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1 Introduction 

With a view to applications to nonstationary processes, conditioned random fields, 
and disordered lattice systems, we study the large deviations of independent but 
nonstationary random fields. To compensate for the loss of invariance, we make 
the law P Y of the field measurably dependent on a parameter y in a way that 
respects the 2~a-action: P r~y = py  o T_ i. Suitable assumptions yield large deviation 
principles of the following type: Suppose we have random variables ~,, a sequence 
of cubes V, T 71d, and a nonnegative rate function I defined on the Polish state 
space 5 P of the 4,. We say that {~,} satisfies a large deviation principle on 5 p under 
P with normalization { [ V,I} and rate I, if the following inequalities hold for closed 
subsets F and open subsets G of Y:  

1 
lim sup ,~77~, logPY{~,eF} < - i n f I ,  

tl--+ oo ~ F 

and 

1 
liminf,W;7~, logPY{~,e G} > - i n f I .  

JVnl G 
n--+ oo 

Let us say that I is a good rate function on 5 ~ whenever I : 5 ~ ~ [0, oe] is lower 
semicontinuous and has compact level sets {I < c}. 

After introducing our framework, we state the large deviation principles in 
Sect. 2 and establish some basic properties of the rate functions. In particular, we 
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find that the rate functions differ from the entropy rates of iid large deviation 
theory, but can be recovered from entropy via a contraction. Section 3 studies 
a special case called a skew system where the rate function does coincide with 
entropy on part of the domain. These results will be applied in a separate paper to 
disordered lattice systems. Section 4 gives an application of the theorems of Sect. 2 
to conditional probabilities. Further applications appear in Seppfil~iinen (1992). 

Large deviation results of this type were first presented by Comets (1989) for 
conditioned iid lattice systems. A special case of the ergodicity assumption we need 
was earlier used by Ledrappier (1977) to establish the thermodynamic limit of 
a random Ising model. Large deviation results for nonstationary processes have 
recently appeared in Baxter and Jain (1991) and Baxter, Jain, and Sepp~il/iinen. 

To describe the setting, fix a Polish space ~ and a positive integer d. Put  the 
product topology on the configuration space f~ = ~e . Equip the spaces -//g~ (~ )  
and dgt(f2 ) of Borel probability measures with their Polish weak topologies 
generated by the spaces Q ( ~ )  and Cb(f2) of bounded continuous functions, 
respectively. Let V, denote the cube { i =  (i~ . . . . .  id)c7zd:-- n < ik < n, 
k = 1 , . . . ,  d} with cardinality [V,,I = (2n - 1) d. The group of shift transformations 
{/i: ic2U} acts on f2 by (Tiz)j -= Zi+ j- 

The variables appearing in our large deviation principles are the empirical 
distributions L. and empirical fields R. with values in ~/dl (~e) and ~/d~ (f2), respec- 
tively. They are defined for z = (zi)~ f2 by 

and 

1 

1 a.= E 

The terms "position level" and "process level" are often used to distinguish between 
the empirical measures {L,} and {R,}. 

For W c 2U, let ~-w denote the a-field generated by (Zi: i c W), where the spin 
Zi: (2 ~ Y" at the site i c 2g ~ is the projection Zi(z) = zi, and the Borel field ~(~e) on 
~e is understood. Write simply ~ for the Borel field of f2 and ~ ,  for o~v. 

We study probability measures on O that depend on a parameter y ~ s where 
X is a Polish space equipped with a suitable 2~d-action. More precisely, we have 
a collection T~ . . . . .  Td of commuting homeomorphisms on X, and writing 
Ti = T~ 1 ~ . . . .  Tj ~ for i = ( i l , . . . ,  id)~ 2g d gives a homomorphism from (77 ~, +)  into 
the group of homeomorphisms on 2;. Y denotes a X-valued projection on f2 x 2;. 

7Z d acts on ~? x Z by Ti(z, y) = (Tiz, Tiy). The space of invariant probabilities on 
O is denoted by ~ r ( f2 )  = {Q ~ Jr (~2): Q ~ Ti = (2 for all i c 2U }, with an analogous 
notation for N and O x X. An invariant probability is ergodic ifinvariant Borel sets 
have measure either 0 or 1. 

We assume given a measurable map y ~-~ PY from z~ into dgl(f2) such that the 
spins (Zi) are independent under PY and pr~y = pYo T-i.  This is equivalent to 
having a measurable map y ~ pY from N into -~gl (2ge), and then defining 

(1.1) PY= @ p~Y. 
i ~  d 
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With PY we define Jr1 (Jr (g?))-valued empirical measures by 

1 2 
(1.2) P"(Y) = I Vnl iev. ~{PS'} " 

To clarify its meaning, l e t f be  a bounded Borel function on f2, so that F(Q) = Qf 
defines a bounded Borel function on Jdl(f2). The integral of F against P,(y) is 
given by 

1 
P,(y, F) = ~V~i~a f fdP r'y = f Rn(f)dP y . 

(Depending on the context, the integral of a Borel function f against a measure 
Q can be denoted by Q f, Q(f), Q{f}, or ffdQ.) At position level we define the 
~'/1 (~1 (~e))-valued maps 

1 2 
(1 .3)  P"(Y) = [ E l  i 6 v .  •{pT,,} . 

1.4. Definition. A parameter y is called P-quasiregular, if the limit 

l ' (y) = lira P.(y) 
n--~ oo 

exists in the weak topology of ~///1 (Jll(t2)), and p-quasiregular, if the limit 

I)(y) = lira p,(y) 
n ~ o o  

exists in the weak topology of d//l(J/{l(~)). 

If y is a p-quasiregular parameter and v ~ J/t~ (3Y), define 

f -/~'1 (~() 

where the supremum is over bounded Borel (equivalently, continuous) functions on 
~ .  Next, suppose y is P-quasiregular and Q ~ J//r (f~). For finite rectangles W c Z e, 
put 

( 1 . 6 )  KY(w)(Q)=sufp{Qf - f logR(ef)r(y, dR)} , 
~.11 (f2) 

where f ranges over bounded, ~-~-measurable functions. Then define 

1 y 
(1.7) kY(Q) = sup ~ Kg(w)(Q). 

Extend k y to all of ~a(~?) by setting kY(Q) = oo if Q is not shift-invariant. 

2 The large deviation principles and their rates 

In this section the measures PY are defined by (1.1) in terms of a given measurable 
map p: 2; ~ ~'1 (~). 
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2.1. Theorem. Let y e Z  be P-quasiregular. Then {R,} satisfies a large deviation 
principle on JeLl(f2 ) under PY with normalization { I V~I} and with rate k y. 

2.2. Theorem. Let y E ~. {L,} satisfies a large deviation principle on J / l ( ~  ) under 
PY with normalization {IV,,[ } /f and only if y is p-quasireguIar, tn this case the rate 
function is K y. 

Proofs of these theorems are in Sect. 5. The equivalence of the large deviation 
principle and the regularity assumption at position level was also independently 
observed by S.R.S. Varadhan. We do not know at the moment if this is also the case 
at process level. 

Most of the remainder of the paper studies the rate functions, especially to 
describe precisely their relationship to relative and specific relative entropy. In this 
section, Theorems 2.6 and 2.8 show that the rates always dominate the entropy 
rates of the expected process. In Theorem 2.13 we see that under an additional 
assumption, the rates are contractions of entropy rates on larger spaces. 

Recall that the entropy of a probability v relative to a probability # is defined by 

log if v ~ # ,  

H ( v l # )  = 

otherwise. 

Wri te / /~(v I #) for the relative entropy of the restrictions of v and # to a sub-a-field 
~ .  For  Q and R in Jgr((2), define the specific entropy of Q relative to R by 

(2.3) h(QIR) = lim 1 H~.(QIR) 
. - . |  ~ v.I ~ ' 

whenever this limit exists. To avoid the existence problem also define 

1 
(2.4) h(QIR) = sup H~(w)(QIR) w ~  
where the supremum is over finite rectangles Win 77 d. We shall make free use of the 
basic properties of relative entropy. The reader may consult Deuschel and Stroock 
(1989) and Varadhan (1984) for proofs. 

For  a p-quasiregutar y, define the expectation # ~ J~i ( ~ )  of v(y) by 

(2.5) # ( C ) =  f r(C)~(y, dr), 
.A/1 (~ e ) 

for C ~ ~ ( ~ ) .  Since we always deal with one y at a time, the dependence of # on y is 
suppressed from the notation. 

2.6. Theorem. Let y be a p-quasiregular parameter. Then K y is a convex, good rate 
function on Y/g1 (~)  with a unique zero at #. KY(v) > H(vI#) for all v ~ d[ l (~) ,  and 
K s coincides with entropy relative to # if and only/ fu(y)  is a point mass. 

Proof Lower semicontinuity and convexity are obvious from the definition (1.5). 
To get KS(v)> H(vl#), apply Jensen's inequality to (1.5) and note that 
H(v I#) = sup {v f -  log #(e:): f e  Cb(~)}. 
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KY(#) = 0 follows from observing that for v = p, the right-hand side of (1.5) is 
< 0 for all f, again by Jensen's inequality. Since H(.  ] #) is a good rate function with 

a unique zero at #, K y is good and cannot have any other zeroes. 
If v(y) is a point mass, it is obvious that KY = H(-p y). Conversely, suppose this 

is true. For a positive Borel funct ionfwhich is both bounded and bounded away 
from zero and satisfies # f =  1, define v ~ J { l ( ~ )  by dv =fd# .  Then 

H(v [p) = KY(v) > v(logf) - f  logp(f)~)(y, dp),  

from which f logp(f) l )(y,  dp) > O. By Jensen's inequality f logp(f) l)(y,  dp) <_ O, 
so we must have equality. Hence by the strict concavity of log, p f  = 1 = I~f for 
o(y)-almost all p. Let f vary over a countable class of functions that separates 
measures to conclude that v(y)-almost every p equals #. [] 

The expectation P of-l?(y) is defined for A ~  by 

(2.7) P ( A ) =  f R ( A ) r ( y ,  d R) .  

2.8. Theorem. Suppose y is a P-quasiregular parameter. Then k y is a convex, 9ood 
rate function on d/La (Y2) with a unique zero at P. For Q ~ J/lr(~2), kY(Q) _>/~(Q [ P), 
and kY(Q) is given by the infinite volume limit 

1 y 
(2.9) kY(Q) = lirn ~--~,IKT(,)(Q). 

Proof Put s(W) = K)(w)(Q) for finite rectangles Win ~ .  It follows from Lemma 
2.10 below that s(W) = s (W + i) and s(W) >= s(W1) + "'" + s(Wm) whenever 
W~ . . . .  , W~ are disjoint and contained in W. A standard superadditivity argument 
now gives (2.9). The remaining properties follow from applying Theorem 2.6 to the 

y 
functions Ks(w). [] 

2.10. Lemma. Suppose y is P-quasiregular. Then )C(y)-almost every R ~ J/g1 (f2) is of 
the form R = (~i~d Pi for some collection {Pi} c ~1 ( ,~ ) .  The map y ~ F(y) is 
invariant under the 7ld-action on S., and the measure F(y) is invariant under the maps 
R ~-> R o Tj on ~/~1 (ff~)" 

Proof. Let Cm be the closure of the set (pT~y: i~7Zd\Vm} in Jg~(O), and 
C = ~,~= z C,,. Elements of C are of the form | Pi, so the first statement follows 
from 

1 
u C) > lim limsup ~ 1c~(P Tiy) = 1 

?/.l ~ o o n ~ 9  ] ~  i~vo 

For any site j, 

1 1 

P,(Tjy) I V'li~v,+i , i~V, 

The limiting behavior of the middle expression is clearly independent of j. This 
implies the invariance statements. [] 

The rest of this section shows how an additional assumption on the ergodic 
properties of the parameter allows us to express the rate as the solution to 
minimizing relative entropy on JCdl (g2 x Z) under marginal constraints. Following 
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Oxtoby (1952), call a parameter y quasiregular, if the limit 

1 
K(y) = lira ~ 2 ~Tiy 

n ~  i~V, 

exists in tit1 (2). y ~-~ K(y) is an -~r(S)-valued, Borel measurable, invariant map on 
the Borel set of quasiregular parameters. If K(y) is ergodic, we call y transitive. 
Proof of the following proposition can be found in Oxtoby (1952) and in Sect. 2 of 
Dynkin (1971). 

2.11. Proposition. Let v ~ J~y(S). The set of transitive parameters has v-measure 1, 
and v is ergodic if and only if v{y: K(y) = v} = 1. In particular, every ergodic 
probability on Z arises as a limit K(y) for some transitive y. 

2.12. Definition. Assuming that the kernels in question exist, we say a parameter 
.~ is P-regular, if 

r(~, A) = f 1A(PY)K(~, dy) 

for Borel A c J/ll(O), and p-regular, if 

u(~, C) = f lc(pY)K(~, dy) 

for Borel C c ~l(~e) .  

We can now state our result. For a quasiregular Y, define (psJ~l(A e x S) and 
q~ sJHr(f2 x X) by ~p(dz, dy) = pY(dz)K(~, dy) and ~(dz, dy) = PY(dz)K(.~, dy). Let 
G = Y .  v ,~(z) .  

2.13. Theorem. Suppose ~ is p-regular. Then KY(v) = inf o H(r ~o), where the infi- 
mum is over ~b e J/dl(~C~ x S) with marginals v and K(.~). 

Suppose ~ is P-regular. Then 

1 
(2.14) he(TI @) = l im ~-~/-/e(,)(T I r  

exists for T ~ ~T(E2 X E) with E-marginal K(~), and kY(Q) = inf~ ha(T} ~), where 
the infimum is over T ~ ddT(f2 x E) with marginals Q and K(,~). 

I f  Yl is P-regular and transitive, then the limit in (2.14) exists for all 
T a ddy(f2 x S), and k ~ is affine on ddr(fl). 

Proof is deferred to the end of the section. The next proposition indicates that the 
P-regular parameters are plentiful. 

2.15. Proposition. The set of P-regular parameters has measure 1 under any invari- 
ant probability on S. I f  pY depends continuously on y, quasiregularity implies P- 
regularity. 

Proof. Suppose ~ is quasiregular and y e-, pY is continuous. It follows that y ~-+ PY 
is continuous, so that if G is a bounded continuous function on Mall (f2), G(P y) is 
a bounded continuous function of y. By quasiregularity 

lira P,(~, G ) =  lira 1 . . . . . .  ~ ~ G(P r~) = f G(PY)K(~r dy), 
i e  V, Y, 

which shows that y is P-regular. 
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If  y ~ PY is only measurable ,  G(P y) is a bounded  Borel function of y, and the 
convergence above  takes place a lmos t  surely under  any invar iant  probabi l i ty  on Z. 
This gives the first s tatement.  [] 

2.16. Example. A simple example  of  a P-quasiregular ,  but  not  P-regular,  pa ra -  
meter. Take  d = 1, 2; = [0, 1] e with the shift map,  and pick two distinct probabi l i ty  
measures  c~ and/~  on some Polish space ~ .  For  y = ( y , ) ~ Z ,  let 

p , = { ~  if 0 < y o <  1, 

if Yo = 1. 

Let  q, be any sequence in (0, 1) converging to 1 as n --, oo. Put  ~, = t/,. Then 

Y(~)  lim 1 ,~1 = - 6{~} = 6{~z} . 
n ~ c o  n k = O  

But K(~)  = 61, where 1 = ( . . . ,  1, 1, 1 . . . .  ), and p1 = / ? z ,  so if ~ were P-regular ,  
the limit r ( ~ )  would be 6{~z}. 

The next technical l emma  will be used in a n u m b e r  of  specific situations. Let 
U and V be Polish spaces, ~c E dr (V), v ~ p V a measurable  m a p  f rom V into 
Jg~(U), rV= pv|  and (o(du, dv)= pV(du)tc(dv) probabil i t ies on U x V, and 
A a functional  on Cb(U x V) defined by 

A ( f )  = f log r~(eS)K(dv). 
V 

F o r  eeMCl(U x V) and f l~Jgl(U), set 

(2.17) J(e) = s u p { 7 f -  A ( f ) : f e  Cb(U x V)} 

and 

(2.18) L(fl) = sup{ fig - A(g): g ~ Cb(U)} . 

2.19. L e m m a .  J ( a ) =  H(c~](o) /f  the V-marginal of ~ is ~c, otherwise J(c 0 = oo. 
L(fl) = inf~ J(c~), where the infimum is over c~ with U-marginal ft. 

Proof Write ~" for the condit ional  probabi l i ty  of ~, given v e V. If  ev = K, then the 
r ight -hand side of (2.17) is domina ted  by f H(c~V[r')~c(dv) = H(e  [ (0). We see that  
J(c 0 < go only if C~v = ~ by t a k i n g f e  Cb(V) in (2.17). Finally, J(e)  > H(a  [ (0) as in 
The o rem 2.6. 

To  p rove  the second statement,  assume that  U and V are compact .  The  general 
case follows by a compact i f icat ion argument .  Since A is s t rongly cont inuous and 
convex on C(U x V), it is weakly lower semicont inuous and consequently its own 
double  convex dual. Let  g~C(U).  Then  

A(g) = A**(g) = S*(g) 

= sup{~vg  - J(c~): ~ ( U  x V)} 

= s u p { f i g -  inf{J(c0: ev = fl}: f l a ~ t ' l ( U ) }  �9 

Tak ing  convex duals once more  gives L(fl) = inf{J(e) :  ev = fl}. [] 

2.20. Remark. This l emma  contains Donske r  and Varadhan ' s  (1976, Theo rem 2.1). 

Proof of  Theorem 2.13 To apply  the above  lemma,  set V = Z and K = K(~). The  
first par t  of  the theorem follows by taking U = 5Y and pY = pY, so tha t  L = K '~. 
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Now suppose .~ is P-regular. Let J ,  be the function defined by (2.17) with 
U = :Z v(") and pY equal to the restriction o f P  y to ff , .  Then Hr j ] r = J~(~) if 

has marginal K(.~). The infinite volume limit exists for the J, 's by the proof of 
Theorem 2.8, hence so does (2.14). 

Again by Lemma 2.19, H~(~)(~ I ~b) > K~(Q) for all n whenever 7 j has marginals 
Q and K(~), so kY(Q) <= inf,, h~(~[ ~) follows. 

To get the converse, use Lemma 2.19 and the properties of relative entropy to 
pick a probabi, lity F on d~ with marginals Q~(~) and K(~) such that 
H~(~)(FI # ) =  KY(Q). Let {Wii: i e H }  be a covering of 77 a with disjoint shifted 
copies of V~ such that Wi is centered at i. Extend F to F'e~/d~(O x X) such that 
under F" the variables {(Zw(i), Y~ Ti): ieH} have common law F, and the vari- 
ables {Zw(i): i ~ H} are independent conditional on Y. Define 7 '~ ~,//dr(O x Z) by 

1 

I i vo 

The sequence {7 j" } is tight because its marginals on ~2 converge to Q and those on 
E are constant. Any limit point 7 s is invariant with marginals Q and K(.~). So by the 
lower semicontinuity and convexity of relative entropy, kY(Q) > hg(Tsl ~). 

Suppose .~ is also transitive. Then Hg(,)(7 s ] q~) = co whenever 7S's N-marginal is 
not K(~), because tPx_~ K(~r forces 7sz = K(~) by K(~)'s ergodicity. 

To prove that k y is affine on J/T(Y2), it suffices to show that kY(Q)= 
f kY(R)ot(dR) whenever (2 = f Re(dR) is the ergodic decomposition of Q. By 
Deuschel and Stroock's (1989, Lemma 5.4.24), kY(Q)< f kY(R)~(dR). For the 
opposite inequality, find 7 ~ such that kY(Q) = h~(ku I ~), with ergodic decomposi- 
tion tP = f Ftl(dF ). By K(~)'s ergodicity, q-almost every F has marginal K(.~). 
hg(. ] ~) is affine by the argument on p. 222 of Deuschel and Stroock (1989), so 
again by their Lemma 5.4.24, 

IcY(Q) = f hE(rl~)t l (dl  ") ~ f k~(F~)o(df) = f k~(R)c~(dR). 

The last equality above follows from the uniqueness of the ergodic decomposi- 
tion. [] 

3 Skew system run by the shift group 

We study the effect of adjoining the parameter to the process as a deterministic 
component. We also take the parameter space to be a configuration space with the 
2g e action by shifts. Here we find a very close connection between entropy and our 
rates. 

Assume that ~ = Y" x ~ where 2" and ~t are Polish spaces, and form the 
configuration spaces Z = ~ rz~, ~ -- ~#~, and f2 = .~ x E. Write ~ 'v  x for the o--field 
generated by the E-valued spins (Xi : i E V), analogously for Yl-valued spins, and set 

~-X oz-Y 
~V,U =" ~"V  V ~'~V+U" 

The parametrized measures are now pY = ~z y | 6yo on ~e and PY = H y | dy on 
Q, where y ~-~ ~rY is a measurable map from Z into Jdl(Y'), and HYe~ ' I (Z)  is 
defined by H y = | 7r~Y. It turns out that the range of the dependence of roY on 
y affects the entropy representations of the rate functions. For  the remainder of this 
section, f ix  U c 7Z ~ so that y ~ roY is ~rv-measurable. 
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Weak limits of Rn under PY have X-marginal K(y), ify is quasiregular. So it is of 
interest to note that the last statement of Proposition 2.11 can be strengthened to 
cover all shift-invariant measures on X. 

3.1. Lemma. Every shift-invariant probability measure on Z is. equal to K(y)for  
some quasiregular configuration y. 

Proof. It is well-known that ergodic measures are dense in J /r(Z),  see for example 
Lemma 3.2 of F611mer and Orgy (1988). Thus it suffices to show that, if Vk ~ V in 
~//tl (X) and Vk = K(y k) for each k, then v = K(y) for some quasiregular configura- 
tion y. The idea is to let y agree with the yk's on successive rectangular shells 

oz-Y Find gl,  g2, g3,. �9 �9 ~ Cb(X) and integers rk SO that gl . . . . .  gk are ~ rk-measur- 
able and 

(3.2) d(~, 2) = ~ 2 -i 
2gir I 

i=1 I[gill 

metrizes J//l(Z). Let ek = 2-k/9. Without loss assume that, for all k, ]Vk(gi)- 
v(gl)[ < ~kNgill for i = 1 . . . . .  k. Choose nk "r to satisfy (a)-(b): 

(a) For j~  {k, k + 1}, i = 1 . . . .  , k, and m > nk, [Rm(y J, g~) -- v~(gi)l < ek[Igirl. 

(b) F o r m > n k ,  [{i~ V,,\ V~: i +  V~,r V~\ V~}[ < ek[V~[. 

Set y i = y ~  for ieV~,\V,~ . Then d(R~(y),v)=<2 -k+2 whenever ng< 
m < nk+ 1. [ ]  

Call a parameter y marginally quasiregular, if the limit 

1 
K(y) = lim ~V~ ~ 6yi 

exists in ///~(~r In our present setting, it is clear that P-quasiregularity implies 
quasiregularity, p-quasiregularity implies marginal quasiregularity, the S-marginal 
of the expectation P is K(y), and the ~r of # is K(y). 

3.3. Theorem. Suppose y is p-regular and U = {0}. Then 

K y ( v ) = ~ H ( v , # )  / f v = K ( y ) o n  ~j(a#),  
otherwise . 

Proof Lemma 2.19. Note that if y is p-regular and U = {0}, then # is the expecta- 
tion of y ~ pY under K(y). [] 

3.4. Theorem. Suppose that y is a P-regular parameter. Then the specific entropy 

1 H (3.5) hV(Q[P) = 2ira ~ [  e(, ,u)(Q]P) 

exists for Q ~ ~lr((2 ) with marginal K(y). For all Q ~ .~T(Y2), 

k y ( Q ) = f h V ( Q [ P )  i f Q = K ( y ) o n  ~ r ,  
(3.6) 

otherwise . 

Furthermore, k y is affine on the set {Qe//lr(Q):  Q = K(y) on ~ Y } .  
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Proof A special case of the argument given in the proof of Theorem 4.4 below 
shows that ~ ,  can be replaced by g,,v in (2.9). By Lemma 2.19 and P-regularity, 

(3.7) 
y (~,u)(QIP) if Q = K ( y )  on ~v(,)+v , 

Kr u)(Q) = 
otherwise . 

This gives everything but the affinity statement, which follows as on p. 222 of 
Deuschel and Stroock (1989). [] 

3.8. Remark. As Theorem 2.13, the above proposition holds without the restric- 
tion on 1;-marginals provided y is transitive and we take U = 7Z d. 

3.9. Example. P-regularity of ~ ensures that PY is a conditional probability of P, 
given Y = y, which in turn accounts for (3.7) and (3.6). Let us see how things can go 
wrong: Let d = 1, ~r = {a, b}, and Yr = [0, 1]. Let a, b, 0, and 1 denote constant 
sequences of a's, b's, 0's, and l's, respectively. For  y = (yn)sS,  let 

g y m { 5  a i f O = < y o < l  , 

6 b  if YO = 1 . 

Let ~/, be a sequence in (0, 1) converging to 1 as n --+ oo. Use Lemma 3.1 to pick 
a sequence e = (ck) of 0's and l's so that 

Put 

1 n - 1  1 
lim ~ 6Tkr = (60 + 65) 2 

ire. 0 
if c , - -  1 . 

Then y is P-quasiregular, Y(~) gives mass 1/2 to 6(,,1) and 6(b,1) each, and 
P = (6(,,1)+ ~(b, 1))/2. Let Q = b(,,1). Then He(n)(QIP)= log2 for all n but 
k~'(Q) = ao. This example shows also that, contrary to specific relative entropy, k ~ 
is not necessarily affine. 

We conclude this section with a Shannon-McMillan-Perez type result. Write 
Q r for the conditional probability of Q e ~/~1 (f2), given Y = y. It follows from (3.7) 
that if kY(Q) < 0% then Q ~ P on ~.,v for all n. Write 

f .  = d~p e(,, 
u) 

for the Radon-Nikodym derivative. 

3.10. Theorem. Suppose that ~ is P-regular and transitive, and kY(Q) < oo. Then for 
K(~)-almost all y and in LI(K(~)), 

1 
k~(Q) = lina ~V~.I f log f .dO' .  

Proof For finite rectangles W c 7z d define Fw(y) = Heiw, u)(QYlPY). {Fw} is 
a nonnegative superadditive process, and the theorem follows from (3.6) and 
Theorems 6.2.3 and 6.2.9 in Krengel (1985). [] 
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4 Large deviations under conditional probabilities 

We return to the general setting of Sect. 1. For  a sub-o--field 9 of ~- set 
d .  = V {Tjg: j e  V.} and ~ '  = ~ / L 1  d . .  Suppose PEJgT((2 ) is ergodic and has 
the property that, given 9 ,  Zo is independent of ff{o}c v d .  Our object is to study 
the large deviations of L.  and R. under conditional probabilities P{ .  I~r 

For  probabilities Q defined on ~-., set 

(4.1) K,(Q) = sup { O f -  f logn{eS [ d , }  dP} 

where the supremum is over bounded, Y,-measurable functions. The limit 

(4.2) k(Q) = lim , I~7;~,K,(Q ) 
n-- ,~  I Vnl 

exists for Q e sgr(O) by Theorem 2.8. For  nonshift-invariant Q set k(Q) = Go. 

4.3. Theorem. Both {R,} and {L,} satisfy a large deviation principle under almost 
every conditional probability P {. I d } ,  the former with rate k and the latter with 
rate KI. 

Proof Set 27 = f2 and let z ~ pZ be a version of the conditional distribution of Zo, 
given 9 .  Then PZ defined by (1.1) is a version of P { .  Is C}. Almost every z is P- 
regular in the sense of Definition 2.12 and satisfies R,(z) --+ P as n ~ ~ .  Thus the 
theorem is an immediate consequence of Theorems 2.1 and 2.2. [] 

As usual, the rates are convex, good, and have the obvious unique zeroes. Note 
also that K,(Q) = ~ unless Q = P on w ,  c~ o~. As in the skew system case, we can 
express the rates in terms of entropy: 

4,4. Theorem. Suppose 9 = V ~= 1 9 c~ ~,.  Then the specific entropy 

1 
(4.5) hd(Q]P) = lira Hy, v d,(QIP) 

/1--+o9 ~n[ 

exists for Q~T(~2)  which coincide with P on d .  We have 

f hd(QJP) if Q is shift-invariant and Q = P on d ,  
(4.6) k(Q) 

otherwise . 

Assume additionally that 9 c ~1. Then for v ~ J/ll (~) 

(4.7) Kl(v)={Hoo (vlP~176 otherwiseifV=P~ 

and h~(QIP) can be replaced by the usual specific entropy h(Q [P) in (4.6). 

Proof Suppose Q ~ T ( f 2 )  and Q = P on sO. Let K~(Q) be the quantity in (4.1) 
with the supremum taken over bounded, ~-, v st ,-measurable functions. By ar- 
guments similar to those of Lemma 2.19, K'(Q)=Ho*,.~.(QIP). Since 
K'(Q) >= K,(Q), to replace K,(Q) by K~,(Q) in (4.2) it suffices to show that 

k(Q) > ~ {Q f -  f logP{eY I ~r dP} (4.8) 
I r r n l  
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for an arbitrary bounded, ~, ,  v (Seem C~ ~-t)-measurable funct ionffor  any integers 
and m. Here we used d,~ = V~=l  d,~ n ~-,. Let k > 0 and pick n = n(k) so that 

V, is a disjoint union of k d shifted copies of Vm centered at sites in a set H,. 
Set g , = ~ i ~ n f o T i .  Then g, is ~-,+t-measurable,  and P{eO"lsC,+e}= 

~I ic . ,  P { e I l ~ }  ~ Ti. Hence 

K, + e(Q) > Qg. - f log P {e o" I ~r + e} dP = k e ( Q f -  f log P {ell sdm} d r ) .  

Divide by [ V, + el and let k ~ oe to get (4.8). The rest of the theorem is by now 
easy. [] 

Two settings which satisfy the assumptions of this section: 
(1) Suppose ~ = 2Y x ~J as in Sect. 3, and P is an ergodic probability on f2 such 

that, for some U c 7Z e, X0 is independent of (X{0}o, Yw), given Yr. P itself does not 
necessarily satisfy a large deviation principle if its marginal on Z is an arbitrary 
ergodic measure (Orey and Pelikan 1988 give an example due to A. Sokal). Let 

be the a-field generated by Y{0} ~ v. According to Theorem 4.3, large deviation 
principles hold for almost all conditional probabilities P {. [ Y = y}. For  the case of 
a product measure P = Px | Pr with iid marginals, this result was first proved by 
Comets (1989) with arguments completely different from ours. 

(2) Suppose that P is an iid probability on f2, and that ~ c o~1. Then we get 
conditional versions of the well-known iid large deviation principles, and by 
Theorem 4.4, the usual entropy rates continue to apply on the set of probabilities 
with correct restrictions on the conditioning a-field. 

5 Proofs 

We now turn to the proofs of Theorems 2.1 and 2.2. The upper bounds are 
established by a scheme codified in Deuschel and Stroock's (1989, Theorem 2.2.4): 
We first verify exponential tightness. It is then enough to prove the upper bound for 
compact sets. This we do by showing the existence of a pressure functional on 
a class of functions generating the weak topology of d//1 (O). Proof  of the lower 
bound is based on geometric ideas developed by Baxter and Jain (1991). 

First we enlarge the class { V, } so that it is closed under a partitioning of each set 
into two subsets of roughly equal cardinality. The need for this will become evident 
in the proof of the lower bound. Let ~ denote the set of pairs (q, r) of dyadic 
rationals satisfying 0 < q < r < 1 (q is a dyadic rational if2kq is an integer for some 
positive integer k). Let n(q) denote the largest integer contained in nq lid. For 
positive integers n and ( q , r ) ~ &  set V.,q,.= V~(r)\V.(q). Let Vo=O, so that 
V.,o, 1 = V.. If now u = (q + r)/2, then V,,,q,. = V.,q,u ~ Vn ..... and 

I g,,q,,[ 1 [V~ .... [ 1 
(5.1) * -  and - - - . -  a s n ~ .  

] V.,q,.[ 2 [V,,q,,I 2 

Proof  of the next lemma is left to the reader. 

5.2. Lemma. Let  ~ : ge  ~ IR be a bounded function, and define 

1 
- 2 ~(i) 

~(n,p,q)  t V~.,,ql is v, .... 
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for positive integers n and (p, q)~ ~. I f  lim.-.~o c~(n, s, t) = fl for some (s, t)~ ~, then 
l i m . ~  ~(n, p, q) -- flfor all (p, q ) ~ .  

Write L..q,r and R.,q,r for the empirical measures when V. is replaced by V.,q.. 

5.3. Proposition. Suppose y ~ Z is p-quasiregular and (q, r)~ ~. Then there are com- 
pact sets C: c d/[l(~ ) and L: = JZa(f2) such that for all n, d e N ,  

(5.4) PY{Ln, q, reC~} < e - Iv"'"''V 

and 

(5.5) PY{R,,q,r eL~} < e - t  v,,q,,l:. 

Proof Let ek ~ 0 as k ~ o% and put  bk = (k + 1 + log2)/ek. By p-quasiregularity 
and Lemma 5.2, the measures 

1 
F, - i gn. q.rl ~ p Tiy ie V.,~.. 

converge in JCZa(Y') as n ~ o% so we may pick compact  sets Kk = ~ such that  
F,,(K~) < e -b~ for all n, k ~ N. Then 

PY{L.,q,~(Kk) > ek} = PY I Vn,q,rl 2 1K~(Zi) > ek 
ieV..q.~ 

< exp(-IV.,q, . lbkek)" ]--[ pr~Y{exp(bklK;)} . 
i E V.,q,. 

By Jensen's inequality and the choice of the Kk'S, 

1-I pr~y {exp(bklK;)} < (F.{exp(bklK;)}) Iv"'"''I < 2 Iv"''A , 
ie V.,q,. 

so for all n and k, 

PY{L.,q.~(K~) > ek} =< e - Iv"''A(k + 1) 

F o r  : e N, let C: = {v e rig1 ( ~ )  : v(K~) < ek for k > : }. The C: are convex, compact  
subsets of ~/gz (Y'), and it is easy to see that they satisfy (5.4). To get (5.5), use (5.4) to 
choose compact  Km, j ~ ~.~ such tha t  

PTff{Ln.q.r(KC.i ) > e-(m+lj l  +4d)} <= e-Ig..,.~l(m+ljl +4d) 

for all m ~ N and j e 2U. Define 

H,,  = {Qe~/~(f2) :  Q(Zi~K;, j)  < e (m+ IJl +4d) for all j~71 d} 

a n d L : = ~ , ~ = > : H , , .  [] 

Let  <go be the class of bounded  cont inuous functions on f2 which depend on 
only finitely many  sites. It is a linear subspace of Q ( Q )  and generates the weak 
topology of Jgl  (~2). For  n e N ,  (q, r)~.~, ye2; , f sCgo,  and R ~ 1 ( f 2 ) ,  let 

S . , q , J=  Z f~  Ti , 
i~ V.,q,~ 

1 
Cn.q,~(y,f) -- [ V~,,,~llog f exp(S. , . ,r f )dP y , 
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1 
c,(R,f) = ~V~,llog f exp(SJ)dR . 

5.6. Proposition. Let y be P-quasiregular, (q, r)~ ~, and f s  Cgo. The limit 

(5.7) c(y , f )  = lim c,,q,r(y,f) 
n--* oo 

exists and is independent of(q, r). c(y , f )  depends on y only through l~(y), or more 
precisely 

(5.8) c(y,f)--  lira f c,(R,f))C(y, dR). 
n-*~o . / ~ ( o )  

Proof. Take first (q, r) = (0, 1). Usual partitioning arguments, as in the proof of 
Ledrappier's (1977, Lemma 7), give 

f em(R,f)'f(y, dR)+ 0 ( 1 )  <liminfcn(y'f)<limsupn-~ ,,-~o cn(y,f) 

< f cm(R,f)y(y, d R ) + O ( 1 ) ,  

which gives (5.7) for (q, r) = (0, 1) and (5.8). 
Now let ( q , r ) ~  be arbitrary, suppose f is .fig-measurable, and put 
= { i t  V~(q): i + Vk r V~(q)} • {ie V~,q,,: i + Vk r V~,q,,}. PY's independence and 

a straightforward approximation give 

I V~(q)l I V,,,,q, rl 
cn(~)(y,f) = ~ c,,(q)(y,f) + ~ c~,q,,.(y,f) + R(n), 

where iR(n)l < 2 I[f[I i W~t I V~(r)i -1. Letting n ~ Go gives (5.7). [] 

The functional c(y, . )  (d0-~ IR is called the pressure (Baxter and Jain 1991). 
The convex dual of the pressure is defined for P-quasiregular y and Q ~ ~ 1  (f2) by 

c*(y, Q) = sup{Q f -  c (y , f ) : f~To} .  

Propositions 5.3 and 5.6 and Deuschel and Stroock's (1989, Theorem 2.2.4) com- 
bine to give 

5.9. Proposition (Upper bound) Suppose y is a P-quasiregular parameter and 
(q, r ) ~ .  Then for any closed set F c Jtl(f2), 

1 
lim_sup - - l o g P Y { R ,  q , s F }  < - c*(y, F ) .  

Before going on to the lower bound, we pause to show that c*(y,-) agrees with k y 
Theorem 2.8 then implies that c*(y, �9 ) has compact level sets, which we need for the 
proof of the lower bound. 

5.10. Lemma. Let y be P-quasiregular and f~  c~ o. I f  f is ~k-measurable, then 

1 
c(y , f )  < f logR{exp(I Vklf)} l~(y, dR). 

= i N k [  ,/~1(~*~) 
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Proof Pick n so that V. is the union of a collection of shifted copies of Vk. By 
H61der's inequality and the independence properties of PY, 

(f )' f exp(S , f )dPY N I ]  exp(I Vklfo Ti)dP y Iv(k)l 
O i~V. 

Now take logarithms, divide by I ~i, and let n ~ oc. [] 

5.11. Proposition. c* ( y, Q) = k y ((2) f o r  all P-quasiregular y and Q ~ ~/~1 (f2). 

Proof If (2 is not shift-invariant, then c*(y, (2) = oe because c ( y , f - f o  Ti) = O. 
Suppose (2 is shift-invariant. Let f be an arbitrary ~-k-measurable bounded 

continuous function. Then 

c*(y, (2) > Vk1-1 { ( 2 f - - f  logR(ef))7(y,  dR)} 

by Lemma 5.10, so e*(y, (2) > kY((2). The converse inequality follows from 

Kin+k((2) >= (2(Sin f) - f logR{exp(Smf)}  l~(y, dR) 

= I Vml {(2f-- f Cm(R,f)u dR)} .  [] 

5.12. Proposition (Lower bound) For any P-quasiregular y, (q, r)e~,  and open 
subset G of Jgl(f2), 

1 
l i m i n f ~ l o g P Y { R . , q , . ~  G} > - kY(G). 

n-*o3 I I/n,q,r[ 

This proposition is proved after a sequence of lemmas. Fix a P-quasiregular y, and 
for (2 ~ J//~(f~), write k((2) = kY((2). For (q, r)e.~ and open G c ./r (~2), define 

1 
j(q, r, G) = - l i m i n f - - l o g P Y { R ,  q ~ G} 

and then for (2 ~ ~r (O), 

3((2) = sup{j(q,r ,  G): (q ,r)~& (2~G, G is open} . 

We will prove Proposition 5.12 for the fixed y by showing that 7((2) < k((2) for 
all (2. 

5.13. Lemma. J : J/1 (fl) ~ [0, oe] is lower semicontinuous and convex. 

Proof Lower semicontinuity is immediate from the definition. Convexity is proved 
as on p. 9 of Lanford (1973), with the help of the partition property of the sets 
{V~,q,~}. Suppose (2 = ((2' + (2")/2 in J~l(~2). Let G be an open neighborhood of(2. 
Metrize J//1 (~?) with a metric of the type (3.2), and find e > 0 so that the ball 
B(Q, 3e) c G. Let (q, r)e & and put s = (q + 0/2. For large enough n, we can find 
measurable sets Dn, q,s and D ..... depending on disjoint sets of sites and satisfying 

{Rn, q,s~B((2', ~)} c D.,q,~ c {R.,q, seB((2', 2e)} 

and a similar statement with (q, s) and (2' replaced by (s, r) and {2". Hence 

PY{R.,~,.eB((2', e)} .PY{R ..... eB(Q", e)} =< nY{R.,q,~e G},  

from which follow j(q, r, G) <= (J(Q') + J((2"))/2 and convexity. [] 
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Next  a slightly modified version of Baxter  and Jain 's  (1991, Theo rem 4.8). Fo r  
its p roof  equip the space ~'(~2) of real-valued Borel measures  on (2 with the locally 
convex, Hausdor f f  linear topology  generated by go .  

5.14. Lemma.  Let g ~Cgo be such that Rg _~ k(R ) for all R ff ~{I (Q ). Suppose Q is an 
extreme point of the set A = {R ~ d//l(f2): Rg = k(R)}. Then, for every open neigh- 
borhood G of Q and every e > O, there exists an open neighborhood U of Q contained 
in G, a function f~Cgo, and a 6 > 0 such that Q f =  k(Q), IR f  - Qf[ < e for R e  U, 
and R f <  k(R) - 6for Rff Jd l ( f2 ) \  U. 

Proof Suppose first that  A = {Q}. Pick a ne ighborhood  U of Q such that  
[Rg - Q g[  < e for R eU. Since k has compac t  level sets, the number  
t / =  inf{k(R) - Rg : k(R) < [1 g [1 + 1, R e U c } is positive, possibly infinite. Take  
f = g and 6 = t /A 1 to conclude the lemma.  

For  the rest of the proof,  assume that  A contains more  than  one measure.  It  is 
a convex, compac t  subset of ddl(f2). Put  

K = {(R, t )sJ f /~( f2)  x JR: k(R) < t <= ligll + 1}. 

K is a convex, compac t  subset of the locally convex linear space JC{ (f2) x IR. Assume 
e < 1. Let 

g = { R ~ a ( K 2 ) :  I R g -  Qg[ < ~/2}, 

and 

v = c x (k(O) - 42 ,  k(Q) + d 2 )  

(Q, k(Q)) is an extreme point  of K, and V is an open ne ighborhood  of (Q, k((2)). By 
the converse to the K r e i n - M i l m a n  theorem, (Q, k(Q)) does not  lie in the closed 
convex hull of K \  V (Dunford  and Schwartz 1988, p. 440). Let L be the closed 
convex hull of (epi K ) \  V, where 

e p i K  = {(r ,  t ) e ~ l ( f l )  x IR: k(R) < o% t > k(R)} . 

It  is then easy to see that  (Q, k(Q)) does not  lie in L either. By Dunford  and 
Schwartz 's  (1988, separat ing hyperplane  theorem V.2.10), there are h~Cgo, s~IR, 
and r / >  0 such that  

(5.15) p h  + sk(Q) = 0 

and 

(5.16) R h + s t < - t /  for a l l ( R , t ) c L .  

We claim that  s < 0. Suppose first that  s = 0. Then Qh = 0, and by approach ing  
Q inside A, we can find a measure  R such that  k(R) < oe and - r / <  Rh. This 
contradicts  (5.16), for (R, t )~L for all large enough t. Thus s 4= 0, and then (5.16) 
forces s < 0. P u t t i n g f '  = - h/s and 77' = - tl/S, (5.15-5.16) turn into Q(f ' )  = k(Q) 
and 

(5.17) R ( f ' )  < t -- t l' for all (R, t )~L . 
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Noting that {R}x[k(R),oo) is a subset of L for any Rq~U, (5.17) gives 
R ( f ' ) < k ( R ) - r f  for all R(!U. Let 0~(0, I) be such that 2011f'[I <e .  Then 
f =  (1 - O)g + Of' and 6 = 0r/' give the conclusion. [7 

The key step in the proof of the lower bound is Lemma 5.20. First two simple 
observations: 

5.18. Lemma. Suppose r, T 0% and {a,} and {b,} are nonnegative numbers such that 
c = lim,-~o r~-1 log(a, + b,) exists. Then 

c < ( l i m i n f l l ~  v ( l i m s u p l l ~  ~-~o 

5.19. Lemma. Suppose y is P-quasiregular, (q, r)6~, and the compact subsets 
{Le}~= 1 of Mfx (f2) satisfy (5.5). Let f~Cfo . Then for d > 2[Ifll, 

1 
c(y , f )  = lira IVan ,  ~llog f .~oo I .,q,~l R ..... ~l;/ 

Proof Obvious from 

exp (S, ,q,J)  dP y . 

f exp(S.,q,J) dPy <= f exp(S.,q.J) dPy 
Rn,q,r~ L~ 

<= f exp(S,,q, rf)dPY +exp([V,,q,rl(]rfl[-d)) �9 [] 
R.,~..e L{ 

5.20. Lemma. Suppose geCgo is such that Rg <__ k(R) for all Re  Jill(f2). Then 
J(Q) < k(Q) for any extreme point Q of the set {R ~ Jfl(f2) : Rg = k(R)}. 

Proof Let G be an open neighborhood of Q, (q, r ) ~ ,  and e > 0. Let U,f, and 
6 come from Lemma 5.14. Let Lt c Jdl(f2) be compact and satisfy (5.5). Pick 
d > 21[fJ]. For each R~Le\U,  find an open neighborhood HR of R such that 
R ' f  < R f +  6/4 for all R'eHR, and 

(5.21) inf{k(R'): R '~HR} > R f +  6/2. 

(5.21) can be satisfied because k(R) > R f +  6 and k is lower semicontinuous. Pick 
a cover HR . . . . .  , HRm for Lt \ U, Then 

1 
lim s u p - -  log f exp(S, q rf)dP y 

.-~oo I V . , q , r l  a . . . . .  ~ L . \ v  ' ' 

=< 9 (lim_ sup ~ logP  y { R . , q , r e H R j } + R j f +  6 / 4 )  
j = l  

=< - 6 / 4 .  

The last inequality comes by applying Proposition 5.9 on each HRj and then (5.21) 
for R = Rj. In the next calculation, use first Proposition 5.11, then Lemmas 5.19, 
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5.18, and 5.14, and the above inequality. 

0 = Q f -  k(Q) <= c(y , f )  

1 
= lim ~ l o g  f exp(S, q , f )dP  y 

n--*m [ gn, q,rl R. .q . ,eL:  ' ' 

< ( l imin f  l ~ l o g  f exp(S, q J ) d P Y )  

v ( l i m s u p ~ l  log f exp(S,,q,~f) dPy ) 
k. n ~ m  t Vn, q,r[ R .....  ~ L : \ U  

l i m i n f - - l o g P Y { R ,  q r ~ U } + Q f + e  v ( - 6 / 4 ) .  

From this it follows that 

- k(Q)< liminf - - - ~ 1  log PY{R,.q,r ~ U) + ~, 
= - ~ I V . , q , r [  

and consequently k(Q)>j(q, r, G ) -  e. Since G, (q, r), and e were arbitrary, the 
lemma is proved. [] 

Proof of Proposition 5.12 It is a consequence of the separating hyperplane 
theorems that the lower semicontinuous, convex function k can be written as 

k(Q ) = sup { Qf  : f ~C~o, R f<= k(R ) for all REJ/{I(O)}, 

and a similar formula holds for J. If we can show that 

(5.22) R f <  k(R) for all R ~ { I ( O )  

whenever fecgo is such that R f<= J(R) for all R s  J~l(f~), we have k > J and the 
proposition. Find a number c such that R ( f  + c) <= k(R) for all R e ~ 1  (f2) and the 
set A = {R e Jr (~) : R ( f  + c) = k(R)} is nonempty. A is convex and compact, and 
so has an extreme point Q. Then c = k ( Q ) - Q  f >  k(Q)-J(Q) ,  so c > 0 by 
Lemma 5.20, which implies (5.22). This completes the proof of Theorem 2.1. [] 

The argument for the large deviation principle of Theorem 2.2 proceeds along 
the same lines except that it is simpler. We shall leave the details to the reader and 
concentrate on proving the converse, namely that existence of a large deviation 
principle implies p-quasiregularity. 

5.23. Lemma. Let X be any Polish space and �9 and A Borel probabilities on rill 1 (~). I f  

f logv(eO)q)(dv) = f logv(eg)A(dv) 

for all 9 ~ Cb(Y:), then ~b = A. 

Proof. By a compactification argument and the Stone-Weierstrass Theorem, it 
suffices to show that 

f ei(~h>q)(dv) = f eiC~h)A(dv) 
~ (~) dr (:~') 
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for all h ~ Cb(X). Via power series expansions, this in turn will follow from having 

(5.24) f (vh)k~(dv)= f (vh)kA(dv) 
~(~r) ~(~) 

for all h e Cb(f)  and positive integers k. Multiply h by a constant so that II h II < 1. 
Let z ~ ( -  1, 1) and g = log(1 + zh). Then 

f logv(e~ f log(l+zv(h))q~(dv) 
~(97) ~(~) 

= -  ~ (-z)_~ k f (vh)k~(dv) 
k=l k 

The last expression is an analytic function of z on ( -  1, 1), so the coeff• of its 
power series are determined uniquely. The hypothesis of the lemma now gives 
(5.24). [] 

Fix y and let I be a rate function on ~ ( ~ )  governing the large deviations of 
{L,,} under PY. Assume 1 is lower semicontinuous by Proposition 1.1 from Orey 
(1986). Let f f  be the compact completion of ~ under a totally bounded metric. 
Think of pY and p,(y) as probabilities on ~ and ~{1(~), respectively. One sees 
easily that the large deviations of {L,} on ~/'1(~) are governed by the lower 
semicontinuous rate J defined by 

J(v) = ~ I(v) , if v ~ g / l ( ~ )  , 
(liminf~e~(z~>,_~ I(~/) if v ~ ( X ) \ J g ~ ( Y ' )  . 

By Varadhan's Theorem, the pressure exists for a l l f s  C(ff)  and is the convex dual 
of the rate: 

1 ~v. log f efdp rjy (5.25) c (y , f )  = ,~olim ~- [ i  , 

= sup {v f -  J(v): v ~ Jdl ( ~ ) } .  

Suppose q~ and A are limit points of {p,(y)} in -Mx(~l(ff)).  Pass to the limit in 
(5.25) along suitable subsequences to get 

(5.26) f log v(eS)r = c(y,f)  = f log v(eS)A(dv) 

for all f ~  C(ff). Thus ~b = A by Lemma 5.23, and we conclude that p,(y) ~ 4~ as 
n ---r OO. 

Let # e -~1 (if)  be the expectation of ~. Since y is p-quasiregular on J / t  (~?) and 
a lower semicontinuous rate is unique, J(v) > H(v[#) by Theorem 2.6. It follows 
that #(~e) > 0, for otherwise I(q) = J(t/) = ov for all t/E J{1 (~). Define rce Jr (~)  
by =(E) = # ( E n Y ' ) / # ( ~ )  and conclude that I(~/) > H ( q [ = ) -  log#(~)  for 
t/~/#1 (~e). This implies that I has compact level sets in J/{1 (~e), and consequently 
J - ~ o n  ~ l ( 5 7 ) \ : g l ( ~ r ) .  

We need to show that ~b is a probability on J{1 (~e). Since ~ is Polish, there are 
open G) c ~ such that G i ~ 5(. Let Bj = {veJC/l(ff): v(G~) > l/j}. It suffices to 
show that ~(Bj) = 0 for all j. 

Let M > 0 be arbitrary. Let K be a compact subset o f ~  such that r/(K c) __< 1/M 
whenever I(t/) < 2M. Pick feC( f f )  so that 0 < f <  m,f=_ 0 on K, and f -  M on 
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Gj.  Since c ( y , f )  > - M, (5.25) turns  into 

c ( y , f )  = s u p { r / f - - I ( r / ) :  r/e Jg~(~e), 1(t?) < 2M} , 

so by the choice of K a n d f  c ( y , f )  < 1. O n  the o ther  hand,  (M - l o g j ) r  < 
c ( y , f )  < 1 by (5.26), so let t ing M 1' ~ forces ~(Bj) = 0. This completes  the p roo f  of 
Theorem 2.2. 
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