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Summary. We study the asymptotic stability of the stochastic flows on a class of 
compact  spaces induced by a diffusion process in SL(n, R) or GL(n, R). These 
compact  spaces are called boundaries of SL(n, R), which include SO(n), the flag 
manifold, the sphere S"-  1 and the Grassmannians. The one point motions of these 
flows are Brownian motions. For  almost every co, we determine the set of stable 
points. This is a random open set whose complement has zero Lebesgue measure. 
The distance between any two points in the same component  of this set tends to 
zero exponentially fast under the flow. The Lyapunov exponents at stable points 
are computed explicitly. We apply our results to a stochastic flow on S " - I  
generated by a stochastic differential equation which exhibits some nice symmetry. 
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1 Introduction 

In [7], the horizontal diffusion in a noncompact  semisimple Lie group G is shown 
to induce stochastic flows on a class of compact  spaces whose one point motions 
are Brownian motions. The compact spaces are the boundaries of G (The term is 
borrowed from Furstenberg, but our definition is slightly more general than his). 
Such a flow ~b t is asymptotically stable in the sense that for every fixed starting 
point x, almost surely, the distance between ~bt(x) and ~bt(y) for any near point 
y tends to zero exponentially fast as t --* oo. 

Note that the almost sure statement is stated for fixed starting point x. It  does 
not tell us about the pathwise behavior of the flow q~t, i.e., for each fixed co in the 
underlying probability space f2, the behavior of the "deterministic flow" qS~(., co). 
Since the smooth transformation qS~(-, co) cannot shrink the whole space (which is 
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compact), it must have some unstable points, where the distance between near 
points is stretched under the flow qSt(., co). Because of the stability of the stochastic 
flow qS~, every point x is almost surely stable. Therefore, the unstable points should 
form a random set of zero Lebesgue measure. 

Let K be a maximal compact subgroup of G. The homogeneous space G/K is 
a symmetric space. The projection of the horizontal diffusion in G into G/K is 
a Brownian motion. From the discussion in [7], the asymptotic behavior of the 
stochastic flow induced by the horizontal diffusion is essentially determined by the 
limiting properties of the associated Brownian motion in G/K. 

In this article, we investigate the pathwise stability of stochastic flows on the 
boundaries of SL(n, R) induced by some diffusion process gt in SL(n, R) or 
GL(n, R). The flows are naturally expressed by g? 1(.). Recall that GL(n, R) is the 
group of n by n real matrices with nonzero determinant and SL(n, R) is the 
subgroup of GL(n, R) consisting of matrices of determinant one. The boundaries of 
SL(n, R) include orthogonal group SO(n), the flag manifold (a flag is an orthonor- 
mal frame in R" when the directions of its axes are ignored), the sphere S"-1 and 
Grassmannian manifolds. The associated symmetric space is the space V of 
ellipsoids of unit volume in R". Let Yt be the associated Brownian motion in V. It is 
known that almost surely the frame of the ellipsoid Yt tends to a limit as t ~ oe. 
These and some other preliminary discussions are contained in Sects. 2, 3 and 4. 

In Sect. 5, we begin to discuss the asymptotic stability of stochastic flows. 
Although most of our discussions are centered around the flow on SO(n) induced 
by the horizontal diffusion in SL(n, R), the results for stochastic flows on the other 
boundaries of SL(n, R) and those induced by other diffusion processes can be easily 
read off. We introduce an open subset A of SO(n) whose complement has zero 
Lebesgue measure. Let k~ E SO(n) represent the limiting frame of Yr. Theorem 
4 says that the stochastic flow g71 (.) is stable on k~A in the sense that the distance 
between any two points contained in the same component of k~A tends to zero 
exponentially fast under the flow. An error in [7] is corrected. The proof of 
Theorem 4 is given in Sect. 6. 

In Sect. 7, as an interesting application, we consider a stochastic flow on the 
sphere S "-  1 which exhibits some nice symmetry. Consider n 2 vector fields xi(c~/c~xj) 
on R" and let X~ i be their orthogonal projections into the tangent space of S"- 1 at 
every point of S "-  1. The latter are vector fields on S" - 1. Let q~t be the stochastic 
flow on S"-1 generated by the Stratonovich stochastic differential equation 

Z..a 
i , j=  l 

where {w~ J } is an n2-dimensional standard Brownian motion. We will show that the 
flow qSt can be induced by a left invariant Brownian motion gt in GL(n, R) defined 
by the following stochastic differential equation on GL(n, R), 

dot = ~ OtEij ~ j 
i , j = l  

where Eij is the matrix whose (i,j)-entry is one and other entries are zero. As 
a consequence of our results, for almost every co e f2, there is a great circle C on 
S . -  1 such that for any two points x and y in S"- 1, the distance between 4t(x) and 
Ot(Y) tends to zero exponentially fast if x and y lie on the same side of C, and it 
tends to the diameter of the sphere if they lie on the different sides of C. 
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The above example can be compared with the well known gradient flow on 
S"-1. This is generated by the stochastic differential equation 

clx, = ~ Yi(xt)odw~ 
i = i  

where Yi is the orthogonal projection of O/3xi. In [1], it is shown that for the 
gradient flow, the set of stable points is S" - i  minus a single point. 

In Sects. 8 and 9, we compute the Lyapunov exponents which are the exponen- 
tial growth rates of the distance between near points under the flow. We show that 
at any point in ko~A, all exponents exist and are negative, and at any point in the 
complement of kooA, there is at least one nonnegative exponent. 

2 Some algebraic preliminaries 

The Lie algebra of GL(n, R) is the space gl(n, R) of all n by n real matrices. For  
X, YegI(n, R), their Lie bracket IX, Y] is defined to be X Y -  YX. The Lie group 
GL(n, R) is not semisimple, but its identity component GL(n, R) +, the subgroup 
consisting of matrices with positive determinant, has the direct product decomposi- 
tion 

GL(n, R) + = R+ x SL(n, R) (1) 

where R+ = [0, oo), in the sense that the map g ~ (det g, [det g]-l/,g) is a dif- 
feomorphism from GL(n, R) + onto R+ x SL(n, R). 

Most of our discussion will be centered around the semisimple Lie group 
G = SL(n, R). Its Lie algebra (# is st(n, R), the space ofn  by n real matrices of trace 
zero. We define an inner product ( . , . )  on f# by 

(X, Y) = 2n T r a c e ( X ' X )  (2) 

where X* is the transpose of X. The factor 2n here is not important, it is chosen to 
make our inner product to be the one induced by the Killing form of G. Note that 
this inner product can be extended to gl(n, R). Let K = SO(n) be the group of n by 
n orthogonal matrices of determinant one. This is a compact subgroup of G. Its Lie 
algebra W = o(n) is the space of skew-symmetric matrices. Let ~ be the space of 
symmetric matrices of trace zero. We have the direct sum decomposition 

~r = ~ @ ~ (3) 
which is orthogonal with respect to <., .>. We now define the adjoint action of 
G on N. For  g~G and X s N ,  define Ad(g)X = gXg -1. We can show that ~ is 
Ad(K)-invariant in the sense that Ad(k)~ c N, for any k ~ K. 

For  g e G, gg* is a positive definite symmetric matrix of determinant one, which 
represents an ellipsoid of unit volume centered at origin in R". Let V be the space of 
all such ellipsoids. The map g ~-~ gg* is surjective from G onto V, whose kernel is K. 
Therefore, the homogeneous space G/K can be identified with V via the map 
gK ~ gg*. 

Let d be the space of n by n diagonal matrices of trace zero. This is the Lie 
algebra of the Lie group A of diagonal matrices with positive diagonal entries and 
determinant one. The space ~ is abelian in the sense that IX, Y] = 0 for X, Ye sff. 
In fact, d is a maximal abelian subspace of ~ .  Each k ~ K acts on ~ via adjoint 
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action. Let M be the subgroup of K which fixes ~4 pointwise. The group M consists 
of diagonal matrices whose diagonal entries are 1 or - 1 with an even number of 
- l's. 

Note that K = SO(n) can be identified with the set of orthonormal frames in R". 
Sometimes we may wish to identify two frames when the only differences between 
them are directions of their axes. For example, let {el, e2 . . . .  , e,} be the standard 
basis of R n. We may wish to identify the frame (el, e 2 , . . . ,  en) with the frame 
( -  el,  e2 . . . . .  e,). A frame with this identification is called a flag. It is easy to see 
that the set of flags can be identified with K/M.  

Let A + be the subset of A consisting of diagonal matrices with distinct and 
descending diagonal entries and let s~+ be the subset of d consisting of trace zero 
diagonal matrices with distinct and descending diagonal entries. It  is clear that 
A + = exp(d§ Recall that V is the space of ellipsoids of unit volume. Let V' be the 
open subset of V consisting of ellipsoids with distinct eigenvalues (lenthes of axes). 
Since any positive definite symmetric matrix can be diagonalized through an 
orthogonal transformation k ~ K such that the diagonal entries are in descending 
order, and the choice of k is unique up to a factor in M, we obtain the following 
Cartan decomposition of V'. 

V' = (K/M) x A + (4) 

in the sense that the map (kM, a) ~ kaK is a diffeomorphism from (K/M) x A + 
onto V' c V = G/K. The Cartan decomposition can be considered as an analogy 
of the usual polar decomposition with A § playing the role of radial coordinate and 
K / M  the role of angular coordinate. 

Another decomposition which is equally useful is the following Iwasawa de- 
composition. Recall that A is the group of diagonal matrices of positive diagonal 
entries and determinant one. Let N be the group of upper triangular matrices 
whose diagonal entries are equal to one. We have 

G = K A N  (5) 

in the sense that the map (k, a, n) ~ kan is a diffeomorphism from K x A x N into 
G. To see this, for any g~G,  let g~ be the i-th column vector of g. By the 
Gram-Schmidt  orthogonalization procedure, we can find orthonormal  frame 
{kl . . . . .  k,} with positive orientation such that for 1 _< i _< n, k~ ~ span { g ~ , . . . ,  g~}. 
This implies that there is an upper triangular matrix b such that g = kb, where k is 
the matrix formed by column vectors { k l , . . . ,  k,}. The choice of b is unique if we 
require that it has positive diagonal entries. This proves (5). 

3 Boundaries of SL(n,  R) 

Let H be a closed subgroup of G. The homogeneous space G/H will be called 
a boundary of G if H ~ AN. This term is borrowed from Furstenberg [3], although 
our definition is slightly more general than his (see [7]). Assume G/H is a boundary 
of G. Let L = H c~ K. Then H = L A N  and one can identify G/H with K/L.  

Any g 6 G  induces a transformation on the boundary G/H defined by 
glH ~ gglH. With identification of G/H with K/L,  we can describe this trans- 
formation on K / L  as 

g(kL) = hL (6) 
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where h is the K-component  of gk in the Iwasawa decomposition (5). It  is clear that 
if g e K, then g(kL) = gkL. For  g ~ GL(n, R) +, let g' = [det g] - 1/"g e G. We define 
g(kL) = g'(kL). We note that for gl, gzeGL(n, R) +, gl(g2(')) = (glgz)('). 

If one takes H = AN, the boundary G/H is K = SO(n). If one takes H = MAN, 
the boundary G/H is K/M, the flag manifold. We will identify a matrix B in 
SO(n - 1) with the one in SO(n) given below in block notation 

One can check t h a t / - / =  SO(n - 1)AN is a subgroup of G. The boundary G/H is 
SO(n)/SO(n- 1), which can be identified with the ( n -  1)-dimensional sphere 
s n - 1  

For  1 < i < n, let C be an i by i matrix and let D be an (n - i) by (n - i) matrix. 
Put 

Let L,  = SO(i) x SO(n - i) and L2 = [0(i)  x O(n - i)] c~ SO(n)]. One checks that 
H1 = L~AN and H2 = L2AN are subgroups of G = SL(n, R). The boundary 
G/H1 =K/L1 is an oriented Grassmannian manifold and the boundary 
G/H2 = K/L2 is an unoriented Grassmannian manifold. 

Now we introduce a Riemannian metric on any boundary G/H, which is 
invariant under the action of K. We will identify G/H with K/L. Let &o be the Lie 
algebra of L = K c~ H and let J be the orthogonal complement of ~ in • with 
respect to ( . , .  ). The space J can be considered as the tangent space of K/L at the 
coset L. Any X e J  is considered as the tangent vector of the curve s ~-, eSXL at 
s = 0. Any k s K is a transformation on K which sends kl e K into kkl. Let Dk be its 
differential map. Dk(X) is the tangent vector of the curve s ~ keSXL at s = 0. The 
inner product ( . ,  �9 ) restricted to J induces a K-invariant Riemannian metric on 
K/L, which is denoted by ( . ,  ")K/L, defined by 

VX, Y 6 J ,  (Dk(X),Dk(Y))K/L = (X,  Y>, (7) 

One checks that this is well defined by showing that if k E L, then Dk(X) = Ad(k)X 
and (Ad(k)X, Ad(k) Y)  = (X,  Y). The metric ( . , .  )K/L is K-invariant by defini- 
tion. 

4 Diffusion processes in SL(n, R) and GL(n, R) 

The dimension o f ~  is d = (17 2 --k n - 2)/2. Let (Yi; 1 < i -< d} be an orthonormal  
basis of ~ with respect to ( ' , '  >. The horizontal diffusion 9, is a diffusion process in 
G obtained as the solution of the following Stratonovich stochastic differential 
equation in matrix form 

d 

dg,= E g, dwl (8) 
i=1 

with go = I (the identity matrix), where w, = (w~ , . . .  , w~) is a Brownian motion in 
R d. If  Y~ is identified with the left invariant vector field on G which is equal to Y~ at 
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I, the generator of gt is (1/2) ~ i  Y~ Y~' It follows that the probability law of the 
process gt is independent of the choice of orthonormal basis {Y~; 1 < i < d}. 

Under the natural map: G ~ G/K, gt projects to a process Yt = gtK in G/K. 
Since G/K can be identified with V (the space of ellipsoids, via the map gK ~ gg*), 
y~ can be regarded as an ellipsoid of unit volume centered at origin in R", or 
equivalently, as a positive definite symmetric matrix. In fact, Yt is a Brownian 
motion in V when it is equipped with the following metric. Identify N with the 
tangent space of V = G/K at K. The inner product ( . ,  �9 ) restricted to ~ induces 
a G-invariant Riemannian metric on V. 

The limiting behavior of Yt was first studied by Dynkin [-2]. The results were 
later extended to general symmetric spaces, see [10, 8, 12, 6]. See also [9] for an 
elementary treatment for G = GL(n, R). The basic results are summarized in the 
following theorem. Let Hp be the diagonal matrix defined by 

1 
Hp = 4 n d i a g { n -  1, n -  3 , . . . ,  - ( n -  3), - ( n -  1)}. (9) 

Recall that V' is the space of ellipsoids having distinct eigenvalues. 

Theorem 1 Almost surely, for  any t > O, yt~ V'. Let  Yt = (kt,  at)  be the Cartan 
decomposition given by (4)and let at = exp(At) for At ~ d + .  Then, l i m t ~  At/ t  = H o 
and koo defined by limt-~o~kt exists. 

An important consequence of the above theorem is that almost surely the flame of 
the ellipsoid Yt converges to a limit. The flame of Yt is the ordered set of axes 
11, 12,. �9 �9 In of the ellipsoid y~ with the corresponding eigenvalues in descending 
order. Since yt E V', there is no ambiguity in how to define the axes of Yr. Note that 
the flame of an ellipsoid is a flag. 

Let G/H = K / L  be a boundary of G as defined in Sect. 3. By (6), g ~ G induces 
a transformation g(. ) on K/L .  Let gt be the horizontal diffusion in G. By (8) and the 
Ito formula applied to g3gF 1 = I, 

d o t  ~ = - ~', Y~gt l o dw[.  (10) 
i = 1  

One checks that for fixed s > 0, ~9 t = g;-+~t is a solution of (10) with g2 1 and w~ being 
replaced by Ot and Osw~= i _ i ws+t w~ respectively and ~o = g~-~. It follows that 
gt-1(.) is a stochastic flow on K / L  in the sense that 

gs+lt( �9 , o) = gt-i( �9 , 0sO)~ g s  1(" , 03) 

where 0s is the shift operator on t?. By [7], the one point motion of gt-~(-) is 
a Brownian motion in K / L  with respect to the metric ( . , . )K/L defined in the last 
section. This means that for any kL  ~ K/L ,  g;- ~ (kL) is a Brownian motion in K / L  
starting from kL. 

Besides the horizontal diffusion, other diffusion processes can be equally 
relevant and useful. For example, let {X~} be an orthonormal basis of ~ and let 
g; be the solution of the stochastic differential equation 

dg; = ~ g tX ,  o dw[ (11) 
i 

with g6 = I. The generator of gt is L = (1 /2 )~ . iX iX  i. This is the Laplacian on G. 
Hence, g; is a Brownian motion in G with respect to the left invariant metric on 
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G induced by < ' , ' > .  We may assume Xi = Y~ for i <  d, and {Xi; i >  d} is an 
or thonormal  basis of :((. 

Consider the expression P = ~,~,~c~XiX~, which can be regarded as a left 

invariant differential operator on G. It is said to be Ad(K)-invariant if it is not 
changed when X~ are replaced by Ad(k)X~ for any k ~ K. If P is Ad(K)-invariant, we 
can define a differential operator P '  on G/K by 

P' f (gK)  = ~ clj(c~2/~s~Osj)f(g exply ' . s zXl lK ) , 
i , j  t_ j s = 0  

See [4, II.4]. One checks that if g, is a diffusion process in G with generator P, then 
9,K is a diffusion process in G/K with generator P'.  Since the generator of gt' can be 
written 

d 

L = (1/2) Z XiXi + (1/2) Z X,X,  
i = 1  i>d 

and (~i>dXiXi)' = 0 because X I ~ S  for i > d, we see that 2L' is the Laplacian on 
G/K and y~' = g~K is a Brownian motion in G/K. Hence, y; has the same probabil- 
ity distribution as y, = gtK, where gt is the horizontal diffusion in G. 

Our discussion will show that for any diffusion process 9t in G with a left 
invariant generator, the asymptotic stability of the stochastic flow 9t-1( ')  on 
a boundary G/H is determined by the limiting property of Yt = gt  K .  Therefore, the 
stochastic flow 9t'- a (.) has the same asymptotic stability as the flow gt- 1 (.) induced 
by the horizontal diffusion g,. We now identify the one point motion of g;-1. For  
X ~ ~, let X* be the vector field on G/H defined by X*f(gH) = (d/ds)f(e~XgH)]~ = o. 
One can show that if P = ~c~jXiXj is the generator of some diffusion process gt in 
G, then P* = Y c~;X* X* is the generator of the one point motion of the flow g7 ~ (") 
on G/H (see [5]). The proof  of Theorem 1 in [7] shows that 

d 

~, X ' X *  = ~, X ' X *  = Laplacian on G/H. 
i = 1  i>d 

It follows that the generator of the one point motion of 9t'- ~ is the Laplacian on 
G/H. Therefore, for any x ~ G/H, 9~/21(x) is a Brownian motion in G/H. To 
summarize, we have 

Theorem 2 Let g[ be Brownian motion in G = SL(n, R) with respect to the left 
invariant metric induced by < ", �9 >. Then y[ = gt K is a Brownian motion in G/K and 
for any x ~ G/H, g;/21(x) is a Brownian motion in G/H with respect to the metric 
< ' ,  " >K/L defined in Sect. 3. 

Recall that GL(n,R)  + is the identity component  of GL(n,R).  Since any 
g e GL(n, R) + also induces a transformation on the boundary G/H as defined in 
Sect. 3, we may consider the stochastic flow induced by a diffusion process in 
GL(n, R) +. Let Ef t be the matrix whose (i, j)-entry is one and other entries are zero 
and let 9t be the solution of the stochastic differential equation on GL(n, R) + 

d0~ = (2n)-1/2 ~ O~Eijodw~J (12) 
i , j = l  

with 9o = t, where {w~ j} is an nZ-dimensional standard Brownian motion. The 
coefficient (2n)-*/2 is used because (2n)-~/2Eij, 1 < i, j < n, are or thonormal  with 
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respect to the metric (X,  Y ) =  2n Trace(X 'Y) .  Recall that GL(n, R) + can be 
identified with R+ x G via the map g ~ (det g, [det g] -1/"9). Let gt = (zt, 9;) be the 
decomposition with zt = det 0r and g{ = z;- 1/"Or. Note that zt is a process in R+ and 

g; is a process in G. We will show that zr = exp(B,/x/~) for some 1-dimensional 
Brownian motion B, and g~ is a Brownian motion in G. Since 0F 1(.) = g{-1(.), by 
Theorem 2, the stochastic flow g t  1 (.) on G/H has the same asymptotic stability as 
the flow gt- l ( . )  induced by the horizontal diffusion gr. 

The generator of 0r is L = (1/4n)~EijEii ,  where E~j is considered as a left 
invariant vector field on GL(n, R) +. As before, let X~, i = 1, 2 , . . . ,  n 2 - 1,  form an 

or thonormal  basis of ~, and let X0 = (1/~/2n)l. Then {Xi; i = 0, 1 . . . . .  n 2 - 1 } is 
an or thonormal  basis of gl(n, R) with respect to ( - , - ) .  It  follows that 
~, = (1/2)XoXo + (1/2)~i ~ 1XiXi. Under the decomposition GL(n, R) + = R + x G, 
the action of Xo is tangent to R+ and the action of X~, for i > 1, is tangent to G. We 
may regard Xo as a vector field on R+, then the generator of zr is (1/2)XoXo. 
Similarly, the generator of g~ is (1/2) ~ i  >_ ~XiXi. Since the latter is one half of the 
Laplacian on G, g~ is a Brownian m6tion in G. To identify zt, note that for 
g e GL(n, R) +, 

det [g  exp(sXo)] = (det g) exp(s/x/2) �9 

It follows that for x ~ R +, 

XoXof (x )  = (d/ds)2f(x exp(s /~) ) ]~=o = (1/2)x2f"(x) + (1/2)xf'(x) . 

Hence, the generator of z~ is (1/4)(x2f " + xf ' ) .  This implies our claim. To summar- 
ize, we obtain 

Theorem 3 Let gr be the diffusion process in GL(n, R) + defined by (12) and let 
Ot=(zt, g~) be the decomposition with z t = d e t  Ot and g{=z;-1/"Ot. Then 
zt = exp(Bt/x/2) for some 1-dimensional Brownian motion Br and g{ is a Brownian 
motion in G. 

Note that (2n)-~/2 ~X~X~j  is the Laplacian on GL(n, R) + with respect to the left 
invariant metric induced by the inner product ( .," ) in gI(n, R). Hence, Ot is in fact 
a Brownian motion in GL(n, R) +. 

5 The global stability 

We have introduced three diffusion processes gt, g{ and 0t in the last section. 
Although we will mainly consider the asymptotic stability of the stochastic flow 
g71(.)  on a boundary G/H of G induced by the horizontal diffusion gt, our 
discussion will show that for any left invariant diffusion process gr in G, the 
asymptotic stability of the stochastic flow gt-1(.) on G/H is determined by the 
limiting properties of the process grK in G/K. By Theorem 2 and Theorem 3, we see 
that the stochastic flows g ; -1 ( . )  and 0r-1( ')  on G/H have the same asymptotic 
stability as gt- 1 (.). 

In this section, we will study the global stability of the flow gt- 1 (.) on G/H. We 
will first consider the flow on the boundary K = SO(n) ~ G/H, where H = AN. 
Because any other boundary G/H can be identified with K/L, where L = K c~ H, 
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and  g(kL) = g(k)L for g e G and k E K by (6), the results for a general bounda ry  of 
G can be essentially read off f rom those for K = SO(n). 

Let g be a matr ix  and ~, fl c { 1, 2 , . . .  , n}. We define 

g[~l f l ]  

to be the determinant of the submatrix of g formed by the rows indexed in c~ and the 
columns indexed in ft. Let I c~[ be the cardinality of c~. By convention, g [~ l f l ]  = 0 if 
laJ :# lflJ or  lal = 0. Fo r  1 _< i _< n, let 

c ~ i = { 1 , 2 , . . . , i }  and f i i = { n - i +  l , n - i +  2 . . . . .  n} .  

Let 
A = {k sK;  k[fii[c~i] + 0 for i = 1,2 . . . .  , n -  1}.  (13) 

Note  that  k [ f i ,  l~ , l  = det(k) = 1. The  set A is an open subset of K whose comp-  
lement  has zero Lebesgue measure.  No te  that  there are 2"-1 distinct sign pat terns  
of the ordered set of  real numbers  

Each sign pat tern  corresponds  to a componen t  of A. 
Recall that  M is the subset of K consisting of diagonal  matrices whose diagonal  

entries are either 1 or - 1 with an even number  of - l 's. We see that  M has 2"-  1 
elements. Let  el ,  e2 . . . . .  en be the s tandard  basis of R", and  let k ~ be the matr ix  in 
K defined by 

k ~ = (ee,, e,_ 1, e n - 2  . . . . .  el) (14) 

where the sign e = _+ is chosen so that  det(k~ = 1. I t  is clear that  ink~  for any 
m e M. In fact, each componen t  of A contains exactly one mk~ 

We will fix an co �9 O th roughou t  the rest of  the paper,  for which the limiting 
propert ies  in Theo rem 1 hold. Choose  k~o ~ K such t h a t / ~  = k~M. Since M is 
discrete, at  least for large t, there exists a cont inuous  process k t s K  such that  

= ktM and limt-.oo kt = ko~. By (4), we obtain  the following decompos i t ion  
of g, 

gt = kta, F~ (15) 

for s o m e / ~  �9 K. 
The  following theorem says that  the flow gt- 1 ( . )  is stable on the set ko~ A. Later  

we will show that  k~ A can be characterized as the set of  the points  where all the 
L y a p u n o v  exponents  exist and are negative. We note  that  k~o A is an open subset  of  
K whose complement  has zero Lebesgue measure.  A simple geometr ic  interpreta-  
t ion o f k ~ A  is that  k ~ K  belongs to kooA if and only if for any i with 1 _< i _< n - 1, 
the project ions of  the first i co lumn vectors of  k into the space spanned by the last 
i co lumn vectors  of k~ are linearly independent .  

Theorem 4 (i) I f  k, k' are contained in the same component of kooA, then the distance 
between g;-1 (k) and g;-1 (k') tends to zero exponentially fast in the sense that 

lira -1 logd(g;_~(k),g;_~(k,)) < 1 (16) 
, ~ o  t = 2n 

where d is the distance on K determined by the Riemannian metric. 
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(ii) I f k  and k' belong to two different components ofk|  containing k~omk ~ and 
koom'k ~ respectively, then 

d(g;-l(k),g(l(k '))-+d(mk~ ~ as t ~  Go . 

Remark 1 The s ta tement  of Theorem 4 is independent  of the choice of k~o which 
represents k-o~ = k~M.  A different choice of k~ corresponds  to a pe rmuta t ion  of 
componen t s  of  A. 

Remark 2 There  is an error  in the s ta tement  of Theorem 2 in [7]. I t  claims tha t  for 
any two fixed points  x and y in G/H, almost  surely, the distance between gt-l(x) 
and g t l ( y )  tends to zero exponential ly fast. This is not  true if the set of stable 
points  is disconnected. In fact, its p roof  only shows that  for any fixed point  x, 
a lmost  surely, there exists a ne ighborhood  U of x such that  the distance between 
x and  any y ~ U tends to zero exponential ly fast under  the flow. 

Corollary 1 Let G/H = K/L  be a boundary of G with L = H c~ K and let A' = {kL; 
k6A} ,  the image of A under the natural map: K ~ K/L. 
(a) I f k L  and k'L belong to the same component ofko~(A'), then the distance between 
g;- l (kL) and g;- ~ (k'L) tends to zero exponentially fast in the sense of(16) where k and 
k' should be replaced by kL and k'L respectively. 
(b) A' is an open subset of K /L  whose complement has zero Lebesgue measure. 

Theorem 4 will be proved  in the next section. (a) of  Corol la ry  1 follows directly 
f rom (i) of Theorem 4 noting that  g;- 1 (kL) = g;- 1 (k)L. To show (b), we note that  the 
natura l  map:  K --+ K/L  is an open map,  which implies that  A' is open. We note that  
kL belongs to the complement  of A' if and only if kL as a subset  of K is contained in 
the complement  of A. Since the complement  of A has a positive co-dimension in K, 
this implies that  the complement  of A' has a positive co-dimension,  hence, zero 
Lebesgue measure.  

Example 1 (Flag manifold) If we take H --- MAN, the bounda ry  G/H is the flag 
manifold  K/M. The set k~(A') is a connected open subset of  K / M  which can be 
characterized as the set of flags u such that  the projections of the first i axes of u into 
the space spanned by last i axes of k~o are linear independent  for 
i = 1, 2 . . . . .  n - 1. I f u  and  u' are two flags belonging to k~o (A'), then the distance 
between gt-l(u) and gt- l (u ' )  tends to zero exponential ly fast in the sense of (16) 
where k and k' should be replaced by u and u' respectively. 

Example 2 (Sphere) If  we take H = SO(n - 1)AN, where SO(n - 1) is considered 
a subgroup  of K = SO(n) as in Sect. 3, the bounda ry  G/H is the sphere 
S " -  ~ = SO (n)/SO (n - 1). Let  e~, e 2 , . . . ,  e, be the s tandard  basis of R". The sphere 
S n- ~ can be identified with the orbit  of  el under  the act ion o f K  = SO(n) on R ". The 
set A' is the complement  of  the great  circle on S"-~ which is contained in the 
hyperplane  o r thogona l  to e,. L e t / ~  = (ll, 12,. �9 �9 l,) be the limiting flag, where 
11, 12, �9 �9 �9 I, are the limiting axes of the ellipsoid Yt as t ---* 00, a r ranged according 
to the descending order  of the eigenvalues. Then ko~(A') is the complement  of the 
great  circle which is contained in the hyperplane  or thogona l  to 1,. 

6 Proof of Theorem 4 

n 2 " F o r  k~K,  let [kl 2 = ~ ~=1 ]kq] , where ki~ is the (i , j)-entry ofk.  We will also write 
[kjl 2 for ~ = 1  k2" Then' Ik - k'[ can be used as a distance between k and k'. Since 
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K is compact ,  this distance is equivalent  to d. With  this observa t ion  and the fact 
that  d is K-invar iant ,  it is not  hard to see that  Theo rem 4 follows f rom the following 
lemma.  

L e m m a  1 I f  k belongs to the component o f  k ~ A  containing ko~mk ~ then 

lira 1 log i a t  1 k21 (k) - ink~ < 1 
t ~ o ~  t = 2 n  " 

The rest of this section is devoted to the p roof  of L e m m a  1. 
For  g e G, let 9 = h a n  be the Iwasawa  decomposi t ion  with h ~ K ,  a ~ A  and 

n ~ N .  Since the column vectors hi of h are obta ined f rom those of g through 
a G r a m - S c h m i d t  or thogonal izat ion,  we have 

i 

hi = ~ cipgp. (17) 
p = l  

To determine the coefficients cip, note that  gj. hi = 0 for j < i and cu(gi 'hi)  = 1, 
where gj. hi is the usual dot  product .  Therefore  

i i 

(g*g)jpCip = 0 f o r j  < i and ~ (g*g)ipclpcii = 1 . 
p = l  p = l  

Multiplying the first i -  1 equat ions by cu and then solving the system using 
Cramer ' s  method,  we obtain  

ci, = ( - -  1) ~-" (g'g) [ ~ i - 1  I1 "-" P "" i ]  (18) 

x / ( g *  g) [ a i -  1 [ a i -  1 ] (g* g) [ai I ai ] 

where/3 means  that  the index p is suppressed and (g 'g )  [ % [ % ]  = 1. 
We now introduce some notat ion.  Let  ~b(t) and 0(t)  be two nonnegat ive  

functions. We will denote  ~b ~ 0 if they have the same exponential  g rowth  rate as 
t ~  ~ ,  i.e., if 

lim 1 log ~b(t) lira 1 log t~(t) 

We will denote  q~ -~ ~ if the exponent ia l  g rowth  rate of ~b is controlled by that  of ~, 
i.e., if 

1 
lira sup t log ~ __< lira inf 1 log ~ . 

t ~ o o  t--* oo t 

Let gt = ktatl~ be the decompos i t ion  of the horizontal  diffusion gt given in (15) 
and let ai(t) be the i-th d iagonal  entry of a t .  By Theo rem 1, a i ( t )~  exp()oit), where 
2, = (n - 2i + 1)/4n. Fo r  a c {1, 2 . . . . .  n}, let a,[c~] = I-L~ai(t) .  

N o w  for k e K, let g = a t  i kt- 1 k and  let b = k7 lk. Then h = at- 1 k t  1 (k). We will 
show 

[hi- ~ie.-i+~ I ~ e - t / 2 n  ( 1 9 )  

where {ea, ez . . . . .  e,} is the s tandard  basis of R" and el = 1 or  -- 1. Since his are 
co lumn vectors  of  at- ~ kt- ~ (k), and eie, - ~ + l 's  are co lumn vectors of  mk~ this proves  
L e m m a  t. Therefore,  it suffices to show (19). 
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N o t e  tha t  if k e k ~ A ,  then  b ~ A  for  la rge  
[a[ = led[ = i, we have  by  the  B i n e t - C a u c h y  fo rmula ,  

M. Liao 

t. F o r  ~,cd c {1 ,2  . . . . .  n} wi th  

= ~a~[ f l ] -eb[ f l l~c]b[ f l lo : ' - I  . 
fl 

O n e  checks  t ha t  for  a n y  fl c { t, 2 , . . . ,  n} wi th  I fil = i a n d  
fi 4:: fie, at[fi] -1 "< a~[fi~] - l e - ' /2" .  I t  fo l lows tha t  for  ]~l = I~ ' l  = i, 

(g*g)[o~loc'] = a,[fli]-eb[flelo:]b[_fi~lor '] + ff~ = g l - f le l~]gl - f ie l~ ' ]  + ~.e (20) 

where  ~i ~ a,[fl~] - z e - t / ' .  In  pa r t i cu la r ,  we have  

(g*g)[ctelo~i] = at[ f le]-2b[f le l~e]  2 -I- ~i = g[fle]O:i] 2 -[- ~e . (21) 

F o r  1 __< r, i =< n, we have  

i 

e r ' h i - -  E CiPgrP 
p = l  

1 e 
= ~ ( - -  1 ) i - p ( g * g ) [ ~ i - t ] l  . . . ! 3 , . . i ] g , p  (22) 

x / ( g * g )  [cq-1 lae-  1] (g 'g)  [c(i[otl] p=l 

i i 

( - -  1)e-P(g*g)[~ e_ ~[1 - - . /~ . . -  iJg~p = ~, ( - -  1 ) e - P ~ g [ ~ l ~ e _  1] gl-ocl 1 . . - / ~ - - . / ] g~p  
p = l  p = l  rz 

= ~ gCa[cq_~Je(a ,  r ) g [ ~ u  {r}la ; ]  

where  s(~, r) = 0 if r e ~ a n d  s(~, r) = _+ 1 otherwise .  Since fli- 1 u {n - i + 1 } = fie, 
s(f ie-~,  n -  i + 1) = ( -  1)e-L 

W h e n  r = n - i + 1, the  a b o v e  is equa l  to 

( -  1 ) e - l g [ f l , - 1  I~ , -x ]gFf l e l~e ]  + ~, 

where  

I~il = ~ s(zt, r ) g [ c t l ~ i - ~ ] g [ a ~ . ) { r } l a l ] l ~ a t [ f i i - 1 ] - l a t [ f i l ] - l e - ' / " .  

By (21) a n d  (22), 

e,,-i+~ "he = ( -  1 )e - l sgn(g[ f le  l]oce-1]g[flelo':i3) + ~2 (23) 

where  1([] ___ e -'/~. Le t  s~ = • 1 be  the first t e r m  on  the  right,  we have  

[ h i  - -  e i  e .  _ e + 1 ] 2 = 2 - 2 8  i e , , _  i + 1" hi "~ e -  ~/~ . 

This  p roves  L e m m a  1. 

( g * g ) f ~ l c r  = ~ g*[celfl3gEflloc"l = ~ g[fllo:3gEfllar 
p p 
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7 Stochastic flow on the sphere 

As an application of our results, we will consider the stochastic flow generated by 
a stochastic differential equation on the sphere S"-1 which exhibits some nice 
symmetry. 

n 2 Let S"-1 be embedded in R" as the unit sphere ~ i =  1 xi = 1. At any point 
x ~ S " - 1  let Xii(x  ) be the vector tangent to S"-1 at x obtained as the orthogonal 
projection of the vector field x~(c~/Ox~) on R". A simple computat ion yields 

Xij  = xi(6~/63xj) - x ix jO r (24) 
n 

where Dr = ~ =  i xi(~/t?x~). Consider the following stochastic differential equation 
on S"-  1 

dxt = i Xij(xt)  ~ ~ (25) 
i , j = l  

where {w~ ~) is an n2-dimensional standard Brownian motion. 
Recall that 03 is the left invariant Brownian motion in GL(n, R) § defined in 

Sect. 4. We have seen that it induces a stochastic flow 0~- 1 (.) on any boundary of 
G = SL(n, R), in particular, on S"-1. We have also noted that it has the same 
asymptotic stability as the flow 071(.)  induced by the horizontal diffusion 9~ in 
G = SL(n, R). 

In Sect. 3, we introduced a K-invariant metric ( - ,  ")K/L on S"-1 which corres- 
ponds to the Killing form 2n Trace(X* Y). But the standard metric on S"-1, the 
one induced by the Euclidean metric on R", corresponds to (1 /2 )Trace(X 'Y) .  
Therefore, the standard metric on S"-1 is equal to (1/4n)(-,  ")r/L. 

Theorem 5 Let  (or be the stochastic f low on S n- 1 9enerated by (25). Then (at is 
identical in law with the stochastic f low 0~,~ ( ' )  on S ~- 1. Consequently, the one point 
motion of  c~t is a Brownian motion on S"-  1 with respect to the standard metric and for 
almost all co, there is a 9reat circle C on S ~- 1 such that 
(a) if x and y lie on the same side of  C, then the distance between (Or(X) and Or(Y) tends 
to zero exponentially fast  in the sense that 

lira 1 log d(qbt(x), Or(y)) <= - 1 
t--* oo t 

where d(x, y) is the distance between x and y; 
(b) if  x and y lie on different sides of  C, then 

d(Ot(x), d?t(y)) --* 2, the diameter of  S"-1 . 

First assume that q~t is identical in law with the stochastic flow 02n~ (") on S" - 1. By 
Theorem 2 and Theorem 3, the one point motion of 0t72~(.) is a Brownian motion 
on S"-  1 with respect to the metric ( . ,  �9 )K/L. It  follows that the one point motion of 
02,~, hence, of ~bt, is a Brownian motion on S"-1 with respect to the standard 
metric. L e t / ~  -- (11, 1 2 , . . . ,  l,) be the limiting flag of Example 2 and let C be the 
great circle on S "-  1 which is orthogonal to l,. We see that (a) above follows directly 
from (a) of Corollary 1 with a rescaling factor 2n. 

The axe I, cuts the sphere S" - 1 at two antipotal points xo and x~. If we identify 
S"-1 with K(el)  as in Example 2, we may write Xo = kook~ and x;  = k~omk~ 
for some m e M. See Sect. 5 for the definition of k ~ Let x e S"-  1 lie on the same side 
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of C as xo and let x'  e S" -  1 lie on the same side of C as x6. We can choose k, k' e K 
such that  x = k(el) and x'  = U(el). Moreover ,  we may  assume that  k and k ~ k  ~ lie 
in the same componen t  of k ~ A ,  and k' and k ~ m k  ~ lie in the same componen t  of 
k~oA. Let 0t = (zt, 9~) be the decomposi t ion  with zt = det 9t and 9~ = z t  1/%6t, and let 
9~ = k t a ~  be the decomposi t ion  (15). By L e m m a  1, the distance between at- 1 kt. 1 (k) 
and k ~ tends to zero. Since ~-1  is an isometric t ransformat ion,  

d (0t. t (x),/~71 k ~ '  (xo)) = d (~-1 at.1 kt.1 (k@l)),/~t -1 (k~ (el))) 

= d(a t . l k ; - l ( k ) ( e l ) ,  k~ ~ O. 

Similarly, we have 

d(O;-l(x ') ,  ~ -  l k2ol(X'o)) = d(at . l  kt. l (k ' ) (e l ) ,  mk~ ) ~ O . 

Since d(fc;-lkLl(Xo),  ~q-lk~l(X'o)) = d(xo,  X'o), we see that  d(0t-l(x), 0t. l (x ' ))  tends 
to d(xo,  x;)  = 2. This proves (b). 

I t  remains to prove  that  q~, is identical in law with the stochastic flow 02,~ (") on 
S . -  1. Applying I to ' s  formula  to 9~9~ = t and using (12), we obta in  

dot- 1 = _ (2n)- 1/2 i El jOt. 1 o dw~J. (26) 
i , j = l  

The stochastic differential equat ion satisfied by 0f,,~ is 

- -  1 

d02,~ = - 1..., Eijg2m ~ dw~ J �9 (27) 
/ , j = l  

We m a y  assume tha t  {w~ ~} above  is the n2-dimensional Brownian  mo t ion  appear -  
ing in (25). 

Fo r  x ~ S"-1,  let )f~j be the tangent  vector  of the curve s ~ exp(sEj~)(x) in S"-  1 
at s = 0. Let xt = 02,~(x). Since exp(sE~i ) (x , )= (exp(sEji)OY, l)(x) ,  it follows f rom 
Ito 's  formula  and (27) that  

d x t = -  i J~J~(X,)~ j "  (28) 
i , j=l  

Note  that  { - w{ ~ } is also an n2-dimensional s tandard  Brownian motion.  C o m p a r -  
ing (28) with (25), we see that  in order  to prove  Theo rem 5, it suffices to show 
X i j  = Xi j .  

Recall that  {el, e2 . . . .  , e,,} is the s tandard  basis of R". Any x e S  "-~ can be 
writ ten as x = h(e~) for some h e K. Let  

b(s) = exp( - s61j/n) exp(sEj~)h . (29) 

Since det [exp(sEj~)h] = exp(s6~j), b(s)~ G = SL(n, R). We have 

b(s) = [1 - s,5~j/n]h + sEj~h + O(s2) . (30) 

Let h(s) be the K - c o m p o n e n t  of b(s) in the Iwasawa  decomposi t ion  (5). We have 
b(0) = h(0) = h. Fo r  9 e G and x e S " -  ~, g(x) = k(x), where k is the K - c o m p o n e n t  of  
g in the Iwasawa  decomposi t ion.  I t  follows that  exp(sE~0 h(el)  = h(s)(eO. There 
exists Y~j E J{- such that  

h(s) = h exp(sYi~) + O(s2). (31) 

We see that  )fi~ is the tangent  vector  of the curve s ~ h exp(sY0(e l )  at s = 0. 



Stochastic flows 275 

Let bp and bpq be respectively the p-th column vector and the (p, q)-entry of b. 
By (30), 

bp(s ) = (1 - s f i j / n )hp  + sh~pej + O(s 2) 

i~ v = (d/ds)bp(O) = _ (1 /n)6 i jh  v + hivej . 

Since the column vectors of h(s) are obtained from those of b(s) through 
a Gram-Schmidt  orthogonalization, we see that 

P 

hp(s) = ~" Hpr(s)br (s) 
r = l  

for some Hp,(s)  satisfying Hp,(O) = 6p,. Let hp = (d/ds)hp(O). It follows that 

P P 

hp = ~ /~p~(0)hr + bp = ~ /4,r(0)hr + hipej - ( 1 / n ) f , j h p .  (32) 
r = l  r = l  

By (31), h + s h + O ( s  2 ) = h + s h Y ~ j + O ( s 2 ) .  It follows that h=hY~j and 
Y~j = h*h. Since Y~j E J r ,  for p < q, let (Y~j)pq be the (p, q)-entry of the matrix Y~j, we 
have 

(Yij)pq = hp" ]~q = --  hp" hq = - hiphjq . 

The above last equality follows from (32). Note that (Yij)pp = 0 and for p > q, 

(Yij)pq = -- (Y~j)qp = h~qhjp. (33) 

Recall that _~j is the tangent vector of the curve s ~ h e x p ( s Y i j ) ( e l )  at s = 0. 
This is a tangent vector of S "-1 at x = h(el) .  Since 

h e x p ( s Y i j ) ( e l )  = h (e l )  + shY~j(e l )  + O(s 2) 

the tangent vector viewed as a vector in R" is hY~j(ea). Its r-th component is 

h~p(Y/j),l = ~ h~ph~lh jp= ~ h ~ p h i i h j p - h ~ l h i l h j ~  
p = l  p = 2  p = l  

= 5, jh i l  - h , l h i l h j l  �9 

Since h~l is the r-th Euclidean coordinate xr of x -- h(el) ,  we see that the r-th 
component of the vector J(~j is 6,jx~ - x~xjx~.  By (24), J ~  = Xi j .  This proves 
Theorem 5. 

8 Lyapunov exponents 

The local stability of a stochastic flow ~bt on a Riemannian manifold S can be 
described by its Lyapunov exponents. For  a tangent vector X at x ~ S, the limit 

2 = lim -1 log 11D(ot(X)II s 
t~oO t 

when it exists, is called a Lyapunov exponent of the flow 4) t at x, where l[ X [Is is the 
length of the vector X determined by the Riemannian metric (The Lyapunov 
exponent is in fact independent of the metric). Let exp, be the exponential map at x. 
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Roughly speaking, the distance between ~bt(x) and ~bt(exp~(sX)), for small s, grows 
like e ~. 

If all the L y a p u n o v  exponents  exist at some point  x and 

2 1 < 2 2 <  ... < 2  k 

are the distinct exponents,  then the tangent  space TxS at x has a filtration of 
subspaces 

{o}  = Vo = V l  = V2 = . . .  = v ~ =  7~xs 

such that  if X ~ V~ - V~_ 1, 1 _< i < k, then 

lim -1 log I[ D(o~(X)[Is = 2~ . 
t ...~ C O t 

A point  x e S will be called stable for the flow q~t if all the L y a p u n o v  exponents  at 
x exist and are negative. 

N o w  let S = G/H, a bounda ry  of G = SL(n, R). We identify G/H with K/L ,  
where L = K c~ H. Recall that  A is an open subset of K defined by (13) and A' is its 
image under  the natura l  map:  K ~ K/L .  We have seen that  the distance between 
any two points in the same componen t  of k~(A ' )  tends to zero exponent ial ly  fast 
under  the stochastic flow g t - l ( . )  on K/L .  We will show that  any k L ~ k ~ ( A ' )  is 
a stable point. 

Let 93 = n~a'tk't be the Iwasawa  decomposi t ion  with n't ~ N,  a't E A and k't ~ K, and 
let &'  be the process in d such that  a't = exp(A~). By [8], a lmost  surely, 

(A) limt.-,~oA;/t = - Hp 
(B) n~o = lim,~ ~ n; exists. 

Recall that  Yt = 9tK is a Brownian mot ion  in V = G/K. Let p be the Rieman-  
nian distance on V. By [11], a lmost  surely, there exists a positive integer L and 
a real number  q with 0 < q < 1 such that  

(C) V integer k >= L, sup{p (y t ,  Yk); k <- t <- k + 1} _<_ k ~ . 

Let  E~ be the matr ix  whose (i , j)-entry is one and other  entries are zero. Define 
h~q(t) by 

Ad(n;-1  n ' ) E i j  = ~ h~q(t)Epq. (34) 
P , q  

By L e m m a  2 in [7], if o) s f2 is a pa th  which satisfies (A), (B) and (C), then 

[ h~q(t)[-< exp [  - [ ( ) - i -  2j) - (2p - 2q)lt] (35) 

where 2i = (n - 2i + 1)/4n is the i-th diagonal  entry of H o. Note  that  the p roof  of  
(35) depends only on the assumpt ions  (A), (B) and (C). 

N o w  let k E K and let 

k -  1 gt = n; at k; (36) 

be the Iwasawa decomposi t ion  with nt' ~ N, a; e A and k[ ~ K. Note  that  n[, a; and 
kt have been redefined. As before, let A[ be the process in d such that  a[ = exp(At). 
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We will show that if k E ko~A, then (A) and (B) hold. Since k-  ~ is an isometry on V, 
we see that (C) holds with Yt = gtK being replaced by k - lg tK .  It follows that (35) 
holds with our new n{. 

Recall that we have fixed an co ~ O which satisfies the limiting properties in 
Theorem 1. Now we assume that it also satisfies (C). By excluding a null set in/2, 
every co satisfies these hypotheses. 

Theorem 6 I f  kekooA, then (A) and (B) hold. 

Let gt = ktat~, be the decomposition given in (15). We have 

k ; - l a ; - l n ; - 1  = g;- lk  = ~ - l a r - l k - 1  k . 

As in Sect. 6, let g = at-1 k~-1 k. Then gn; a; = l~tkt-1. We see that/~k{ plays the role 
of h in Sect. 6. By (17), for p <= i, (n;a;)pi = Cip. Since a; is a diagonal matrix and nt' is 
an upper triangular matrix whose diagonal entries are equal to one, by (18), we 
obtain 

/(g*g)[~i-1 I~i - t ]  
(~;). = c.  = X/ ~ ~ , ]  

and 

(n; )p i  = ( - 1) i - p  ( g ' g )  [ ~ i - 1  [ 1 . . .  / ~ . . .  i ]  

(g*g)[ai-1 [~i- 11 

Since kekooA, (k~olk)[fli[~i] # 0 for any i. By (20), 

(g 'g) [~i[~13 = atf f l i l - 2 ( k t l  k ) f  fli[oci] 2 + ~i 

where ~i ~ at[fll]-2e-t/". Because 

at[ f l i] /a~[f l i -1]~exp(2,- i+a t) = exp( - 2~t) 

it follows that A;/t ~ - H o. This proves (A). By the expression for (n[)pl and (20), 
we see that for p < i, 

1) i_p(k~lk) f f l f_ l ] l  . . .  p . . .  i] 
(noo)vi' = lira (nt)vi' = ( - (k~lk)  [ill-1 ]oQ-1] (37) 

t--~ o0 

This proves (B) hence Theorem 6. 
Any X e r162 can be considered as a tangent vector on K / L  at the coset L, i.e., the 

tangent vector of the curve s ~ eSXH in G/H = K / L  at s = 0. In Sect. 3, we 
introduced a Riemannian metric ( -,- )K/L on the boundary K/L.  The length of X, 
determined by the Riemannian metric, is [[ X ][r/z = x / ( X ,  X)K/L. Note that if 
X E ~ ,  the Lie algebra of H, then ][ X [[K/r = 0. 

For  Xer162 let ad(X) be the linear transformation on (r defined by 
a d ( X ) Y =  [-X, Y]. One checks that {ad(W); W e d }  is a commutative family of 
symmetric transformations on ~ with respect to the inner product ( . , . ) .  There- 
fore, their common eigenvectors form a basis of x4z. It is easy to show that X e 9ff is 
a common eigenvector if and only if X = cE~j for some constant c. It follows that 
~ f  is spanned by a subset of {Eij; 1 < i , j  < n}. Let 

J = {(i,j); Eijq~,Yt ~ �9 (38) 
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We note that E ~ j � 9  if i =<j, so, ( i , j ) � 9  implies i > j .  We also note that the Lie 
algebra ~ of L is spanned by {E~j - Ejz; (i , j)r i > j } .  Let J be the or thogonal  
complement  of s in X with respect to the inner product  ( ' ,  �9 ). We see that  J is 
spanned by {E~ - Ej~; (i, j )~  J }. It follows that Efj, (i, j ) � 9  J, considered as tangent 
vectors on K/L, are mutual ly or thogonal  and form a basis of the tangent  space at 
the coset L. 

N o w  assume kL �9 koo (A'). By the definition of A', we may assume k �9 k~A. By the 
remark following (36), the estimate (35) holds. For  Z �9 f#, Dk(Z) is the tangent vector 
of the curve s ~-~ ke~ZH in G/H = K/L  at s = 0. For  (i,j)~J, let Z = Ad(n ' )E i j .  We 
see that Dg;-1 (Dk(Z)) is the tangent vector of the curve s ~-~ g;-~kn" exp(sEij)H at 
s = 0, which is the same as the tangent vector of the curve 

s ~ ,~tt"-i at'-ln't-ln~ exp(sEii)H = k~ -1 exp[sAd(a't-ln't-in~)Eii] H . 

Since the Riemannian metric on K/L is K-invariant,  k't- ~ is an isometry on K, we 
have 

11Dg;- t (Dk(Z) ) I[/~/L = [I Ad(a't- ~ n't- ~ n'~) Eij II K/L, (39) 

Since Ad(e x) = e ad(x), Ad(a; -a)  = exp [ - ad(A;)] .  

ad(At')Epq = [A;,  Epq] = [A;(t) - Aq(t)] Epq. 

We have 

~ - 1  t - 1  , Ad(at nt n~)Eij = exp( - ad(A;))Ad(n;  -1 n~)Eij 

= e x p ( -  ad(A/)) ~ h~q(t)Epq = ~ h~q(t)exp[ - (A'p(t)- As 
p , q  P ,q  

Since (Ai(t)) -- (Aj(t)/t ~ - (2i -- 2j) and hij(t) ~ 1, the term on the right hand  side 
with p = i and q = j  grows like exp[(;~i - 2j)t] .  Note  that  the terms with (p, q)~J 
correspond to zero vector on K/L and the other terms correspond to mutual ly  
or thogonal  vectors on K/L. By (35), the exponential  growth rates of  these terms are 
controlled by exp [ ( 2 i -  2j)t] .  It follows that  for (i, j ) � 9  J, 

1 _ i n ; _  1 i - j  lim - log II Ad(a/ n~) E~j ][K/L = )~'i - -  ) . j  - -  (40) 
t-oo t 2n 

Note  that the tangent space of K/L at kL is spanned by {Dk(Ad(n'~)Eij); 
(i, j ) � 9  J}. We have proved the following results. 

Theorem 7 At kL �9 k~ (A'), all the L yapunov exponents of the stochastic flow g21( - ) 
exist and are 9iven by - (i - j ) / 2 n  for (i,j)e J. Note that i > j  for (i , j)e J. 

Consider the sphere S" -  1 as a boundary  of G = SL(n, R). If  we identify S" -  1 with 
K / S O ( n -  1), where SO(n - 1) is identified with a subgroup of K = SO(n) as in 
Sect. 3, we see that  

J = {(2, 11, (3, 1) . . . . .  (n, 1)}. 

As a direct consequence of Theorem 7, we obtain 

Corollary 2 Let 49t be the stochastic flow on S"-1 generated by (25) and for almost 
every co, let C be the great circle in Theorem 5. At any point x �9 S"-1 _ C, the 
Lyapunov exponents of Ot are - 1, - 2 , . . . ,  - (n - 1). 
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9 Instable points 

By Theorem 7, any k ~ k~A is stable for the stochastic flow 9t- 1 ( .)  on K = SO(n) in 
the sense that all the Lyapunov  exponents at k are negative. In this section, we will 
show that at k~K - k~A = k~(K - A), there is at least one nonnegative expo- 
nent. 

Recall that g z  = ktat~ is the decomposi t ion (15). Define f/~q(t) by 

A d ( k t  a k~)Eij = V s (41) Z . . ~ d U  ~ ! P q "  
P , q  

By Lemma 10 in [6], 

Pq t -- . [f~i ( )l ~ e x p [  -- [ ( 2 i -  2a. ) -- (2p 2q)[t] (42) 

We note that the proof  of this lemma shows that (42) holds for any path co which 
satisfies the limiting properties in Theorem 1 and (C). 

Let t/t = k~-lk~. We have 

t P q ( t  : . :  J~j ) - -  [Ad(th)Eij]pq [rhEijrltl]pq rlpi(t)rlqj(t). 
Setting i = p and noting rhdt ) -~ 1, we obtain 

[l/qj(t) < ~ e x p ( - J 2 q - - 2 j , t ) = =  e x p (  Iq-Jl2n t ) .  (43) 

Let e, f l c { 1 , 2 , . .  ,n} with e - - { i l  . . . . .  ik} and f l = { j l , . . . , j k } .  Assume 
i 1 < i 2 < ' ' "  < i k a n d j l < j 2 < ' ' "  < jk .  D e f i n e l ~ - f l l t o b e ~ = l [ i ~ - L [ . N o t e  
that this is only defined when e and fl have the same cardinality. By (43), we see that 

th[ctIfl ] =<(exp( }c~--fll2n t ) .  (44) 

We note that th[c~[c~ ] --+ 1 as t--+ 0o. 
As in Sect. 6, let 9 = a;-~k; -Ik for some k e K  and let at[~] = I-L~adt), where 

adt) is the i-th diagonal entry of at. Recall ado ~-exp [(n - 2i + 1)t/4n]. As in Sect. 
6, let fli = (n - i + 1, n - i + 2 . . . . .  n). We have a[fli]-2~exp[i(n - i)t/2n]. It 
follows that for I/~1 = i, 

at[f l]-2~exp [ i ( n -  i ) -  21f l -  flil 1 2n  t . (45) 

By the Binet -Cauchy formula, 

(g*9) [~l~] = F o [r = 2 a [fl] - 2 (k-~ k) [/~ I ~]2 . (46) 

Since 

(kt -1 k) [ill ~3 = (thk~ l k) V~lcd = ~ ~ U~[~] (k~ ~ k) [71 cQ 
7 

by (44), (45) and (46), we see that for any c~ c {1, 2 . . . . .  n}, there is an integer # such 
that 

(g 'g )  [c~ [ ~] ,~  exp (~n t ) .  (47) 
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N o w  let h be the K - c o m p o n e n t  of g in the Iwasawa  decomposi t ion  (5). We have 
gt- 1 (k) = / ~ -  1 h. Fo r  any X ~ ~r let h(s) be the K - c o m p o n e n t  of ge sx in the Iwasawa  
decomposi t ion.  Then  h(0) = h. There exists Y~ ~ such that  the tangent  vector  of 
the curve s ~ he sY at s = 0 is the same as the tangent  vector  of  the curve s ~ h(s). 
We have 

Dg21 (Dk (X) )  = D (~;-1 h) ( Y ) .  (48) 

Let  hp be the p-th co lumn vector  of h and let J~ be (d/dt)h(O). We have 

h + s h Y  + O(s z) = he sr = h(s) -b O(s 2) --- h q- sh -k- O ( s  2) . 

Hence, Y = h -  lj~. Let  ypq be the (p, q)-entry of Y. We have 

ypq = hp" h. = - J~p" hq.  

For  l _ < r < n - 1 ,  define X r = E ~ , , + I - - E , + I , r .  Let  X = X ~  and let Y~ be the 
corresponding Y. Then  the i-th co lumn vector  of ge sx is gi for i # r, r + 1, it is 
g~ - sgr+l + O(s 2) for i = r and g~+~ + sg~ + O(s 2) for i = r + 1. Since the co lumn 
vectors of h(s) are obta ined f rom those o f g e  ~x th rough  a G r a m - S c h m i d t  diagonal-  
ization, we see that  hi(s) = hi for i # r, r + 1 and 

h~(s) = ~ c rp ( s )gp -  sc,~(s)gr+ l + O(s 2) 
p = l  

where c~v(s ) satisfies Crp(O) = c, v in (18). I t  follows that  lh = 0 for i # r, r + 1 and 

p = l  

Since gp" h~+ ~ = 0 for p < r, 

r + l  

Y~,~+I = -- hr.h~+l = c~g ,+ l  "h,+l = c~ ~ Cr+l,pgr+l "gp.  
p = l  

By (18), the above  is equal to 

c,r((9*g ) [~:~ [o~,l ( g ' g )  [ ~ + i  I~+  13)- 1/2 

r + l  

x Z ( -  1 ) r + a - ' ( g * g ) l - ~ l l , " " "  '/3 . . . . .  r + 1](g*g)~+1,,  
p = l  

= cr~((g*g) [e,I ~ ]  ( 9 * 9 ) [ ~ + 1 1 ~ , + 1 ] ) - 1 / 2 ( 9 * 9 ) [ e ~ + l  l e , + 1 ]  

Hence  

y, = x/(g*g)[~r-1 L~,-1] (o'g)[~,+, I~r+l] xr. 
( g ' g )  [~,1 c~] 

Note  that  ( g ' g )  [C~o [ eo] = ( g ' g )  [e .  [ e , ]  = 1. It  follows that  

n--1 

1-[ tl 5[ I  = 1 / x / ( g * g ) [ c q l ~ l ] ( g * g ) [ ~ , - l l ~ , - 1 ] .  
r = l  

(49) 
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I J r = l  ][ Y ~ l [ ~ - e x p [ -  ( n 1)t /2n].I fkCk~oA, then the exponen-  I f k e k ~ o A ,  by(20), , - 1  
tial growth rate of (g 'g)  [~,_ 1 I e , -  1] becomes smaller and that  of (g 'g )  [el  [e l i  
does not  become greater. Therefore, the exponential  growth rate of  M If Y~ [[ is 
greater than that  of  exp[  - (n - 1)t/2n]. On the other  hand, by (47) and (49), 
l[ Y~ ][ ~ exp(vt/2n) for some integer v. It  follows that  if k r k~oA, then for some r, v is 
a nonnegative integer. We have proved the following result. 

Theorem 8 I f  k ~ K - kooA, then there exists a tangent vector Z on K at k such that 

lira -1 log ]l Dg7 I(Z)II =--v (50) 
t--,~ t 2n 

for  some nonnegative integer v. 
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