusion
type or as the solution of a martingale problem are not possible in the case of two
parameter processes.

The purpose of the present paper is to prove such a result of the diffusion
approximation type for two parameter processes. We show that the solution
X* = {X%, s t =0} converges in distribution to the unique solution X = {X,,; s,
t = 0} of the Stratonovich equation:

dX =0X,;°dW,, 5

with the boundary conditions X(s,0) = X(0,¢) = 1, where W,, is a standard
Brownian sheet. The reader is referred to [2] for an account of two parameter
stochastic calculus. The equation can be equivalently written as an equation in the
Ito’s sense:

O.Z

dXs,=0X,,-dW,, + )

X, dsdt. (6)

See [8] and [4] for properties of this equation. The solution of Eq. (6) has been
called a two parameter diffusion in the literature and this is the reason why we use
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the terminology diffusion approximation for our result. This solution process has
been studied in [5]. Its behavior is very different from the behavior of the solution
X (t) of the one parameter problem. For instance X, may take negative values
while X (¢} is always positive. Nevertheless, the results of [3] imply that X, has
a smooth density as long as s >0 and ¢ > 0.

A possible approach is to look for a solution in the form of an expansion:

1 st
X, =1+ - f [ F(uy, vy)du, dv,
. 00

S t uy vy
-i—l2 [ [ [ J Fuy,vi)F(uy, vs)duydvoy duy dog + - - - -
€000 0
The second term converges in distribution to g W, , but the following terms involve
multiple integrals and the latter are not continuous functionals on the two para-
meter Wiener space! In fact the whole solution { X ,; s, t 2 0} is not a continuous
functional of the Brownian sheet { W, ,; s, t = 0}. The difficulty created by this lack
of continuity is one of the pitfalls of the stochastic calculus with two parameter
processes. .

The importance of diffusion approximation results is twofold. At the concep-
tual level, it justifies the use of models involving stochastic partial differential
equations driven by space time white noise. At the practical level, it gives approx-
imations to quantities of interest such as the moments of the solutions, say
mi(s, t) = [E{(X{,)} for p = 1integer. The latter can be used to infer properties of
the solution such as location and speed of the wave fronts. Convergence in
distribution does not imply automatically convergence of the moments. A uniform
integrability condition has to be satisfied for that to be true. This condition is
satisfied in the present situation. The moments mi(s, t) are difficult to compute
directly when & > 0. On the other hand, in the limiting regime ¢ = 0, Ito’s formula
can be used to compute or estimate the moments m,(s, t). See [5]. For example, the
first moment m, (s, t) = IE{ X, } is easily seen to be a solution of the (deterministic)
integral equation:

2 st
mi(s,t) =1 + 7 [ [ mi(uv)dudy,
4 (L]
the solution of which is given by m (s, t) = f (o2 st/4) where the function fis defined
by:

o0 uk

u) = — .
1= 2
Our proof is based on the introduction of an intermediate scale 1/N and the
approximation of Eq. (2) by a finite difference equation. We prove the convergence
in distribution for this finite difference equation which itself will be an approxima-
tion of the equation for X, ,. The key estimates will be found in Lemma 2.1 which
says that we have the right limit and in Proposition 4.2 which gives the necessary
tightness condition. These estimates are rather technical but we were not able to
find a simpler proof! Our main result can certainly be extended (without too much
difficulty) to a nonlinear equation of the type:
ZXE
g IF(S,t)g(Xz,,)

& &

dsot ¢
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and presumably to more general random fields F (i.e. more general ergodic random
fields satisfying various mixing conditions).
Our proof is divided in two parts:

1. Proof of the tightness
2. Identification of the limit.

The identification of the limit is done via an approximation by the solution of
a finite difference equation. The following section contains the various steps of this
approximation. The last section of the paper is devoted to the proof of the
tightness. The latter follows from the estimate:

]E{(A[ZI;ZZ](XS)4} S C(s, =51 (1, — 1) 7

for all z; = (81,11), 22 =(S2,t>) such that 0 £ 5; <5, <Sand 0<¢t, 21, = To
The constant C may depend upon § and T but is independent of ¢&. We use (here and
throughout the paper) the notation A4, ,,;(X?) for the increment of X* over the
rectangle [ z;, z, ], namely:

A[Z1.zz](X£) = ng,tz - Xﬁhtz - X§2J1 + X§1,t1 .
Note that (7) implies that:
C(Ss T) = sup IE{|A[(sl,tl),(sz,tz)](X8)|2} < 0. (8)

0=51585328,02t1=s02=T

This uniform boundedness of the second moment plays a crucial role in the
derivation of several estimates in Sect. 2 and Sect. 3 below. The actual tightness
estimate (7) will be proved in Sect. 4. We refer to [1] for the fact that (7) implies the
tightness of the laws of {XZ,:s,t = 0} on the Banach space C([0, S]x[0, T]).

Most of the estimates in this paper contain constants. We use the same letter
C for these constants, even when the actual numerical values of these constants
change from line to line. We shall sometimes emphasize the dependence of these
constants upon parameters such as § and 7, but the crucial fact is that the
constants we use are independent of the small parameter ¢ and the integer
N defining the intermediate scale.

2 Approximation by finite difference equations

We fix an integer N = 1 and define:

1 1
p= [—A—,[S/EJ} and g= [N[T/sl]
Notice that:

S T
<2 <X
P=7e and g = Ns ©)
and:
. ST
lime?pg = 2 (10)
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We shall need these two facts in the sequel. We shall study X ¢, at the points:
(kpe, £qe) for k,/=0,1,...,N.
The problem contains 3 scales:

e order 1: rectangle [0, S] x [0, T]
e order #: rectangles: [((k — 1)pe, (¢ — 1)qe), (kpe, Ige)]
e order ¢ rectangles [((n — 1), (m — 1)), (ne, me)].

We are only interested in the regime ¢ < ¥ < 1. We shall use the notations:

A, = [((k = D)pe, (¢ — 1)qe), (kpe, £q¢)]

Ak,Z(XS) = A[((k—l)ps, (£—1)qe), (kpe,t’qa)](XE)

to shorten some of the formulas. Equation (2) implies that, for 1 <k < N and
1 £7 < N, one has:

1
Ak,l(Xs)Z:f f FE(M,U)XZ’vdudU

© Arga

1
= <E‘/' f Fs(u, U)dudl))ka_l)pa,(g_l)qg

Ay, 1

and:

1
+g,/ f Fs(u9 U)(sz,v'—ka—l)pe,(/—l)qs))dudv-

e,
We shall also need the following notations:
Ak, o, v) = [((k = Dpe, (¢ — 1)ge), (u,0)]
Ak o(u, v) = [((k = 1)pe,0), (u, (£ — 1)ge)]
Ag,o(u, v) = [(0,(£ — 1ge), ((k — 1)ge), v)].
These domains of the plane are illustrated in Fig. 1. Then we have:
Xio = Xbe-1ype, 0~ 1yge = Aot 0) (X + A7 (1, 0) (X?) + AF o, 0)(X?)

where we used the obvious notation 4 ¢ o(u,v)(X°®) for the increment of the process
X* over the rectangle 4} ,(u, v). Consequently we get:

1
Ay (XF) = <gffF5(“= U)d“dl’)Xﬁkq)ps,(z—nqS

i, ¢

+<*817ffF£(u,v)f ) FS(d,ﬁ)dudﬁdudu)

Ax, s A p(8,)
1
X X G- type,e- g + 2 JEwv) [ [ FHop)
€7 g A%, 0)

X (X (o, f) — Xk l)ps,(t’—l)qe) dodf dudv

1
= ] Fe (o) (4R A, 0)(X7)

Bk, ¢

+ A3 (u, v) (X)) dudy. (11)
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Tf

1qe

(1-1)q

(k-1)pe kpe

Fig. 1. Example of domains 41 = 4/,(u,v), 42 = A} (u,v) and 43 = A} (u, v} of the plane

Definition 2.1 The random variables X35 are defined for k, £ = 0,1, ..., N induc-
tively by Az¥ =1 ifk=0o0r £ =0 and

&Ny _ &N &, N & N &, N
A (X)) = Xy — XiZ1,e— Xip—1+ XiZ1,0-1

1 e?pgo?
= <;f f F*(u, v)dudv)Xi’ivuq + %Xi{vl:/—l
Ay, 1

fork, £=1,...,N.
We are in a position to present the crucial technical estimate of this section.

Lemma 2.1

IE{IXIscps,t’qs - Xi,,?’ 2} é

zla

fork,¢£ =0,..., N and for some positive constant C = C(S, T) which depends only
upon S and T and which is independent of ¢ and N.

Proof. Let us define the random vector { Yi’,ff ,0Sk<N;0</< N} by:
Y0l = Xipaoeo— XE7-
Because of this definition we have Y5} = Y58 = 0 and:
A, (Y5N) = Ay (X7) = Ay, o(X*Y)
for 1 £ k, ¢ £ N. Here 4, ,(Y*") represents the rectangular increment defined by:

&Ny £, N €, N £, N &, N
A, oY)y =Yg — Yilq o= Y1+ Yoo
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The latter can be rewritten using {11) and Definition 2.1 in the form:

1 1
Ay (YN) = <E/f Fé(u,v)du dU) Yl oo+ =&pae” Yl .y

Axe, s 4

[( 2 [Fwo) [ [ E(oc,ﬁ)docdﬂdudu)

A, ¢ Ak/(“ v)

2

_O-Zgzpq:,X?kl)ps,(/—l)qs zf/F (M l))f / ke (O( B)

Ax, ¢ Ak[(u v)

X(X 55— Xik—1)pe, (-1)q:) dodf dudv

+ - ffF (1, 0) (A2 (0, 0) (X°) + A2 (w1, v) (X)) dudv. (12)

dir

We shall use a Gronwall type lemma in order to control E{| Y3} |*} (which is the
whole purpose of Lemma 2.1). For 1 £k, 7/ £ N we have:

-Lf

and consequently we get from (12):

b i(lffp(uududv>y, s

i=1j=1 Aiz

HM\

k,{( YSSN) 5

J

1
SE(mP) <]

+

i i[( S [ [ Fuwo)f [ Fa, 15’)d<xd,8dudv>

4

il

i=1j=1 dij 2 w)
2 2
_L g x X¢
4 rq (i—1)pe(i—1)ae
k Z 1
IE{ZZ—;//F&M [ Fi@p)
i=1j=18"" 4 £

2

x (X:!yﬂ - Xfi— 1) pe,(j— 1)qs)d05 dﬁ du dv

2

(13)

Chl)—-

HM?:-

“E{]n 5

We estimate the various terms of the right hand side separately.

[ f Fo(u, 0) (42w, 0) (X7) + 43w, 0)( X)) dudo

First term. Since Y#% ;_, is independent of the mean zero random variable

< [ [ Fé(u,v)du dv) the first term is less than or equal to:

A4
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2 }

2
}m{lm,,-_lm

5 Z]E{’( I[P v)dudv)Yl .

i=1j=1 4ij

1

]E{‘ [ [ Fé(u,v)dudv

Aij

‘1 ip  Ja 2
Z_z {( Z Z ‘C'ZZm,n) }IE{|Y‘;”—N1,]‘~1’Z}
i=1j=1¢ m=@{—-1)p+1in=(G-1)g+1

EpgaB{| Y5, ;1)

I

l=§1 J
)

1l
.M*‘
HM\

k £
Z YE{Ye -7}
i=1j=1

by using (9).
Second term. Cauchy-Schwarz inequality implies that the second term is less than
or equal to:

1 SZTZ k '3

Z ZIE{|Y, 1,j-1

1
€ p2q2kf Z Z IE{I YfNIJ ll }< 16 N2 .
i=1j=1 i=1j=1

16

Third term. Let us introduce the notation:

HE fo Fi(wo)f [ Fa, p)dudfdudy.
Aij U(u v)
The expectation of Qf; can be computed by decomposing the integral over 4;; in
a sum of integrals over rectangles of size ¢.

E{Q5} = {( L Fwer | fdocdﬁdudv)}

Aij efuje]l e[v/e]

sz (u — e[ufe])(v — e[v/e])dudv

Aij

0_2

2
=—¢&"pq.
2 rq

Using the independence of X {;_ 1) e (j—1y4. and F*(u, v) in the rectangle 4;; we get
that this third term is less than or equal to:

k¢ 2
Z Z IE{ }]E{IXfiAl)pg,(j—l)q£|2}
i=1j=1

and by using again (8), this is not greater than:

2

o 2
43Pq

2

g
2
L e

N2C(S, T)IE{ 7

2
} = N?C(S, T)var(Q5,;) < N*C(S, T)E{|Q5,:1*}.

Decomposing 4; ; and 4] ; into rectangles of sizes £ we get:

q n

S Z2,47Y Y Y Y ZaZi

1m=1 n=1lm=1i=1i+mj=1,j+n

4>|°°
i s

Qi
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o }

Using the independence and the uniform boundedness of the Z,,,’s the second term
can easily be bounded from above and we get:

which shows that:

b q n m
)NDIED) Y Zmnli;

n=im=1li=1i+mj=1,j%n

)4 q
X Y Zun

n=1m=1

{01/} < %IE{

E{|Q%. }<84M4(pq)2< +2>

and hence, the third term is less than or equal to a quantity of the form C(S, T)/N?

The fourth term. Using Cauchy-Schwarz once more one sees that this fourth term
is less than or equal to:
2 }

k{ k £
£y vE
i=1j=1

which is less than 4; + A, with:

ff Fo{u, U)f f Fé(oy, AU X op — Xbi— 1)pei-nge) G dB dudv

43 4%, w0

2N2 k ip ja
Al - &4 Z Z E Z
i=1j=1 n=@{-Lptim=(-1)g+1

X

ne i ¥ u v 2
[ Za. [ [ (Xip—XGnpei-ne)doadfdudy }

n—1)e (m—1)e eluje]l e[v/e]

=

2
[T 2 [ = X vadsdpanas] |
(n—1)e (m—1)e A”(u v)
where 4}%(u, v) = A} ;(u,v)\[(¢e[w/e], e[v/e]),(u,v)]. Using once more Cau-
chy-Schwarz inequality, both in the summation in (5, m) and in the integral and
the fact that | Z,, ,|* £ M* we get:

2 k £ ne me
é L YplyeMt [ ]
=1j=1 nom

(n—1)e (m—1)e

and
ip ja

)

p={i—Dp+tlm=(ji—1)g+1

HM\

i=1j

X

X f f ]E{|X§,l;—Xfi_l)pa,(j,l)qu}docdﬁdudv.
efufe]l elv/el

Decomposing X§ 5 — X - 1)pe.(j- 1)4: into the sum of the increments of X® over the
rectangles:

[((l - 1)p8’(] - l)qs),(a,ﬁ)], [((l - 1)[)8,0), (OC,(j - 1)q8)]

and

[(0,(j — D)ge), (i — Dpe, B)]
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the areas of which are all less than C(s, t)/N, we get easily that:

2N? 1
Ay £ —xN?x(pq)*e* M*C(s, f)—l\‘,X et
€

C(s, t)

= (14

IIA

Using independence in 4, and |Z|> £ M we get that:

;oS WARACY)

m—-1)e (n—1)¢ aF ' (u,)
2}

2N2
rows [T Rllf [ rap
i, j,m,n (m—1)e (m—1)s J(uv)
2
}dudv

because of Cauchy-Schwarz inequality. One can write X35 — X6 1ypei-1)qs
= A1(X°®) + 45(X°) + A3(x") — 44(X?) where the 4;(X*)’s are the increments of
X over the rectangles R; defined by:

Ry = [(e[o/e], e[ B/e], (o, B)],

Ry = [((i = 1)pe,0), (%, e[ f/e])]

R3 =[(0,(j — 1)gs,(e[w/e], B)]

Ry = [(( = Dpe,(j — 1)ge), (e[a/e], e[ B/e])].
See Fig. 2. We have:

g }

For r = 1 we use Cauchy-Schwarz inequality and the fact that |Fé(«, 8)|* < M*:

IE{ [ ] Fap)a,(x*)dudp 2}

475 (u,v)

2N?
4,275 ¥ ME {

ij,m,n

X (X85 — X 1ypej-1)ge)dodf dudy

X(X%p — Xli-1ype(j-1)ge) dxdf

f 1/ Fa(oc,ﬂ)(Xi,ﬁ X 1)ype,(j— l)qe)dadﬁ

45 (4,0)

g4i IE{ I [ F(ep)A(X*)dadp 2}.

r=1 EETORY)

< M? Area(4F;(u, v))f f E{|4,(X®)|*dodp

J(u v)
< M?*(Area(4};(u, v))* C(S, T)e?
< M?(pge*)* C(S, T)&?

2

<C(S T
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jae

¢[fie)

(G-1qp

efode]

Fig. 2. llustration for the rectangular domains R1 = R, R2=R,, R3 =R, and R4 =R,

For r=2, 3 and 4 we decompose A}7 (u,v) into rectangles where F*(a, f§) is
constant (i.e. independent of («, 8)). Their areas are &* except for the right most or
upper most rectangles for which it is less than &2, The independence between
F*(a, B) and 4,(X°) combined with the facts that the number of rectangles is at
most pg and that Area(R,) is not greater than C(S, T')/N we get:

g

[ ] Fo, B)4,(X*)dadp

4i75 (w,0)

2
1
} < M2C(S, T)><Npqs4

2

€
< C(S, T)F'
Putting these two estimates together we have:
SN2 g2 g2
Ay £ X NZx(pg)M?*e* x 82<Nz + 3F>

C(S, T)

<
- N

Consequently the fourth term is less than C(S,T)/N.

The fifth and last term!!! The values of the function F*(u, v) on the rectangle 4;; are
independent of A2 ;(u, v) (X ?) and A7 ;(u, v)(X*). Consequently, the fifth term is less

than:
|

Decomposing 4;; and using again the independence, this last quantity is shown to
be less than:

S [ F(u, 0) (43 (u, 0)(X ) + A7 (u, v)(X 7)) dudv
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MZ ¢ iq
— X ) S o2 [ [ (B4R
& i=1j=1n=(@G-— 1)p+1m=(j—l)q+1 m-1e(n—1)¢
+ E{|(42,(X°))*}) dudv
<C(S T)iN2 84><—1~
= )z Pq N
<C(S T)xi
= 5 N
End of the proof of Lemma 2.1. The five estimates proved above give:
N ko Cy(S, T
E{YER) S Cu(s Txn 3 Y BV + T

and given the fact that Y3} = Y‘Sf: =0, Gronwall’s inequality gives:

C(S, T)

max E{|Y;}[*} < N

N
N

TANA
IIATIA

k
3

=

This completes the proof of Lemma 2.1. [J

We now describe the limiting behavior in distribution, for N fixed and ¢ \ 0, of
the vector { X§2;k,# =0, ..., N}. The proof of the following result is elementary.
We give it for the sake of completeness.

Lemma 2.2 For each fixed N = 1 the random vector {Xy3; k, £=0,..., N}
converges in distribution when & tends to O to the distribution of the random vector
(X8, k t=0,..., N} defined by X§ ,= Xt o=1 and:

G ST~
Ak{(X )—UAkf(I/V)Xk 1,0-1+— sz 1,61
4N
fork, ¢ =1,2,...,N. Here {W,;;0<s<S,0< 1< T} is a standard Brownian

sheet. We use the notation Ak,,(X:N) = )?kN/ — )?,ILM - )Z'kN,;_l + XkN~1,f—1- Also,
Ay (W) denotes the rectangular increment of the Brownian sheet over [((k — 1)S/N,
(£ — DT/N), (kS/N,{T/N)].

Proof. By Definition 2.1 one has X575 = X5§ = 1 and:
{(Xi};1SkSN,1</<N}
1
= @({—f [ Fé(u,v)dudy; 1<k<N,1</< N},szpq>
€

A,

for some continuous function @ from R¥**1 to R™. Since:

<{ [ J F(u,v)dudy, 1<k<N1</<N} szpq>

Ak,

converges in distribution, as ¢ tends to 0 to:

ST
<{°"Ak,z(W); 1<k<N,1g¢< N}’W>
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one concludes that {X re; 1Sk<N,1<¢<N} converges in distribution to

D({cd (W) 1<k<N, L < ¢ < N}, 3%y with initial conditions 1. But this is
nothing but the sequence X 1 P defined in the statement of the lemma. O

Definition 2.2 For every (s, t) in [0, S] x [0, T'] we define Xs,, by:
XY = XYy
' =105

Lemma 2.3 If X, is defined by (5), then we have:

C(S,
sup E{IXY - X, ) 5 < =k

s
T
Proof. We first define the ollowing rectangles:

=00 ([5]v [ 7))
AYt = —<
w=[o[7]5) (5]

With these notations we have:

0
0

YI/\ Il/\
IIA ||/\

I~

XY =1+ AN(XY) + ZA (XM

r=

and
[sN/S1[tN/T]

Aiv,t(XN)= Z Z Ak,/(XN)

k=1 ¢=1

ZZ<UAkf(W)Xk 1e-1+ 4N2Xk 1,6-1

k

=of [ XV qu,,+ ffo,VUdudv
4o

st

For r = 1,2 and 3, the increment 4Y;(X") is 0 by definition of X" and A};". If we
set Y, = X, — X¥,, we have:

2
Wo=0/ quN,,,qu,,,+%ffX,’)’,vdudu
4 ah
2 r t

—offX,,,,dW,,,,—}-(; fqu,,,dudv

0

—affofuqu,,—l— ff Yy, dudv

As st

—I—a/fX,,,,dW,,,,——‘ffX”dudv

AN Ast

st



with 4Y;" = [(0,0), (s, t)]\4Y,. Consequently:
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2 e
} + ZIE{ [ [, dudy
N

2
Ag,y }
2 0.4 2
} 2 IE{ }
Using the martingale property of the stochastic integrals, Cauchy—Schwarz in-

equality in the two other integrals and the facts that E{|X,|*} < C(S, T),
Area(AY,) < ST and Area(4);") £ C(S, T)/N, we get:

E{| Y[} §402]E{

[, dw,,

A

st

,//Xu,vqu,u

N, %
A5%

[ [X,,dudv

N, *
Asvt’

+ 4JZIE{

C'(S, T)
N

C'(S,T)
N

E{| Y5} S CS.T) [ [E{YL.P ) dudo + —2—

aN

st

N t
SC,T) [ [EB{| Y} dudy +
0 0

Finally, a Gronwall type lemma gives:

Cs, T)

wpmmw}< =

0 N
0 T

H/\ II/\
" II/\

which is the desired result. [

3 Convergence of the finite marginals

Proposition 3.1 The finite dimensional marginal distributions of {X:,: 0<s <5,
0 < t < T} converge to the corresponding marginals of the solution {X;,;:0 < s < §,
0<t<T} of Eq. (5)

Proof. We show that this result is a consequence of the technical lemmas we
proved in the previous section. Let d = 1 be a fixed integer and let {z, = (s,, t,);
n=1,...,d} be a finite set of points in [0, S]x [0, T]. We denote by V* the
d-dimensional random vector:

_(lea zz:"‘ﬂXid)'

For each ¢>0 and for n=1,...,d we denote by z&" the point
2% = ([s./(pe)1pe [ ta/(qe) ]1qe) and we define the random vector V% by:
= (X%, ..o, Xign).

With these notations at hand we have:
X5, — X~ =Ape 2 (XF) + Ay ™, 0y, (sm0 2 ¥ (X°) + dpo, &™), (s Ni1(XF).

The area of the first rectangle is not greater than ST/N2. The areas of the second
and the third are not greater than S7T/N. Combined with (8), this gives that:

C(S.T)

B{|X%~— X;, I’} <
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and:
. . C(S, T
E(1ve - ryi7) s O30 (13
where the norm is the L?-norm, ie. ||| = ||+ |z2(ge)- Lemma 2.1 implies that:
2 C(S,T)
E{|[Xion~ — X2Y <2
{ [31.[2] } N
Consequently, if we denote the random vector:
< G X ])
by V*¥ we can write:
(S, T
B (| vy - vy s O (16
For N and (z,, . . ., zz) fixed, one can find an g, > 0 such that for ¢ < ¢, one has:

sl [N ] [l [N s [N ] [ Ve
pel | S [lqel | T |) " "\|pe| | § I'lqe| | T |/)°
These terms are all independent of ¢ because p¢ and ge¢ converge (from below to)

S/N and T/N respectively. This observation together with Lemma 2.2 imply that:
lim Vo = Vy (17)

en0
in distribution where:

V= {XNﬁss_n],[NTtn]; n=1,...,d}={X¥;n=1,2...,d},

if we use Definition 2.2. Finally Lemma 2.3 implies that:

C(S, T
max E{|XY - X_[*} g(—’).
n=1,..., d N
If we use the notation V for the random vector {X, ; n=1,..., d} we obtain:
C(S T)

E{|Vw—VI*}s—— (18)

Putting together the estimates (15), (16) and (18) and the convergence (17) gives:
lim Ve=V

eN 0

in distribution and this completes the proof. [

4 Tightness

As explained in the introduction, we need to prove first an estimate which will be
needed in the proof of the tightness estimate (7).
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Proposition 4.1 There exists a finite constant C = C(S, T) depending only upon
S and T such that:

H;, = sup E{|X:[*} £C(S,T)
0 =85,0 T

s USIS

for every 0 < e < 1.
Proof. Let us use the notation u for e[ u/e] and let us also set

Hso= sup IE{lXu o143

0
0

IV\ II/\
Il/\ II/\

We first observe that:
E{| X5} = {1+ dio(X?)|*} £ 4+ 4E{|dp0.5(X°)*}. (19)
But coming back to the equation X* is a solution of we get:

1 s 1
A[O,Z](X£)=Ef [F(u,v) X5, dudp
0 0
1 i t
T / st(”’ V) Aiw, ), @y (X ) dudv
0

+

| =

s t
[ [F(u,0)(X5,, + X5, — X3,,) dudy
0 0

(20)

so that, if we use the notation 4 = Ay, ), @,n; WE get:

4}_11E{<stfsft| flu, v)1? | A(X? )izdudv>7}
2M4]E{ 2}

—M4fsflIE{|4(X8)|4}dudv.

]E{ ifsftFa(u v)A(X%)dudv

0

I]/\

J 14X P dudo

0 0

IIA

On the other hand, we also have:

u v 4
E(4(X) = 5| ] FFp)xe }
S a0 =0t M [ (100 ddp

<Mt [ [H,dudp

< e MUHS,
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t z=(s,t)

e+

N
i
—~
le
|~

3

«

Fig. 3. Example of decomposition of the rectangle [0, z]

so that:

")

which takes care of the first term in (20). For the second term we remark that
F*(u, v) is independent of Y5, = X3, + X5, — X, In order to use martingale
inequalities we decompose-the rectangle [0, z] in the form:

[0,z =10,2] + [z z] + [(0, 1), (5. £)] + [(5 0), (5, £)]

as shown in Fig. 3.
4 1 4
-5 f

Then
1

—=E

g {

Using Burkhélder inequality for discrete two-parameter martingales, this last

expectation is bounded from above by:

bk

14 {(Z?JZM
EH > |

StM4 ek

;286 f 7 E{|Y:,|[*} dudv

£ ek—1) e¢—1)

lf [ Fi(u,v)A(X*)dudv
€9 o

4 53[3 s 1
4 4 &
}§8—4st OfOfHu,Ududv

t

<ST*M* [ [HE,dudv 21)
o 0

Is/e] ftie) ek &

¥z, | [ Yi,dudv

k=1¢s=1 gk—1) &(/—1)

st
[ [ Fi(u,0) Y, dudy

o 0

™

ek

f [ Yi,dudv

ek—1) e&£—1)

ek 2
[ [ Yi.,dudv

gk—1) es—1)

7N

A

86

<MY [ [ 4E{XL)

k ¢ ek—1) ez—1)

+ E{|X:,1*} + E{X},I*})dudv
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ek &l
S12stMA Yy f [ H:,dudv

k ¢ ek—1) &¢/—1)

s
< 12stM* [ [ HE, dudv
0 0

st
<128TM* [ [ HS,dudv. 22)
0 0

For the second rectangle [z, z] we have:

1

st
S [F¥u,v) Y:  dudv
st

4 M4 s 1
} <M 92— 0t [ SOV duds

5 t
< 12M*? [ [ HE,dudy
66

s 1
<12M* [ [H:,dudv (23)
[
as long as ¢ < 1. For the third rectangle [(0, t), (s, t)] we have:

N 1

Using Burkhdlder inequality for discrete martingales, this last quantity is not
greater than:

s ¢
S [F(u,v) Y:, dudp
0t

[s/e] ek t

4 1
-2
& k

Y Zigasr f  [Yi,dudy
=1

sk—1) ¢

1 ekt 2\2
‘ZIE{<Z|Zk,[z/s]+1|2 f /Yi,vdudv ) }
é k ek—1) ¢
M4' ek t 4
éT[EJZE{ [ [Yi,dudy }
& Led% 1) i
M4S sk t
S—=Ye— [ [E{Y.,[*}dudv
& & k1)t

s ¢
< 12eM*S [ [HE, dudv
0 ¢

st
S12M*S [ [ HE,dudv (24)
0 0

as long as ¢ < 1. The fourth rectangle is handled in the same way and we get:

1
—E
g {

Putting together (22), (23), (24) and (25) we get:

£

s 1
[ [ Faun Y dudv
s O

4 S T
}g 12M*T [ [ H:, dudp . (25)
o 0

1 s t
Ef S Fe(u,0) (X5, + X5, — X3 ,)dudy
06

a st
}SC(S, T) [ [H:,dudp
g O
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which together with (19), (20) and (21) implies:
E{|X:*) <4+ C(S,T) f ftwadudv,
o 0
and consequently:
H: 24+ C(ST) ffH du dv

and a Gronwall type lemma can be used to conclude the proof. [

We are now in a position to prove the tightness estimate as we announced it in
the introduction.

Proposition 4.2 There exists a finite constant C(S, T} depending only upon S and
T such that

IE{IA[Z,Z'](XE)’4} g C(Sa T)]A[z,z’]|2

foreveryz = (s,t)andz = (s, t')suchthat 0 £ s< s £ Sand 0 £ t < t' < Tand for
every ¢ in (0, 11 and where we used the notation:

|A[z,z’]| = (S, - S)(t, - t) .

Proof. As before u = ¢[u/e] and we shall also denote ¢([u/e] + 1) by &. Generaliz-
ing (20) we get:

1 8¢
A[Z»Z] E / /FE(ua U)A[(g,g),(u,,,)](Xs)dudv
st
1 s
- S P 0) (X + Xiy — Xy )dudo . (26)
s ot

As for (21) we obtain:

I e
#

Using Proposition 3.1 we have:

ffF (u, V) A(X*)dudv

st

4 M4 s
}§8_4lA[Z,Z']l3 S JE{A(X) dudv.

5

E{|A(X*)*) < e*M*H?,, < e*M*C(S, T)

which combined with |4, .4|* £ C(S, T) gives:

gl

For the second term is (26) we decompose 4, ., as in Fig. 4.

Some of the 9 rectangles may be absent for some values of & But we have to
consider them all because they are all present when ¢ is small enough. The
increments over the rectangles A,, A, and 4, are treated as in the case of A4, which
we consider now. Using again the notation Y7 ,= X + X, — X, we have,

1/S‘fF (n, v) A(X*)dudv

4} é C(Sr T)IA[Z,Z']|2 . (27)
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‘ A4 As Al
t | /
A v 4
I
Ao - be
AB —l
t
t / 7 ‘l' Az
A3 A7
s s 1A s’ s

Fig. 4. Decomposition of the rectangle [z, z'] for small ¢
like in (23):

E{‘%f [ Fi(u,v) Y%, ,dudv
41

4
}géAPMV/E“Y ) du do
<1204 M* [ [ HE, dudy
A1

SC(S. T)14: P
S C(S, D) Az (28)

for ¢ £1 because 4; < A, .. The terms corresponding to the rectangles As,
Ae and A4, are treated as in the case of Ag which we consider now. As in (24) using
Burkhdlder inequality for discrete (one parameter) martingales we get:

1 4
IE{ —ffFf,w) Y; ,dudv }
1 [t/e] 5
-2 }
4 ¢=[t/e] +2 s ef—1)
]

Yo Zg:f f Y; ,dudy
“em(s

< ?—:—([t%] — [t/e] = 2) Y (5 -9’

s

[ [ Yi,dudv

s &£—1)

5 el
x [ f E{SY:,|*}dudv

s &/—1)
1
S C(S, T) 5 ([¢/e] — [t/e] — 2% (5 —s)* e
S C(S, T)(e([t'/e] — [t/e] — 2))* (s — s)?

SC(S, T — 1) (5 —9)?
é C(S> T)IA[Z,Z’]IZ . (29)
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discrete two-parameter martingales:
4 }
Is'/s] e ok

IE{Ef/FS(u, v)dudy
:814113{ S Y zu [ [ Vidud

Finally the case of A4, is treated as in (22) by using Burkhoélder inequality for
49
k=[s/e]l+ 2 £={t/e] + 2 sk—1) &¢—1)

|

M4 ‘o t, —t ek el 4
§_4(S S)g )22(82)3 / /' IE{IYE,U }dudv
€ & k¢ ak—1) sz~ 1)

é C(Sa T')|A[z,z’]|2 (30)
Putting (26) through (30) together gives the desired result. [J
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