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Summary. We study an invariance principle for additive functionals of non- 
symmetric Markov processes with singular mean forward velocities. We 
generalize results of Kipnis and Varadhan [KV] and De Masi et al. [De] in 
two directions: Markov processes are non-symmetric, and mean forward 
velocities are distributions. We study continuous time Markov processes. We 
use our result to homogenize non-symmetric reflecting diffusions in random 
domains. 
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1 Introduction 

In [KV] Kipnis and Varadhan proved functional central limit theorems for 
additive functionals of stationary reversible Markov processes, and applied 
their results to study the asymptotic normality of tagged particles of simple 
exclusion processes. In [De] Masi et al. obtained a sufficient condition for the 
spectral condition of mean forward velocities and applied their results to 
various problems. 

Crucial assumptions in these works are the following: (1) Markov pro- 
cesses are symmetric, (2) mean forward velocities are functions. The main 
purpose of this paper is to relax these two assumptions and generalize their 
results. 

The results above are quite general; however assumption (1) excludes 
some homogenization results for non-symmetric diffusion processes studied in 
[PV, O1, Oe]. Our contribution is that such an invariance principle holds for 
certain classes of non-symmetric Markov processes. Namely, we weaken 
condition (1) to the so-called strong sector condition (1.1). 
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In [KV, De] both discrete and continuous time processes are studied. We 
study only the continuous time case. In this case assumption (2) seems too 
restrictive. Indeed when we study homogenization of reflecting diffusions or 
tagged particles of infinitely many particle systems with hard core interaction, 
the additive functionals contain local time type drifts. So their mean forward 
velocities are not functions. Our result admits the case that mean forward 
velocities are distributions. 

Our result can be used to prove central limit theorems for non-symmetric 
reflecting diffusions in random domains, tagged particles of infinitely many 
particle systems with hard core interaction, and ones of non-symmetric 
exclusion processes. We study the first case in the present paper. 

Let O be a Hausdorff topological space and ~3(O) denote its Borel 
a-algebra. We assume ~3(O) = a [C(O)]  where C(O) is the set of all continu- 
ous functions. Let/2 be a probability measure on ~3(O). Let L 2 (O, #) denote 
the real Hilbert space with the inner product (u, v) = fo u(O)v(O)#(dO), and let 
F be a dense subspace of L 2 (O, #) such that l e F .  Let (g, F) be a (non- 
symmetric) Dirichlet form. We assume that (~, F) on L 2 (O,/2) is quasi-regular 
and that there exists a Hunt process (f2, ~, ~t, it, {Po}o~o) properly associated 
with (~, F) on L 2 (O,/2). Here ~t is the natural filtration of (f2, ~, it, {P0}0~o). 
We refer to [MR] for the definition of quasi-regular Dirichlet form and 
related notions. 

We assume the Dirichlet form (g,F)  and the Hunt process 
(f2, ~, ~t, it, { Po }o~o) satisfies the following conditions. 
(1.1) Strong sector condition; there exists a constant K1 _-> 1 such that 

Ig(u,v)l < Klg(u,u)l/Z g(v,v)l/2 for all u,v e F. 

(1.2) Stationarity; /2 is the invariant probability measure of 
(f2, ~, ~t, it, { Po}o~o). 
(1.3) Ergodicity; Pu is ergodic under the time translation ~gt. 

Let X = X~ be a d-dimensional additive functional of (f2, ~, ~,, ~,, {Po}o~o); 
that is, Xt is ~t-measurable for all t, there exist sets A ~ ~ and Oe c O such 
that Cap(Oe) = 0, Po(A) = 1 for all 0 r Oe, #tA c A for all t, and for all co e A, 
X~(co)eD([0, ~ ); R d) and Xs+t(co) = Xs(co) + Xt(Osco) for all s, t. We note 
here our Hunt process is conservative; X is an additive functional in the sense 
of [MR]. 

We denote d-times products of F and LP(O,/2) by ~ and 5YP(O,#) 
respectively. We set g(f ,  g) d -- Y'.~= 1 g(f~, gl) for f = (f~), g = (g~) e ~ ,  and the 
same convention for (,) in ~2(O,  #). Let F' be the set of the real valued linear 
functionals on F, and ~ '  the d-times product ofF' .  We set q~(f) = Y~f= 1 (pi(fi) 
for rp = ((pi)e~-' and f =  ( f i ) e ~ .  

We now state our main theorem. 

Theorem 1.1 Assume that (1.1)-(1.3) hold. Suppose the additive functional 
X = Xt satisfy the conditions in (1.4): 

(1.4) Eu[IX~[ 2] < ov for all t. 
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E o I S e - p t l X t l d t l <  ~ fora l lp>O#-a .e .O .  

[J ] ()~P,)~P) < oe for all p > O, where )~P(O) = Eo e-PtXtdt . 
o 

Suppose that there exists a linear functional ~o ~ ~,~' and a constant K2 satisfying 
(1.5) and (1.6): 

(1.5) lim (p2z ' , f )  = ~o(f) for all f e o~. 
p--coo 

(1.6) [q~(f)[ _< K2g( f , f )  t/2 for all f e ~ .  

Let P~o(') = Po(eXt/~ ~ "). Then 

(1.7) limPg = /3  in fd.d. in #-measure, 
e ---~ O 

where/3 is the distribution of a d-dimensional continuous martingale X such that 

(1.8) ( x i , -~J) t  = 2aijt, Xo = O. 

Here aij is a constant matrix. 

The statement (1.7) means the following: for each tl, . . . ,  tn and F ~ Cb(R an) 

lim#({O;IE~[F(w,l,  ... ,w,.)] - E[F(w~ . . . . .  ,w,.)] I > 6}) = 0 
e---~ 0 

for all 6 > 0. Here E~ and /~ are expectations with respect to Pg and /3, 
respectively. 

Remark 1 In [KV] it was assumed that 

(1.9) lim 1 Eo[X,] = ~o(0) strongly in ~ 2 ( 0 ,  #), 
t ~ 0  t 

for some ~ ~ ~a2(O, #). In [De] ~ 2  is replaced by ~zol. Clearly the condition 
(1.5) is much weaker than (1.9). We also note that X may not be a semimartin- 
gale, which is different from the case of [De]. In [De] the function ~(0) in (1.9) 
is called the mean forward velocity. So we call the distribution ~o in (1.5) the 
mean forward velocity. 

Remark 2 In [KV, De] (r F) is assumed to be symmetric. We assume (1.1) 
instead of the symmetry. We note that (1.1) is satisfied if (r F) is symmetric, 
and that there are various non-symmetric models which satisfy (1.1). 

Remark 3 We can replace (1.5) by the weaker condition (1.5'). 
(1.5') For each a > 0 there exists a dense subset G~ in L 2 (tg, #) such that 

lim (p2zp,f) = q~(f) for all f ~ .  
p'-~ o0 
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(1.5") 

(1.6") 

Then 

Here Y~ is the d-times product of F~, F,  = { G'g; g e G~} and G* is the dual 
resolvent of(g ,  F) on L2(O, ~). 

When X has a mean backward velocity rp*, we obtain an expression of aij. 

Theorem 1.2 In addition to the assumptions of Theorem 1.i, assume that there 
exists a linear functional (p* eJ~' and a positive constant K* such that 

l i m E , [  ? p2e-Vt ~ X~f i (~ t )d t l  = r p * ( f  ) for all f e ~ ,  
p~oo L 0 i = l  

I~0*(f)[ < K ~ g ( f , f )  1/2 for all f z ~ .  

(1.10) afj = e(X', X j) + ~s(t~i, if/J) + �89 ~o* - ~)i(~bJ) + �89 - ~o)J( $'), 

where e(X i, X j) is the mutual energy of  X i and X j defined in Sect. 4, 
= ($i)1 <_i<_a is the unique solution of(2.4) ,  g~, (o and ~o* are defined before 

Lemma 2.1. Here the superscript i indicates that the quantity is the i-th 
component. 

Let X* = X* be the additive functional such that X* = Xt o Rt/2, where 
R~ is the time-reflection operator in a, R~(r = ~2a-t. Then the conditions 
(1.5") and (1.6") means that the dual process of (s ~, ~t, it, {Po}o~o) on 
L2(O,  12) satisfies (1.5) and (1.6), where X, q~ and K 2 are replaced by X*, q~* 
and K~ respectively. 

We give some idea of the proof. A key point of proving such a central limit 
theorem is to solve a Poisson-type equation such that 

(1.11) g(u , f )  = q~(f) for all f ~  ~-. 

Unfortunately (1.11) cannot be solved in ~ except in a few cases such as 
periodic ones. Even in the case studied in [PV] (1.11) has no solution in 

(but there exists a non-stationary solution). Hence we consider the quotient 
Hilbert space ~- of ~ and the corresponding equation (2.4) in ~-. By (1.1) and 
(1.6) this equation has a unique solution $ ~ (see Lemma 2.1). Let Sa be the 
solution of (2.1). From the uniqueness of $ we obtain that {$a}z>o is 
g-Cauchy and lim~_,o ).(~bz, ~k~) = 0 (Proposition 2.2). When (g, F) is symmet- 
ric as in [KV, De], this step is clear from the spectral resolution. 

We use non-symmetric Dirichlet form theory to relax the regularity of the 
mean forward velocity. In application we will utilize a theorem due to Ma and 
R6ckner [MR] that the existence of Hunt processes implies the quasi-regular- 
ity of Dirichlet forms. 

Homogenization of reflecting diffusions is a problem to prove a conver- 
gence to Brownian motion of diffusion process moving in random domains in 
R" satisfying the reflecting boundary condition. When diffusions are revers- 
ible, this problem was studied by [Oc], [B] in the periodic case, by [02]  in the 
stationary case under a certain geometric condition and by [T] in Poisson 
Nob model. In this paper we will study non-symmetric reflecting diffusions. In 
[02, T] the discrete time version of the invariance principle of [De] was used. 
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This theorem cannot be applied to the present case because of the lack of the 
symmetry. Reflecting diffusions have local time type drifts. So our second 
generalization is useful for this problem. 

The organization of this paper is as follows: In Sect. 2 we prove our main 
theorem (Theorem 1.1) and Theorem 1.2. In Sect. 3 we apply Theorem 1.1 to 
study homogenization of reflecting diffusion. In Sect. 4 we collect some results 
from non-symmetric Dirichlet form theory. 

2 Proof  of  Theorems 1.1 and 1.2 

In this section we prove Theorems 1.1 and 1.2. Let ~Oz = ( ~ ) l  <__i__<d (2 > 0) 
denote the unique solution of the Eq. (2.1) in ~-: 

(2.1) 2 ( ~ ,  g) + g(~z,  g) = q~(g) for all g ~ i f ,  

Taking g = ~z in (2.1) we see from (1.6) that 

(2.2) E(~z, ~z) < C1 for each 2 > 0, 

(2.3) 2(~z, ~z) < C1 for each 2 > 0, where Ci = K22. 

Let ~ be the equivalence relation such that f ~ g  if and only if 
g ( f -  g , f -  g) = 0. In the following j7 denotes the element of the quotient 
space ~/ , -~ whose representative is f e  f t .  Let ~ denote the bilinear form on 
~ / ~  defined by ~(f ,  ~ ) =  g ( f  9). Then by (1.1) ~ is well-defined. Since 

l g  if/ ,-~ with the inner product ~s(f, g) = ~( ( f  g) + ~(9,f)) is a pre Hilbert 
space, we consider the completion ~ .  Let ~ : f f / ~  ~ R  such that 
~(jT) _- q~(f). By (1.1) and (1.6) we extend ~ to the bounded linear functional 
on ~- denoted by the same symbol qS. When (1.5") and (1.6") are satisfied, we 
define ~* from cp* similarly as ~. A simple consequence of this completion is 
the following. 

Lemma 2.1 There exists a unique ~ ~ ~ such that 

(2.4) ~(~, g) = 0(g) for all g ~ .  

Proof. Let A: ~- ~ ~ '  such that Au = ~(ui "). Then A is coercive, so the claim 
is clear (from Lemma 1.1.2 in [Ko]). [] 

Proposition 2.2 Let ~'z, ~ and ~ be as above. Then 

(2.5) lim ~(ff~ - ~, ffz - ~b) = O, 
3 , ~ 0  

lim o~(~ - ~ , ,  ~z - ~ , )  = 0, 
2, 2'--*0 

lim 2 ( ~ ,  ~b~) = O. 
2 ~ 0  

(2.6) 

(2.7) 

Proof We first prove that 

(2.8) lira ~a = 
. ~ 0  

weakly in ~ .  
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By (2.2) and ov(~z, ~a) = g(~ba, ~bz) , {~z} is bounded in ~ .  Let {~z~} be an 
arbitrary weakly convergent subsequence in ~ and ~b o e ~- its limit. Then 
limz,-~0~(~a~, g) = g(0o,  g) for each g ~ f t .  By (2.1) and (2.3) we see for each 
g e f f  

(2.9) 2(~bz, g) + g(~z,  g) = ~(g) and lim 2(~bz, g) = 0. 
A ~ 0  

Combining these we see ~k0 is a solution of (2.4). Hence by Lemma 2.1 ~'o = ~P, 
which means (2.8). 
We observe 

~(0,  ~b) = ~(~) by (2.4) 

= lim qS(ffx) by (2.8) 
; , ~ 0  

= lim (2(~ba, Oa) + ov(~a, ffz)) by (2.9) 
2 ~ 0  

> lim sup g(ffa, ffa). 

By (2.8) we see ~(~b, ~,) __< liminf~_~0 ~ ( ~ ,  ffa). Combining these yields 

lim g(~z, ~ )  = ~(~', 0)  and lim 2(~b~, ~b~) = 0. 
A-~0 . ~ 0  

Hence we obtain (2.6) and (2.7). (2.5) follows from (2.8) and 
lim~-~o ~(~z, ~ )  = og(0, ~b) immediately. [] 

Let J/l and IM denote sets of d-dimensional martingales defined in Sect. 4. For 
u e ~-, we set A[ "1 = a(~t) - a(~o). Here a is a quasi-continuous version of u. In 
order to prove Theorem 1.1 we prepare two lemmas. 

Lemma 2.3 Let Mt  ~ = Xt  + A[ %j - 2 f'o~,a(~)ds. Then M z = M~ is an ele- 
ment o f  ~g. 

Proof. Let Nt = -- X t  + 2 f~o~'~(G)ds. We check N = Nt satisfies the condi- 
tions in Proposition 4.3. By (1.4) N satisfies (4.2 - 4.4). Let f e  ff~. Then 
clearly 

c [  ' ]; lim Eo ? p 2 e - ' t f  O~(~)dsdt  , f  = (tpz,f).  
p-* ao \ 0 0 

Combining this with (1.5') yields 

p-~oo 0 

which means N satisfies (4.5) with u = tp~. Hence by Proposition 4.3 we see the 
claim holds. [] 

Lemma 2.4 There exists an M = M t ~ ~ such that M ~ under P,  converges to 
M in IM as 2 --* O. Moreover if (1.5") and (1.6") are satisfied, then 

(2.10) e ( M  i, M;)  = au, 
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where M i is the i-th component of M and e is the energy defined in Sect. 4, and a u 
is defined by (1.10). 

Proof We first prove that M ~ is e-Cauchy. By definition we see 

t t 

M ,  ~ - Mr = A~*~-*~ - ~ f Oh(r + 2' f Oh,(~,)ds. 
0 0 

Note that e ( f  o Oh(~)ds) = 0. Hence by Lemma 4.1 

e(M h - M h') = e(A t*~-o~'l) = g(O~ - Oh', ~ - Oh'). 

Thus by (2.6) we see {M h } is e-Cauchy. Combining this with (1) of Lemma 4.2 
yields the first claim. 
By (1.5) and (1.5"), 

E ] 2e(X i, A t*~l'~) = lim E~, f p2e-PtXi{O{(~t) - O~(~o)} dt 
p ~  oo 0 

Hence by Lemma 4.1 and the definition of M h we obtain 

e (M h'~, M ~'~) = e((X + At~ g, (X + At~ j) 

= e( Xi, X i )  + ~'(~ki~, 0~) + e( X~, At*~l'J) + e( At*A'i, XJ) 

= e ( X ' ,  x J) + e'(r  ~ )  + �89162 - ~o'(r 

+ �89162 - ~oJ(r 

e(X ~, x~) + ~'(~,', 0 j) + �89162 j) - ~o~(r 
2 - + 0  

Here we used Proposition 2.2 for the last line. Combining this with (1.10) and 
Lemma 4.2 (2) yields (2.10) immediately. []  

Proof of Theorem 1.1 Let Nt ~Mt/,~ *Mt/,~, Q# = - 2 flotP,~(r 
and R~ = eQt/~. Then 

(2.11) eXt/,~ = eMt/~ + N~ + R[. 

Since Mtx (2 > 0) under P, have stationary increments, so does Mr. Hence by 
Helland theorem in [H] and the ergodic theorem we obtain for a.s.0 with 
respect to/~ 

(2.12) zMt/,~ under Po converge to Xt in f.d.d. 

Here J?t is a d-dimensional continuous martingale such that 

(2.13) <Jf~, XJ>t = tE,[M~" M~], Xo = O. 
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Since e ( N  ~) = e ( M  ~ -- M )  ~ 0 as ~ ~ 0, we obtain by (4.1) that 

(2.14) limEu[Ig~[ 2] = 0 for all t. 
e~O 

We next prove 

(2.15) limEu[lR~l 2] = 0 
e--*0 

for all t. 

By the definition of R~ we have 

t ie  2 

(2.16) Ie;I _-< I~==(r + I~.=(~o)1 + ~'~= f lO==(r ds. 
0 

By (1.2) and (2.7) we obtain 

E. e 3 f [O~(G)lds <e6-~ . f IO~(~)l~ds 
0 0 

I,/~ 2 

=e4t  f Eu[_lO~(~, )[Z]ds=eZt2(O,~,r  ase-- ,0 .  
o 

Combining these estimates with (2.16) yields (2,15). 
By (2.12), (2.14) and (2.15) the one dimensional distributions of eX,/,~ 

converge to those of Jft weakly in #-measure. The proof for the convergence of 
the k-dimensional distributions is standard. Hence we omit it. [] 

Proof  o f  Theorem 1.2 By (2.10) and (4.1) we have E , [  Mia �9 M J1] = 2aij. Com- 
bining this with (2.13) yields Theorem 1.2. [] 

3 Application: Homogenization of reflecting diffusions 

In this section, we apply our result to the homogenization problem of 
non-symmetric reflecting diffusions. We quote some notations and results 
from [02].  

Let ~(R e) denote the set of all closed sets in R e. Let ~oo denote the subset 
of ~(R e) such that 

~ = {0 e ~(Rd); 0 ~ {R d, 0}, 0 c is connected, 00 is smooth}. 

The set g~o is naturally regarded as a separable metric space. 
Let ~ ( x e R  d) be the translation on g~o defined by ~ 0  = 0 - x. Let O be 

a topological subspace of ~ such that "cxO = O for all x e R  d and that O is 
a metrizable Lusin space, i.e., topologically isomorphic to a Borel subset of 
a Polish space. Let/~ be a probability measure on ~ = ~B(O). We assume 

(3.1) (O, ~,  #, {z~}~d)  is a d-dimensional ergodic flow. 
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We consider 0 as obstacles in Re; we study diffusion processes moving 
outside 0 and reflecting when they hit the boundary of 0. By choosing O and 
# properly, various random domains are represented by complements of 
sample points 0. We give here an example and refer to [02, T] for other 
examples. 

Example. Let 0 < L < 1/2 and IL = (0, L)Zd. We set A~ = [0, 1) e x IL. Let ~: 
Z ~ o ~  such that Ct(x , ( l i ) ieZa ) = X q- EiezdB(li), where B(r) = { x f f R e ;  

Ixl ___r}. Let y be a probability measure on (0,L) and F = I]z~Y- Let 
v = dx x F. We set O = e(Ak) and # = v oct- 1. Then (O, #) satisfies the condi- 
tions above. If L < ) ,  then (O, #) satisfies the assumption in Theorem 3.2. 

Let Oo be a subset of O defined by Oo = {0EO; 0 does not contain the 
origin}. Then Oo is an open set in O. Let Oo = { 0 e O; 0 o does not contain the 
origin}, where 0 ~ is the open kernel of 0 in Re.Then 0o is a closed set in O. It is 
known in [02]  that #(0o) > 0 and/~(0o) = #(Oo). We set 

~o() = ~(" ~0o)/~(0o). 

Let aij(O) (1 < i,j < d) be measurable functions on 0 such that 

d 

(3.2) ~ a,~(O)~,r >__ g31~l 2, la,j(0)l _-< g4. 
i , j = l  

Here K 3 and K4 are positive constants. 

Let (9(0) = 0 c and (9(0) denote the closure of (9(0) in R e. It is easy to see 
that (9(0)= {xeRe;  zxO~6)o}. We consider a Dirichlet form g0 with the 

domain H1((9(0)) on L 2 ((9(0), dx): 

d 

�9 go(f, o) = f ~ aij(zxO)c3,fOjgdx ( ~ ,  = Ol~x,). 
t~(O) i , j =  l 

Let {pO} denote the diffusion process associated with (g0, H1((9(0))) on 

L 2 ((9(0), dx). If air = �89 (6~j is the Kronecker's delta), then {po} is the 

reflecting barrier Brownian motion with the state space (9(0) in the sense of 
Fukushima IF1]. Ifaij # aji, then {pO} is a non-symmetric reflecting diffusion 

whose invariant measure is Lebesgue measure on (9(0). We will study the 
asymptotic behavior of these diffusion processes starting from the origin. 

Let {P~ x, dy)} denote the transition probability of {pO}. Since the 
boundary of (9(0) is smooth, there exists a continuous density 
p~ y) dy = P~ x, dy). For the sake of convenience we set p~ y) = 0 for 

(x, y)r x (9(0). Let 

Totf(x) = f p~ y) f (y)  dy, G~ = / e-PtTotf(x) dt, 
R a 0 

T~ = f P~ G~ = f e-P'T~ 
R a 0 
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Theorem 3.1 

(3.3) 

(3.4) 

d 

f ~. IOia~ < c~ 
o(o) i= 1 

Let po,~(. ) = pO(ewt/~ ~ e .  ). Then 

(3.5) limpO,, = p 
e--*O 

Then T o and T o* can be regarded as semigroups on function spaces on 

(9(0). Moreover T o (resp. T ~ is associated (resp. co-associated) with 
(~0, L~ ((9(0), dx)). 

For 0 e Oo we set pO = pO, where the subscript 0 of po denotes the origin. 
Let E ~ denote the expectation with respect to pO. 

Suppose that (3 .3)  and (3 .4)  hold: 

f E~ z] d/to < oo for  all t > O. 
9o 

f fe-'SE~ oo forallp>O. 
Oo 0 

{T o* } is a semioroup o f  class (Co) on L ~ ((9(0), Ix ldx) ,  #o-a.e. O. 

for  all p > O, r e  Co(Rd), #o-a.e. O. 

in fd .d .  in #o-measure, 

where 13 is the distribution o f  a d-dimensional continuous martinoale X such that 
(J~i, J~J)t = 23ut and Xo  = O. Here  gt = au is a constant matrix. 

Remark 1 The condition (3.4) controls the speed of the divergence of diffusion 
processes. We conjecture that (3.4) always holds. We give a sufficient condition 
for (3.3) and (3.4) in the next theorem. 
If sample points 0 satisfy some geometric condition, then we obtain stronger 
results. For a domain (9 c R e we set 

Jd((9) = inf ~ [I (~q)m(9 IId } ( I ~ ;  0 < II q•(9 II < oo, q is open , 

where ['l (respectively II'll) denote the d ( d -  1)-dimensional volume. This 
quantity Jd((9) is called isoperimetric constant of (9. 

Theorem 3.2 Suppose that (3 .6)  holds: 

(3.6) Jd((9(0)) > 0 for  #o-a.e.O. 

Then for  each v e L  1 (Oo, #o) with v > 0 and f vd#o = 1, it holds that 

(3.7) l imp v'~ = P weakly in C([0, oo ); Re), 
g~O 

where P~' ~ = f vP ~ d#o. Moreover  the matrix ~ = au is positive definite. 

Remark 2 By the ergodicity of #, there exists a constant C such that 
C = Jd((9(0)) a.s. 0. 

Remark 3 We have a lower bound for det fi: det 8 > (2/9nd)dJd((9(O)) 2 a.s. 0. 
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Remark 4 A simple sufficient condition for (3.6) is known in Lemma 3 in [02].  

We apply Theorem 1.1 to Theorems 3.1 and 3.2. For this we first construct 
the diffusion process {lP0} on Oo from {po}, and the additive functional 
X = Xt satisfying (3.8) below. We note that Oo, {lPo} and #o in this section 
correspond to O, {Po} and/~ in Section 1, respectively. 
Let {IP(t, 0,-)} denote the family of probability measures on Oo defined by 

lP(t, O, A) = P~ O, A ~ where A ~ = {x; vzO~A}. 

Lemma 3.3 There exists a continuous Markov process {lP0}0~Oo on Oo satisfy- 
in 9 the following: 

(1) {IP(t, 0,')} is the transition probability of {IP0}. 
(2) {lP0} satisfies (1.2) and (1.3) with #o. 
(3) lPo(Bo ) = l for all Oetoo, where Bo = {4 = {~t}eQ; ~te[O]for all t}, 
Q = C([0, oe); too) and [0] = {Zx0; xe(9(0)}. 

Proof Lemma 3.3 follows from the proof of Theorem 2.1 in [-02]. []  

Let B = UO~oBo. Let X: B ~  C([0, oe); R a) be the function defined by 
x ( ~ )  = x,(~):  

Xt(~) = w, - Wo for all t, 

where w = wteC([O, oo);R d) such that zw,-~,o~O = it for all t. Note that 
IPo(B) = 1 for all 0 and that the domain of X can be extended to f2 in such 
a way that X can be regarded as a continuous additive functional. Moreover 
w e  s e e  

(3.8) pO = lPoX-t  for each 0~too. 

Let {Ux} be the family of unitary operators on L2(O,/~) defined by 
UJ(O) = f(zx 0). Let/5i be its infinitesimal generators and Di the restriction of 
/5i on Oo (see [-02] for the precise definition.) We set F = 0~= 1~(/~) and 
F = 0f= a ~(D~). Let (g, F) be the Dirichlet form defined by 

d 

g ( f g )  = f ~ a~j(O)D~fDjgd#o with the domain F. 
Oo i , j=  l 

Lemma 3.4 (1) {lP0} is a diffusion. 
(2) {]P0} is properly associated with (g, F) on L 2 (too, #o). Moreover (g, F) on 
L2 (too, #o) is quasi-regular. 
(3) E satisfies (1.1). 

Proof For (1) it remains only to prove the strong Markov property of {lP0}. 
This follows from that of {pO}, combined with (3.8) and (3) of Lemma 3.3. 

We can adapt the proof of Lemma 2.4 in [02 ]  to prove {lP0 } is associated 
with (~, F) on L 2 (too, #o)- Recall that too is a closed set in O and that O is 
a metrizable Lusin space. Then too is also a metrizable Lusin space. Hence 
applying Theorem 5.1 and Remark 1.14 in Ch. 4 in [-MR], we obtain (2). (3) is 
clear from (3.2). []  
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Let D = (Di)t _<~_<~ and aD --- (~'4z, j= 1 a~Dj)l <_~<_d. We set f f  and o ~ '  from 
F in the same fashion in Sect. 1. Let (p ~ i f '  such that 

(3.9) q~( ')= - f aDd#o. 
go 

Proposition 3.5 ({lP0}, X, (p ) satisfies the condition (1.5'). 

Remark 5 If there exists an h ~ N such that X, =/~(~,) -/~(~o), then we obtain 
(p(') = - g(h,.). (See Theorem 2.13 (iii) on p. 22 in [MR].) However there 
exists no such an h. Only a non-measurable function h satisfying 
Xt = h(~,) - h(~o) exists. 

The proof of Proposition 3.5 is somewhat complicated. So we postpone it. 
We now prove Theorems 3.1 and 3.2. 

Proof of Theorem 3.1 By (3.8) Theorem 3.1 is reduced to Theorem 1.1 if X in 
(3.8) satisfies the assumptions in Theorem 1.1. (1.1)-(1.3) follow from Lemmas 
3.3 and 3.4. 

By (3.8) and Wo = 0 a.s. pO we see ]EuoE[Xt[ 2"] --f~oE~ 23 d#o, where 
IEuo is the expectation with respect to IP,o. Then by (3.3) X satisfies the first 
condition in (1.4). And other conditions in (1.4) also follow from (3.3) similarly. 
(1.5') follows from Proposition 3.5. (1.6) is an immediate consequence of (3.2) 
and (3.9). [] 

Proof of Theorem 3.2 By estimates in [D], (3.6) implies 

(xS) (3.10) p~  - -  f o r 0 < t <  oe, x, ye(9(O). 

Here K is a constant depending only on d and Je((9(0)). (3.3) and the first 
condition in (3.4) follow from (3.10) immediately. 

We next prove the second condition in (3.4). Without loss of generality we 
can assume r > 0 andf~(o)r(x)dx = 1. Let r t ( x )  = T~ Then for all t > 0, 
rt > 0 on (9(0) and f~to)rtdx = 1. 

We introduce entropy E(t) and moment M(t) of rt; 
r d [xi[dx. By (3.10) and E ( t ) = - f ~ o ) r t l o g r t d x  and M ( t ) =  f~o> tY, i=1 

r c Co(Ra), there exists a constant C~ satisfying the following: 

(3.11) sup rt(x) < Clp(t) d, m(t )  < Clp(t) for all t > 0. 
x ~ R  d 

where p(t) = min {1, t -  1./2}. By (3.11)we see log rt < log C~ + d log p(t). Then 

(3.12) E ( t ) > - l o g C a - d l o g p ( t ) > - l o g C ~  f o r a l l t > 0 .  

It is easy to check that - s logs < ~s + e -~-1 for all s > 0. Let s = rt and 
d = ~i=1 Ixil; integrate over C(O). Then we have E(t) ~ M(t) + C2 for all 

t ~ 0, where C2 = fR,  exp( - ~ =  1 Ixll - 1)dx. Hence by (3.11) 

(3.13) ~[ e-PtE(t)dt < ~ ,  lim e-ptE(t) = O. 
0 t ~  
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Let Ca = d l / 2 K 3 1 / 2 .  We now see 

d d 

f F, IOertldx= f Y~ ]O~logrtlrtdx 
0(0) i= 1 0(0) i= 1 

{ ?( ) <=d 1/2 f [c311ogrtl2rtdx by f rtdx = 1 
0(o) i = 1 0(o) 

<= C3 f aijOilogrt'~jlogrt'rtdx (by (3.2)) 
0(0) i , j =  l 

= Ca f aij(~i(1 + logr,) '8jr tdx 
0(o) i, j = 1 

{ ? = C3 - f (1 + logrt)Otrtdx (by rt = Tot*r) 
0(o) 

= C3{O,E(t)} 1/z (by Ot(rtlogrt) = (1 + logrt)Otr,). 
Hence 

(3.14) 
Oo d Oo 

f e -p* f F, I~,r, ldxdt  < Ca f e-P'{~3,E(t)}'/2dt 
o o(o) i= 1 o 

<= C a p  - 1 / 2  e - p t O t E ( t ) d t  < o(3. 

Here we used (3.12), (3.13) and integration by parts for the last line. Since 

f • [~G~ < e -pt f Y, IOirtldxdt, 
0(0) i= 1 o 0(o) i=1 

(3.14) implies the second condition in (3.4). 
We thus obtain (3.5), which implies lim~-~o pv.~ = t3 in f.d.d.. By (3.10) and 

Remark 2, {PV'~},>o is tight in C([0, oe ); Rd). Hence we complete the proof of 
Theorem 3.2. [] 

To prove Proposition 3.5 we prepare four lemmas. 
For f :  O --* R, we set fo(x) =f(zx0). Let C~176 = { f e F ;  f, D,f~Loo (0), 

foe C~~ a) a.e. 0}, where F is defined before Lemma 3.4. Then Coo(0) is dense 
in ~ (see Lemma 2.2 in [O2]). 

In the rest of this section we set v(x) - - (v~(x) ) l<_i~d=xeR d and 
g~ = G~ where r e C o ( e  d) and e > 0. Let JO e = p(GOe - loo(%0)') and 
JOe* = p(GOe* - lwo(%0)'). Set JOev = (JOeV~)l _<~_<d. Then 

(3.15) f JOev.g~ f v.JOe*g~ 
Ra R a 

Here we used JOef(x)= JOe*f (x )= 0 for xr which follows from the 
definition of p~ y), and lo--~(x) = l~o(Z~0). 

We denote by (,) the inner product of L2(Oo, Po). For a =  
(al)l z i<= d e ~(~2(0o, fl0) and b e L 2 ( 0 o , / 2 o )  we set (a, b) = ( ( a  i, b))l < i<_ d. Re- 
call that Z v = lEo [ f y e-PtXt dt]. 
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Lemma 3.6 For f e  C ~ (0)  and x e R a, 

(P2ZP'Y~-x~ = { fo J~176 ~(O0)-  1 

Proof For  h(O, x) we see 

(No[X,], h(v-xO, x))-#(Oo) = f f loo(O)p~ y)v(y)h(z_xO, x )d#dy  
R a 0 

= f f loo(z~O)p;x~ (by # =/~z21) 
R a 0 

= f f loo(z~O)p~x~ z - x)v(z -- x)h(O, x )dzd#  
0 R a 

= f f loo(~O)p~ z)v(z - x)h(O, x)dzd# 
6? R a 

= f (T o - loo(~0) ' )v(x) .h(0 ,  x)d# (by v(z - x) = v(z) - v(x)). 
0 

Here we used the fact that p~~ y) = p~ + a, y + a) for the fourth line. 
Taking h(O, x)=f(O)9~ multiplying the both sides by p2e-~tdt and 

integrating over [0, oo ), we complete the proof. [] 

We set g~ gO) = ( gO(vi ' gO)) 1 <_i <_d. 

Lemma 3.7 For f e  C~(O) 

lim j { f J ~ 1 7 6  = - f g~176 
p ~ o o  R a 6? 

Proof Recall that (T  o* } is a semigroup of class (Co) on L 1 (C(O), Ix[ dx). Let 
L ~ be the generator of {T ~ on Ll(C(O),Jx]dx). Since gO o, = G~  r is an 
element of the domain of L ~ we see 

lim f v'J~176 = f v'L~176 
p - ~ m  R a R d 

v. jO, 9O dx <dl/2 o, o I[Jp g ]lLl(~(0).lxlax) 

< C 4  o. o IlL g I I L l ( O ( O ) , [ x [ d x )  

-= C4 II ctG~ - r I l L l ( ( 9 ( O ) , l x l d x ) .  

Here C4 is a constant independent ofp. Let h(x) = sup ]r(x)l lyl/(1 + ](x - y[2) 
and G~ y) = f y e-~p~ y) dr. Then we have Y 

]lcta~ <= f f h(x)(1 + Ix - y i 2 ) ~ G ~  
R a R d 

= f f h(x)(1 + I x - y l Z ) . G p ~  
R a R e, 
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--R~fh(x)(l+ of Cte-~l~176 dx 

eLl(O,#) (by (3.3) and # = #z21). 

Collecting these we apply Lebesgue's convergence theorem to obtain 

(3.16) ,-.~olim ff {Rf v'J~176 f 

Let  v,~C~(Rd; R d) satisfy v,(x) = v(x) for Ixl < n, Iv,(x)l < Iv(x)l for all 
x, and Zf=t  [Oiv(x)[ < d for all x. Then  by (3.4) we have 

f v.L~176 lim f v,.L~176 -- lira do~176 ) = --g~176 ). 
R d n"~oo R d n--*oo 

Combining this with (3.15) and (3.16) completes the proof. [ ]  

Lemma 3.8 Let f~ C~(O), set f~(O) =f(zxO). Then 

(3.17)ff g~ 9~  a D ( j  9~-~~ 

Proof Let  ~ = (Oi)l _ i _< d and aO = (v4~j= 1 aijc~)l _< i _~ d. No te  that  

O(g~-~~ = _ Dg~-~O(x) + (O9)~-':~ a(f(z_~O)) = -- Df -~(O), 

Then  

f do~ 9~ = f f loo(L,O)a(zxO)Og~ 
0 0 R d 

= f f loo(O)a(O)(Og)~-x~ 
R a 0 

= f f loo(O)a(O){Dg~-x~ 
R a 0 

+ a~-x~ d# dx 

Since the operat ions fRddx and D are commutable ,  we obtain Lemma  
3.8. [ ]  

Let  ti3" denote  the dual  resolvent of  d ~ on L 2 (Oo, #0). Then  it is easy to see 
that  

(3.18) 113*f(O) = f G~ 
R a 

oo -- ~ t  0 Here  G~ y) = foe  Pt (x, y) dt. Let f(O) = fRd r(z)f(z_z O) dz. 

Lemma 3.9 

f o t x~ dx = ffk*f(O). 
R a  
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Proof. 

f g*-~~ = f f G~-*~ dx 
R a R a R a 

= f f G~ x,O)r(y)f(v_~O)dydx 
R d R a 

= f f G~ + x)f(z_xO)dzdx 
R a R e  

= f o%o)l (~O)dz .  
R a 

Combining this with (3.18) completes the proof of Lemma 3.9. [] 

Proof of Proposition 3.5 By Lemmas 3.6-3.9, we obtain 

(3.19) lim (p2zP, ffJ* f )  = - f aDffJ* f dpo. 

Since { f (O)=fk~ f ( z_~O)r ( z )dz ; f eC~176  r~Co(Re)} is dense in 
L 2 (0o, Po), we obtain (1.5') with q) defined by (3.9). [] 

4 Appendix: Preparation from non-symmetric Dirichlet form theory 

In this section we prepare some results from non-symmetric Dirichlet form 
theory in [-Ki, MR, Os]. We use these results in previous sections. We 
assume the Dirichlet space ( ( g ,F ) ,L2 (O ,# ) )  and the Hunt process 
(f2, q~, ~t, it, {Po}o~o) satisfy the same conditions as in Sect. 1. In [Ki, Os] 
locally compactness of state spaces and the regularity of Dirichlet forms were 
assumed. These assumptions can be replaced by the quasi-regularity, 1 e F, 
and the existence of properly associated Hunt processes. 

For 1-dimensional processes X and Y on (O, 5, P,), we define the energy 
e(X, Y) by 

' E l  e ( X , Y )  = lim - E ,  f p2e-p tx tY td t  . 
p -~  2 o 

if expectations and the limit exist. For d-dimensional processes X = (X ~) and 
Y=  (Yi) we set e(X, Y) x~d e tX  ~ =/_,i=1 t , y i )  a n d e ( X ) = e ( X , X ) . X i s c a l l e d o f  
finite energy if e(X)  < oo. 

For u e ~  we set A~"~= ~(~ t ) -  ~(r where ti is a quasi-continuous 
version of u e o~. It is known [MR] that A tu~ is an additive functional. 

Lemma 4.1 (1) Let u, v e ~ .  Then 

e(A t"j, A tvl) = #~(u, v) where #~(u, v) = (g(u, v) + g(v, u))/2. 

(2) Let A and B be additive functionals of  finite energy. Suppose e(B) = O. Then 
A + B is an additive functional of  finite energy such that e(A + B) = e(A). 
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Proof See Lemma 4.5 in [Ki] for (1). We note here our Dirichlet form is 
conservative. (2) is clear from the definition of e. [] 

Let Jg  denote the collection of d-dimensional additive functionals satisfying, 
for #-a.e. O, Eo[Mt] = 0 for all t and E,[IMt[ 2] < oe for all t. It is easy to see 
that M E J#  is a martingale under P,; indeed 

= Ms + Er Pu-a.s. 

Since P ,  o ~-1 = # by (1.2), Ecs[Mt ] = 0 Pu-a.s., which means M under Pu is 
a martingale. We note that M under P ,  has stationary increments by (1.2). 
Note that M s J r  is not necessarily a martingale additive functional in the 
sense of [MR]; however, this is sufficient for our purpose. 

Let IM be the collection of d-dimensional L2-martingales on (f2, 5, ~ ,  Pu) 
such that MtED([O, ~ ) ; R  d) and M o = 0  a.s.. Then IM is a complete 
metric space with the metric induced by I1"11, where IIMII = 
Y,,,~=I 2-"min{1,  Eu[IM,12] 1/2} (see for example [IW, p. 471). We easily see 
d / / c  ]M, that is, M s ~ / u n d e r  Pu are elements of 114i. 
Suppose that M = (Mi)~ <i_< d e It4[ has stationary increments. Then we see 

(4.1) Eu[MtMt]i j = t 'Eu[M]M~] = 2t'e(M',MJ). 

Lemma 4.2 Let {M k} = {(Mk'i)a <=~<=d} be an e-Cauchy sequence in J/g. Then 
there exists an M = (M(i))t <_i<_d ~ IM satisfying the following: 

(1) M k under P, converoe to M in IM. 

(2) e(M (i), M (j)) --- lim e(M k'i, Mk'3). 
k---too 

Proof By (4.1) E [ I M ~  - M[I 2] : 2t 'e(M k - Mr). Hence {M k} under Pu is 
a [1 �9 I[-Cauchy sequence in ]M, which impfies (1). Since M k under Pu are martin- 
gales with stationary increments, so is M. Hence (2) follows from (4.1) and (1). [] 

The next proposition is a modification of Theorem 5.3.1 in IF2] and Theorem 
5.2.5 in [Os]. 

Proposition 4.3 Let u ~ ~ .  Let N be a d-dimensional additive functional satisfy- 

Eul-INtl 2] < oo for all t. 

(4.3) E ~  ~ o  f o r a l l p > O  for#-a.e.O. 

(4.4) (JV'P, JV'P)< oo for allp, where JffP(O)=E~ ofe-PtNtdtl" 

(4.5) lim ( p 2 y p , f )  = _ g(u,f)  for all fe U ~ .  
P - ~  ~t>O 

Here ~ is defined in Remark 3 in Sect. 1. 

ing (4.2)-(4.5) below. Then A t"~ - N e~#. 

(4.2) 
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To  prove Proposi t ion  4.3 we prepare two lemmas. Let Rff(O)= 
Eo[f~e-P*f(~t)dt]. Then R j  is a #-version of  Gpf for all p > 0 ,  
f e  ~(O)c~L 2 (0, #). Here (Gp)p> o are resolvents o f g  on L 2 (~, #). We prepare 
a resolvent-type equat ion of  additive functionals. 

Lenlma 4.4 For #-a.e. 0 

(4.6) R~(pXP) = Rp(qW q) for all p, q > O. 

Proof We can prove Lemma 4.4 similarly as Propos i t ion  1.6 in Ch. 10 in 
[RY].  [ ]  

L e m m a  4.5 For #-a.e. O, pJV p = pRp~ - ~ for all p > O, where ~ is a quasi- 
continuous version of u ~ ~ .  

Proof Let G* denote the dual resolvent of ~ on L 2 (O, #). For  f =  (fi), f i  e Gp 
(Gp is defined in Remark  3 in Section 1), 

(pJVP,f) = lim (pW p, qG* f )  
q'-'~ oo 

= lim (q2Wq, G ' f )  by (4.6) 
q---~ oO 

= -- o~(u,G*f) by (4.5) 

= (pRp~ - ~,f). 

Hence for all p > 0, p~A/'~ = pRp~-  ~ a.e.. Since for a.e. 0 bo th  sides are 
cont inuous in p, we have L e m m a  4.5. [ ]  

Proof of Proposition 4.3 By L e m m a  4.5 we see for a.e. 0 

~fe-PtEo[A[ " l - N ~ ] d t =  ( p R p ~ - ~  pW p) 0 for a l l p > 0 .  
1 

o P 

Hence Eo[A~ "J - N, ]  = 0 for all t for a.e. 0. By Eu[IA~I] 2] < oo and (4.2), 
Eu[IA[ "1 - N t l  2] < oe for all t. We thus complete the proof. [ ]  
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