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1 Introduction 

Let u(x), with V �9 u(x) = 0, be an incompressible velocity field in R d, d > 2, 
and let p(t, x) be the density of an additive carried by the flow and dispersing 

diffusively. It satisfies the convection-diffusion equation 

Op 
0 t  + u - V p  = t r ap ,  (!.1) 

with p(0, x) = p0(x) and where ~ is the molecular diffusivity. The density p is 
non negative and we may assume that fpo(x)dx = 1 in which case (1.1) is the 
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Fokker-Plank equation for a diffusing particle satisfying the stochastic differential 
equation 

dx(t) = u(x(t))dt + v / ~ d w ( t ) ,  (1.2) 

with x(0) = x0 and where w(t) is the d-dimensional Brownian motion process. 
A natural question to ask, and the one we consider here, is what happens to the 
density p, or the process x(t), after a long time. This is particularly interesting 
when the velocity field has a repetitive structure as, for example, when it is a 
periodic, an almost periodic or a stationary random function with mean zero. We 
expect then an overall diffusive behavior with an effective diffusion constant. In 
this paper we give sharp conditions on u for this to be the case. 

To state our main result we introduce the stream matrix ~(x) such that 

V .  r = - u ( x ) ,  (1.3) 

which is a skew symmetric matrix and always exists, because u is incompressible 
and has mean zero, but may not be stationary. We assume throughout this paper 
that the velocity field comes from a stationary stream matrix ~ which is square 
integrable and (1.3) is meant in the weak sense. In the periodic case there always 
exists a periodic stream matrix. In the almost periodic or stationary random case 
the stream matrix exists but may not be almost periodic or stationary, respectively. 
In two dimensions the matrix ~ has the form 

( 0 - ~ ( x ) )  (1.4) 
~ ( x )  = ~ (x )  0 

where ~(x) is the usual stream function. In three dimensions, ~ has the form 

/ 0- 3 
~(x) = ~3 0 - . (1.5) 

-~2 V~ 

where @(x) = (~l(x), ~2(x), ~bB(X)) is the vector potential of  the flow u so that 
~7 �9 ~ = X7 x ~b = - u .  In terms of  the stream matrix g:, the convection diffusion 
equation (1.1) can be put into divergence form 

Op(t, x) 
- xT. [(crI + ~(x))Vp(t ,  x)], (1.6) 

Ot 

where I is the identity matrix. Note that the coefficient matrix crl + ~ of this 
parabolic equation is not symmetric. Since we are interested in long time behavior 
we rescale space and time and let 

pn(t, x) = p(n2G nx) 

with n a large parameter tending to infinity. The scaled density p~ satisfies the 
diffusion equation 

Opt(t, x) 
- -  - V .  [(crI + ~P(nx))Vp,(t, x)], (1.7) 

Ot 
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whose coefficients are rapidly oscillating. The initial condition is p~(0,x) = 
po(x) E L2(Ra), which is assumed to be independent of the parameter n. 

The main result in homogenization (periodic, almost periodic or random) 
[20] tells us that if the stationary stream matrix ~(x) is uniformly bounded and 
ergodic then there exists a constant effective diffusivity matrix ~r eff such that if 
t~ satisfies the effective diffusion equation 

O/5(t, X) d eft 02/5( t, X) (1.8) 
Ol -- ~ O-ij OXiO~X- j 

i j = l  

with/5(0, x) = p0(x) then p, --+/5 as n tends to infinity 

sup [ t p~ ( t , x ) -p ( t , x )12dx=O (1.9) lim 
n----~oo 0< t<T JRd 

for any T < oc and with probability one. However, when the stream matrix 
~(x) is stationary and ergodic but unbounded then it is not clear that a diffusion 
approximation holds. The purpose of this paper is to prove the following theorem. 

Theorem 1 Suppose that the stream matrix k~(x) is stationary and ergodic, that 
the diffusivity cr is positive and that Po is in L2(Rd). Then there exists a constant 
effective diffusivity matrix o -eft and the random density p~ converges in the sense 
of(1.9) to/5 satisfying (1.8) if  and only if  

([~-(x)l~) < c~ (1.10) 

where (-) denotes expectation. 

The effective diffusivity matrix o -elf is determined from the solution of a 
cell problem, as in the case of periodic coefficients [4], which is described in 
detail in Sect. 3.4. It is not symmetric in general but in the above theorem only 
its symmetric part enters. It follows from the variational principles described in 
detail in appendix A of [9] that the symmetric part of the effective diffusivity 
matrix is always greater than or equal to a I .  This means that convection always 
enhances the effective diffusivity and for some flows this enhancement can be 
very large. 

To put this theorem in its proper context and to explain its significance we 
provide several remarks. First, the diffusion equation (1.7) is not well defined 
when the stream function is unbounded so part of the theorem is to make sense 
of (1.7}. We work entirely with time independent problems through the Laplace 
transform of (1.7) 

/0 r = e-atpn(t ,x)dt  , A > 0 (1.11) 

which satisfies 

_ ~7. [(~71 + ~P(nx))V/3n (x , A)] + A/3n(x, A) = p0(x), (1.12) 
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for x E R d. Convergence of /~n in L 2, with probability one, to the Laplace 
transform of/5 for each A > 0 implies (1.9). In this paper we will actually work 
with (1.12) over a bounded open set ~ in R ~ with Dirichlet boundary conditions 
and A = 0. All essential calculations are the same I for these two problems. 
Dropping the hat, the Dirichlet problem has the weak form 

J~(a l  + k~(nx))Vpn(x). V~b(x)dx = fs~ p0(x)~b(x)dx (1.13) 

for every test function ~b in C0~((~). One of the first steps in our proof is to 
define (1.13) when ~P is not in L ~ but in L 2 in the sense of (1.10). The case 
of uniformly bounded coefficients that are also uniformly elliptic is covered by 
the usual homogenization results [20], whether they are symmetric or not. The 
case with bounded coefficients in the discrete setting( namely, random walks 
in random environments) was obtained by Kozlov [14] using martingale central 
limit theorems. In the discrete setting, the boundedness assumption is reflected 
in the uniform ellipticity of the transition probabilities. 

Why is the L ~ condition (1.10) necessary and sufficient for diffusive behavior? 
There are shear-flow examples in two dimensions for which condition (1.10) is 
clearly necessary and sufficient as can be seen from explicit computations. The 
examples are due to Matheron and De Marsily [16], who noted the significance 
of condition (1.10), and were studied extensively by Avellaneda and Majda [1]. 
This is all in the context, of stationary stream matrices. In general, the stream 
matrix will have stationary increments (since the flow u is stationary) but will 
not be stationary. For nonstationary g' nondiffusive behavior is to be expected 
although there are no mathematical results to substantiate such behavior. Given 
the shear flow examples, and in the context of  stationary stream matrices, it 
is therefore enough to show that (1.10) implies diffusive behavior. Previous 
attempts to extend the L ~~ homogenization results to unbounded coefficients 
required conditions like (I~Pl p) < ec w i t h p  = 2 + e  , e > 0 for d = 2 or 
p = d for d > 3 which are not sharp, [2], [3], or certain additional regularity 
and growth conditions that are hard to verify [18]. The sharp result proven here 
relies essentially on the minimax variational principles used in [9] for the small 
cr (large Peclet number) analysis of the effective diffusivity. Similar variational 
principles were used to obtain bounds for complex dielectrics by Gibianski and 
Cherkaev [6] and by Milton [17]. A special form of the variational principles 
was also noted by Avellaneda and Majda [2] but it was not used. 

Before reviewing the shear flow examples we note that along with the basic 
Theorem 1 we have a convergence theorem for the Dirichlet problem (1.13), as 
already mentioned, and the following. 

T h e o r e m  2 Let Q(x n) be the probability measures on continuous paths starting at 
x for the process generated by the stochastic differential equation (1.2) with the 
scaling x(t) --~ nx(n2t). Under the hypotheses of Theorem 1 the measures Q(x ~ 

They are more involved for the boundary value problem because of the singular boundary layers 
in the large n limit. 
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converge weakly to the Brownian motion measure with infinitesimal covariance 
matrix 2d efT, in measure relative to the law of  the stationary flow field u and for  
each finite x E R el. 

The convergence of the finite dimensional distributions follows immediately 
from Theorem 1. The tightness of  the measures is proved in Sect. 7 (cf. Theorem 
7.1). 

Let us briefly review the shear flow examples [16] which show that the L 2 

condition (1.10) is sharp. 
In two dimensions let x = (x ,y )  and u(x) = (u(y), 0). Then the convection 

diffusion equation (1.1) becomes 

Op Op 1 ( 0 2 p  02p'~ 

+ u(y)  = i + D-SB)' 
(1.14) 

where we have set ~7 = 1/2 for simplicity, and the stochastic differential equation 
(1.2) becomes 

dx(t) = -u (y ( t ) )d t  + dwa(t) (1.15) 

dy(t) = dw2(t) 

where wl(t)  and w2(t) are independent Brownian motions on R 1, independent 
also of  the random horizontal, zero mean velocity u(y). Assuming that x(0) = 0 
and y (0) = 0 and letting 

F (u(y)u(O)) = R(y)  = eikyR(k)dk (1.16) 
CO 

be the covariance R and power spectral densi ty/ )  of  u we have 

(E{x2(t)})  = t + E{eik(y(s~)-Y(Sz))}R(k)dkdslds2 (1.17) 
Cx~ 

/ o ' f ; #  " = t + e-71s~-s21R(k)dkdslds2 
O 0  

E{y2(t )}  = t 

Here E{} denotes expectation with respect to the Brownian motions and we have 
assumed for simplicity that there exists a continuous power spectral densi ty/ ) .  
From (I.17) we find easily that 

F ] ( E { x 2 ( I ) } )  -- t -t- 4R(k) ~5 - tc~ (1 - e-k2t/2) dk (1.18) 
Cx~ 

so that 

f ]  4k(k) dk /E{x2( t )})~l+  ~ U (1.19) 
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at t tends to infinity, provided the integral is finite. It is also easy to see that the 
integral in (1.19) is finite if and only if the process fY u(s)ds is stationary and 
square integrable. This is the shear flow version of condition (1.10). If on the 
other hand the integral in (1.19) is not finite, when typically R(0) r 0, then after 
a simple computation we have 

1 
SV/~R(0) (1.20) t 3/2 ( E { x 2 ( t ) } )  --+ 3 

This means that we do not have diffusive behavior in the horizontal direction 
since the mean square displacement behaves like t 3/2 for t large. Note that 
/)(0) 7s 0 means that there will be no stationary stream function for the shear 
flow. The large scale (k small) fluctuations in the horizontal velocity are strong 
enough to produce superdiffusive behavior in the mean square horizontal particle 
displacement. 

In several dimensions the square integrability condition can be made more 
explicit by using the spectral representation of the flow u, which is stationary, 
divergence flee and square integrable. There exists a process fi(~) with orthogonal 
increments such that with probability one 

U(X) = fR~ ei~'Xdfi(t~) (1.21) 

where dfi(t~) = dfi(-t~), since u is real, and 

(dbtp(l%)dblq(l~)) = Rpq(Ig)dl% (1.22) 

+ y)uq(y)) = Rpq(X) = ~ ,  e*t~Xkpq(~)d~ 

t~. dfi(~) = 0 (by incompressibility) 

Rpq(X) = Rqp(-X) , [~pq(t~)=/)qp(-~) , p,q = 1, ...,d. 

We assume here that the spectral measure of the covariance has a continuous 
density Rpq (e~) with respect to Lebesgue measure. The stream matrix t~ satisfying 
(1.3) has the spectral representation 

gZpq(X) : ~ e  e'~'x 1 [-it~qd@(t~) +i~pdf*q(t~)] (1.23) ;7 

provided it is square integrable 

(tg,(x)l 2) = Z ( t f l p q ( X ) f f / p q ( X ) )  : 2 ~ ~ [~pp(t~) , a - - ~ a e ~  < oo. (1.24) 
pq p 

Since the flow u is square integrable we have 

(lu(x)12> = f < oc. (1.25) 
JR cl 

p 
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If, for example, the flow u has a spectral density that satisfies for some constant 

C 

C (1.26) 

p 

in the neighborhood of  the origin and a < d - 2 then Theorem 1 tells us that we 
have diffusive behavior. In three dimensions having a bounded power spectral 
density at the origin will suffice but in two and one dimensions it will not. 
Note that in dimensions three or more Theorem 1 is natural and what one wants 
physically. Note also that the L ~ condition on the stream matrix ~ that the usual 
homogenization results demand is quite unnatural. In two dimensions the power 
spectral density must vanish at the origin if we are to have diffusive behavior and 
for shear flows, as we saw above, nondiffusive behavior is more typical. This 
is reminiscent of  wave localization which occurs typically in low dimensions, if 
the random fluctuations are not large. 

When the diffusion equation (1.1) is put into divergence form (1.6) the large 
time or homogenization asymptotic analysis is not sensitive to the dimension 
of  the underlying space because we do not use Sobolev inequalities or other 
dimension-sensitive tools. In Theorems 1 and 2 dimension dependence enters 
only through the passage from the flow u to the stream matrix kP. The most 
natural way to relate these two quantities is the spectral representation (1.23) for 
which L 2 is the natural setting. That is another reason why it is important to 
have homogenization valid with just the L 2 condition (1.10). However, the main 
reason that we have looked at homogenization with unbounded coefficients so 
carefully is the minimax variational principles that we use and the mathematical 
technology around them. They are a powerful tool that may well be the key to 
unraveling multidimensional non-diffusive behavior (cf. [8]). They have already 
proven to be invaluable in the large Peclet number (small or) analysis of  the 
effective diffusivity for two dimensional periodic and random flows with bounded 
stream functions [9], [10]. It is important to note also that diffusion in random 
media is a big subject where many diverse issues arise. For example, we do not 
discuss here flows with nonzero mean or flows that are not incompressible. If  
the random fluctuations about the nonzero mean are small and in addition to 
stationarity we have some mixing then a few results are known [13], even with 
cr = 0. If  the mean velocity is zero and the fluctuations are neither incompressible 
nor gradient fields then diffusive behavior has been proven for dimensions d _> 3 
and for small fluctuations (small Peclet number)[5]. The analytical methods for 
both of  these cases differ substantially from those used in homogenization, and 
in this paper. 

Since homogenization with unbounded coefficients is considered here for 
random incompressible flows it is natural to ask about problems with symmetric 
coefficient matrix in (1.7) that is unbounded. This is considered in detail in 
another paper. It illustrates nicely the use of  variational principles, which in the 
symmetric case are well known. 
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2 Outline of the paper 

The idea of the proof is simple but requires many steps that are technical but 
interesting and in turn shed light on the mathematical structure of the problem 
which is variational in nature. In this section we provide a guide to these issues, 
why and how they are addressed, and give an overall picture of the analysis. 
However, this outline is somewhat extensive too and perhaps hard to follow 
without seeing the calculations. We suggest that the reader browse over this 
section periodically while reading the paper. 

N ~  

When the stream matrix ~P is bounded, both F0~Pn and Fgt in the integral 
form of the equations (3.10) and (3.39), respectively, are bounded operators in 
the Hilbert spaces of L 2 gradient fields. For unbounded k~, they are unbounded 
operators. The first important ingredient of our approach is to remain in the 
Hilbert spaces of L 2 gradient fields and then to seek to define both Fog', and F~P 
densely. This can be accomplished if ~ is square integrable since their domains 
obviously contain all the bounded gradient fields which are dense. By means of 
ithe Friedrichs extension of certain quadratic forms given in terms of F0~P,~ and 
F~P, we introduce the natural Hilbert spaces, H0(gtn, G)  (3.12) or .~g(gt) (3.41), 
for the solutions of the convection-diffusion problem and its cell problems. With 
the symmetrization procedure and the variational principles following from it, the 
existence and uniqueness questions become standard in the new spaces (Theorem 
5.1, 5.2 and 5.4). 

The symmetrization procedure is motivated by a simple observation: Since the 
convection-diffusion equation (1.12) (or (1.13)) has a symmetric part (V �9 crV) 
and a skew symmetric part (V �9 ~PnV), where k0n(x) = k~(nx), it is natural to 
separate the symmetric part ((4.5) for the cell problem, (4.30) for the Dirichlet 
problem) and the skew symmetric part ((4.6) for the cell problem, (4.31) for the 
Dirichlet problem) of the solution by adding and subtracting to it the solution 
of the adjoint problem (4.28)-(4.29 or (4.2) for the cell problem). This way, the 
equations can be written as a symmetric but non-definite system which are the 
Euler equations of a min-max variational principle (4.22), (4.40). Once the Euler 
equation corresponding to the min or the max is solved, the rain-max principle is 
turned into a maximum (4.44), (4.50) or minimum principle (4.43), (4.47). This 
is done in Sect. 4, following a brief review in Sect. 3 of the analytical framework 
for stationary processes that was used in [20] and elsewhere. 

In Sect. 5 we address the n -+ oc or homogenization limit. We would like 
to represent the exact solutions approximately in H d (G) by functions of the 
form (6.10) and (6.11) suggested by the multiple scales expansions (cf. Theorem 
6.1, 6.1). The idea of the proof is to first show the attainability, within arbitrary 
error, of the min-max principle by trial functions of a specific form ((6.12) for 
the minimum principle, (6.13) for the maximum principle). The gap between 
the upper bound and the lower bound provided by the minimum and maximum 
principles respectively is closed by the approximation lemma 6.3. This is basically 
the content of Theorem 6.2 in Sect. 6.1. 
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Because of the ellipticity (or = l > 0), the approximation within arbitrarily 
small error of the exact solutions by (6.12)-(6.13) in H01(~) follows from the 
preceding convergence of functionals ( Theorem 6.2). Since the limiting form 
of the approximations (6.12)-(6.13) is (6.10)-(6.1 1), again by the approximation 
lemma (6.3) Theorems 6.1 and Corollary 6.1 6.2 are natural consequences of 
Theorem 6.2 thanks to the variational structure. 

Since tp is unbounded there are no Nash estimates (cf. [19]) available. We 
have to obtain the tightness of the probability measures from sharp L ~ resolvent 
estimates. This is done in Sect. 7 by noting that the L 2 estimates of Corollary 
6.1 can be strengthened to L ~ in appropriate domains by averaging over the 
ensemble of fluid flows. 

Let us also comment on some of the technical issues in this approach, which 
comprise much of Sect. 6 and 8. 

To use the minimum and the maximum principles, which are nonlocal, we 
have to evaluate accurately the projection operator F0 (3.11) acting on a fast 
oscillatory function. This amounts to solving in terms of approximate correctors 
in H0 ~ ( ~ )  the Poisson equations with large and rapidly oscillating source terms. 
This is the content of Lemmas 8.4 and 8.6 which are technical but straight 
forward energy estimates. An additional difficulty has to do with the boundary 
layers of the Dirichlet problem for large n and is handled by choosing the cut-off 
functions c~n (x) carefully. The resolvent estimates needed to show the tightness of 
the convection-diffusion process are obtained by further averaging the variational 
estimates over the ensemble of velocity fields (Theorem 2, 7.1). 

It is natural to ask why we do not use (6.1 0)-(6.1 1) directly as trial functions? 
The answer is, as explained in Sect. 6.1, that they may not be admissible (that is, 
belong to H0(~n, ~ ) )  unless g' is uniformly bounded. Therefore, it is essential to 
use the trial functions with bounded derivatives and since only the minimal L 2 
assumption is imposed on ~P, some additional strong sublinear growth estimates 
(Lemma 8.2 and 6.1) for the trial functions are necessary for the proofs of Lem- 
mas 8.4 and 8.6. Even when (6.10)-(6.11) do belong to H0(~n, ~ ) ,  the arguments 
of the proofs of Lemma 8.4 and 8.6 would not work because of the lack of strong 
sublinear growth estimates for the exact correctors. This illustrates the natural 
complementarity between the kind of estimates needed for the trial functions to 
make the variational framework work and the kind of assumptions imposed on 
ko: if the latter is uniformly bounded, then the former can be square integrable; if 
the latter is only square integrable, then the former has to be uniformly bounded. 

Going from bounded gt to unbounded but square integrable k~ amounts to the 
transition from bounded operators F0k~n, F ~  to unbounded but densely defined 
operators. To deal with this transition effectively, one needs to work with a 
nice space of trial fields such as bounded gradient fields. This is tractable and 
accomplished in this paper using the variational methods. 
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3 Abst rac t  f r amework  

We begin with a brief review of the framework of stationary processes that is 
used in homogenization [20]. 

3.1 Random stationary stream matrix 

Let ($2, ,.~-, P )  be a probability space and let #(x,  co) be a strictly stationary 
random skew-symmetric matrix of  x E R a such that each element kv o is a L 2 
function 

(Igto(x,-)l 2) < oc, Vi,j ,  (3.1) 

where (.} denotes the average or integral with respect to the measure P.  By 
strict stationarity we mean that the joint distribution of qsij (xl, co), ~Pij (Xz, co), �9 �9 �9 
~Pij(x~, w) for any points Xl, x2, �9 �9 �9 x~ C R d and that of g~ij(Xl+g, w), ~Pij(x2+s co), 
. . . ,gru(x~ + g, co) for any g E R ~ is the same, so the averages in (3.1) are 
independent of x. Without loss of generality (see Doob [7]), we may assume that 
there is a group of  transformations rx, x ~ R ~ from D into D that is one to one 
and preserves the measure P.  That is, rx~-y = ~'x+y and P(rxA) = P(A) for any 
A E , ~ .  We may also suppose that there is a square integrable (w.r.t. P)  matrix 
function ~(w) such that 

0~(x ,  co) = ~(~-_~ co), x ~ R ~ , co E S ? .  

We assume that the group of transformations ~'x is ergodic with respect to the 
probability measure P.  

The random stationary divergence free velocity u which we consider in this 
paper is given by 

- u(x,  w) = ~ .  ~ ( x ,  co). (3.2) 

In dimension two and three, the stream matrix # has the familiar form such as 
(1.4) and (1.5) respectively. 

3.2 Hilbert spaces of stationary functions 

The group of  transformations rx acting on ~? induces a group of operators on the 
Hilbert space of  real-valued functions J ~  = L2(X?, ~- ' ,  P)  with inner product 

~ , ~ )  ~ 0 ~ )  - f P(d~)~(~)~(co), ~,~ ~ 

Here (.} stands for integration over ~2 with respect to P, f~  P(dco).. The group 
of  operators Tx on , ~  is given by 

(Txf)(co) =j2(n-_xco ) , x E R d co E g~2. 
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Since r~ is measure preserving, the operators Tx form a unitary group. Therefore 
they have closed densely defined infinitesimal generators Vi in each direction 
i = 1 ,2 , . . .  ,d with domains ~,. C ..~g. Then, 

0 G  , 
vi  = Ux/ Ix=0 i = l , . . . , d ,  

with differentiation defined in the sense of convergence in , ~  for elements of 
cj/. The closed subset of o ~  

d 

o ~ # l  = ("] ~/ 
i=i 

becomes a Hilbert space with the inner product 

a 

s + Z [  (dco)  2(co) 
i=1 J /2  

The hypothesis that the action of the translation group rx is ergodic on ~ takes 
the following form in o~ :  the only functions in o ~  that are invariant under Tx 
are the constant functions. 

Let Hs(Rd; ~ )  be the space of all stationary random processes f (x ,  co) on 

R d, such that /P(dco)f2(x, co) = const. < oe. Clearly Hs(Rd;3~) is in one- 

to-one correspondence with ~ since it is simply the space of all translates of 
o ~ ,  that i s , f  (x, co) C H,(Rd; o~)ifff(x, co) = Txf(co),f(w) C ~g. Similarly, we 
may identify ~ 1  with the set of mean square differentiable, stationary processes 
H ~ ( R d ; ~ ) .  In particular, if f E H i ,  then its derivatives are also a stationary 
processes and 

V i f  (x, co) - O f ( x ,  cO) __ ~ i f ( x ,  co) 
Oxi 

with equality holding dx x P almost everywhere. Thus, we have H i ( R d ; 3 ~ )  = 
Hs(Rd;~). 

We define also the Hilbert spaces o~f~ and 3~c which correspond to gradient 
fields and curl fields, respectively, 

H a  = { E l ( c o ) C . ~ ,  i = 1 , . . . , d  [ ~ i f j  = ~7jF'i,Vi,j weakly} (3.3) 
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3.3 Weak formulation of the boundary value problem 

Consider the inhomogeneous boundary value problem (1.13) with the fast oscil- 
latory stream matrix tPn(x, a~) = ~P(nx, w) : 

V .  (I + q'n)Vpn = S + V �9 S, in ~ ,  (3.5) 

Pn = 0, on 0 ~ ,  (3.6) 

for inhomogeneous terms s E L2((~), S ~ (L2(C)) d, where ~ is a bounded, 
smooth domain in R d. This is a little more general than (1.13) and, as before, n 
is a large parameter that eventually we let tend to infinity. 

If the stream matrix is bounded 

ess-sup~cs?ltPl < ec, (3.7) 

then there exists a unique pn E Ho 1 ((~) such that 

/r dx (l +g6~)Vp~ . Vd)+ ~ydx  ( s ~ - S .  (3.8) 

for all 0 E H I (~ ) .  The proof follows immediately from the the Lax-Milgram 
Lemma since the first integral in (3.8) defines a bounded coercive quadratic form 
on H01(~). Letting 0 = P~ in (3.8), noting the skew symmetry of On and using 
the Poincare inequality gives the energy bound 

dx Vpn " Vpn ~_ C(1s122(~) +1 (3.9) 

for some constant C. 
For unbounded stream matrices, the matrix I + gtn defines an unbounded 

bilinear form, so the Lax-Milgram Lemma does not work on H 1 ( ~ )  right away. 
To motivate the introduction of the right spaces for this problem we first write 
(3.5) in the integral form 

Vpn + FOk~nVpn = V(A0)- I s  + F0S  (3.10) 

where the projection operator 

F0 -= V ( A 0 ) - I V  �9 (3.11) 

projects square integrable fields to the gradients of Hol(~). The orthogonal pro- 
jection F0 is a bounded operator in the Hilbert space of the gradients of H01 (~) .  
Here (Ao) -1 is the inverse of the Laplacian with zero Dirichlet data on 08 ' .  

The main purpose of the square integrability of t~ is to define the opera- 
tor Fo~n densely in the space of the gradients of Hd ( ~ )  for all n > 0 (see 
Lemma 3.1). Once this is done, the standard Hilbert space theory provides natu- 
rally the Hilbert spaces H0(~n, G)  and Hg(~n, (~) which are defined as follows. 

Ho(~n, ~ )  = {9 E H I ( ~ ) ;  Fo~P,~V9 c (L2(O)) d} (3.12) 
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completed with respect to the norm 

2 I lgl f~o = I Vgl~2(~) + lro~, Vglg2(~) (3.13) 

Clearly, Ho(~n, O) C Ho 1 (0 )  and HOOP,,, ~ )  = H i (O), if ~ is bounded. 
We also introduce the Hilbert space of the gradients of Ho(gt,, 0 )  

Hg(gtn, ~') = {Vg[9 E Ho(gZ,, O)} (3.14) 

endowed with symmetric quadratic form 

~ n ( V f  , Vg) = f~  v f  . Vg+ f (FoO,)*Fog~nVf . Vg (3.15) 

for Vf, Vg E Hg0P~, ~) .  Here ,  denotes the adjoint. 
The spaces H0(gJn, ~ )  and Hg(~Pn, ~ )  are obtained by the Friedrichs' exten- 

sion of the symmetric form 

~ ( V / ,  V g ) :  ; vS" V9 + ~ -r0k~n/~ok~ vS-  Vg, (3.16) 

namely, ~ , .  
Note that since Fogr, is a densely defined, skew symmetric operator in the 

Hilbert space of the gradients of H01(~), the operator (Fo~)*F0~P~ is a posititve 
definite, self-adjoint operator in the Hilbert space of the gradients of Hol(~), by 
Von Neumann's theorem (see [12]). Moreover, 

(P0~.) . . . .  - Fogr~, (Fo~ , , ) *go~ ,  = N0~'~ F0~P~ (3.17) 

in the space of the gradients of H0~(~), for F0 is bounded and symmetric. The 
adjoint matrix k~ 2 = -~Pn. 

The definition of Ho(k~, ~ )  incorporates only partial information of gt~V 9. 
For example, we have no knowledge about the square integrability of g',, Vg for 
9 c H0(k~,, ~) .  

The problem now is to seek p~ E H0(gt~, O), rather than Hl((~), such that 

v+)+f s v+ =o (3.18) 

for all r C Hol(G). At this stage, the integrals in (3.18) at least make sense for 
r ~ H01(~) and pn C Ho(~,  ~) .  But there is no energy estimate that pros p~ 
in HOOP,,, ~ )  since the term with ~P~ drops out of the energy identity. We will 
address the questions of existence and uniqueness in Sect. 4 using the variational 
methods developed in [9]. 

Before ending this section, let us state and prove as a lemma that H0(~,  ~ )  
contains C0~(~) if ~ is square integrable. 

Lemma 3.1 If ]~lL~(s~) < oo, then 

Co~176 c Ho0P,, ~) ,  Vn (3.19) 

for almost all w ff X2. 
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Proof Since I~] 2 is integrable with respect to P(dco), we have 

1 f ~ , d x  ]gtn]2(x, co)-  1 . f  dylgzl2(x, co ) ~ _ ~  JGJ n s j4.ff t ~ 1~'12~(n~ (3.20) 

for almost all co, by ergodicity of P.  That is, for almost all fixed co ff ~2, given 
6 > 0, there exists n0(co, 6) such that, for n > no(w, 6) 

dx ]gt,,12 < 1~1]~5122(n)+6 (3.21) 

and this estimate for [~P, 2 IL2(~.) is uniform in n, for almost all fixed co E ~ .  Clearly 
~P~V~ E (L2(~)) d, for all ~ C Co~(~),  hence Fo~P~X7~ E (L2((~)) s. A simple 
L 2 estimate shows that 

[FOkP~Vg~IL2(~) < [~V~IL2((;, ) < sup [Vg~llk~n]L2(~,) (3.22) 
xC~;' 

So Co~(~)  C Ho(~n, ~ )  C Hol((~) and the Lemma is proved. 

3.4 Abstract cell problem and the effective diffusivity 

Assuming that ~(x, w) is uniformly bounded and stochastically continuous, Pa- 
panicolaou and Varadhan [20] showed that 

(pn(x, .)} -+ r H01((~) weakly (3.23) 

in the limit n ~ oo. Here/5 is the solution of a deterministic variational problem 
with constant coefficients o -e-g 

L dxcre~V f i -V~+s  (3.24) 

for V~b E H0t(~). The matrix cr elf = [ ~ ]  is called the effective diffusivity and 
is determined by solving the abstract cell problem: Find two stationary random 
fields Ei(x, co) and Di(x, co) E (Hsl(Rd;o~)) d, i = 1, ...,d, such that 

Di(x, co) = (I + ~(x, co) ) (Ei(x, co) + e i) (3.25) 

V • Ei(x, co) = 0 (3.26) 

V-  Di (x, co) = 0 (3.27) 

(Ei(x, .)) : 0 (3.28) 

where {e i } is a set of orthonormal vectors in R s and 

cr~ ff = (Di(x, . ) .eJ) ,  i,j = 1, . . . ,d.  (3.29) 

Equations (3.25)-(3.28) translate into the following problem: To find (non- 
stationary) functions Xi(x, co) with stationary square integrable gradients such 
that 
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V .  ((! + ~(x, oJ))(vxi + ei)) = 0 (3.30) 

<V~i) = 0. (3.31) 

The effective diffusivity is then given by 

cr~j ff = 6ij + ((I + gt)VXi . ~) ,  i , j  = 1, ..., d. (3.32) 

We are thus seeking solutions Xi, called correctors, to the convection-diffusion 
equation (3.30) with the normalization condition (3.31). The condition (3.31) can 
be shown to imply a sublinear growth condition on Xi(cf. [20]). The sublinear 
growth of Xi is crucial in the homogenization theory for bounded stream matrices 
[20]. Various sublinear growth conditions will again play an important role in the 
homogenization theory for unbounded stream matrices in tfiis paper(cf, Sect. 8.1, 
8.2). 

The connection between the cell problem of this form (3.30)-(3.31) and ho- 
mogenization as stated in Theorem 1 comes about by the usual multiple scale 
arguments and is formally the same in the random as in the periodic case [4, 20]. 
On physical grounds, (3.30)-(3.31) can be understood as macroscopic concentra- 
tion gradients e ~ that induce through the flow microscopic concentration fluctua- 
tions Xi which in turn lead to enhanced fluxes ( /+  gr by Fourier's law. The 
average of the enhanced flux is the macroscopic diffusivity (3.32). 

When g'(x, co) is strictly stationary as defined in Sect. 3.1, the abstract cell 
problem (3.25)-(3.28) becomes 

fii(co) = (I + ~(a:) ) (El (co) + e i) (3.33) 

x El(co) = 0 (3.34) 

~ "  fii(co) = 0 (3.35) 

(E~(.)) = 0 (3.36) 

whose variational form is to find Ei C ~ g ,  i = 1, ...,d, such that 

Ix? P(dw)(I+ ~(w) )  (El(co)+ei) " F(co) = 0 (3.37) 

for all F(co) ~ "-~v, and 

a f f Y = j [ P ( d c o ) ( I + g ' ( w ) )  ( E i ( w ) + e i ) . e  d, i , j = l , . . . , d .  (3.38) 

By the Lax-Mitgram lemma (3.37) has a unique solution for bounded ~. 
For unbounded stream matrices tff, the abstract cell problem can be put into 

a form parallel to (3.18), namely, to find Ei E o~g(~),  i = 1, ...,d, such that 

for all l~(w) E o~C a. Here 
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F = VA IV. (3.40) 

with V = (V1, ..., Vd) and A = V - V ,  is the orthogonal projection operator that 
takes vector fields in o ~  d to curl free fields in o ~ .  The space O~o(~) is similar 
to the space H0(~n, ~ )  in (3.12) and is defined by 

3~g(~) = {C, E .~g ;  _F~G E (oct)d}. (3.41) 

completed with respect to the norm 

N 2 ] ~ j ] 2 2 .  (3.42) 

This is done through the Friedrichs' extension of the symmetric quadratic form 

~ ( E ,  F) = (E. F) - (F~P/%PE �9 F}. (3.43) 

The operator 

(F~)*N~P (3.44) 

associated with the extended quadratic form is self-a~oint and positive definite in 
5,~,~g by Von Neumann's theorem (see [12]). Since F is bounded and symmetric 
in '~N9, we also have 

(F~)* = Fez*, (FtP)*F~/ = FC/*F~. (3.45) 

The adjoint matrix ~* = - ~ .  
The existence and uniqueness of (3.39), as well as existence of the effective 

diffusivity, is addressed in Sect. 4. 

4 Variational principles 

The main step in the derivation of variational principles is the symmetrization 
procedure that transforms the original problem and its adjoint into a symmetric 
but nondefinite system which are the Euler equations of a min-max variational 
principle. For the derivations in this section we assume that the stream matrix t~ 
is uniformly bounded so all the calculations make sense in the usual way. For 
unbounded but square integrable g' we take the symmetrized system as starting 
point of the analysis and establish existence and uniqueness in appropriate spaces, 
then work our way back to the original problems. This is done in Sect. 5. 

4.1 Symmetrization and min-max variational principle 

4.1.1 Symmetrization of the abstract cell p~vblem. Following closely [9], we de- 
note the intensity and flux fields of the abstract cell problem (3.33)-(3.36) with 
the superscript + and those of the adjoint problem with the superscript - .  Thus 
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~ +  
D e, = (I + kb(w)) F,e+, 

fieT, = (I - k~(w))F,~ 

• + = V •  

V ' D e  + = V ' D ~ = 0 .  

Define now the sum and difference fields 

Eli 1~+ ~_), =~( o~+ 

E~5 = ~ (E~ - E~), 
f)ij 1 ~+ + ~)~), = ~(Do~ 

6 ,~=  1 -+  
~(O e, -- O~-), 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

which are related to each other by 

~• = ~ •  =o  
. . . .  / 

V . D  o = V - D  o =0  

The effective diffusivity is defined by 

and we define also 

o.4f;.i if) = cTeff(ei e ]) = fr2p(dw)~le+ ~ e] + k ~  ~ 

~ (e j, e i) = / ~ P ( d w ) I ) ~ .  e i 

with the mean field conditions 

o P(dw)  E~ = e i , 

It is easy to see that 

f P (dw)  E~  = e~ . 

o'eff (~ , e i) = creff (e i , e i ) = c / i f (d ,  e/) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

because 
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cre_ff (e i , e i) 

= . foP(de~  (I -- ~) E ~ .  e' 

foP(dco)  (I ~) E~ -+ = - -  . E e i  

L P ( d w ) F , ~  (I +~)  -+ .~ . E e l  

foP (d~) d ~+ _~ . I )e i  

= o-+ff(e i , ei). (4.17) 

The first equaltity in (4.17) is simply the definition of the effective diffusivity 
for - ~ .  The second equality in (4.17) is due to the adjoint cell problem similar 
to (3.37) but with change of sign in g~. 

In other words, crY is the adjoint of c :ff. Thus, 

~eff(ei.d) = ~r~Y(ei,e/)+ 1 eft  " i , ~o-_ (ea,e) (4.18) 

which in turn equals 

4 d s  9 k / \ J 

- ~ / s ?  , ( d c o ) ( " : , -  D a ) '  (F'+' - E ~  (4.19, 

and the mean field conditions (4.15) become 

: P(dw)E~ ei - e~ 

fs? e(dw)~i  j ei + e i 

In view of (4.9) and (4.10), (4.19) is equivalent to 

which admits a min-max variational characterization 

J f f  (e i , e j ) = inf sup 
~ xl~=o ~xfV=o 

('F} =(el +eJ)/2 ~F', )=(el _eJ)/2 

(4.20) 

(4.21) 

(4.22) 
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since (4.12) are the Euler equations of (4.21). This is the min-max variational 
principle for the symmetrized cell problem that we will be using to extend the 
theory to unbounded coefficients. 

The effective diffusivity cr eff is not symmetric in general. But if, for example, 
the probability distribution P ( d w )  is invariant under the transformation gt __~ 
- ~ ,  then o -eft can be shown to be symmetric from (4.16) since o-+ff(ei,ei) = 
cr~(e/ ,e  i) = a~_#(e/,ei). The last equality is due to the invariance of P with 

respect to change in sign of k~, [9]. 
Note that only the symmetric part of the effective tensor ~eff appears in the 

final homogenized equation in Theorem 1. There is an identity for the symmetric 
part which will be useful later. 

1 {o.eff(ei ' Lj ) + creff(ej, ei)} = (Eli" Ejj - 2~EiiEtjj  - E~i. E]j), Vi , j  (4.23) 

Its derivation is straight-forward. Using the definitions (4.5)-(4.6) and multiplying 
out the expressions the right hand side is equal to 

1 ~ _  N+ _+ 

(4.24) 

after cancelling terms like E+ �9 -+ e, Ee: and E~ �9 E~. This reduces further to 

12 {Jf f (e i '  e/) + JY(e/ '  el)} = 2 - " 

(4.25) 
because of (4.1)-(4.4) and the skew symmetry of ~. Now observe that the first 
term of (4.25) is just cr~ff(ei,ei) and the second term ~7~(ei,d). The identity 
(4.23) then follows immediately from (4.16). 

4.1.2 Symmetrization o f  the boundary value problem. Consider the inhomogeneous 
boundary value problem (3.5)-(3.6) and its adjoint, denoted with superscripts 
+ , - ,  respectively: 

V-  (I + k~,,)Vp, + = s + V .  S, in O,  (4.26) 

G = 0, on 0 0 ,  (4.27) 

V .  (I - ~Pn)Vp2 = s + V-  S, in 0 ,  (4.28) 

p~- = 0, on 0 0 .  (4.29) 

in a bounded domain G.  Let pn, Pin be the sum and difference 

1(+ 
Pn = ~ Pn+P2) 

1(+ 
Pn = ~ Pn --P2)" 

(4.30) 

(4.31) 
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In terms of  p,~, p l , we put (4.26)-(4.29) into symmetrized form by adding and 
subtracting (4.26) and (4.28) 

V �9 Vp ,  + V �9 r V p '  = s + V �9 S, 

V -  Vp'~ + V -  ~ V p n  = O, 

p,, = p'~ = 0, 

or, equivalently 

(V, V ) .  ko n I 

Pn = 

Equations (4.32)-(4.33) are formal 

.L dx Vpn" V~+ / (j 

f~dx Vp" . V~+ / dx 

in 0 ,  (4.32) 

in 0 ,  (4.33) 

on 0 0  (4.34) 

Vp~ = s + V . S  i n O ,  (4.35) 

p', = 0, on 0 0 .  (4.36) 

and should be understood in the weak sense 

~nVp'n . V~ = j ;  dx ( S - V ~ b - s q S )  (4.37) 

~ . v p .  �9 vv5 = 0 (4.38) 

for all q5 E H 1 ( G )  (recall that ~P is assumed to be bounded in this section). 
Clearly (4.35)-(4.36) are the Euler equations of the quadratic functional 

Jn(s + V .  S) (4.39) 

1 -~n ' 

= Vpn ) 

+ f~ dx 2(spn - S" Vpn)} , 

that is, Pn and p" are a critical point of the min-max variational principle 

Jn(s + V -  S) (4.40) 

= inf sup dx  
41o(.=0 ~,1o~.=0 ~-~  kOn I Vqb J V ~  

+ L ,  dx  2(sg~ - S " Vq~)} �9 

This is the variational characterization that we will use to extend the theory to 
unbounded coefficients. 

4.2 NonIocal (minimum and maximum) variational principles 

We can get minimum (maxinmm) principles by eliminating the supremum (infi- 
mum) from the min-max variational principles (4.22) and (4.40). The resulting 
variational principles are nonlocal in nature because the solutions of the supre- 
mum (infimum) involve projection operators. 
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4.2.1 Abstract cell problem. The Euler equation for the supremum in (4.22) is 

V �9 F'  + V .  ~ F  = 0 . (4.41) 

Using the projection operator 

/~ = Vz~ - j  ~'. (4.42) 

that projects square integrable vector fields to curl free ones in J~g ,  writing the 

solution of (4.41) in the form F' = - s  + (e i - ed)/2 and substituting it in 
(4.22), we get 

~ ( e  ~ , e i )  

= inf Ira P(dw)(F.F-  2#F.F ' -  F'. F') 
_ ~7 x.l?= 9 

(F) ~(e' +eJ ) /2  

= i n f  f p(d~)(~. ~ + ~r [~r ~ 
_ ~ '  x.f'= 9 do  
(F) ~(e~ +eJ )/2 

�9 (e z -- d )  - I ~ -~-~-  12) (4.43) 

Note that (4.43) is nonlocal because of the projection operator/~. 
Similarly, we can eliminate the infimum in (4.22) and derive a nonlocal 

maximum principle 

JY(e i ,  e j) 

= sup 
~ x I>"--o 

(l)z)=(e i eJ)/2 

e i + e J  2 
�9 (ei +e~)+ I ~ - - I  ) 

fo  P(dco)(-f,. f ,  - #~l~,. #~F '  + #F' 

(4.44) 

4.2,2 Boundary value problem. The Euler equation for the supremum in (4.40) is 

Ar  + V .  k~n Vr  = 0, in ~ ,  (4.45) 

~' = 0, on 0 ~  (4.46) 

Solving with the help of the projection operator F0 defined by (3.11) we have 
V~ ~ = -F0k~nV~ from (4.45), (4.46) and substituting this into the rain-max 
principle (4.40), we obtain the minimum principle 

J , , ( s + V - S ) =  inf 1 / r  ~loc.=0 ] - ~  dx (V~. VO+ Fo~VO. Fo~PnVO+ 2sO- 2S. VO) 
(4.47) 

which is nonlocal. Similarly, we can eliminate the infimum in (4.40) by solving 

A0 + V -  k~nV0' = s + V .  S, in ~ ,  (4.48) 

4 = 0, on 0 ~  (4.49) 
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and obtain a nonlocal maximum principle. There is an extra difficulty in (4.48) 
due to the interaction of the oscillation in V.  ~,X74 ~ and the macroscopic source 
term s + V �9 S, which will be handled in Sects. 8.4 and 8.5. Therefore, it is a bit 
clumsy to express this maximum principle in terms of ~Y as 

Jn(s + V -  S) 

1 f ~  = sup d x  v 4 '  - & G v , J -  
~'jo~,=0 ~ , 

- 2 s A - 1 V  �9 ~P~VqS' + 2S-/~ot~Vq5 ' + sA-~s  - FoS. FoS). (4.50) 

The most economic form is 

J n ( s + V - S )  : sup i - ~ l f # d x  (V~b .V~b-2~nVgS.VqS ' -V~b ' .V~b '  

+2sq5 - 2S. Vq~) (4.51) 

where the supremum is subject to (4.48)-(4.49). 
One can explore the duality between the the gradient fields(,~g ) and the curl 

fields ( ~ )  and deduce the dual min-max principles both for the cell problem (cf. 
[9]) and the boundary value problem. They are not used in this paper however. 

5 Existence, uniqueness  and a priori estimates 

5.1 Existence 

For a bounded stream matrix ~, the symmetrized Dirichlet problem leads to the 
system (4.37)-(4.38). In this section, we show that 4.37)-(4.38) are also naturally 
solvable once the Hilbert space Hg(~P~, ~ )  (or H 0 ( ~ ,  ~ ) )  is defined. 

In terms of the norm I I  I1~, the functional (4.47) is simply 

. 1 2 f.~, 
Jn(s § v .  s) ;  {ll Go .i. ~t, (2sq5 - 2S. Vqi)}. (5,1) 

The Euler equation of (5.1) is 

dx Vp,, . V ~ + d f  dx (-Fo~P,~YPog-'nVp,~). V~  = df dx (S . V ~ -  s~) (5.2) 

for V4~ E H0(gtn, ~ ) .  Now the right hand side of (5.2) defines a bounded linear 
functional on H0(On, ~ )  for S, s E L a and the left hand side is the bilinear form 
associated with the norm If" I1~, so existence and uniqueness are guaranteed by 
the Riesz representation theorem. 

We note that p~ also belongs to H0(O~, ('~) since 

Vjn = --f'Of"nVpn E L2(O) (5.3) 

FoGVIJ n = -Vp, ,  -t- VAol ( s  § V -  S) E L2(~). (5.4) 

Thus we have shown 
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Theorem 5.1 If I~IL2(~> < ~ ,  then there exist unique p,, p~ C Ho(gt~, 0 )  such 
that (4.37), (4.38) hold for all g~ E Ho(g2,, ~) ,  for almost all co E ~2. 

Next we show that the space of test functions ~b in Theorem 3.1 can be 
enlarged from H0(t2n, 0 )  to Ho1(O): 

Theorem 5.2 If Ik~lL2(o) < oc, then there exist unique Pn, P~ C Ho(g',, 0 )  such 
that (4.37), (4.38) hold for all ~ E H~(~), for almost all co E [2. 

Proof This theorem is an immediate consequence of Theorem 5.1, Lemma 5.1 
and these facts: 

(i) C0~176 is dense in H1(O)  
(ii) 

and similarly 

f d x t P ~ V p n . V ~ = ; d x F o ~ n V p ~ - V ~  (5.6) 

(iii) Fog/~Vp~, F0gt~Vpn E L2(O). So, if (4.37), (4.38) hold for q5 E C0C~(O), 
then they also hold for q5 ~ H01(~). 

The existence result of the original (before symmetrization) Dirichlet bound- 
ary value problem follows from Theorem 5.2: 

Corollary 5.1 Assume (1~12) < ~ .  There exist unique p+~, P2 c HoOP~, 0 )  such 
that 

~txVp.+.v~ +f~,dx~Vp.+.v~=foc/x(S.V~-s~) (5.7) 

.f dx v p ;  . v+ - f c d x  ~ ,Vp2  . V~ = f o d x  (S. V~b - s~) (5.8) 

for all ~ C Hd (0),  for almost all co C [2. 

Proof By taking 

p+ = p'~ + pin (5.9) 

p~- = p, - p', (5.10) 

and adding and subtracting (4.37), (4.38) the Theorem follows. 

5.2 Uniform estimates 

Here we derive some n-uni form estimates for the solutions of (4.37)-(4.38) in 
Theorem 5.2. These uniform estimates come naturally as byproducts of the new 
Hilbert space H0(~n, O)  formulation. We do not need them in the convergence 
proof and we present them here for completeness. 
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Theorem 5.3 Assume Ik~lc2(n) < oo.  Let p~, p~ be the solution of the system 
(4.37), (4.38) and p+, p2 the the solution of(5.7), (5.8), respectively. We have 

IIJ~ I1~= 
+ 

for some constant C depending 

Proof For arbitrary ~ > 0, g 

C(Is 1~2(~,) 4:- [SlL=(~)) 
C(Is IL~(~') 4:- IsIL~(~)) 

_< C(Isl~(~) + ISl~(~)) 
< C(Isl~(~) + [Sl~(~)) 

only on the domain ~ .  

H~(~') 

(5.11) 
(5.12) 
(5.13) 
(5.14) 

since 

Consequently, 

2 (1 - (c + 1)(~)[Vp~ I~(~) + IFo~Vp~ IL~(~-~) 

I ( ( I S  2 S 2 _< 

J.(s + V .  S) < 0 (5.20) 

by taking the trial function 9 = 0 in (5.1). Let 6 = 1 2(c+1), so that 1 - (c+  1)(5 - 
We obtain 

2 S2 IIp, ll~,, -< 4(c + 1)(Islg~(~)+/ Ig~(~)). (5.21) 
From the identities 

V j n  -- --f~O~ftnVPn, fO~tnVfl,t~ = - -Vpn  4:- V z l o l ( s  4:- V "  S) (5.22)  

we also have 
II#~ll~n < (8(c+ 1) + 2)(([s 2 S 2 IL2(~) +] [L2(~)), (5.23) 

. -- / after applying the energy estimate to V A o l ( s  + V S). Since p~ - p,~ + Pn, P~ = 
p,, - p',, it follows from (5.21), (5.23) that 

D + 2 2 S 2 11 ,,1/~,, < c((Is 4:- - I~:(~,~) I Is~(4,)) (5.24) 
S 2 Ilp;-II~,, -< c((Is l~(~)+[  1~2(~)), (5.25) 

for some constant C depending only on the domain. This completes the proof. 

(5.19) 

f~, �9 S)9 ( s + V  (~191L2(~)2 +_~ls2 + IL2(~) (~]~7g[22(~)+ I 2 _ ISlL2(~,) (5.15) 

1_(IS12 < (c 4:- 1)~lVol~2(~,) 4:- ~,, ,L2(<~) 4:- IS12~(~)) (5.16) 

where c is the constant associated with the Poincare inequality, depending only 
on the domain ~ .  Thus, 

_< I ~ l J n ( s + V  s ) + ( c + l ) 6 1 v p ~ l ~ ( ~ ) + ~ ( I s  2 2 �9 Ic~(~,) + [Slr~(~)) (5 .18)  
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5.3 Cell problem and correctors 

The effective diffusivity is defined by the cell problem. In this section we study 
the existence of the intensity and flux fields and give bounds for their norm. The 
method is completely analogous to that for the Dirichlet problems in Sect. 5.1, 
with some minor changes, such as replacing the projection operator /7o (3.11) 
by F (4.42). We work in the variational framework on the the space of JUg(~) 
defined in (3.41) and this makes the questions of existence and uniqueness stan- 
dard. 

We state the existence theorem and provide a brief explanation with details 
omitted. 

Theorem 5.4 Assume (k 92} < oc. There exists unique Eij - (F, ij), Eb - (F,b) e 

~ g ( ~ )  such that 

fs~ P(d~)F, ij �9 F + fg2 P ( d w ) ~ s  �9 [r = 0 

fg2 P(d~)F,~ . F + fg2 P(d~)g-'Eij " F = 0 

2 

<Eb> : o -e; 

(5.26) 

(5.27) 

(5.28) 

(5.29) 

for  all F E ~ g ( ~ ) ,  i , j  = 1 , . . . ,  d. 

Proof The mean field conditions (5.28), (5.29) play the role of the inhomoge- 
neous terms s + V �9 S in (5.26), (5.27), in the form 

- V - k b ( e i 2  ej ) - -  and - V . k g ( ~ T - ~ )  , (5.30) 

respectively. The L 2 integrability of ~ then implies existence and uniqueness as 
in Theorem 5.2. 

The system (5.26)-(5.29) are Euler equations for the min-max principle 

a J f=ae f f (e i , e / )  = inf sup / ( ~  I _ g S ) ( F  ~) . ( F ~ ) )  
v• v• I 

(~,,)=e ~eJ 

i , j  = 1 . . . d  (5.31) 

elf eff which defines the effective diffusivity cr elf = (c~ij). Note that 0 < ~ij < oo, i , j  = 

1 , . . . ,  d because of the integrability condition, Ikh[c2(s~) < ec as can be seen by 

taking as trial fields ~" = d+r l~i e i-r  
2 ~--  -- 2 

The field Eij can also be characterized as the minimizer of the minimum 
principle (4.43). The direct and adjoint intensity fields come from I ~  = Eij ?c 

Eij, l ,j = 1 �9 - �9 d, and so we have existence and uniqueness for them. 
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Theorem 5,5 The intensity fields [{i~ E 3~g(k~), i , j  = 1- -d solve uniquely the 
cell problems 

f~  P(~co)q + ~ ) ~  �9 F : 0 (5.32) 

f n  P(dco)(l - ~ )1~  �9 F = 0 (5.33) 

for al IF E o ~ g , i , j  = 1 . . . d .  

We also have the a priori bounds 

Theorem 5.6 There is a constant C such that for i , j  = 1 . . ,  d 

Hf~,J I1~ -< cl~bL2(.> (5.34) 
IIEb It~ <- c I~b<~) (5.35) 

llf~ H~ <_ Cl~IL=(n ) (5.36) 

1Is <_ Clg?lL=(n) (5.37) 

In the theory of homogenization [4], [20], a prominent role is played by the 
correctors Xf, x f  which are defined, up to constant, by 

Vxf(x,  co) = Ee~ (x, co), VX( (x, co) = E ; (x ,  co) (5.38) 

: Ee where E~ (x, ca) ~+ 0--xCO), E~(x, co) : E~(r_xco). Let us fix the constant by 
setting 

xf(o, co) = o, xj (o,c~) = o. 

The symmetrized correctors 

l + , 1 . 
Xj = ~(Xj + XT), Xj = ~(Xj - Xj ) (5.39) 

satisfy 

Vxj(x,w ) = Ejj(x, ca), Vx~(x, co) : E~j(x, co) (5.40) 

where Ejj(x, co) :  Ejj(r_xco),E~j(x,w)= ~2;j (T_xC~). 
The correctors are square integrable but not stationary in general. However, 

they satisfy certain sublinear growth condition for large [xl which play an es- 
sential role in the convergence proof and are analyzed in detail in Sects. 8.1 and 
8.2. 

6 C o n v e r g e n c e  

We shall establish in this section the main result of this paper which is the 
strong convergence theorem of homogenization in the case of L a skew symmetric 
coefficients. 
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Theorem 6.1 Assume that the stream matrix is square integrable (l~l 2) < cx~ 

and let X+~ j = �88 w), X~ -j = �88 w) and similarly kJn, X~ be the scaled 
correctors with the unscaled ones defined by (5.38) and (5.39). Then 

2 

/. ( ( _, ..x,,). 
as n ~ ec, for  almost all w, where ~ satisfies the homogenized problem 

V-(2 I- (~e# + o-efft) Vfi) =S + V-S, in ~ (6.3) 

# = O, on 0 0  (6.4) 

We also have the following corollary of Theorem 6.1 : 

Corollary 6.1 Assume that ([~l 2) < ec. Then 

( (  . 
(( '" 2 

as n ~ oo, for  ahnost all w, where j is again the solution of(6.3),(6.4). 

By Lemma 8.2 (Sect. 8.1), we have that 

/ c  dx  (x+J)2 ---+ O, / G d X  (XnJ)2 ---~ O, (6.7) 

j = 1,..., d, with probability one. Thus we have the following corollary 

Corollary 6.2 Assume that (1~12) < ~ .  Then 

L a x  (,o~ - / 5 ) '  --~ 0 (6.8) 

Gdx  _ ~) 2 0 (p: (6.9) 

as n ~ oc, for  almost all w. 

Theorems 6.1, Corollary 6.1, 6.2 are also valid when (6.1), (6.2), (6.5), (6.6), 
(6.8) and (6.9) are averaged over w. 

For the proof we use the minimum and maximum principles to obtain upper 
and lower bounds, respectively, for the functionals with suitably constructed trial 
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functions (Lemma 6.2). The gap between the upper and lower bounds is closed 
by proving the approximation lemma 6.3 using again the variational arguments 
(Theorem 6.2). The strong convergence results then follow from the convergence 
of functionals thanks to the variational structure (Sect. 6.1.3). 

To obtain minimum or maximum principles, the partial Euler equations 
(4.45,4.46) and (4.48,4.49) have to be solved for selected trial functions asymp- 
totically as n ~ ~ .  This amounts to solving the Poisson equation with rapidly 
oscillatory right hand side. This is the most technical part of the paper, partly 
because of the singular behavior near the boundary of the domain which requires 
careful cut-off arguments. It is presented in Sects. 8.4 and 8.5. 

6.1 Convergence of functionals 

As in the usual homogenization [4],[20] with the multiple scale expansion, we 
would like to show that the solutions of the inhomogeneous Dirichlet problems 
have the form 

1 +j 0t~ 
p~+(x) ~ p + ~  nX (nx)~jxjan(x) (6.10) 

J 
1 : 0p 

, ; (x )  x ~+ ~ ~x-~(nx)b-~x ~.(x) (6.11) 
J 

in the H01 (6~') sense or, in the symmetrized form, 

1 ~ 0 ~  
p,(x) ~ ~+ Z nXJ(nX)~xj c~'(x) (6.12) 

J 

p;,(x) m Z 1X'](nx)~-~ (6.13) 
J n OXj 

Here X +j, X ~ , X j , X 'j are the correctors defined by (5.38, 5.39), t3 is the exact 
solution of the homogenized problem (6.3,6.4) and c~,(x) is a suitable cut-off 
function that makes (6.10)-(6.13) satisfy the Dirichlet boundary conditions. The 
precise way of doing the cut-off is technically important and one of the essential 
elements of Sect. 8.4 and 8.5. Here and below ~ denotes the asymptotic equality 
a s  n --~ C<). 

The difficulty with (6.12)-(6.13) is that we do not know if the expansions 
are admissible. Is the right hand side of (6.12), (6.13) in HOOP,, (~)? The square 
integrability of 

Fo v x J ( n x ) ~ a , ( x ) !  {~',  . - (6.14) 

is questionable because we do not know that if ~P~ ~ j  xTxJ or ~P,X j is square 
integrable. The estimates we obtained in Sect. 5 are not enough to ensure that 
we stay in the right spaces. 
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One of the advantages of the variational framework is that we do not have to 
work with the exact solutions for which we have insufficient knowledge because 
we can always resort to nice trial functions which approximate the exact solutions. 

To make the right hand side of (6.12)-(6.13) admissible for the maximum 
and minimum principles, let 

1 j Op 
f~(x) = p+ Z n S (nx)~-x~ an(x) (6.15) 

�9 , j 

J 

1 ,. Op 
9' (x) = ~ n 9J (nx) ~x~xj a ,  (x) (6.16) 

J 

where p E C0~(~) andfJ(x) and 99(x) satisfy 

fJ(0) = 0, 99(0) = 0 (6.17) 

and have essentially bounded derivatives 

FJ = vUJ E L ~ 
(6.18) 

C~' = V99 E L ~ .  

To verify that 
f~, 9'~ E H0(grm, ~ )  (6.19) 

we need the following lemma 

Lemma 6.1 I f  V f  = F is a zero mean, essentially bounded, stationary random 
field, then 

lira supfZ(x, w) = 0, for almost all w. (6.20) 
n---~ ov x E ~  

Where f~(x, w) = �88 w), with f(O, w) = O. 

We note that the normalization f (0 ,  w) = 0 is essential for the proof of Lemma 
6.1 given in Sect. 8.2. 

This lemma will eventually eliminate the difficulties that we have with the 
integrability of the form (6.14) when ~ in only LZ-stationary and not in L ~.  It 
then follows that (6.15), (6.16) are admissible. Let 

= {F C ~ o  IF is essentially bounded}. (6.21) 

We now show that the functional Jn(s + V - S) can be bounded from above and 
below with trial functions of the form (6.15), (6.16), respectively. 

Lemma 6.2 Assume that (]t~I2) < OO. Then 

lim sup J~ (s + V �9 S) 
n ----+ O0 

_ P c c d ~ ( # ) ~  ~ dx ((e i +17i) �9 (g +FJ)) (6.22) 
l d  

(FJ)=0 

_ 2 ( ~ ( e i + ~ i )  ~ ' J ) _ ( ~ ' i . ~ 9 ) ) O p  Op 1 /~. l 
�9 ~xi ~xj + T~[ dx  2p(s + V .  S) 
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and 

l iminfJn(s + V .  S) 
n ----> o o  

_> p~c0~( # ) in f  a,~c~a'sup [ 1 ~  "~'[ dxZi~/({(e' + G')" (eJ + ~'/)) (6.23) 

(GIJ)=0 

. . . . . . . .  ) O p O p  l f :  ] -2{tP(e i +G'). G'> - (~'i. Gj> ~xTx/~x]xj + ~ d x  2p(s +V. S) 

for almost all w, where FJ, F'J are related through the Poisson equation (4.41) 
(in the form (8.53)-(&54)), and G J, G'J are similarly related through a Poisson 
equation (in the form(8.91)-(8.92)). 

The expressions for the infimum and the supremum in this lemma that involve 
FJ and CJ'J are precisely the ones for the variational principles of Sect. 4.2.1 for the 
effective diffusivity. Note, however, that we cannot conclude that the upper and 
lower limits for Jn are the same because the infimum over FJ and the supremum 

H / . 

over G J are restricted to bounded vector fields. To close the gap we need the 
following lemma. 

L e m m a  6.3 We have that the effective diffusivity (4.43) is given by 

~:g(e z, d) 

= inf 

(I~> =(e I +eJ )/2 

= inf 

<IF> =(e I +e./)/2 

P(dco) (F .  F -  2 ~ F .  F' - F' . F ')  

fo P(dw)(F . F + P ~ F  . Fr - ~ F  . (e i - e/) 

-1~2@K2 ~ 12 ) (6.24) 

where F' = - F t ~ F  + (e i - i f ) /2.  Similarly, (4.44) is given by 

J f :  (e i , ~ ) 

= sup 

( G t )  =(el e,/)/2 

= sup 

<l~-t )=(e i - - e J ) / 2  

e i + ~  + ~I 2) 

fo P ( d w ) ( - G  - G - f f ~ G  . F~PG + ~PG . (e i + e i) 

(6.25) 

where G' = - F k 0 G  + (e e + e/) /2  
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This lemma is proved in Sect. 8.3 using a truncation argument and the variational 
principles again. 

With this lemma we can close the gap in Lemma 6.2. 

Theorem 6.2 We have 

lira J~(s + V �9 S) = inf 1 f ~  ~-+oc p~c~(o) ~ dx 

~xj + 2p(s + V .  S) , (6.26) 

for almost all co. 

We remark that the theorem is valid also when all the expressions are averaged 
over co with respect to P. 

Before getting into the proof, let us explain the notation we will use. We de- 
note by fJ (x, co),f'J (x, co), g / (x, w), 9 'j (x, co), j = 1, ..., d, non-stationary random 
functions whose gradients 

27f j (x, co) = F j (x, co) = TxF j (co) (6.27) 

v f ' J (x ,  w) 'J - , .  = F (x, co) = TxF J (co) (6.28) 

X7j(x, w) = G/(x, co) = TxGJ(co) (6.29) 
l -  t -  N t .  

279 J (x, co) = G J (x, co) = TxG J (co) (6.30) 

are in ~g ( s  the space of L 2, stationary, gradient fields with zero mean. 

The scaled functions f~ (x, co),fs (x, co), ~ (x, co), 9~ ) (x, co), are defined by 

. t .  1 t .  

f~(x, co)= 2-fJ(nx, co), fnJ(X,  co) = - f  J(nx, co) (6.31) 
n n 

9Jn(x,w) = 19/(nx,  co), g~J(x, co)= 19'J(nx, co). (6.32) 
n n 

and are uniquely determined up to constant. The normalization constant is es- 
sential in determining the fight trial functions. 

6.1.1 Upper bound. For the minimum principle of Sect. 4.2.2, consider the trial 
function 

fn(x, w) = p(x) + ~ / J  (x, w ) ~ c ~ n ( x )  (6.33) 
~ , ~ j  J 

where fJ  satisfies (6.18) and c~n (x) is the cut-off function defined in the Sect. 8.4, 
8.5. We show in Lemma 8.4 that 

v-~ . , j .  .0p(x)  . . 
f~(x, co) = 2_..,y n ~x, w)~fff-xjC~ntX ). (6.34) 

J 
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solves the Poisson problem for the minimum principle asymptotically in Hd (c'~), 
~ .  - - t .  

under the assumptions of Lemma 8.4 and if F (co), F J (co),j = 1,..., d, satisfy 
(8.53)-(8.54) with f~J (x, co) satisfying the normalization (8.56). 

Thus fn(x, co),f~(x, co) are a legitimate pair of trial functions for the minimum 
principle of Sect. 4.2.2 in the asymptotic sense as n ---+ oc. Substituting (6.33), 
(6.34) into the minimum principle and collecting similar terms we get 

Jn(s + V"  S) < ~ dx  (Vf .  . Vfn - 2gtnVfn �9 Vf~ 

- V f / "  Vf,~ + 2f.(s + V" S)) + o(1) 

_< ~ dx ((e i + Vi i ) "  (e j + V f  j )  

-2ko. (e i + Vf,~)- vf ;J  

-vy2 -  vy2) +2p(, + v s) +o(1) (6.35) 

in view of (8.58), (8.57) and (8.82). Passing to the limit in (6.35) using the 
individual ergodic theorem gives 

lim supJ~(s + , _ + o c  V.S)_<  ~ ]  ~ d x  ~(((ei+Fi).(~J+FJ)),. 
~ , J  

_2(~(e  i + ~i) . ~'j) _ (~'i . ~ ' j))  Op Op 
Oxi Ox]xj + 2p(s + V .  S) (6.36) 

Minimizing the right side of (6.36) over ~ i  i = 1, ..., d,, bearing in mind Lemma 
(6.3) and the identity (4.23), we obtain 

limn~oosup J,  (s + V-  S) <_ ~ dx 

x 1 / 2 @ J  f + ~Jf t )  ~x/0~j + 2p(s + V �9 S) (6.37) 

where we use the variational definition of the effective diffusivity (Sect.4.2.1). 
Note that only its symmetric part appears on the right side. 

6.1.2 Lower bound.To get lower bounds, we use the maximum principle of 
Sect. 4.2.2. The analysis for the lower bound is different from that for the upper 
bound in the following aspect: the quantity p the macroscopic scale is no longer 
independent from the quantities on the microscopic scale. 

Consider the trial function 9'~ defined by (6.16). As stated in Lemma 8.6, 9n 
defined by 

Op 
9,(x) = p + ~ 9J, (x)~Txj c~,, (6.38) 

J 
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solves the Poisson problem for the maximum principle asymptotically, as n ~ oo, 
in H01(~) if V9 J -- ~ and V9 'j = C,'J satisfy (8.91)-(8.92), ~ the normalization 
(8.95) and p the equations 

~ ~@i (r < ~G'i ~ .ej) ~@j p = s + V. S (6.39) 
/j  

p = 01 on 0 ~ .  (6.40) 

Thus ' g~, 9- ate a legitimate pair of trial functions for the maximum principle 
of Sect. 4.2.2 in the asymptotic sense as n --~ oo. 

Substituting 9'n, gn and passing to the limil, using the individual ergodic lhe- 
orem, gives 

liminfJn(* + V .  S) 
n ---+ o o  1s ( . . . . . . .  ~_ ~[ dx Z ((ei +~;i)'(ff +GJ)>- 2(~(ei +G')'GJ) 

i,j 
-,, op op 

- ( O  . + 2p(s + V- S) (6.41) 

where p solves (6.39) and (6.40). 
We may assume the right side of (6.41) is minimized over p(x) so thai it 

decouples from C,'J. Maximizing the right side of (6.41) over ~;'J, j = 11 ..., d, 
and using Lemma 6.3 and the identity (4.23), we obtain 

liminfJn(s + V �9 S) 
n ~ o o  

> _~  dx 1/2(cr~+a~fff)~x, ff~xj+2p(s+V.S ) (6.42) 

Since Ejj are the maximizer of the quadralic terms involving ~i mad G J, the 

G J-depending p solves the Dirichlet problem for the Poisson equation (6.39) 
with the elliptic coefficients 

6ij+ < ~Eii > "ej (6.43) 

which is exactly the effective diffusivity given by (4.25). Therefore, (6.42) is 
equivalent to 

tim mfJ~((s,~oo + V .  S)) >_ mittp ~}}t ~L dx 

(~ij Op OP+2p(s+V. S)) (6.44) x 1/2 (cr~f f + cr~jfft) ~ x / ~ x  j 

In view of (6.37)~ we then conclude that 
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n--+cclim Jn ((s + V .  S)) = minp ~ 1  /r dx 

) ~xi ~ + 2p(s + V - S )  . 

This completes the proof of Theorem 6.2. 

(6.45) 

6,2 Convergence of solutions: proof of Theorem 6,1 

In this section we complete the proof of Theorem 6.1 mad Corollary 6.1 stated in 
the beginning of Sect. 6, using Theorem 6.2. Because of the variational structure, 
much of the proof of Theorem 6.1 is contained in the preceeding analysis. 

Define the differences 

r~ = Vp,  - Vf~ (6.46) 
I ! r,  = V p ' .  - Vf~ (6.47) 

where Pn, Pin are the solutions of the system of symmetrized inhomogeneous 
boundary value problems and fn,f~ are given by (6.33), (6.34) with p replaced 
by the exact solution/5 of the homogenized problem (6.3), (6.4). Then 

L dx ( r . - r .  +r ' . . r 'n)  

-- ./~ d~ (vp.. v~. + v~'.. vK) 

+ i~ ex (vs.-vs. + w' -vf , ; )  

- 2  fo'  dx ( g p , .  vU, + Vp' n - Vil)  (6.48) 

Since p, is the solution of the symmetrized boundary value problem 

V'(I-r in G (6.49) 

fin = 0, on ~'  (6.50) 

whose weak formulation is given by 

Ldx(Vr (6.51) 

for all r ~ H01(~) (cf. Theorem 5.2). When fn is substituted in (6.51), we have 

L d x  ( V f , . V p , + V f : . V p : ) x - L d x f , ( s + V . S ) ,  a s n - - , o o  (6.52) 
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since Vp~ = Fog'nVp, and Vf~ x -Fofft~Vf~ according to Lemma 8.4 (cf. 
Sect. 8.4). Here ~ denotes the asymptotic equality as n ---+ ec. It is also clear 
that 

f,, dx (Vpn " Vp~ + Vp' n " Vp ' n )= - f ,~ ,  dx p ~ ( s + V - S ) = - J n ( s + V ' S )  
~ c y /  

(6.53) 
when the exact solution p, is inserted in (4.47). Thus, using (6.52) and (6.53) 
we have that 

/ ~ d x  (r~ - r .  +r'~ .r'~) 

- J , ( s  + V '  S) + 2_/,~ dxf~(s + V.  S) 

+ ~ dx (Vf , .  Vf~ + Vf / .  Vf/)  (6.54) 

which in the limit can be made arbitrarily close to zero in view of the proof of 
Theorem 6.2. 

To prove Theorem 6.1, we need to show now that for any given ~5 > 0 there 
exist fn and f / i n  the form (6.33) and (6.34) respectively such that 

j ; d x  ( V  z, , .  

/ J 

-~-~X2(X,  / <_c6 (6.56) 

in the limit n ~ c~ for some constant c independent of 6 and FJ, F'J C ~ ( in 
the definitions (6.33), (6.34) respectively. 

For this, we need the following lemma: 

Lemma 6.4 Given ~ > O, there exists F] E c~  with zero mean such that 

t[(eJ + FJ) - FqJ II~ -< ~5. (6.57) 

Proof: Consider the following identities 

: < E:j .Ejj > + < t e E 1 :  �9 r •Ej j  > 

+ < (e i + FJ). (ej +FJ) > + < _F~(ej +FJ) .  Fg,(e 5 +~J) > 

--2 < (ej + F  J) .Ejj > - 2  < ff#Ejj �9 F~t(ej + F  J) > (6.58) 

where Ejj,j = 1, ..., d, are the solutions of the symmetrized cell problems (4.9)- 
(4.12) and l~J zero mean bounded gradient fields. Recall the weak formulation 
for Ejj: 
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< Ej j  �9 F > + < f ' ~ E j j  . F g ~ F  > =  0 (6.59) 

for any zero mean gradient field F ~ -,,~Wg(k~) which contains c~ .  Thus the last 
two terms in (6.58) equal to 

= 2 < • .ej > +2 < ? ~ E j j -  _F~ej > :  2@ ff (6.60) 

in view of (4.17). It is also clear that the first two terms in (6.58) equal to @ff. 
By the approximation Lemma 6.3 the middle two terms in (6.58) can be made 
arbitrarily close to @if and therefore }l(ej + FJ)- Ejj]I~ can be made arbitrarily 
small as stated in Lemma 6.4. 

(6.55) and thus Theorem 6.1 and Corollary 6.1 follow from Lemma 6.4 and 

~gdx (X/n) 2 ---+ 0 (6.61) 

almost surely as n --+ oc. (see Lemma 8.2). 

7 Probabilistic convergence theorem: compactness of the processes 

In this section we prove that the rescaled processes x,(-) 

Xn(' ) = !X(iv/Zt) (7.1) 
g 

with x(t) defined by (1.2) satisfy the tightness condition 

Prob 
9 

for each 6 > 0 and T < oo. We will assume now the the velocity field is smooth 
(differentiable) almost surely and that it is bounded by a linear function of  the 
coordinates almost surely. This will be the case for stationary Gaussian velocity 
fields with smooth covariance. Under these conditions the process xn is well 
defined as a process with continuous paths. 

The unboundedness of g* makes the use of the Nash estimates, or generaliza- 
tions [19], impossible. Thus, the compactness of the processes xn(t) is no longer 
straightforward. We reduce the estimate of the probability in (7.2) to a resolvent 
estimate which we can study using variational methods except that in this case 
we need an L ~176 rather than L 2, estimate. This comes when we average over the 
ensemble of flows u. So we no longer have convergence with probability one, as 
in Theorem 1, but convergence in measure with respect to the flows (cf. Theorem 
7.1). 

It is enough for (7.2) to obtain the estimate 

lira 1_ lim Prob {sup0<s<h IX~(S) -- X~(0)I > ~5} = 0 (7.3) 
h,LO h nTcxz 
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for each (5 > 0. To prove (7.3) it suffices to obtain for each component xi(s) an 
estimate of  the form 

lim ll~-m- Prob {sup0<~<hn2 ]xi(s) - xi(0)[ > 6n } = 0 (7.4) 
h;0 h nT~ 

for each (5 > 0. Let ~-c be the time it takes for xi (t) to reach level L assuming 
xi (0) = 0. Then (7.4) reduces to 

lim 1 lim Prob {Ten < hn e } = 0 (7.5) 
h.L0 h nTo~ 

for each (5 > 0. From the Tchebyshev inequality 

Prob {'r& _< hn 2} <e~ {e-n-2c~-6" } . (7.6) 

Therefore, (7.5) can be deduced from 

~e-~-2~- '~  ~ _< M(c~, (5), (7.7) l i m e  
n$oo t. ) 

for each c~ > 0, and 
inf eahM (oz, (5) = o(h ) 

oz>0 

as h --+ 0 for each 5 > 0. 
Let 2 ~  be the generator of  the processes 

= V .  [(o-I + C n ( x ) ) V  .] 

and consider the solution of 

c~p~ - 2~p~ = 0 

(7.8) 

(7.9) 

(7.10) 

and let 

for xt < L with 

p ~ = 0 ,  for x i = - o %  p a = l  for x l = L  (7.11) 

Write x = (x l ,x  1) with x I = (x2, . . .  ,xd). and let 

/ P(d~)p~((O, L, o;) = O~(L), (7.12) xl)~  

which does not depend on x 1, by stationarity. To get (7.8) we need an estimate 
for On 2a (Sn) as n -+ oc. 

Since averaging with respect to c~ allows us to use stationarity, starting from 
zero and going to L is equivalent to starting from - L  and going to level 0. 
Therefore, we may consider 

OZpc~ - -  S p c ~  = 0 ,  X I < 0 (7.13) 

p ~ = 0 ,  for x l = - - o %  p ~ = l ,  for x l = 0  (7.14) 
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J P(dw)p~(x, L, w) = (7.15) 0(x(Xl) 

We will study the asymptotic behavior of 0 n 2~ ( - tn )  as n --~ ~ .  
The idea is to show that the averaged moment-generating functions On-~(- tn  ) 

of the exit time for the processes xn is very close to that of  Brownian motion 
for which we have the estimate (7.8). With slight modifications, it is routine to 
check that strong convergence holds. In particular, 

lim l [QjadX, dx, P(dw)(pn 2~(nx, w)-p~(x))2-+O (7.16) 
Q --~Rd-I oo 

as n ~ oc. Here /5~(x) is the moment generating function of the exit time for 
Brownian motion with variance coefficient �89 + q~fft). The techniques devel- 
oped in the previous sections apply equally well here, with some modifications 
needed to account for the ct dependence and the semi-infinite domain {XlXl < 0}. 
Therefore, 

0 
/~ dXl (On-2a(nxl) - M ( a ,  Xl)) 2 (7.17) 0, ---+ 

{2<) 

as n ~ o0, where M (a, xl) is the moment-generating function of  the exit time for 
the one-dimensional Brownian motion starting at Xl. Here we use the w-average 
version of  homogenization theorems as noted in the remark after the statements 
of Theorem 6. land 6.1. However, from (7.7) and (7.8) we see that what is needed 
here is not the LZ(dxl) convergence but convergence pointwise in xl. But both 
On 2c~(nxl) and M (oe, xl)  are monotone so L2(dXl) convergence actually implies 
uniform convergence 

sup (On ~(nx~) - M(c~,xl)) 2 ~ 0 (7.18) 
Xl ~ 0  

as n --~ c~. From the Laplace transform of the heat equation on the semi-infinite 
line, we know that as a --~ (x~ 

m(a,  6) = O(e-~tv~) .  (7.19) 

for some positive constant c. The tightness condition (7.2) then follows from 

inf e~hM(~, (5) = O(e cl/h), (7.20) 
a>0 

c262 
as h --+ 0, for some positive constant cl = c262/4, by taking a = 4~r. We have 
thus proven Theorem 2 of the Introduction, which we restate here. 

Theorem 7.1 The family xn(t) of stochastic processes defined by (1.2) is uni- 
formly tight in measure with respect to the ensemble of media P(dw) and there- 
fore we have weak convergence to Brownian motion in the space of continuous 
functions in R a, in measure with respect to P(dw). 
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8 The proofs of some technical lemmas 

8.1 L 2-sublinear growth of random functions with L 2-derivatives 

The main result of this section is the proof of the almost sure L2-sublinear 
growth estimate of Lemma 8.2 which is the strengthened version of the standard 
L2-sublinear growth estimate stated in the following Lemma 8.1. Lemma 8.2 is 
needed for the proof of Lemma 6.1, 8.4 and 8.6. 

Lemma 8.1 Let F E 5Y;~g. There exists a uniquely defined process f(x,  •) E 
Hlloc(Rd; L2(O)), it is not stationary, f(0, co) = 0 and 

Vf(x, co) = F(x, co) = F(r-xco). (8.1) 

For any compact subset K C R d, we have 

lira sup( [ l f ( n x ,  c a ) ) = 0 .  (8.2) 
n---+ oo K 

Proof This proof follows Papanicolaou and Varadhan[20]. Define f(x,  o3) by 

~R eix'k -- 
f(x,  co) = d ~l ~- l ( _ i k ) .  U(dk)F(co) (8.3) 

where U(dk) is the spectral resolution of the unitary group {Tx}, i.e., 

Tx = [ eiU'XU(dk). (8.4) 
dk cR d 

The processf(x, ca) is not stationary because it is not of the formf(x, ca) = T~(ca). 
It is easy to see that f(0,  co) = 0 and Vf(x,w) = F(x, ca) and, as a consequence, 
it is in Hlloc(Ra;L2(y2)). It remains to show (8.2). We have the identity 

/s2 P(dca) ( l f  (nx, ca)) 2 (8.5) 

=fee einX.U_ 2 ~-~ ~ [ (8.6) 

i j = l  

where 

[~ij (dk) = / o  P (dco) O (dk)~'i (ca)Fj (co) (8 .7) 

is the power spectral measure of Fi (x, co) = ~'j (T-xca). From the estimate 

d d 
1 

ik[2 ~ kikjRij(dk) <_ ~ kii(dk), (8.8) 
i j = l  i=1 

we obtain 
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/o / P (dco) (nx, co) < nl~ Z Rii (dk). 
d 

i=1 

(8.9) 

By ergodicity and (F) = 0, it follows that Rii({0}) = 0. The Lebesque conver- 
gence theorem then yields the result. 

Let 

fn(x, co) = l f (nx ,  co). (8.10) 
n 

Then (8.2) implies that 

as n -+ c~. Consider also 

( fK dx fd) ~ 0 (8.11) 

f / (x ,  co) ~ L ( x ,  co) - an(co) (8.12) 

1 where an(co) = T2~ fK dx fn(x, co). It is easy to see that (8.11) implies that 

(s dx (f.)2) _~ o (8.13) 

as n --+ oe, since 

a s  n ---4 00 .  

(a~> < { ~  dx f 2) --, 0 (8.14) 

The constant an(co) in (8.12) is essential for the proof of  the following 
strengthened version of (8.13) that the convergence holds without the average 
<.}. 
L e m m a  8.2 For P almost all co E f2 

x d x  0an/) 2 --+ 0, as n ---, e~. (8.15) 

Proof Without loss of generality, we may assume K = {Ixl < a},  for some 
a > 0. From the definition (8.12), we have 

t 2 d Vf,~(x, co) = F(nx, co) ~ Lloc(R ) (8.16) 

for almost all co ~ s Furthermore, given 6 > 0, there exists n0(co, 6) such that, 
for n > n0(co, ~5) 

ig I d x  (V/n1) 2 _< IFIL2(O) + 6 ( 8 . 1 7 )  

for almost all co ~ f2, by ergodicity. The uniform estimate (8.17) and the mean 
zero property fK dxf~ = 0 imply that {f(} is precompact in the strong L 2 sense. 
Consider may convergent subsequence, still denoted by {f{}. There exists a func- 
tion 9(x, co) C L2(K) such that 

~ dx (f,,[ - g )2  --+ 0 (8.18) 
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as n --+ oc, for almost all o2. 
On the other hand, (8.13) implies that the sequence of positive random vari- 

ables {fK dx  (f~)2} converges to zero in probability with respect to P and in 
particular there exists a subsequence {fK dx  (f~)2} converging to zero for P 
almost all w c Y2. Thus 9(x, co) = 0, for almost all co. This proves the lemma. 

8. 2 L ~ growth of random functions with L ~-derivatives 

In this section we prove Lemma 6.1 which is essential in our estimates for the 
Poisson problems in Sect. 8.4 and 8.5. Note that, contrary to the constant an(w), 
a different normalization has been taken in Lemma 6.1. 

Proof of Lemma 6.1. In view of boundedness of  the domain ~ and Vf~(x, w) = 
F(nx, o2), the pointwise convergence to zero 

lim 2 f~ (x, o2) = 0, gx E G (8.19) 
n ----+ o o  

implies the uniform convergence (6.20). It remains to prove (8.19) and this is 
done by contradiction. 

Suppose (8.19) fails at a point Xo C 8 .  We select a convergent subsequence, 
still denoted by fn (Xo, o2) such that 

f~(Xo, o2) ~ c~  r 0. (8.20) 

By the boundedness of F and the normalization fn(0, co) = 0 it follows that there 
exists a ~5 > 0 and no > 0 such that for all n > no, we have 

[f,(x, o2) - c~  [ _< c ~ / 3  , for ]X-Xo] < 6 (8.21) 

f~(x, o2) t < c ~ / 3 ,  for Ix t < ~5 (8.22) 

Now consider the cylinder set ~ '  of  radius 5, with OXo as its axis. By ergodicity 
and the zero mean property (F) = 0, we have 

1; 
[~r , dx F(nx, o2) --~ 0, for almost all co (8.23) 

1 But, from (8.21)-(8.22), it follows that T ~  fr dx Vf~ (x, w) has a nonzero com- 
ponent in the direction of O~o, which is larger than 

310'1 
> o. (8.24) 

Here B d - 1  is the d - 1 dimensional ball of radius 6. Thus, c~  = 0 and the proof 
is complete. 
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8.3 Approximation lemmas 

First we introduce the level M truncation ~(M) of the stream matrix: 

- {~j,  
g)i~M) : sign (~ij)M, 

for all i,j. Thus I~M>I <_ M,Vi,j. 

fo~ I~jl < M  
(8.25) 

for Ik~ijl >_M 

Associated with this bounded stream matrix ~(M), there is the effective dif- 
fusivity matrix c~ (M) which admits the same variational principles as (4.43) and 
(4.44): 

cr (M) inf f~ P(dw) 
ij : ~ xl~=0 d~L 

(f')=(e; +eY)/2 

- -  . e / __ eJ 
@ .  ~ + /~ t~ (M)F . /~ (M)~  _ kb(M)~. (e' -- e y) -- - - ~  I 2) (8.26) X 

= sup [ P(dw) 
�9 ~ x~';---o J o  

( ~ ' ) = (e i  -d)/2 

- + �9 + + I 

In the variational principles (4.43) and (4.44) for cr eff the o p e r a t o r / ~  has 
domain defined by 

= {F E L21t~F E L2}. (8.28) 

To approximate a eff with arbitrary accuracy it  is thus enough to consider the trial 
fields F ~ ~ .  That is, _@" is dense in o~9(kP ) in the II �9 IIF norm. On the other 

hand, since tff (M) is bounded (and hence _Nt~ (u) is bounded in L2), a suitable 
domain for (8.26) and (8.27) is the space c ~  of bounded gradient fields which 
is dense in oq~6g in the usual L 2 sense. The extremal values of (8.26) and (8.27) 
can be achieved within arbitrary accuracy in ~.~. Clearly, we have ._~ C ..@. 

Before proving Lemma 8.3 and 6.3, we note that for any F E 5~, we have 

< [ ( t ~  - -  t ~ ( M ) ) F ]  2 >----+ 0 .  (8.29) 

as M ~ ec. Consequently, 

< ~ (~  - ~(Mbr .  F ( ~  - ~(M~)~ > ~  o (8.30) 

a s M  ~ oc. 
A crucial step toward establishing the approximation Lemma 6.3 is the con- 

vergence of ~(M) as M ~ cx~: 

Lemma 8.3 
lim cr (M) = crey. (8.31) 

M--~oo 
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Proof. We first show the upper bound: lim sup~t_~o~ cr~Y ) < a f ,  Vi , j ,  using the 
minimum principles (4.43) and (8.26). 

By the previous remark and (4.43), for given e > 0 there exists a F ~ 
such that 

- - e i - e J  [2 
< F . F  > + < / ~ . / ~ b ~  > - < ~ . ( e  i _ e / )  > _ ~ < J f f + e .  (8.32) 

By (8.29) and (8.30), we also know that the left-side of (8.32) is bigger than 

_ . e i _ r ] 2 
< r .  F > + < ~ ( M ~ . / ~ ( ~  > _ < ~ ( M ~ .  (e' - e i) > - ~ - e 

(8.33) 
which in turn is bigger than 

c AM) - e (8.3z0 

in view of  (8.26). Thus we have that 

for sufficiently large M.  This proves the upper bound. 
�9 (M)  e #  We turn to the lower bound: l immfM_+~ crij > crij , V i , j .  

By the maximum principle (4.44), there exists F '  E ~ for given e > 0, such 
that 

~ - ~ _<< - v ' .  v '  > - < _ ~ r  _ P ~ '  > 

e i + e I [=. 
+ < ~(~t/l~- (e i + d )  > + ~ (8.36) 

In view of (8.29) and (8.30), the right side of  (8.36) in turn is bounded by 

- < F ' .  F'  > - < / ~ r 1 6 2  > 

e i +e i l2  
+ < k~fM)l ~ ' .  (e i + e/) > + - - - ~  + e (8.37) 

for sufficiently large M.  Combining (8.36), (8.37) and (8.27), we have 

crJ f - 2e <_ liminfo-/~ M) (8.38) 
M-+OO 

for any e > 0. This completes the proof. 
Using Lemma 8.3, we now prove Lemma 6.3. 

Proof  o f  Lemma 6.3. For the minimum principle(4.43),  suffice it to show that 
e i + e j  given e > 0, there exists bounded gradient field F with < F > =  ~ -  such that 

- ~-- ei -- ff 2 (8.39) 
4 v + ~  _>< ~ .  ~ > + < ? ~ .  ~ ' r  > - < ~ - ( e  ~ -  e i )  > _1 2 " 

By Lemma 8.3, we have that 

~Jeff + ~_> cr~ M) (8.40) 
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for sufficiently large M. By the remark in the begining of the section, there exists 
E , .~ such that 

_(M) + _ ) > <  F.  F > + < F~(M)F �9 > 
t)iJ 2 -  

ei - - e i  2 
_ < r  (e~ _ e / )  > - - T - -  I (8.41) 

Moreover, (8.41) is valid uniformly in M by (8.29) and (8.30). Equations (8.40), 
(8.41) together with (8.29), (8.30) imply (8.39). 

We turn to the maximum principle (4.44). Suffice it to show that given e > 0, 
I~ i - - e j  there exists F~ C ~,~ with < F'  >= - 7 -  such that such that 

~ f  - ,  <_ - < l> .  f ,  > - < ~ r  ~ , ) ~ ,  > 

ei+ed 2 
+ < ~(M~f , .  (e ~ + ~ )  > +1___5_ I . (8.42) 

By Lemma 8.3, we have that 

e < _(M) 
cr;j f f  -- ~ _ vii  (8.43) 

for sufficiently large M. Thus it follows from (8.27) and the density of ~ for 
bounded tff (M) that there exists F ~ ~ ~ such that 

~ r  _ ~ _< _ < v ' .  ~ '  > - < ~ ( M ~ f , .  ? ~ ,  > 

+ < ~ ( a q y , .  (e ~ +e / )  > +l e ~ l - + e *  2 (8.44) 

Note that (8.44) is valid for all sufficiently large M due to (8.29) and (8.30). 
Thus, (8.42) follows by passing to the limit M --~ co. 

Before leaving this section let us remark that Lemma 6.3 is essentially equiv- 
alent to Lemma 6.4 (the latter appears stronger). Lemma 6.4 states that the 
closure of , ~ ,  with respect to the norm I1 " 1]~, contains the exact solutions 

E j j , j  = 1,2,3. . . ,d in ~9(tff) ,  but it is not clear if , .~ is dense everywhere in 

.~a(tP). In other words, we do not know if ~ is a core for the unbounded 

operator F ~ .  

8.4 P o i s s o n  p r o b l e m  f o r  u p p e r  b o u n d  

Without loss of generality, let the domain & be the square lXi[ _~ 1, i = 1, ...,  d .  

Consider the inhomogeneous boundary value problem 

Afn (x, w) + V -  ~nFn = 0, in ~ (8.45) 

fn = 0, on 0 ~ .  (8.46) 

where the inhomogeneous term Fn(x, w) has the form 
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F,,(x,w) = .)..s co)@%(x))+ Vp(x), in O .  
J oxj 

(8.47) 

Here p(x) E C0~(O) and f J ( x , w ) , j  = 1, . . . ,d  are non-stationary random func- 
tions whose gradients are 

(Vf~)(x, w) = FJ(nx, w) = T,x~J(w) e o~9(S2). (8.48) 

We take the gradients F ~, i = 1, . . . ,d,  to be essentially bounded. The cut-off 
function is 

d 1 + xi 1 -- xi 
an (x) = H "7( )'Y( ) (8.49) % % 

i=1 

with "7(s) E C ~ ( R )  such that 

0 _< 7(s) _< 1 (8.50) 
1, Isl _> 2, 

~/(s)= o, I s l < l .  (8.51) 

and % is a decreasing sequence of positive numbers with a rate that will 
be determined later and depends on f J ( x , w ) , j  = 1, . . . ,d .  We denote the set 
{x I c~n(x)= 1} by C ' .  

We shall show how to solve (8.45), (8.46) in terms offn (x,w), i = 1, . . . ,d,  
whose gradients 

satisfy 

t .  I �9 ~ i  i 

( V f n ' ) ( x , w )  = F '(nx, w) = TnxF (co) ~ ~9(Y2)  (8.52) 

~ .  ~'i + ~ .  t~(~i + e i) = 0, (8.53) 

(~'i) = 0 (8.54) 

We impose the normalization conditions 

f~ (0, co) = 0 (8.55) 

s ' dx f , ' ( x ,  w) = 0, (8.56) 

so that, by Lemmas 8.2 and 6.1, 

r dx  0c;i)2(x, w) ---4. 0, (8.57) 

sup0C/)2(X, cO) --+ 0, (8.58) 
xE• 

in the limit n ---, oc, with probability one. 
We prove 
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Lemma 8.4 Let z, be defined by 

~-'f. '](x, 0 p ( x )  . .  Z n ( X , ~ )  = f n ( X ~ C C )  - z - - ,  o., co) ~ c~n ~x), ( 8 . 5 9 )  

J 

assume that (1~] 2) < oc, FJ ~ ~g(X?)(defined in (3.3)), j = 1,..., d, is essentially 
bounded and the normalization conditions (8.55), (8.56) hold. Then 

/~vdx (~TZn)2 ~ 0, - ~  (8.60) a s  n o c  t 

for almost all co. 

Proof ofLemma 8.4. Under the same assumptions of Lemma 8.4, we first prove 
a lemma which implies that z, tends to zero in the L2-norm in the limit n ~ oc. 

Lemma 8.5 For almost all c~, Vf ,  converges weakly to zero and 

(~dx 92 --~ 0 (8.61) 

a s  n --~ o o .  

Proof of Lemma 8.5. Multiplying (8.45) by any test function ~ C C0~(~) and 
integrating by parts give 

. /  dx V ~ .  Vf~ + ~ dx tP~F, . (8.62) 

The second integral vanishes in the limit. It follows that {Vf~ } converges weakly 
to zero. 

The energy estimate for (8.45), (8.46) gives 

J ; , dx  (Vf')2 = - ~ dx gr€ ' Vf" 

<_ ]~nF, IL2((~)IVI, ]L2(G) 

_< (IOFIL~(e) + ~)lVf~ IL:(~) (8.63) 

for any given 6 > 0 and n > no(6, aO, by ergodicity. Hence 

IVf, ]L2(~') <_ c (8.64) 

where c is a constant independent of n. This implies that {f, } is precompact in 
the strong L 2 s e n s e .  Thus, by the strong compactness, {f~ } converges strongly 
to zero. 

We return now to the proof of Lemma 8.4 and note that Lemma 8.5 and 
(8.57) imply that 

Vzn -~ O, weakly (8.65) 

and ~ dx z, 2 -+ 0 (8.66) 
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as n -+ oo. From equations (8.45), (8.53) it follows that 

Azn = - 2 7 .  gt n V fJ - - c e ,  + V p  - AfnJ ~xjOe,~ Oxj 

,. Op 

=-v.~. Z vs:~,n- v.~n ~s:v ~'n -- V. ~.Vp 
J J 

+. .. ~ (.,, +,~ o. ,. (~,) 
~,.- ~vsn, .v .. 

J J 

J 

=-V''nVp(l-an)-V''~'V(~Pxja. ) 
J 

J J 

(8.67) 

The major terms V G ~ j  y op ' �9 Vf~ ~ a , ,  V. kvn Vp and ~ j  Afn J ~ an nearly cancel 
because of (8.53) and the residual is V �9 ~nVp(1 - a,,). Multiplying (8.67) by 
zn, integrating by parts and using the Schwartz inequality gives 

G d x  (~7Zn)2 

= - / ~ d x ~ V p ( 1 - a ~ ) . V z ~ - L d x ~ V p . V ( 1 - a n ) Z  ~ 

/; :"~ _; >,~('. ) 
- d x ~ , . ~ v s ~ . v \ ~  /z. dx~. ~ . . v z .  

J J 

+/,,, ~,7,,,.,7 (~~ 1,,, ~;;,,~ (~~ .,~. 
J J 

_< s  I~.V,(1- ~.). vz.I + s  I~.V,. v(i - ~.)z.I 
Op 

J J 

�9 ( Y X j  
J J 

+L.x,~--'.-'. .+L.x,~,;.~ ~~ vj~ V Ox l ee, z,I 
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< 

o x  s 
] Y 

(f< dx(~'nV,('-<<o))a)l/2(f<~\~,dx(Vzn)2) '/2 

"1" ( k d x  (tfrn~710"V(l--~n)) 2) dx Zn 2 
\ ~ '  

d,, ~" }2 Vf~ op _2 + . V~UT~.c~n d x  an 
J 

1/2 
+ dx !,r'-n Z f / V  3~xa. dx (Vz~) 2 

J 

\ J  / 

i/2 

+ ( ~ d x  (~j fs 1/2 Ql;\#vdx (VZn)2)l/2 

1/2 

(8.68) 

There are no boundary contributions because of the boundary condition for zn 
and the cut-off function c~n. 

We note that the Poincare inequality for zn in (~ \ ~ i  gives 
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/~, 2 ,~ C1T2/0 d x  ( V g n )  2 dx Zn - 
\o' \o' 

< cvr 2 f dx (VZn)  2 , (8.69) 
d O  

since O \ ~  ~ is a strip of  width % near 0 ~  and z,, vanishes on 0 ~ .  The estimate 
(8.69) holds for all H l (~)- funct ions  with zero Dirichlet data and the constant 
cl depends on the domain ~ ' .  For the cutoff function we have the estimates 

iVa,12 < c2 _ ~ ,  (8,70) 

/o dx (Vc~)  2 <_ c~ (8.71) 
% 

We now use (8.69), (8.70) and (8.71) whenever the integral f~ \G ,  dx z 2 occurs. 
Lemma 8.4 then follows from (8.66) and 

J o  dx ~ ~ 0, (8.72) 
\&' 

d x ( V f ~ ) ' + 0 ,  =1, d J (8.73) 
\~ ,  

L dx (Vfn ' J )2- -+0,  j = l , . . . , d  (8.74) 
\6 ,  

dx (~,~VL') ' --, = 1,...,d 0, J (8.75) 

dx (f 'j)2 __+ 0, j = 1, . . . ,d,  (8.76) 

• (,.p<,'] (s <) .... . j = l,...,d. (8.77) 

for almost all co. The estimate (8.77) is used for the integrals whose integrands 
involve ~ , f J .  

The estimates (8.72)-(8.75) are immediate consequences of  the ergodicity, 
since % --+ 0. To get (8.76) and (8.77), we first note that 

dx ~,~ < (l~l') +~ (8.78) 

for any 5 > O, for n sufficiently large. So we must now choose a proper cut-off 
rate 7n. Let 

rjn=max{f~ 'dx(r'i)2'' " ' x~Sup 0c~)2' i = l ,  . . . ,d } . (8.79) 

We know from (8.58), (8.57) that 

r/, ---+ O, as n --~ oo, with probability one. (8.80) 
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The desired result (8.60) and Lemma 8.4 follow from 

~-n ---+ O, ~/n - -  - -+ 0 ,  a s  n --+ vc. ( 8 , 8 1 )  
q 

1 / 4  
when we let % = ,m �9 

Once Lemma 8.4 is proved, the cut-off function an can be omitted in the 
limit as n ~ oo. We have 

where 

because 

dx + o, 

' ~ L  (x, c o ) - -  zn(x, co) =L(x, co) - 'J 
J 

(8.82) 

0p(x) 
(8.83) Oxj 

(7 )2 
~ dx v L  'j (1- -an)  ~ 0 ,  (8.84) 

/ \ 2 

f~  dx f2J Vc~ -+ O, (8.86) 

as n ---* oo, for almost all co, f o r j  = 1 ,2 ,3 ,  . . . ,d .  

We note that Lemma 8.4 is also valid if the left side of (8.60) is averaged over 
co. This can be seen by applying the Lebesgue dominated convergence theorem. 

8.5 Poisson problem for  lower bound 

We again assume, without loss of generality, that the domain ~ is the square 

[xi[ <_ 1, i = 1 , . . . , d .  
The Poisson problem in this case is 

A91n(x, c o ) + V  .tP, Gfn = s + V - S ,  in O ~ (8.87) 
! 

gn = 0, on 0H'.  (8.88) 

where the inhomogeneous term G'n(x, co) has the form 

' j  0D  
G',(x, w) = ~ V(a,(X)gn (x, w ) ~  (x)) (8.89) 

J 

Here O(x) is some function to be determined later, c~ is a cutoff function as 
/. 

defined in (8.49)-(8.50) with the cut-off rate % to be determined later and 9 / ( x ,  co) 
are related to ~ ' i  via (8.52). 
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Euqation (8.89) differs from equation (8.45) in the additional terms s + V .  S. 
To balance the inhomogenous terms s + V -  S, we introduce an additional term p 
in the ansatz: 

0p(x) 
p + ~ ~ (x, co)-~-x) c ~ , t x ) . "  " " (8.90) 

J 

Here 9Jn(x, co) are related to g2J(x, co) in the following way: Let (~i solve the 
equations 

V . G ' + V - ~ ' i = 0 ,  i = l , . . . , d  (8.91) 

(~i)  = 0 ,  i = 1 , . . . ,d  (8.92) 

with given stationary fields ~'i. The solutions G~(x, co) can be written as gradients 
of nonstationary random functions gi (X, cO). Let the rescaled random functions 
be, as before, 

g~(x, a;) = 1-gi(nx, co). (8.93) 
n 

Both gi(x, co) and g2 ) (x, co) are determined uniquely by the following normaliza- 
tion conditions 

/. 
g~' (0, co) = 0 (8.94) 

f dx i g~(x, co) = O. (8.95) 

By Lemma 8.2 and 6.1, 

o d x  (g/)2(x, ~)  ~ 0, (8.96) 

sup(9~i)2(x, w) --~ 0, (8.97) 
xC(? 

in the limit n -+ oo. 
Due to the inhomogeneous terms s + V �9 S, we do not expect Lemma 8.5 to 

hold for 9In. However,  if p is properly chosen, the difference 

, 
zn = gn - p - gJ~ (x, co) c~ (x) (8.98) 

J 

can be made to satisfy 

e(zn)2dx --+ 0 (8.99) 

as n ---+ oc. For this, we must assume p to solve 

0 
a p  + }--~ < ~G'; > .~x. v p  = s + V  . s  (8.10o) 

i 

p = 0, on O ~  (8.101) 

o r  
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~O@i((Sij+<~-J'i > . e j ) - o O p = s + V . S . .  (8.102) 
t d  

p = 0, on 0 ~ .  (8.103) 

Note that, in view of (4.17) and (4.18), 

50 + < ~ ; ' i  > -ej (8.104) 

is precisely the symmetric part of the effective diffusivity a, eff a~ff) if 0 'i ~ tcr/j + = 
-~ Cl~ + - -  12~, ). 
2 \ e i  r 

Equations (8.100) and (8.101) follow naturally from the following consider- 
ation: From the equations (8.87), (8.91) it follows that 

ax: 
J J 

0p +ap+~vr  ) 

J J 

Ore - ~-~V 9shy \Oxj J (8.105) 
J 0x j  J 

" " O p  The leading order O(n)-terms V-~P~ ~ j  V92 ~ a ~  and ~ j  AgJ, ~o~,~ cancel 
because of (8.91). 

Multiplying (8.105) by any test function q~, integrating by parts and using 
(8.100) give that 

- ~ ,  dxVz~ �9 V~ 

J (YXj 

J 

j d(~ j 

s " Oxj d,~, J \Oxjxj J " V~D. (8.106) 

The right side of (8.106) vanishes in the limit n --+ oo due to (8.96), (8.97) and 
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fca ~ t. ~ i. dx( ~nVgn J -  < ~ G  j >) --+ 0. (8.107) 
lO j 

This implies that Vzn converges weakly to zero. It is also clear that 

~ dxlVzn] 2 < c < oo. (8.108) 

Thus zn is strongly pre-compact in L 2 and has zero as limit, namely, we have 
(8.99) as a consequence of (8.100). 

We now prove 

Lemma 8.6 Assume that ([~l 2) < oo. Let ~9 C ~9($2) , j  = l, ...,d, be essen- 
tially bounded and let the normalization conditions (8.94), (8.95) hold. Assume 
also that p satifies (8.100) and (8.101). Then 

f : d x  (Vz,) 2 --+ 0, ~ (8.109) as n 

for almost all w, where 

�9 Op(x) 
z,(x, w) = 9~(x, ~) - p - Z 9an (x, ~ ) - -~ - - c~  (x). (8.110) 

�9 uxj 
J 

Proof Multiplying (8.105) by z,, integrating by parts and using Schwartz 
inequality give that 

o d x  (Vzn)2 

_ w - - ,  ' j ~  Op 1/2 
< dx ~P. 2__, g~ v ~ x j  oz. dx (Vz~) 2 

J 

+ dx / \.,d. (Vz.)' 

+ (j dx 
,x ( ,,o,_ )2)1" 

~'~ vgn ~ vc~n 
\ ~ ,  J OXj 

1/2 

f dx 

.),,2 
(~~E79~ - < ~PG j >)V~-xj a,, 

(j~. ~70d; ~7 ~XJ O~n ) 2) i/2 
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dx 

1/2 

(~j ~J;~7~xjOgn) 2)l/2 (~(~2dx (~TZn)2) t/2 
1/2 

1/2 

(8.111) 

We note that similar to the proof of Lemma 8.5, (8.65) and (8.66) also hold here. 
Lemma 8.6 then follows from (8.69), (8.99), 

f o  ~ dx (V9J,;) 2 + 0 (8.112) 

fo dx (~nvf:J)2--+O (8.113) 
\ ~ '  

d x  (d2) 2 ~ o, (8 .114)  

7-2 \ x ~  

for almost all w. As in the proof of Lemma 8.4, we have to choose the cutoff 
rate rn to satisfy (8.114) and (8.115). This completes the proof. 

Similar to (8.82), we have 

where 

f dx (Vz~) z -+ 0, (8.116) 

, v - ,  i ,  , ~ ,~ , tx j  
z n ( x , ~ )  = g , ( x ,  ~ )  - p - 2_., ~r, a x ,  ~ )  ~ 

J 

Namely the effect of the cut-off functions is negligible. 

( 8 . 1 1 7 )  
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A Summary of notation used 

Notations Definitions 
.Ygg 

6Zgc 
H 0 ( ~ ,  0 )  

N 

I[ - I1~.,, 

I1-11~ 
170 
? 

Eij 

Ei 

Ei (x, co) 

D o 

Di 

D i (X, co) 
p.+ 

p,, 
p. 
xT(x, co) 
x~ (x, co) 
X(x, co) 
X'(x, co) 
f / (x ,  co), 9i(x, co).., etc. 

Stationary gradient fields 
Stationary curl fields 
The solution spaces for the Dirichlet problems 
The solution space for the cell problems 
The norms associated with the spaces H0(~n, O)  
The norm associated with the space .5~,~g(tP) 
The projection into the gradient of H01 ( 0 )  
The projection into the space o~gg 
The intensity fields 

The adjoint intensity fields 

The average of Ee+i and E~ 
N 

The half difference of E+'e' and E~ 

The fluctuating intensity fields E +, - e i 
el 

The x-translate of Ei 
The flux fields 

The adjoint flux fields 

The average of B+i andB~  

The half difference of De+ i and De~ 

The fluctuating flux fields D + e' 
The x-translate o f  Oi 
The solutions of the Dirichlet problems. 
The solutions of the adjoint BV problems 
The average of p+, Pn 
The half difference of Pn, + Pn - 

The correctors 
The adjoint correctors 
The average of X+(X, w), Xi-(x, co) 
The half difference of X+(X, co), X~ (x, co) 
Rescaled functions 

(3.3) 
(3.4) 
(3.12) 
(3.41) 
(3.13) 
(3.42) 

(3.11) 
(3.40) 
(4.1), (4.3), (4.4) 

(4.2), (4.3), (4.4) 

(4.5) 

(4.6) 

(3.33)-(3.36) 

(3.25)-(3.28) 
(4.1), (4.3), (4.4) 

(4.2), (4.3), (4.4) 

(4.7) 

(4.8) 

(3.33)-(3.36) 

(3.25)-(3.28) 
(4.26)-(4.27) 
(4.28)-(4.29) 
(4.30) 
(4.31) 
(5.38) 
(5.38) 
(5.39) 
(5.39) 
(6.31), (6.32) 
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