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Summary. We consider a one-dimensional linear wave equation with a small mean 
zero dissipative field and with the boundary condition imposed by the so-called 
Goursat  problem. In order to observe the effect of the randomness on the solution 
we perform a space-time rescaling and we rewrite the problem in a diffusion 
approximation form for two parameter processes. We prove that the solution 
converges in distribution toward the solution of a two-parameter stochastic differ- 
ential equation which we identify. The diffusion approximation results for one- 
parameter processes are well known and well understood. In fact, the solution of 
the one-parameter analog of the problem we consider here is immediate. Unfortu- 
nately, the situation is much more complicated for two-parameter processes and we 
believe that our result is the first one of its kind. 

Mathematics Subject Classifications (1991)." 60H15 

1 Introduction 

Let us consider the Goursat  problem for the one-dimensional wave equation: 

6~2U ~2 u 
&2 ~x 2 -  ~a(r,x)u 

on the domain defined by z > Ix[ and with the boundary conditions 
u ( z , z ) = u ( - z , z ) = l f o r z > 0 .  

We assume that the field of dissipation a(z, x) is a mean zero random field. We 
are interested in the limiting regime of small dissipation. This is the reason for the 
presence of the small parameter e > 0 .  Setting s ' = z + x ,  t ' = z - x ,  
X(s', t') = u(z, x) and F(s', t') = a(z, x) the problem becomes: 

a2X 
- eV(s ' ,  t ' ) X  (1) &, &' 
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' t ' >  0. The boundary conditions read for (s', t') in the first quadrant s, = 
= ' t ' >  0. We want to observe the fluctuations of the Xs,,o Xo, t , = 1  for all s,  = 

solution (remember that F is centered). To do so we change the scale and we work 
with the new variables s' = s/~ and t' = tie. The partial differential equation can 
now be rewritten in the form: 

OsOt e \~ e l  

with the same boundary conditions X ~ = ~ = o,t X,,o 1. We emphasize the depend- 
ence upon the small parameter e by using the notation X~. t for the solution. Also, we 
shall use the notation: 

and we rewrite the partial differential Eq. (2) as the integral equation: 

X~s,t = 1 + -  f~(u,v)X~,vdudv.  (3) 
~0  0 

We are interested in the limiting behavior of the solution X ~ in the limit e ",~ 0. We 
believe that it is possible to prove the existence and a characterization of a limiting 
process X under fairly general conditions on the field F(s, t). In order to avoid 
technical difficulties we shall restrict ourselves to a particular case. Our goal is to 
prove that results of the diffusion approximation type can be proved for hyperbolic 
partial differential equations and two parameter processes. We do not aim at 
generality for the technicalities of the two parameter stochastic calculus get in the 
way and make the problem extremely difficult. We shall concentrate on a very 
simple model. We choose to work with a random field F of the form: 

F ( s , t ) =  ~ ~ Zk,~ltk_l,k)• ) 
k = l ~ = l  

where { Zk, ~, k > 1, E > 1 } is an independent family of centered identically distrib- 
uted random variables. Again, for the sake of simplicity we shall assume that the 
support of the common distribution is bounded. In other words we assume the 
existence of a positive number M satisfying: 

]Zk, el _--< M, k,~ >_- 1 

almost surely. We shall denote by a 2 the common variance of the Zk, z's. The main 
result of the paper is the following: 

Theorem 1.1 For each S > O  and T > O  the distribution of {X~,t; O - < s - S ,  
0 <- t < T} converges weakly as e "~ 0 on the Banach space C([0, S] x [0, T ] ) o f  real 
valued continuous functions on [0, S] x [0, T] toward the distribution of the unique 
solution {X~,t; 0 <- s <- S; 0 < t <_ T} of the Stratonovich equation: 

dXs, t = aXs, t~ dWs,, (4) 

with the boundary conditions Xo, t = X~,o = 1. Here W~,t is a standard Brownian 
sheet over the positive quadrant. 
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The corresponding problem for one-parameter processes is a simple particular case 
of the classical results going under the name of diffusion-approximation: 

d X  ~ i 
dt - xfge F( t / e )X~  

with the initial condition X~ = 1. Here one could assume that: 

F( t )  = ~ Zkl{k-~,k)(t) 

where {Zk:k > 1 } is an independent family of centered identically distributed 
random variables. Again, we denote the common variance of the Zk's by 0 -2. This 
equation has a unique solution. It is obviously given by the formula: 

X~ = exp - 7  f f ( s / e ) d s  . 
Lx/eo J 

The functional central limit theorem implies that the process 

{ ;  } e-1/2 F(s /e )ds ; t  > 0 
0 

converges in distribution toward a process {aB,; t > 0} where {B,; t > 0} is 
a standard Brownian motion. Since the exponential function is continuous, the 
solution process X ~ converges in distribution toward the process X, = exp[aBt ]  
which is the unique solution of the Stratonovich equation: 

dXt  = ~r X t  ~ dBt 

with the initial condition Xo = 1. In particular {X,; t > 0} will be a continuous 
functional of {Bt; t > 0}. 

This is not the case any longer for two-parameter processes and a straightfor- 
ward generalization of the one parameter case cannot be expected. Indeed, the 
usual characterizations of the limit process as a Markov process of the diffusion 
type or as the solution of a martingale problem are not possible in the case of two 
parameter processes. 

The purpose of the present paper is to prove such a result of the diffusion 
approximation type for two parameter processes. We show that the solution 
X ~ = {X~,t; s, t > 0} converges in distribution to the unique solution X = {X~,,; s, 
t > 0} of the Stratonovich equation: 

dX~,t = aX~.t o dW,, t  (5) 

with the boundary conditions X ( s , O ) =  X ( O , t ) =  1, where W~.t is a standard 
Brownian sheet. The reader is referred to [2] for an account of two parameter 
stochastic calculus. The equation can be equivalently written as an equation in the 
Ito's sense: 

0-2 
dX~,t = ~Xs, t .dWs,~ + ~ X s ,  tdsdt .  (6) 

See [8] and [4] for properties of this equation. The solution of Eq. (6) has been 
called a two parameter diffusion in the literature and this is the reason why we use 
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the terminology diffusion approximation for our result. This solution process has 
been studied in [5]. Its behavior is very different from the behavior of the solution 
X(t) of the one parameter problem. For instance Xs, t may take negative values 
while X(t) is always positive. Nevertheless, the results of [3J imply that Xs,t has 
a smooth density as long as s > 0 and t > 0. 
A possible approach is to look for a solution in the form of an expansion: 

1 s t 

$ t u 1 V l  

- ~ - j J J  ~ J g(ul,vx)g(u2, v2)du2du2duldv I At- . . . . .  . 

The second term converges in distribution to 0-Ws, t but the following terms involve 
multiple integrals and the latter are not continuous functionals on the two para- 
meter Wiener space! In fact the whole solution {Xs, t; s, t > O} is not a continuous 
functional of the Brownian sheet { Ws, t; s, t > 0 }. The difficulty created by this lack 
of continuity is one of the pitfalls of the stochastic calculus with two parameter 
processes. 

The importance of diffusion approximation results is twofold. At the concep- 
tual level, it justifies the use of models involving stochastic partial differential 
equations driven by space time white noise. At the practical level, it gives approx- 
imations to quantities of interest such as the moments of the solutions, say 
m~p(s, t) = ]E{(X~s,t) p} for p __> 1 integer. The latter can be used to infer properties of 
the solution such as location and speed of the wave fronts. Convergence in 
distribution does not imply automatically convergence of the moments. A uniform 
integrability condition has to be satisfied for that to be true. This condition is 
satisfied in the present situation. The moments m~p(s, t) are difficult to compute 
directly when e > 0. On the other hand, in the limiting regime e = 0, Ito's formula 
can be used to compute or estimate the moments rap(S, t). See [5]. For  example, the 
first moment ml (s, t) = IE { X~,t} is easily seen to be a solution of the (deterministic) 
integral equation: 

0.2 s t 

fml(u,v)dudv,  ml(s , t )= 1 + ~  

the solution of which is given by ml (s, t) = f(0.2 st/4) where the function f i s  defined 
by: 

bt k 

f(u) = Z (k~) 2 " 
k = 0  

Our proof is based on the introduction of an intermediate scale 1IN and the 
approximation of Eq. (2) by a finite difference equation. We prove the convergence 
in distribution for this finite difference equation which itself will be an approxima- 
tion of the equation for X~,t. The key estimates will be found in Lemma 2.1 which 
says that we have the right limit and in Proposition 4.2 which gives the necessary 
tightness condition. These estimates are rather technical but we were not able to 
find a simpler proofl Our main result can certainly be extended (without too much 
difficulty) to a nonlinear equation of the type: 

~2Xe 1 F ( S , t  ~ X ~ 
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and presumably to more general random fields F (i.e. more general ergodic random 
fields satisfying various mixing conditions). 

Our proof is divided in two parts: 

1. Proof  of the tightness 
2. Identification of the limit. 

The identification of the limit is done via an approximation by the solution of 
a finite difference equation. The following section contains the various steps of this 
approximation. The last section of the paper is devoted to the proof of the 
tightness. The latter follows from the estimate: 

]E{(z][z,,z2](X~) r ~ C(s  2 -- s 1 )  2 ( t  2 - -  t l )  2 (7) 

for all Zl = (sl, q),  z2 = (s2, t2) such that 0 < sl < s2 < S and 0 < tl < t2 ~ T. 
The constant C may depend upon S and Tbut  is independent ofe. We use (here and 
throughout the paper) the notation Atzl,~2~(X ~) for the increment of X ~ over the 
rectangle [z l ,  z2], namely: 

~ L z l , ~ 2 1 ( x  ~) = ~ . . . . .  Xs~,t2 Xs,,t2 Xs2,t~ + Xs~,t~. 

Note that (7) implies that: 

C(S, T) = sup lE{IAt(,l,t,),(~2,t2)~(X~)l 2 } < oo. (8) 
O<sl <s2 <S,O<=tl <=t2< T 

This uniform boundedness of the second moment plays a crucial role in the 
derivation of several estimates in Sect. 2 and Sect. 3 below. The actual tightness 
estimate (7) will be proved in Sect. 4. We refer to [1] for the fact that (7) implies the 

X ~ �9 0 }  o n  tightness of the laws of { ,,, s, t > the Banach space C([0, S ] x  [0, T]).  
Most of the estimates in this paper contain constants. We use the same letter 

C for these constants, even when the actual numerical values of these constants 
change from line to line. We shall sometimes emphasize the dependence of these 
constants upon parameters such as S and T, but the crucial fact is that the 
constants we use are independent of the small parameter e and the integer 
N defining the intermediate scale. 

2 Approximation by finite difference equations 

We fix an integer N > 1 and define: 

Notice that: 

and q = 

S p < - -  
= Ne 

and 
T q < - -  

= Ng 

and: 

S T  
lim g2 pq = 
e~O 

(9) 

( l o )  



282 R.A. Carmona and J.P. Fouque 

We shall need these two facts in the sequel. We shall study X],t at the points: 

(kpe, fqe) for k , g = 0 , 1 , . . . , N .  

The problem contains 3 scales: 

�9 o r d e r  1: rectangle [0, S ] x  [0, T] 
�9 order -}: rectangles: [((k - 1)pe, (Y - 1)qe), (kpe, lqe)] 
�9 o r d e r  e: rectangles [((n - 1)e, (m - 1)e), (he, me)]. 

We are only interested in the regime e ~ -~ ~ 1. We shall use the notations: 

Ak,e = E ( ( k -  1 ) p e , ( f -  1)qe), (kpe, fqe)] 
and: 

Ak , ~ ( X  ~) = AE((k - x~p~, (~- ~ ) ,  (kp~, ~q~l (X0 

to shorten some of the formulas. Equation (2) implies that, for 1 _< k < N and 
1 < •_< N, one has: 

Ak,~(X ~) = ~ f  f F~(u, v)X~,vdudv 
Ak, l  

A , 

We shall also need the following notations: 

AJ, f iu ,  v) = [ ( ( k  - 1)pe, (f - 1)qe), (u, v)] 

A~,.(u,v) = [ ( ( k -  1)p~,0) ,  ( u , ( ~ -  1)q~)] 

~2,~(u, v) = [ ( 0 , ( ~  - 1)q~), ((k - 1)q~), v)] .  

These domains of the plane are illustrated in Fig. 1. Then we have: 

X ~ _ X  ~ =A~(u,v)(X~)+A~,e(u,v)(X~)+A3,f iu,  v)(X ~) u,v ( k -  1)pe, (f - 1)qe , 

where we used the obvious notation A ~, t(u, v)(X ~) for the increment of the process 
X ~ over the rectangle A/k,e(u, v). Consequently we get: 

A~ r  = ( l_ f f U(u, v)dudvlXTk_,,.~.(,_,)q. 
' \ 5  ~k,I / 

i .'(.,,),.,,,.,.) 
k Ak,~ A ~>#(u, v) 

' ~*k,t(u.v) 

X (X'(c~,  fi) - -  X{k- 1)p~, (~- ,)q~) de dfl du dv 

+ l f f f ~ ( u ,  v)(A2,e(u,v)(X ~) 
g Ak ,~  

3 + At<d(u, v)(X'))dudv. (11) 
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lqc 

v 

(I-t)~ 

A3 
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(k-l)pc 
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Fig. 1. Example of domains A1 1 = A~a(u, v) and A3 = = d k l(u, v), A2 Aaka(U, v) of the plane 

Defini t ion 2.1 The random variables X~,;tJ are defined for  k, d = O, 1 , . . . ,  N induc- 
tively by A~k;J = 1 if  k = 0 or ~' = 0 and 

g,N e,N z,N e,N e,N 
d k , r  ) = X k ,  g - -  X k _ l ,  e - -  X k , ( _  1 + Xk-I,~O-1 

(~f f ) e 2 p q  ~2 e,N 
= F ' ( u , v ) d u d v  X~k'fft e-1 + - - X k - l , e - 1  

a " 4 

for  k, d = l . . . . .  N.  

W e  are in a pos i t ion  to present  the crucial  technical  es t imate  of  this section. 

Lemma 2.1 

IE{fXkp~,tq~ ~,N 2 C - x ~ , ~  I } < ~  

for  k, E = O , . . . ,  N and for  some positive constant C = C(S, T) which depends only 
upon S and T and which is independent of  e and N. 

Proof. Let us define the r a n d o m  vector  { ~,N Yk, e, 0 --~ k --< N;  0 < E < N} by: 

= X kpe ,~q  e - -  X k ,  g, . 

e, N g,N Because of this defini t ion we have Yo,p = Y~,o = 0 and: 

Ak,~(Y~'~) = &,~(XO -- & ,~(X ~'~) 

for 1 < k, f < N. Here  dg,~,(ye,N) represents  the rec tangula r  increment  defined by: 

e,N e, N e,N g, N e,N 
d k , # (  Y ) = Y~k,l - -  Y k - l , ~ - -  Y k , ~ - I  q- Y k - I J - 1 .  
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The latter can be rewritten using (11) and Definition 2.1 in the form: 

3k,e( y~,N) ( l_ f f F~(u,v)dudv~ ~,u 12 2 ~,u = / Y ~ - l ' e - t + ~ e  pq~r Yk-l,l 1 
\ ~ Ak,t 

x (X ~,a - X~k- 1)p~, (z- z)q~) dc~ dfl du dv 

+ i f  f re(u ' v)(A~,~(u, v)(XO + A2,r.(u, v)(Xg)dudv. (12) 
g Ak,f. 

We shaI! use a Gronwai1 type lemma in order to control  1E{{ ~'~ 12 } (which is the 
whole  purpose  of L e m m a  2.1). For  1 < k, f =< N we have: 

k ff 
= Z Y 

i = l j = l  

and consequently we get from (12): 

~:~ [ } < IE F~(u, v) du dv ~,N Yi-l,j- 
i = l j = l \  Aij 

Yi- J , j -  
i j= l  

+IE ~. 2 F~(u,v)f f F'(a, fi)dadfl dudv 
i ~ ( u , v )  

6;g2pq] xX{i-1)pe,(j 1)q~: 2} 

3 o(u,v) 

X (X~,fl -- X~i_ 1)pe,(j- 1)qe) dc~ dfl du dv 2 } 

{ ~I ~=1 !iS (Xe))dudlj2} + IF. F'(u, v)(A2(u, v)(X') + Aa.(u, v) . (13) 
i j 

We estimate the various terms of the right hand side separately. 

First term. Since Y~q,,j_a is independent of the mean zero random variable 

( ~ f f  F*(u,v)dudv],'/the first term is less than or equal to: 
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2 } 
i = 1 j = 1  ( I  e ~,j 

IE ~ 2 Z , ,  IE{I ,.N = , Y ~ - I , j - ~ ? }  
t \ = ( -  )p =( j -  )q i = l j = l  m ~ 1 

k t' 
= Z Z e2pq(721E{l Y'i~1,J -'12} 

i=11=1 

ST(72 k t 
{I Y i - l , ~ - l l  2 } 

i = l j = l  

by using (9). 
Second  term. Cauchy-Schwarz inequality implies that the second term is less than 
or equal to: 

le4p2q2kf ~ ~ ]E{I ~,u 1 S 2 T 2  ~ =~1 Yi_ t.j_ 112 } < IE {I Y~ ~'~l,j-1 12. 
i = l j = l  = 16 N 2 i = l j =  

Third term. Let us introduce the notation: 

Q,5=~f f F~(u,~)f f F'(~,~)d~d~dud~. 

The expectation of Qi~ can be computed by decomposing the integral over A~j in 
a sum of integrals over rectangles of size e2. 

~ -  ~s . [ u / . ]  e [ v l ~ ]  

(7 2 

(72  
= __  e e pq. 

4 

Using the independence of X~i-a)v,.o-1)0~ and F'(u ,  v) in the rectangle Afj we get 
that this third term is less than or equal to: 

(72 ]2 "} 
i=lj=l]t e _ ~ g 2 p q  ~iE{lX{,_x)v~,(j_,)q~12} 

and by using again (8), this is not greater than: 

N 2 C ( S ,  T)IE - ~ e e p q  = N'C(S, r)var(et~) _-< X2C(S, r)n?{IQt,?}. 

Decomposing A ~.~ and A I,~ into rectangles of sizes e 2 we get: 

= E 2  6 q 2 q O],l 4n_im~=lZm,n"]-82 Z ~ ~ Zm,nZi, J 
- = n = l m = l i = l , i ~ m j = l , j = ~ n  



286 R.A. Carmona and J.P. Fouque 

which is less than A1 + -'42 with: 

which shows that: 

]E{IQI,II }__~]~ i ~..~=lm~=lgra,n -~- 2d*]E ~ ~_, 
n n = l  m = l  i = l , i ~ m j = l , j ~ n  

Using the independence and the uniform boundedness of the Zm..'s the second term 
can easily be bounded from above and we get: 

IQI,ll } =< ~4M4(pq) 2 + 2 

and hence, the third term is less than or equal to a quantity of the form C(S, T)/N z 

The fourth term. Using Cauchy-Schwarz once more one sees that this fourth term 
is less than or equal to: 

F~(a, fl)( X~: - X~i_ l)p~,(j_ :oq~)do~dfl dudv 
) 

and 

2N2 k ~' { ~ = 1  ]E zip zJq 
A1 =-7- i=  j=l n=(i-1)p+lm=(j-1)q+l 

7 -  / J  '} f Z2n,m M e  _ _  e x f Z2n,m ( ~,fl X(i-1)pe,(j-t)q~)do:dfidudv 
( n - 1 ) e  ( m - 1 ) e  e[ule] e[v/e] 

�9 = j =  L ] n = ( i - 1 ) p + l m = ( j - 1 ) q + l  

7 .} x f Z 2 m f , f  X e - X  e ( ~,~ (i_l)pe,(j_l)qe)do~dfldudv 
(n- 1)~ (m- 1)~ ab)(u.v) 

1" where did(u,v)= A~,g(U,V)\[(e[u/e], e[v/~]),(u,v)]. Using once more Cau- 
chy-Schwarz inequality, both in the summation in (n, m) and in the integral and 
the fact that [Zm,n] 4 < M 4 we get: 

2N 2 k : .y ,.e 
A1 < - 7 -  E E pqEE : m 4  f f 

i = l j = l  n m (n 1)e ( m - 1 ) e  

x f f ~{Ix e~,~-x~,-,,.=,<, ,,,el2}d~d~dudv. 
e[u/e] e[v/e] 

Decomposing X~,p - X{i- ,)pe,(;- ,)qe into the sum of the increments of X ~ over the 
rectangles: 

[ ( ( i -  1 ) p e , ( j  - 1)q~),(a, fi)], [ ( ( i -  1)pe,  O), (a , ( j  - 1)qe)]  

and 

[(o,(j - 1)q~),((i - 1></03 
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the areas of which are all less than C(s, t)/N, we get easily that: 

2N2 x N 2 1 AI <= - - ~  x (pq)2e*M*C(s, t )~  x e4 

< C(s, t) (14) 
N 

Using independence in Aa and IZ[ 2 _<_ M we get that: 

A2 ~ 7 -  2 M2IE f f f F*(~, fl) 
ij,m,n (m-1)~ (n -1 )e  ,~li,[i(u,v) 

X ~ _ 2} 
x(  ~,p X~i-1)p~,(j_l)q~)dadfldudv 

2N2 ~ 1E fi) <~x- Z M2~4 f f ~ f  F~( ~, 
i,j,m,n (n- 1)e (m-  1)e k. ] Ai,*j(u,v) 

X ~ dfl 2} x ( ~,~ - X~i- 1)p,,o- 1)q,) de du dv 

because of Cauchy-Schwarz inequality. One can write X~,p - X{i_ 1)p~,o- 1)~ 
= A t ( X  ~) + A2(X ~) + Aa(x ~) - A4(X ~) where the Aj(X~)'s are the increments of 

X * over the rectangles Rj defined by: 

e l  = [(e[a/e], gift/el, (0~, fl)], 

R 2 = [ ( ( i -  1)pe, O),(~,e[fl/e])] 

R3 = [ ( 0 , ( j -  1)qe,(e[e/e],fi)] 

Re = [ ( ( i -  1)pe , ( j -  1)qe),(e[a/e],e[fl/e])]. 

See Fig. 2. We have: 

f F'(~,~)(Xa,~-X{,-I>p.,~-,>..)d~d~ 
a t v i 5 (  , ) 

<=4~IE f F*(a, fl)A~(X~)dadfl . 
= t I a~:Au,v) 

For r = 1 we use Cauchy-Schwarz inequality and the fact that ]F~(cq/~)12 < M2: 

IF.{ f A,f,~) F~(~'fi)A~(X~)d~dfl 2 } 

M 2 1" 7(ufv ]E nrea(A~d(u, v ) ) f  {IAI(X~)I 2 d~d~ 

<= M2(Area( a~,)(u, v)) 2 C(S, T)e 2 

<= Mi(pq~2) ~ C(S, r)~ ~ 

g2 

< C(S, T)N~.  
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(j-1)c 

R3 RI iiiiiiii77{iiT{777iiTii{ iiii{iiiiTii{iiii}i}iiTi    
(i-i)pc ~t ~ lpc 

Fig. 2. Illustration for the rectangular domains R1 = R~, R2 = R 2 ,  R3 = R 3 and R4 = R 4 

1 * For  r =  2, 3 and 4 we decompose  Ai,7(u,v) into rectangles where F~(e, fl) is 
constant  (i.e. independent  of (e, fl)). Their  areas are e 2 except for the right mos t  or 
upper  mos t  rectangles for which it is less than  e 2. The independence between 
F~(c~, fl) and A,(X ~) combined  with the facts that  the number  of rectangles is at 
most  pq and that  Area(R,)  is not  greater  than  C(S, T) /N we get: 

2} 1 4 
f l f  F~(~,fi)A.(Xgdc~dfi < MaC(S'T)x~ pqe 

ai0(u,v) 

8 2 
< c(s, T ) ~ .  

Put t ing  these two est imates together  we have: 

t~2  g2 ) 8N2 N 2 e 2 3 ~ 5  A2 < 8~ x x(pq)m 2e2x ~ +  

<= c(s, T) 
N 

Consequent ly  the fourth te rm is less than  C(S, T)/N. 

Thefifth and last term!N The values of the function F"(u, v) on the rectangle A u are 
independent  of AZj(u, v ) ( X  ~) and A{, j(u, v ) (X ' ) .  Consequently,  the fifth term is less 
than: 

Ii7 F'(u, v)(A~i(u, v)(X') + A?j(u, v)(X'))dudv . 
i= l j= l  L] Aij 

Decompos ing  A u and using again the independence, this last quant i ty  is shown to 
be less than: 
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82 i = l j = l n = ( i - 1 ) p + l m = ( J - 1 ) q  +1 ( m - 1 ) e ( n - 1 ) g  

+ IE {l(A~j(X')l)2})dudv 

1 < c(s, T)x~. 

End of the proof of Lemma 2.1. The five est imates p roved  above  give: 

1 k k C2(S, T) 
~.~2 __~, j=l E{I ,.N Yi-l,j-11 z} + - -  E{IY~,.I } _-< Cl(S, T)• 

N 

and given the fact that  Y~:~ = Y~,~ = 0, Gronwal l ' s  inequali ty gives: 

max  ]E{] *k.r 2~] =< C(S, T) 
l <_k<_N N 
I <_d<_N 

This completes  the p roof  of  L e m m a  2.1. [] 

We now describe the limiting behavior  in distribution, for N fixed and e ",~ 0, of  
the vector  {X~,~J; k, f = 0 . . . . .  N}. The  p roof  of  the following result is elementary.  
We give it for the sake of completeness.  

g, N L e m m a  2.2 For each fixed N > 1 the random vector {Xk,e, k, Y = 0 . . . . .  N} 
converges in distribution when ~ tends to 0 to the distribution of the random vector 

~ N  ~ N  ~ N  {Xk,~; k, f = 0 . . . . .  N} defined by Xo,e = Xk, O = 1 and: 

A k,~,()7~ N) ~N 0"2 STuN 
-'~ 0 " A k , d ( W ) X k - l , e -  1 -t- W~- ~ k - l , d - 1  

for k, f = 1, 2 , . . . ,  N. Here { W,,,; 0 <_ s <_ S, 0 <_ t < T} is a standard Brownian 
sheet. We use the notation Ak,e(X N) ~N ~N -N = Xk,~ -- X~-l,e -- Xk , t - ,  + Xk- l ,~- l .  Also, 
Ak,e( W) denotes the rectangular increment of the Brownian sheet over [((k - 1)S/N, 
( f  -- 1)T/N), (kS/N, f T / N ) ] .  

e,N e,N Proof. By Definit ion 2.1 one has Xo,e = Xk,O = 1 and: 
e,N.  {Xk,:, l <-k<_N,l  <_f <_N} 

= ~ b ( f ~ f  f F~(u,v)dudv; l <-k<-N, l  <-f <-N},~2pq ) 
v Ak,d 

for some cont inuous function �9 f rom IR u~ + 1 to IR N~. Since: 

(f l f f F~(u,v)dudv; l < k < N , l  <_f <_N},e2pq) 
�9 ,. Ak,d 

converges  in distribution, as e tends to 0 to: 

N S T \  {aAk,r 1 _< k _< N, 1 _< f _< ),~| / 
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e,N one concludes that { X k , f ;  1 -< k ___ N, 1 -< ~ _< N} converges in distribution to 
�9 ({0-Ak,e(W); 1 < k < N, 1 < f < N}, ST . . . .  ~ )  with initial conditions 1. But this is ~~- 
nothing but the sequence Xk,~ defined in the statement of the lemma. [] 

Definition 2.2 For every (s, t) in [0, S] x [0, T ]  we define X N by: s , t  

X~,~ ~ = sN t N  �9 

Lemma 2.3 I f  X.,t is defined by (5), then we have: 

sup ~ { I x ~ , -  Xs.I ~} _-< c(s, T) 
o_<s_<s N 
o_<t<_r 

Proof. We first define the following rectangles: 

= [(0, o), ([sN]s_ 

r<_.) ] N~ L 7" j N ,(s, t) 

tN T ._ . _,,,,-,~ O, 

With these notations we have: 

3 

X~t = 1 + Aut(x N) + Z AUsf(xu) 
r = l  

and 
[sN/S] [tN/T] 

A N ~XN~ 
k=l f=l 

0-2 ST ~N 

0-2 f f Y~ dudv. = 0-f f X.N,.dW.,. + .. a -u,. 

For  r = 1, 2 and 3, the increment AN"tX N'~ is 0 by definition of X N and A~NI r If we s,t \ ! 
I7 N set Y~,t = X s , , -  Xs,t, we have: 

2 

N a-f f X~.dudv Y ~ , = a f  f xu,vdW., .+ 

t 0-2 r t 

o; + i i 
= , Y~,v du dv a f  f Y ~ v d W u v + ~  ~,,~ 

~4 s,~ 

0-2 

+ o f  f x . , . d W . , . - - w f  s 
AsN, t ,* as,~ * 
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with A~;* = [(0, 0), (s, t)J \A~t. Consequently: 

{/. 'I E{IY~,IZ}=<4azE f r;~. + IE f fNu  
s , t  A s , t  f l  

' 

Using the martingale property of the stochastic integrals, Cauchy-Schwarz in- 
equality in the two other integrals and the facts that IE{IX.J 2} < C(S, T), 

N* Area(A~) __< S T a n d  Area(A~,; ) < C(S, T)/N, we get: 

IE{IY~tI2} < C ( S ' T ) f  -~iE Y~,~I ~ 2 }dudv+~C'(X'T) 
s , t  

i ) c(,,. <=C(S,T)  ~ { I Y L ? } d u d v  + - -  
o o N 

Finally, a Gronwall type lemma gives: 

yN 2~ < C(S, T) 
sup IE{I .,, ~ = 

o~_s<_S N 
O < ~ t < _ T  

which is the desired result. [] 

3 Convergence of  the finite marginals 

Proposition 3.1 The finite dimensional marginal distributions of { X~,t: 0 <- s <- S, 
0 <- t <_ T} converge to the corresponding marginals of the solution {Xs,t: 0 _< s _< S, 
0 <_ t <_ T} of Eq. (5). 

Proof We show that this result is a consequence of the technical lemmas we 
proved in the previous section. Let d > 1 be a fixed integer and let {z, = (s,, t,); 
n = 1 . . . . .  d} be a finite set of points in [0, S] x [-0, T]. We denote by V ~ the 
d-dimensional random vector: 

v ~ = ( x  ~ x ~ x ~ ) 

~,N the For  each e > 0  and for n =  1 , . . . , d ,  we denote by z, 
~,N z, = ([s~/(p~)Jp~, [t,/(qe)]qe) and we define the random vector V} by: 

point 

v~ = (xi~;,,,  . . . , x ia.  ~).  

With these notations at hand we have: 

N = A ,N ~,~ X ~ N), X ~ - . .  X,,,  at,.- ,, z.l(X~) + ,  t(s~ ,o),(s.,,. )~( )+At(o, ,~ %'~,,.)1(X~). 

The area of the first rectangle is not greater than ST/N:. The areas of the second 
and the third are not greater than ST/N. Combined with (8), this gives that: 

C(S, T) 
IE{ IX~' " - X'z. 2~. =< - - N  
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and: 

RE{]l V ~ -  V~vll 2} < C(S, T) (15) 
= N 

where the n o r m  is the L2-norm,  i.e. II-II : II. IILz<Rd)- L e m m a  2.1 implies that: 

IE Xz~,N -- X ' s  ~ < 
[ ~ ] , [ ~ ]  = N 

Consequently,  if we denote the r a n d o m  vector: 

x ~N [ ~ 3  x ', t , , . . . .  [ ~ ] ,  

by V ~'~v we can write: 

E {  II V~ - V g'u I[ ~} < C(S, T) (16) 
= N 

For  N and ( q , . . . ,  za) fixed, one can find an eo > 0 such that  for e < e0 one has: 

. . . . .  ( [ a ]  �9 

These terms are all independent  of e because pe and qe converge (from below to) 
SIN and TIN respectively. This observat ion  together  with L e m m a  2.2 imply that: 

lira V ~'u = VN (17) 
eNO 

in distr ibution where: 

j~N 
{ z.; n = 1, 2, a} NSn N t n  ~ . . . ~ �9 . . , V u = {  [ ~ _ ] , [ ~ _ ]  n =  1, d } =  X zv 

if we use Definit ion 2.2. Finally L e m m a  2.3 implies that: 

max  1E{ X N - X  2 C(S,T)  f . . . .  I } _ -  < 
n = l  . . . . .  d N 

If  we use the no ta t ion  V for the r a n d o m  vector  {Xz,; n = 1 , . . . ,  d} we obtain: 

IE{ [I Vu -- VII 2 } < C(S,T) (18) 
= N 

Put t ing together  the est imates (15), (16) and (18) and the convergence (17) gives: 

lim V ~ = V 
g ' ~ O  

in distr ibution and this completes  the proof.  [] 

4 Tightness 

As explained in the introduct ion,  we need to prove  first an est imate which will be 
needed in the p roo f  of the tightness est imate (7). 
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Propos i t ion  4.1 There exists a finite constant C = C(S, T) depending only upon 
S and T such that: 

H],~ sup IE{ = '* = IXs,,l } < c ( s ,  T) 
O < s < S , O < _ t < T  

for every 0 < e < 1. 

Proof. Let  us use the no t a t i on  _u for e[u/e] and  let us also set 

H ] , ~ =  sup ~ f I X  = 14~ k l  U,Pi ) "  
O ~ u ~ s  
O ~ v s  

W e  first observe that:  

IE ~ IX ~ 4~ = = ~, s,, ~ lE{l l  + Aro,=l(X~)l 4) < 4 + 41E{IAlo,z~(Xg]4}. (19) 

But coming  back  to the equa t ion  X = is a solut ion of we get: 
1 s t 

AE~ = e 

t t 

i / /F ' (u ,v ) I I<u,~ , , ( . , . , l (X=)dudv  
I 

!/] + f=(u ,  v ) ( x I , ~  + x ~=,_~ - X~,Odudv 

(20) 

so that ,  if we use the no t a t i on  A_ = Al~,v), ~,,,v)l we get: 

/ ) 

='-'==" 
<= e~---lE IA_ (X=)12 dudv 

0 0 

S 3 t 3  s t 
_ _ M  4 < e4 f f~{lA_(X=)14}dudv. 

0 0 

O n  the o ther  hand,  we also have: 

1 IF, ffF=(=,fi)X=(~,fl)&dfl �9 {IA_(XOl*} = ~  . v 

___< (u u_)~(v v_)~M ~ f ~ {  = ~ - - Ix~,el } d ~ d f i  
u__ v_ 

< e 2 M 4 f I-I G d~ cl~ 
u v_ 

4M4 ~/e 
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m=(a,L) 

z*(s,t) 

Fig. 3. Example of decomposition of the rectangle [0, z] 

so that: 

t 4 } S 3 t 3 ) 

~" 0 0 -- ~ ~,4 0 0 

_ H e < S 3TAM4 f .,v dudv (21) 
0 0 

which takes care of the first term in (20). For the second term we remark that 
Fe(u, v) is independent of Y~,v = X;,~ + X~,,~_ - X~,~. In order to use martingale 
inequalities we decompose the rectangle [0, z] in the form: 

[o, z]  = [o, z]  + [z, z]  + [(o,_t), (s~ t)]  + [(s_, o), (s,_t)] 

as shown in Fig. 3. 
Then 

7 g  o o ' g ) ) t ' = l  

Using Burkh61der inequality for discrete two-parameter martingales, this last 
expectation is bounded from above by: 

l iE  2 )k 2 2  

< 7 ~  ~ IE f f 
e ( k -  I)  e ( g -  I )  

S t M  4 ~ & ~e' 
= < ~ - - L Z G  6 f f IE{IY ~,~ 4~dudv, 

k ~ e ( k -  1) ~(d'- 1) 

ek eg 

k I e(k- 1) e ( g -  1) 

+ m{IXL~l 4} + ]E{ lX~,~14})dudv 
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ek ~d 

< 12sti4 Z•  f f H~,,vdudv 
k d e ( k - l )  e ( d - 1 )  

s t 

< 12stM 4 f fH~.,vdudv 
0 0 

t H  e 
< 1 2 S T M  4 f . , ~ d u d v .  ( 2 2 )  

o o 

For the second rectangle [z, z-] we have: 

lIE f fU(u,v) Y~,.dudv < s~3(t 0 3 fE{lY~ivl4}dudv 
s , ' = 7  ( s -  - ' 

S t 

;' 
< 12M% 2 fH~,,dudv 

0 0 

s t 

< 1 2 / 4  f f H~,,, du dv (23) 
0 0 

as long as e < 1. For the third rectangle [(0,_t), (s_, t)] we have: 

vIE f f U(u,v) Y~ dudv = IE 
t k e(k- 1) 

Using Burkh61der inequality for discrete martingales, this last quantity is not 
greater than: 

e(k_l)  f Y ~ ' v d b l d l )  ) ~ 

<= g4 IF. f Y~.,v du dv 
e(k- 1) t 

< •-e - 0  3 f EgJY" 4~dudv = [ I U,V .I 
e(k- 1) t 

s t 

<= 12gM*S f f H~.,odudv 
0 t 

< 12M4S f )H:,~dudv (24) 
0 0 

as long as e __< 1. The fourth rectangle is handled in the same way and we get: 

7~IE -F* < 12M4T f f Hu,vdudv (25) 
(u,v) , = 0 0 " 

Putting together (22), (23), (24) and (25) we get: 

{lj, "t " IF. f F~(u,v)(X~,.+ X ~ -X~,~)dudv <C(S,T) f f H~.dudv lt,v _,_ 
g O  0 - - 0 0 
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which together with (19), (20) and (21) implies: 

IE'f ~ s,~ 4~ < 4 + C(S, = f H~,~dudv,  
0 0 

and consequently: 

R.A. Carmona and J.P. Fouque 

t 

H~,, <= 4 + C(S, T) f H~,~dudv 
0 0 

and a Gronwal l  type lemma can be used to conclude the proof. [] 

We are now in a position to prove the tightness estimate as we announced  it in 
the introduction. 

Proposition 4.2 There exists a finite constant C(S, T) depending only upon S and 
T such that 

�9 {14=,=,~(x~)l 4) _< c ( s ,  T)i4=,=,jl 2 

for  every z = (s, t) and z' = (s', t') such that 0 <= s < s' <= S and 0 <= t < t' < T and for  
every ~ in (0, 1] and where we used the notation: 

14=,='11 = (s' - s ) ( t '  - t ) .  

Proof. As before _u = e[u/~] and we shall also denote ~([u/~] + 1) by ~. Generaliz- 
ing (20) we get: 

8' t '  

Ac='z'~( X~ ) =  - e s f , f  F~(u' v) At("'v)'("'"~J( X ~ ) d u d v  - -  

+ - F~(u, v)(X~,~ + X~,~ - X~ ,~)dudv .  (26) 
~ s  t . . . .  

As for (21) we obtain: 

1 (1 s' ~' (X~) dudv 4~ M 4 s" t" 

Using Proposi t ion  3.1 we have: 

41~/[ 4 H e IE{Id_(X~)I 4} <= ~ -.- --,,,o <--_ e4M4C( S, T) 

A 2 which combined with ] L~,z'l] =< C(S, T)  gives: 

lE . F ~ ( u , v ) d ( X ~ ) d ~ d v  <= C(S,  r)14=,=,~l 2. (27) 
[ S s  t 

For  the second term is (26) we decompose Atz,~,l as in Fig. 4. 
Some of the 9 rectangles m a y  be absent for some values of ~. But we have to 

consider them all because they are all present when e is small enough. The 
increments over the rectangles A z, A 3 and A4 are treated as in the case of A ~ which 
we consider now. Using again the notat ion Y~ = ~ ~ - ~,~ X~,~ + X,,~ X,,~ we have, 
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t '  
\ r 

t 

A 8  _ _  b 

/" l 
A3 " A? 

:5 s .~' S'  

~~  62 

Fig. 4. Decomposition of the rectangle [z, z'] for small 

like in (23): 

IE F~(u,v) Y~,~dudv < T l A l l 3 M 4  f f lE{IY~,vl4}dudv 
A At 

<= 12IAllM4 f f gg,vdu& 
At 

< C(S, T)IAll z 

< C(S, T) ~ 2 I Lz,z,~l (28) 
for e =< 1 because A1 c A[z,=,]. The terms corresponding to the rectangles As, 
A 6 and A 7 are treated as in the case of  A a which we consider now. As in (24) using 
Burkh61der inequality for discrete (one parameter) martingales we get: 

IE fa [  F{.,.) Y~., 

1 (i [t'/~] ~ ~l Y ~ v d u d v 4  = 7 I E ~ I  Y', Z~_,ef f , 
(. i d= [ t /~ ]  + 2 s e ( d -  1) ) 

<= e~ lE f Y~,~ du dv 

M 4 
_-< , ,  (E t ' /~ ]  - Et/e-I - 2 ) y , ( ~ -  s)~e ~ 

d 

g ~:d 

x f f lE{gY~,.l*}dudv 
s g & -  1) 

< C(S, T)~(Et'/e] - [t/e] - 2)2(g - s)4e * 

< C(S, T)(e(Et'/e] -- It~el -- 2))2(g - s) 2 

< C(S, T)( t ' - -  t)2(~ - s) 2 

A 2. <= C(S, T)[ [z,~']l (29) 
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Finally the case of A 9 is treated as in (22) by using Burkh61der inequality for 
discrete two-parameter  martingales: 

- zk,  f f r:,odud  
LIk=[s/e]+2g'=[t/e]+2 ~(k- 1) ~(t '-  1) 

M4(s,s)(t , t)  ~k ~e { 4} 
84 82 EE(82)  3 f f IE I Y:,~ dudv 

k ~ E(k--1) e(~--l) 

< C(S, T)lA[z,z,]l 2 (30) 

Putt ing (26) th rough  (30) together gives the desired result. [] 
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