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Summary. We consider functions, F, of a semimartingale, X, on a complete 
manifold which fail to be off2 only on, and are sufficiently well-behaved near, 
a codimension 1 subset ~ .  We obtain an extension of the It6 formula which is 
valid for all time by adding a continuous predictable process given explicitly 
in terms of two geometric local times of X on ~ and the G~teaux derivative of 
F. We then examine the cut locus of a point of the manifold in sufficient detail 
to show that this result applies to give a corresponding expression for the 
radial part of the semimartingale. 
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1 Introduction 

A random process X with continuous sample-paths on an m-dimensional 
riemannian manifold (M, g) is called a semimartingale if, for every smooth 
function f on M, f ( X )  is a semimartingale on N. A semimartingale is called 
a F-martingale if, for every smooth function on M, 

t 
f (X t )  - f ( X o )  - �89 f HessI(aXs, ~Xs) 

0 

is a local martingale on N (cf. [-4]). Geometrically, a semimartingale X on 
M can be constructed from a continuous semimartingale J? on ~"  via the 
Stratonovic stochastic differential equations 

~St = Hz, ~Xt, 

#Xt = Y-~ OXt. 
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Here, for an orthonormal frame ~ in the tangent space z~(~)(M), H~ is the 
horizontal lifting isomorphism, supplied by the Levi-Civita connection, of 
v~(~)(M) onto the horizontal subspace of the tangent space ze((9 (M)) at ~ to the 
orthonormal frame bundle (9(M). Usually )? is called the stochastic develop- 
ment of X and S is called the stochastic parallel transport of X. In particular, 
the stochastic development of a F-martingale is a local martingale on Nm and 
brownian motion on M is a F-martingale whose stochastic development is 
brownian motion on Nm. 

If {Ui: 1 < i < m} is a fixed orthonormal base for Nm, with respect to the 
standard euclidean metric, and )?i, 1 < i < m, are continuous semimartingales 
on ~ such that J?t = 2X~ui is the stochastic development of a continuous 
semimartingale X on M, then the It6 formula for a smooth function f on 
M can be expressed as follows (cf. [7]): 

df(Xt) = ~ Stuif(Xt)dX'(t) + �89 ~, F.tui3.tujf(Xt)d[2~,2J]t, 
i=1  i , j=l  

which is sometimes written more simply in the form 

df(Xt) = [grad/(Xt)" 3t] dJ?t + �89 HessI(~t, ~t) d [)?]t 

(cf. [8]), where it is clear that HessI(~,, 3~)d[.~]t stands for HessI(0Xt, ~Xt). 
However, when we take our function to be the distance ~b(x) from a fixed 

point Xo in M, this formula for q5 (X), the "radial part" of the semimartingale 
X, applies only up to the first time that X hits Xo or its cut locus C(xo), since 
there the function r fails to be smooth. As q5 is at least locally related to 
smooth convex functions, (p(Xt) will be a semimartingale when M satisfies 
certain conditions and X is a F-martingale on M (cf. [3, 8]). This makes it 
possible to extend the It5 formula for r to hold for all time including those 
times at which X visits C(xo)U{Xo} (cf. [8]). More precisely, when ~b(Xt) is 
a semimartingale, if the F-martingale X spends almost no time in C(xo) (in the 
sense that {t:X~ ~ C(xo)} is almost surely a Lebesgue null set), and if the 
underlying filtration is such that all continuous martingales have bracket 
processes which are absolutely continuous as (random) measures on the time 
set ~+, then 

d4)( Xt) = [grad ~b(Xt)" ~,] dMt + �89 Hesse(St, 2,)d[M]t + dL ~ ( O (X)) -dLt ,  (1) 

where the gradient grad q5 and the Hessian Hess ~ are set to zero for x ~ C(xo), 
L ~ (~b(X)) is the local time of qS(X) at zero and L is a non-decreasing process 
which increases only on the time set {t: Xt ~ C(xo)}. 

Note that when X is brownian motion on (M, g) any fixed point is a polar 
set provided m > 1, so that the term dL~ (~b(X)) in (1) will disappear. Details of 
the corresponding behaviour of L, related to a notion of local time of X on 
C(xo), have been given in [3]. To state that result, we need the following facts. 
Firstly, the one-sided Gfiteaux derivative, D +f  which is defined by 

D+f~(v) = lim ~-1 {f(exp~(~v)) --f(x)} Vv ~ z~(M), 
e$0 
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always exists for a convex function. Secondly, a constant, Cm-t, times the 
Hausdorff measure related to the riemannian volume measure and restricted 
to a particular hypersurface (denoted by # " -  t) gives the area measure of that 
hypersurface. Given any open subset ~ of a hypersurface of M, write L ~ for 
the geometric local time defined, for Borel subsets E of ~e of finite # " - t _  
measure, as the continuous predictable non-decreasing process L~e(E) asso- 
ciated with the restriction of c,,_ t #m- t measure 

A ~ c , , _ l # " - t ( A n E ) .  

Then the result in [3] can be summarised as follows. If the set Lf, consisting of 
points at which a convex func t ionfon  (M, g) fails to be smooth, is a countable 
union of open subsets of codimension 1 submanifolds of M then, for brownian 
motion X with B as its stochastic development, the stochastic differential 
equation of f (Xt)  is given by 

df(X,) = [gradf(Xt)" ~ ]  dBt + �89 A f(X~) dt + �89 +fx~(V) + D +fx,( - v) dLt :e, (2) 

where the gradient g r a d f a n d  the Laplacian A f a r e  set to zero for x e 5e and 
v is a ( p " -  a-almost everywhere defined) measurable unit normal vector-field 
for 5e. 

The cut locus C(xo) is contained in a countable union of open subsets of 
smooth hypersurfaces of M up to a Hausdorff (m - 1)-measure zero set. It 
follows, by the local relation of 49 with convex functions, that 49(X) satisfies 
a similar stochastic differential equation and, since D+f(v) + D+f(  - v) > 0 
for any convex function f, that D+O(v) + 0+49( - v) < 0 (cf. [3, 8]). 

In this paper we take a somewhat different approach, and also study the 
cut locus in more detail, to obtain a result for semimartingales generalising 
that  in Eq. (2). 

In Sect. 2 we re-express the It6-Tanaka formula for a certain class of 
continuous convex functions, f (X ) ,  of a continuous real-valued semimartin- 
gale, X, in terms of the local times of X at the points where f fail to be cg2 
(Proposition 1). Then, in Proposition 2, we consider the case where X is 
a semimartingale in R when it is equipped with a non-standard metric and 
obtain a generalisation of Proposition 1 which also generalises that case of 
Eq. (2). In Sect. 3 we further generalise this to allow X to be a semimartingale 
on a complete riemannian manifold. There we consider continuous functions 
of X which are  (~2 except that, in each of at most a countable number of local 
coordinate spaces, they restrict to different cgZ-functions on either side of 
a hyperplane in R m. 

In Sect. 4 we obtain an expression for the It6 correction term for the radial 
part of a semimartingale in terms of the local time at zero together with what it 
is reasonable to regard as two geometric local times on the cut locus by 
showing that the distance function from a point Xo of the manifold is a func- 
tion satisfying the appropriate hypotheses of Theorem 1. To that end we first 
use results of Ozols to show that, except for a set whose image has Hausdorff 
(m - 1)-measure zero, the cut locus of Xo in the tangent space, outside the first 
conjugate locus, is a union of submanifolds for which the distance function 
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satisfies those hypotheses. We then extend results of Warner to show that the 
image of the conjugate part of the cut locus, indeed of the entire conjugate 
locus, has Hausdorff(m - 1)-measure zero. Note that, by [-6, Theorem VII.3], 
it follows that this image has codimension at least two in the manifold. This 
results appears to be new and has analytic and geometric consequences which 
we shall pursue elsewhere. 

Readers of I-3] will be aware of our indebtedness to the authors of that 
paper both for inspiring our main results and for a number of the ideas within 
the proof. We are further indebted to W.S. Kendall and one of the referees for 
further helpful comments and suggestions on the first version of the paper. 
The latter in particular drew our attention to [1] and enabled us to simplify 
our proofs and to extend the results from the original context of/"-martingales 
to semimartingales. We gratefully acknowledge all these debts. 

In the following, for any fixed riemannian manifold M, we define the 
operator grad from Cg(M), the space of continuous functions on M, to the 
space of vector fields on M to be g r a d f i f  the latter exists and zero otherwise. 
The operators Hess and A_A - are defined similarly. Note that, if the dimension of 
M is one, then Hess is identical with A and Hess with A__. For  any func t ionfon  
N, if its left-hand derivative at x exists we denote it byf'_. We write ~ix for the 
Dirac measure at x. For  any given semimartingale X on M, we shall write 
)(  for its stochastic development and Z for its stochastic parallel transport 
except that, when X is a/"-martingale or brownian motion, we shall write 
M or B respectively for its stochastic development. 

2 A generalised It6-Tanaka formula 

Given a semimartingale X on N we denote by L~;'x(x) the usual local time of 
X at x and by L~" x(x) the local time of - (X - x) at 0. I fX  is continuous, the 
process {L+t'x(X)'xEN, t e N + }  may be chosen such that the map 
(x, t) ~ L+t" x(X) is a.s. continuous in t and cadlag in x. Then L~-' x(X) is the left 
limit with respect to x of L+~'x(X). When X is a continuous local martingale, 
there is a bicontinuous modification of the family Lt+' x(X) of local times (cf. 
1-11, p. 209]), and so L~' x(X) = L~-' x(X). Then it will be denoted by L~(X). 

Proposition 1 I f  the difference, f of two continuous convex functions is (g2 on 
N\{x*: n > 1}, where the set {x*: n > 1} has no limit point in ~, and if X is 
a continuous semimartinyale on ~, then 

df(Xt) = gradf(St) dXt + �89 A_f(St) d[X]t 

+ �89 ~ {J~_(Xt)dL+'x*(x) - f ' ( X t ) d L ; '  x*(X)}. 
n > l  

Note that in this case the stochastic parallel transport 3 is the identity and the 
stochastic development of X is itself. Note also that, if the set {x*: n > 1} has 
limit points in N, it is sufficient to assume that the second derivative o f f  in 
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the sense of distributions is absolutely continuous on N\{x*: n > 1}, to obtain 
a similar result. 

Proof We know from the I t6-Tanaka formula tha t f (X)  satisfies the follow- 
ing stochastic integral equation: 

t 

f(x,) = f ( X o )  + f l'-(X~)dX~ + �89 f L~(X)uz(dx), 
0 

where ~t I denotes the second derivative of f i n  the sense of distributions, that is 
Pl is a locally finite measure such that fj(x)~b" (x)dx = f~ O(x)#i(dx ) for all 
smooth functions of compact support, ~. 

Without loss of generality, we may assume tha t f i s  convex, continuous on 
and c#2 on N\{x*}. Then the measure #I associated with the second 

derivative of f i n  the sense of distributions is given by 
Jr X2 

#i ( (x~ ,  x2])  =f" (x2) - f ' -  (x~) = f A_f(u) du + f ((u)~,(du), 
x1  x t  

where ~(x) is equal to f ;  (x*) - f ;  (x*) if x = x* and zero otherwise. Thus 

f Lr = f L~(X)df(x)dx + f L~(X)((x)6x,(dx) 
R R 

t 

= fAf(X~) d[X]~ + ((x*)L~ +' x*(X), 
0 

where the second equality follows from the occupation times formula (cf. [11, 
p. 209]). Finally, we get (cf. [11, Theorem 1.7, p. 209]) 

t t 

f(xt) = f(Xo) + f gradf(X~) dX~ + f l{x~= x*} f" (X~) dX~ 
0 0 

t 

+ �89 fAf(X~)d[X]~ + �89 ((x*)L~*' x*(x) 
0 

t t 

=f (Xo)  + fgradf(X~)  dX~ + �89 f A_f(X~) d[X]~ 
0 0 

+ �89 {f~_ (Xt)L +' ~*(X) -f'_ (X,)L-[' ~*(X)}. 

Note that the Dirac measure 6~, which is the measure associated with dLf(B), 
differs from the Hausdorff measure related to the Lebesgue measure on N and 
restricted to x by at most a constant, and also that v = #/bx is an orthonormal 
vector field on ~ andf ' .  (x) = _+ D+f~( ++ v). Thus Proposition 1 is the gener- 
alisation to semimartingales of a special case of Eq. (2). 

Now we consider the case that N is equipped with a general riemannian 
metric structure g, so that the riemannian distance between any two points 
X 1 ~ X 2 of (N,g) is given by 

~2 

d(xl,x2) = f ~ dx = s(x2) - s(xl), 
x l  
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where s(x)= sgn(x)d(0, x) is a strictly increasing function. Then a function 
F on (R,g) is called convex (cf. [11, p. 502]) if, for any xl < x < xz, 

(S(X2) -- s(x1))F(x) <= (s(x2) -- s(x))F(x1) + (s(x) - s(xl))F(x2). (3) 

Proposition 2 I f  the difference, F, of two continuous convex functions on (N,g) is 
cg2 on ~\{x*: n > 1}, where the set {x*: n > 1} has no limit point in R, and if 
X is a continuous semimartingale on (N,g), then 

dF (Xt) = [ gradg F (Xt) " ~t] dXt + �89 A..~ F (Xt) d [)?]t 

- -  X *  + � 8 9  2 {D+Fx,(V) dL+''~*(x) + D+Fx,( - v)drt'  "(X)}, 
n > l  

where v = {g(x)} - 1/2 d/dx. 

Proof Parallel translation of cotangent vectors on (N,g) from 0 to x is 
multiplication by {g(x)}- 1/2 and so 

0x, = {g(x,)}- 1/~ 0Z.  

Equation (3) implies that F is convex on (N,g) if and only if f =  Fos -1 is 
convex on ~ equipped with the standard metric, 1. Indeed the mapping s from 
(N,g) to (N, t) is an isometry and we also have that, if the second derivative of 
F exists at x, then 

;gradf(s(x)), ds@)) = lgradgF(x) ' 1 d )e ~xx and Af(s(x)) = AgF(x). 

Hence, f'+ (y) = {9(x)}-l/2V'+ (x) = +_ D +Fx( + v), where y = s(x). 
When X is regarded as a continuous semimartingale on (R, t), the relation 

between the local times of X and its stochastic development, J?, is given as 
follows (cf. [11, p. 212]): 

o~o s (x  + ~) - s (x)  o 

= l i m {  ~ -ljIt~,~+~)(X~)g(X~)d[X]~ } 
~o s (x  + e) - s(x)  ~ o 

= x /g (x )  L +' *(X). 

Thus, by Proposition 1, we have 
t 

F(X,) =f(J?t)  =f(J~o) + f gradf0?,)dJ?~ + �89 j Af(J{~)d[)~]~ 
0 0 

+ � 8 9  y ,  , A +,s~x.*, {f'+ (XOLt (X) -- f"  (s ~(**)()~)} 
n > l  

t 

= F(Xo)+ f [gradgF(X~).E~]ds + �89 j A___~gF(Xs)d[s 
0 0 

+ ~  

(4) 

{D+Fx,(v)L +" ~*"(X) + D+Fx,(-  v)L[' ~*(X)} ~/~X,) .  
n > l  
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Note that the random measures ~ dL+'**(X) are invariant with 
respect to the choice of the coordinates and take the geometric structure of the 
space into account. 

When X is a F-martingale on (N,g), its stochastic development is a local 
martingale M on (~, 1) and so L + '~(~)(M) = L ~ (X)(M). Thus, the above proof 
implies the following result. 

Corollary If  X in Proposition 2 is a F-martingale on (R,g), then 

dF(Xt) = [gradg F(Xt)'~t] dMt + �89 A___~g F(Xt)d[M]t 

x *  + �89 ~ {D+Fx,(V) + D+Fx,( -- v)} gx/~t)dLt"(X). 
n > l  

The following result and proof are extentions of those for the case when 
X is brownian motion on (R,I) (cf. [11, p. 385]). 

Proposition 3 If  X is brownian motion on (R,g) and if A is a continuous additive 
functional of X with associated measure #a, then 

At = f L ~ ( X ) ~ # A ( d X ) .  
R 

Proof It follows from Eq. (4) that the measure associated with L x (X) is 
#L ~ = {g(x)}-1/2~x. Write 

.~, = f L~(X) gx~)#A(dX). 

Then .4 is a continuous additive functional of X. W r i t e / ~  for the measure 
associated with A and m for the volume measure of (~,g). Then m is the 
invariant measure of X and so, for any bounded non-negative measurable 
function ~b, 

/~(~) = E,,[ / ~(Xs) d.71~ 1 

= f ~ ~,~4~,)~A(dx) 
N 

= f ~,(x)~A(dx) = ~A(~'). 
R 

Thus, #~ = gA and so (up to equivalence) A = A. 
An immediate consequence of Proposition 3 is that, if X is brownian 

motion on (R,g), A is a continuous additive functional of X and 0 is 
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a bounded non-negative measurable function, then 

t 

f O(X)L7 ( x ) ~ x )  Ua(dx) = fO(x~)  dA~. 
0 

The measure 6x.(dx) differs from the Hausdorff measure related with the 
corresponding riemannian measure of (E,g) and restricted to x* by at most 
a constant and is the associated measure for the geometric local time,/]~*(X), 
of brownian motion on (N,g) at x*. The above equation implies that 

E~(X) = x /g(x)U(X) .  Hence Eq. (2), for the case (R,g), is a corollary of 
Proposition 2. 

3 The It6 correction terms for certain functions of semimartingales 

We turn now to the general case of semimartingales on a complete riemannian 
manifold (M, g). We shall consider continuous functions on M which fail to be 
differentiable on at most the countable disjoint union 5e of open subsets Oi of 
codimension one two-sided submanifolds of M, where for each i there is an 
open subset U~ of M such that O~ = ~c~U~ and U~\O~ has two components. 
We choose a never-zero unit normal field v on ~ .  For  each i let U + be the 
component of U~ - Oi into which v points, U[ be the other component and 
Jfi+ = O~uU~ + . Then we require our functions, F, to be continuous functions 
satisfying the following hypothesis: 

(H) For each i there are cg2-functions Gi, + on Ui such that 

F [~ i  +- = Gi, • [ 9~i • �9 

We denote by F o ~ the composition of F with the orthogonal projection 
~z onto ~ ,  uniquely defined on a sufficiently small neighbourhood of =F in M. 
Then our basic result is the following. 

Theorem 1 Let X be a semimartingale on a complete riemannian manifold 
(M, g) and let ~ ,  its normal field v and associated sets 0~, Ui be as described 
above. Then there are two non-decreasing continuous predictable processes 
L +- ~'~(X), which are functionals of X and whose associated random measures 
dL + v,.~(X) are a.s. carried by ~ such that, for any continuous function F on 
M satisfying the hypothesis (H), 

dF(Xt) -- [ grad F(Xt)'  Y.t] dXt q- �89 Hessr(~t, ~,) d[X]t 

n) (Xt)" ~,] dXt + �89 HessV~ Zt) dD(] ,  + l(x,~e} {[grad(F o = ^ 

+ �89 + D+Fx,( - v)dL7 ~'~(X)}. (5) 

Proof By localisation we may assume that M = W", with the induced metric g, 
and that 5e is given by xl = 0 and ~ +  is the set {(xl, ... ,xm): xl > 0}. Let 
F: N" ~ ~ be a continuous function such that there are cg2-functions G • on ~"  
with Flgff + = G+ ] J/g• Write x + = (x~,x2 . . . . .  x,,), where x~- = max{0,xl} 
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and xi- = xl - xi ~, and F~ = F(O,x> ... ,x,,). Then 

F(x) = G+(x +) + G_(x-) -- F~ 

and so we have (cf. [1, Proposition 5]) that 

dF (Xt) = [ grad F (Xt) " E,] dX t + �89 Hessf(Et, Et) d [Jr], 

+ 1{x:~}dF~ �89 xt) dLt+,~ l) 
l U~l 

141 

aG_ (Xt) dL t'~ 
Oxl J 

(6) 

In order to re-express the second line of (6) in the form given in the 
theorem we first note that 

[grad(Fo n)(Xt)" ~t] dXt + �89 Hess r~ ~t) d [)~], 

{ gl'(Xt) ~F(Xt)dX**} (7) 
= l{x:~e} dF~ i=2 ~" f l (Xt )  ~xi 

This follows from the following three observations. Firstly, since v is the 
normal vector field on s pointing into ~ + ,  it is orthogonal to a/axi, 
2 < i < m, and we have 

t~ gli 

i=2 ~ 8x[ 
Thus 

c~FO~ " gl, } 
- g T  ( + . 

Secondly, if we denote by N the local martingale in the Doob-Meye r  de- 
composition of X t, we have f~+ l{x:~e} dNt = O. This implies that 

{ ~ O2F(Xt) d[y',yJ], 02(F~ d[Xi, XJ], = l{x:xe} ay, ayj 
i , j= l - ~  ~Xj  i, 2 

+ 
i , j ,k=2 OYk ~X i OXj 

where y, is the ith coordinate of rr(Xx . . . .  , xm). Finally, (xl, Y2, ... , Y,,) is also 
a coordinate system on M and so (x2 . . . .  ,xm)-+(Y2 . . . . .  y,,), when it is 
restricted to 5(, represents a change of coordinates. 

Equation (7), together with the fact that 

/Sis  t3G + gli 
D+Fx( + v )=  + x/9-" -~x7 + ~ 8F~ 

- -  - -  - -  / = 2  % / r g - ~  ~X i ' 

implies that, if we define 

t 

L~'r  = f {g*~(X,)}-*/z dZ +'~ (8) 
0 
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then Eqs. (5) and (6) are identical. Clearly, the processes L • ~'~(X) defined in 
this way are non-decreasing and continuous and the random measures 
dL~*'-~(X) are a.s. carried by the set ~ .  

To complete the proof of the theorem we need to check that the expression 
(8) is invariant with respect to the choice of coordinates. Suppose that 

= (21, . . . ,  2m) gives another coordinate system on (N",g) with the proper- 
ties that xi = 0 if and only if xl = 0 and that xi > 0 if and only if Yl > 0. 
Write (0i, j) for the inverse of the riemannian metric matrix with respect to the 
new coordinates 2. Then, on the one hand, we have by the I t6 -Tanaka  
formula that 

d [Xt~l = sgn(Jft 1) d.,Y~ + �89 {dL+t ' o(~l)  + dud' 0(d~i)}, 

where the function sgn is defined by sgn(x) is equal to 1, i fx  > O, - 1, i fx  < O, 
and O, if x = O. On the other hand, we have by the theorem proved using the 
coordinates (xi,  . . . ,  xm) that 

d [Y~t~ [ = sgn(J~) d)~t ~ + �89 {dL~' ~ + dL; '  ~ 

since xl  (0, x2 . . . .  , Xm) = 0 and thus 021(0, x2 . . . . .  Xm)/OXi = 
(72~1(0, X2 . . . . .  Xr~)/~Xit?Xj = O, 2 <--__ i,j <= m. It follows that 

dLT' o(:g~) + dL; '  ~ ~21(Xt) {alL+, o(x l  ) + dLT" ~ 
0xi 

If we repeat the above argument for 21(X) instead of 121(X)l, we shall get 

dL +, o(_~t) _ d C ; "  o( .~)  _ e~2, (Xt) {dL +" o ( x ,  ) _ d C ; "  ~ 

Therefore, 

dL ? ,o(j~i) _ ~2i(Xt) dLt• ,o(xi)" 
Oxi 

Thus the invariance of expression (8) follows from 0 il  = (0~21/~xl)29 l l  on 
f which, again, is a consequence of 021(0,x2, ... ,x,,)/6xi = O, 2 <_ i <_ m. 

Note that, as in the 1-dimensional case, the processes L • v'~e(X) are not 
only invariant with respect to the choice of coordinates, but also take the 
geometric structure of M into account. In fact the above proof shows that, if 
we define Y to be dist(X, L~ ~ on the side of &o into which v points and 

- dist(X, ~ )  on the other, then L -+~'z(X) = L -+'~ 
When X is a F-martingale with f~+l~x,~e~g(dXt,dXt)=O, then 

L + ~'~e(X) = L-~'-~(X) = L'~(X) and the terms in the second line of (5) vanish 
and we get the following corollary. 

Corollary Let X be a F-martingale on a complete riemannian manifold (M, g) 
and let 5~ and its normal field v be as described above. Assume that 
f~+ l(x,~e)9(dXt, d X t )  = O. Then there is a non-decreasin9 continuous predictable 
process L ~e (X), which is a functional of  X and whose associated random measure 
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dL ~ (X) is a.s. carried by ~ such that, for any continuous function F on 
M satisfying the hypothesis (H), 

dV(Xt) = [ grad F(Xt)" St] dXt + �89 Hesse(St, Et) d [-~]t 

+ �89 + D +Fx,( - v)} dLt~(X). 

When X is brownian motion on M, the above corollary is analogous to the 
Eq. (2). To see this, it is sufficient to show that the associated measure of 
Lz(X) is the hyperplane measure 9~22(0, x2)dx2 of 5e. 

Since d [Xi]t  = g i 1 (Xt) dt, we have 

dL~ l(X1) = lira i 1Exl,x * +,)(X~t)g11(Xt ) dt. 
~0 8 

Thus, by the definition and using the fact that the volume measure is an 
invariant measure for brownian motion, we see that the associated measure of 
gz(X)  is given by 

~L-~(dx:) = lim 1 f [ j  I x /  t,o T Er 1Ex~.x2+n~2)(X~)dL~(X) det(g)dudv 

= lim -1 ~f E(u,v) lrx~,x2+axz)(X~){gll(x~)}-i/2dL~ 
rio t Lo 

x ~det(g(u,  x2)) du dv 

= l i m l f  E("'v)[ f ltxe'x=+ax=)(X2)lio "XlXr 11"Ox2)}l/2ds] 
t,~+oetff = [o,~)( s)(g ( , 

x x/det(g(u, x:)) du dv 

[/ ] = lim 1 ~f E(~,v) 1Eo,~)(XJ) 1E . . . .  ~+d~)(X~)ds 
t, ~,LO 8t 

x g~zz(u, v) dudv 

= N/g22(O, X2) dx2. 

In the case of brownian motion, the authors of [-3] refer to LZ(X) as the 
geometric local time of X on ~e and we shall use similar terminology in the 
general case. 

4 The cut locus and the radial part of  a semimartingale 

We now apply Theorem 1 to the radial part of a semimartingale. To do that 
we shall first need to study the cut locus since the result we shall use t o  
establish the condition, (H), which we require for Theorem 1 is not explicitly 
mentioned, so far as we can ascertain, in the geometric literature. 
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We consider a point Xo of a complete riemannian manifold (M, g) of 
dimension m. For  each v in "C~o(M), the tangent space to M at Xo, the ray, r~, 
determined by v is 

rv : ~ + --* Zxo (M); t ~ tv. 

Then the exponential map at Xo is the smooth map 

eXP~o : Z~o(M) -~M 

of the tangent space at Xo onto M which embeds each ray rv smoothly into the 
geodesic which starts at Xo and has initial tangent vector v. Thus, in particular, 
for v e zxo(M) the curve 

7 v : [ 0 , 1 ] ~ M ;  t~eXP~o(tV ) 

is a geodesic segment from Xo to eXP~o(V ) of length II vii = gxo(v, v) 1/2. The 
minimum length of geodesic segments between x and y determines a metric 
d(x,y) on M. We define Cd(Xo), the cut locus ofxo in "c~o(M ), to be the set 

{v ~ Zxo(M): d(xo,eXP~o(V)) = II v [[: d(xo, eXp~o(pV)) < p r[ v II, Vp > 1}; 

the interior set, d(Xo), in Zxo(M) to be 

{v e Vxo(M): 3p > 1 s.t. d(xo, eXP~o(PV)) = p tlv II}; 

and the first conjugate locus, ~(xo), of xo in Zxo(M) to be the set 

{v e r~o(M): rank of d(exPx0)(v) < m and rank ofd(exP~o)(pv ) = m Vp e [0, 1)}. 

Then C(xo) = exP~0(Cd(Xo)) and Q(Xo) = eXPxo(~(Xo)) are the cut andfirst conju- 
gate loci, respectively, ofxo (in M)  and expx o restricts to a diffeomorphism of 
d(Xo) onto M - C(xo), the complement of the cut locus in M, so that expx 0 
map Cd(Xo)Wd(Xo) onto the whole of M. In general Q(xo) or both of C(xo) and 
Q(xo) could be empty and neither need include the other. 

All the above may be found in standard references, such as [2, Sect. 11.6]. 

Theorem 2 Except for a set, E, of Hausdorff(m - 1)-measure zero the cut locus 
C(xo) is the countable disjoint union, ~ ,  of open subsets of two-sided (m - 1)- 
dimensional submanifolds such that, locally, the distance from xo restricted to 
one side of such a subset extends as a smooth function to the other side. 

Proof What we show in fact is that, except for a set of Hausdorff (m - 1)- 
measure zero, the cut locus is a disjoint union of open subsets Ni~ of two-sided 
(m - 1)-dimensional submanifolds, where each N 0 is the diffeomorphic image 
under exp~ o of precisely two submanifolds JV~i, ~ of Cd(Xo) such that on one 
side of Nij distances from Xo are realised by geodesics which are the images of 
rays in Z~o(M) leading to points of ~ ,  and on the other side of N~ distances 
are similarly realised using ~ .  The theorem follows since, on the image of the 
interior set, the distance of x from Xo is just the norm of explo~(x), which 
obviously extends smoothly across ~ or ~ .  

We consider first that part, C(xo)\Q(xo), of the cut locus which lies outside 
the first conjugate locus and which gives rise to the submanifolds N~j above. If 
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q/~ is any open subset of the tangent space Z~,o(M) which is mapped diffeomor- 
phically onto an open subset U of M, then, we may define a smooth function d~ 
on U by di(x)= [](eXPxo[q/i)-l(x)l[. Thus di is the distance to points of 
U measured along geodesics which are the images of rays from the origin in 
Zxo(M ) to points of q/~. The function di(x) only agrees with the metric distance 

d(xo, x) on eXP~o{J(Xo)C~q/i ). In 1-10] Ozols uses the differences dlj = dl - dj 
between pairs of such functions to characterise C(xo)\Q(xo). He shows [10, 
Proposition 2.3] that each point, x, of C(xo)\Q(xo) has a neighbourhood U, 
which is the image of finitely many ql~ such that the subsets Vii = d~] l(0)nU 
are codimension one submanifolds. Moreover, writing C~j for the subset {x: 
di(x  ) -~ dj(x) < dk(X) for all k} of Vij, we have C(xo)c~U = Ui<jCij. Now if 
x ~ Ci/~Ckl we must have di(x) = dr(x) = dk(X) = dl(x) so that, if all of i, j, k and 
I are distinct, x would already lie in C~jc~Cik. However Ozols [10, Proposition 
2.6] shows that then the intersection between V~ r and V,k is transverse and so is 
an (m - 2)-dimensional submanifold. It follows that, except for a subset of 
Hausdorff (m - 1)-measure zero contained in the union of such intersections, 
C(xo)c~U is a disjoint union of the relatively open subsets, 

Nij = {x: di(x) = dj(x) < dk(X), Vk ~ i, j }  

of V~ r. The subset N, r is the intersection with V~j of the open subset 

Uir = {x: di(x) < dk(x), dj(x) < dg(x), Vk 4 = i, j}  

of M. Then on one side, {x: di(x) < dr(x) ), of Nit in Uir the distance d(x, Xo) 
from Xo is given by d~, and on the other side it is given by d r and both of these 
functions are smooth and defined on the whole of U w 

Turning to the conjugate part, C(xo)nQ(xo), of the cut locus, we shall 
require Warner's results of [12, 13]. In [13, Lemma 1.1] he shows that the 
image, under the exponential map, of the conjugate locus has Hausdorff 
(m - 1)-measure zero except, possibly, for the image of an open (m - 1)-di- 
mensional submanifold, ~/U, of v~ 0 (M) which has the following properties. The 
manifold ~r which would be C1 - T in the notation of [13], is part of the 
regular conjugate locus. That is, every point p of ~ has a neighbourhood q/in 
Zxo(M) such that each ray in Zxo(M) meets q/c~(Xo) in at most one point. In 
fact ~/~ is comprised of those points, p, of the first conjugate locus of order one 
where the (one-dimensional) kernel of d(exP~o)(p) does not fie in Zp(~Cf). Now 
in [12] Warner had already given a local representation of the exponential 
map at such points. Namely there are coordinates yl ,  . . . ,  Ym in %o(M) about 
p and coordinates xl . . . .  , Xm about eXP~o(p) in M with respect to which expx o 
is given by 

X 1  = Yl, "'" , Xm-1 = Y,,-X, X,, = y~ 

SO that, in particular, ~W is given locally by y,, = O. 
Consider however the effect that this map must have on the rays which 

meet ~K. Since the rays are embedded smoothly in M as geodesics and since 
both sides of ~ in Z:,o(M ) are mapped to the same side of exP~0(~), given 
locally by x,, _-> O, all the rays which meet ~ must do so tangentially. Through 
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each point  of  ~K there is such a ray, so that  ~K has an everywhere radial  never  
zero tangential  vector  field. Let c(t) be an integral curve in ~K of this field. 
Then, if ~ is the unit sphere in Zxo(M), the radial  project ion of c(t) on ~ will 
be an integral  curve of the project ion onto the tangent  bundle of  ~ of  the 
tangent  field c'(t) to c. Since c'(t) is everywhere radial this projected field will 
be zero and so the project ion ofc( t )  on ~ will be constant.  In other  words  c(t) 
is a, possibly reparametr ised,  segment  of a ray lying in ~K. Howeve r  that  
contradicts  the regulari ty of  ~ .  Hence  that  par t  of the conjugate  locus in the 
tangent  space canno t  exist and so the only par t  of the cut locus in M where we 
cannot  obta in  the distance functions we require has Hausdor f f  ( m -  1)- 
measure  zero. 

Finally, f rom Theorems  1 and  2, we obtain  the stochastic differential 
equat ion  for the radial pa r t  of  a semimart ingale  X, which is valid for all time. 

Theorem 3 Suppose that E and ~r are as given in Theorem 2 and that E is a polar 
set of X. Then the radial part d?(X) = d(X, Xo) of X is a semimartingaIe on g~ and 
its stochastic differential equation is given by the following full It3 formula: 

dO (Xt) = [ grad O(Xt) 'St]  dXt + �89 Hess~(~t, ~t) d [X] t  

+ l{x,~} {[grad ~bo zc(Xt)" Zt] d~t + �89 Hess+~ ~t) d[J(]t} 

+ dL ~ ((o (X)) + �89 {D + Ox,(V) dL +t v, ~'(X) + D + (Ox,( - v) dL f (X)} ,  

where L +- v'~(X) are the geometric local times of X on 5~. 
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