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Summary. We study the asymptotic expansion in small time of the solution of 
a stochastic differential equation. We obtain a universal and explicit formula in 
terms of Lie brackets and iterated stochastic Stratonovich integrals. This formula 
contains the results of Doss [6], Sussmann [15], Fliess and Normand-Cyrot  [7], 
Krener and Lobry [10], Yamato [17] and Kunita [11] in the nilpotent case, and 
extends to general diffusions the representation given by Ben Arous [-3] for 
invariant diffusions on a Lie group. The main tool is an asymptotic expansion for 
deterministic ordinary differential equations, given by Strichartz [14]. 
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1. Introduction 

This article is concerned with the calculation of the asymptotic expansion of the 
flow of a stochastic differential equation with C ~ coefficients, which has been 
introduced by G6rard Ben Arous in [3]. If ~, is the solution of the Stratonovich 
stochastic differential equation: 

E xi( 0d ; 
i=o (1) 

~0 = X0 , 

p 
then our main result (stated in Theorem 2.1) asserts that ~t = exp(~f)(Xo) + t ~ Rv(t), 
where Rv(t ) is bounded in probability when t --+ 0. ~f is a vector field which can be 
expressed as: 

p- -1  

Z y c/X'. 
m = l  IIJN =m 

The coefficients c / are completely explicit linear combinations of Stratonovich 
iterated integrals Bt K, where the multi-indices J and K can be deduced one from the 
other by permutation. In particular, their order is the same. 
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This result extends to the non nilpotent case the explicit representations given 
by Yamato [17] and Kunita [11]. It is also more accurate than the following 
statement of Ben Arous [3], which says: 

~t=exp(Xt)(Xo),withXt = L ( ~ P}B~)X~h+t~-~RN(t), 
i = 1  IIJII < N 

where the coefficients Pj  are given by a tedious and iterative method. 
When the Lie algebra generated by the vector fields X~ is of finite dimension, 

Ben Arous has also obtained the following explicit representation of the stochastic 
flow: 

m = l  IIJIl=m 

(the main result is actually the convergence of the stochastic series before a stop- 
ping time). The fis are expressed in terms of the Campbell-Hausdorff series. In Sect. 
3.2, these coefficients are algebraically computed, and this allows to connect the 
results of [3] and those of Theorem 2.1. The expression of fis is now entirely 
independent of the Campbell-Hausdorff series. This partly explains "the miracu- 
lous interaction between purely algebraic formulas on the Campbell-Hausdorff 
series, and probabilistic identities between Ito and Stratonovich iterated integrals", 
that has been underlined by Ben Arous in [3]. This fact has independently been 
pointed out by Hu in [8]. Finally, we mention a work by Takanobu [16], in which 
a similar asymptotic expansion for ~t has been studied in somewhat different way. 

The result of Theorem 2.1 is interesting on both practical and theoretical points 
of view. The explicit expression of the fij should simplify the simulations of 
diffusion processes done by this method. From a more theoretical point of view, 
one could avoid the step which uses the Rotschild and Stein lifting in the works of 
Ben Arous on the asymptotic expansion of the hypoelliptic heat kernel (see [4]). 

This result proves also the conviction of L6andre (see [13]), who uses the 
asymptotic expansion obtained in Theorem 2.1, referring to [3] without further 
comments. 

The proof of Theorem 2.1 is based on works of Strichartz (in [14]), which give 
an asymptotic expansion of the solution of an ordinary differential equation for 
small time. The extension to the case of stochastic differential equations is per- 
formed by taking limit in probability. 

In Sect. 2, the main result is stated. Its proof when the vector fields X~ generate 
a nilpotent Lie algebra, is done in Sect. 3. In this case, our result is not asymptotic 
but exact, the stochastic series being actually finite. However, all the algebraic 
results needed in the general case (which is proved in Sect. 4), are already present. 

2. Result and notations 

In this part, we introduce some notations. 
Notations for the multi-indices. Let J = (j l ,-  - �9 ,jm) be a multi-index, that is an 
element of {0 . . . . .  r} m. We denote: 

�9 ] J] the size of J, m. 
�9 II J I[ the order of J. 

I[Jl[ = l J [ +  Number of 0 i n J .  
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�9 For  Xo . . . .  , X~ vector fields on IRe, X J is the Lie bracket  of the vector fields 
Xi, 

XS = [Xj~EX;~ . . . [Xj~_~Xj~] . . .  ] .  

�9 Let ( B ~ , . . . ,  B() be a r-dimensional Brownian motion,  and let us write for 
simplicity, B ~ = t. B / i s  the Stratonovich iterated integral: 

f dBi~ . . ,  dB~7~, 
Trn(t) 

where Tin(t) = { ( t l , . . . ,  tm)/O < tl < . . .  < tm< t}. 

Notations for the permutations. L e t ,  be a permutat ion of  order m. We denote: 
�9 e(z) the cardinality of the set {j ~ {1 . . . .  , m - 1}/~(j) > z( j  + 1)}. Follow- 

ing Strichartz, e(z) will be called the number  of errors in ordering z ( 1 ) , . . . ,  z(m). 
�9 If  J is a multi-index of  size m, 

Jo'~ = (j,(1), - �9 �9 ,J*(m)) �9 

Exponential notation of a flow. When X is a vector field on 1R d, exp(sX)(xo) 
denotes the solution at time s of  the differential equation: 

-s = X ( u ( s ) )  

u ( o )  = x o  . 

With these notations,  our  main result is: 

Theorem 2.1. Let Xo . . . .  , Xr be C ~ bounded vector fields on IRd, which are 
supposed to be Lipschitz. Let ~ be the solution on IR e of the Stratonovich stochastic 
differential equation: 

I d~t= i=o ~ Xi(~,)dBt 

4o = xo 

(~, is well defined for all t). 
For all integer p > 2, we define the stochastic vector field 

p - 1  

E E c/X,, 
m = l  [IYll = m  

where c[ = ~. -( - - - -  1)e(*) R J~ 

and let Rp(t) be the process defined on iRe by 
p 

~t = exp((f)(xo) + t~Rp(t). (2) 

Then, Rp is bounded in probability when t tends to O. More precisely, 

~ o : , c > O s u c h t h a t V R > c ,  limP[t~o o<_s<_tsup s p/2,,R,(s) I, >=Rtp/21<=exp(-R---~). 
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The reader is referred to Sect. 4 for the proof  of this theorem. This result gives 
an explicit asymptotic expansion of the stochastic flow for small time, expan- 
sion which has been introduced by Ben Arous in [3 I. The coefficients of the 
brackets of order k are shown to be linear combinations of iterated integrals of the 
same order. 

When the Lie algebra Lie(Xo . . . .  , Xr) is of finite dimension, Ben Arous 
has obtained a similar result which says: ~T a stopping time a.e > 0 so that 
f o r t < T ,  

~ = exp f l j B  Xo) , 
\ m = l  ![ JLI = m  

where fls is a linear combination of brackets of size ] J]. These two representations 
are identified in Sect. 3.2. 

The result can be easily extended to the case where the vector fields are C ~ with 
values in a C ~ manifold Jg, by using a system of local coordinates. 

3 The nilpotent case 

3.1 Proof of  the result in the nilpotent case 

Theorem 2.1 is proved in the case of a nilpotent Lie algebra, in order to detail the 
algebraic calculations which remain the same in the general case. Using the 
notations of Sect. 2, the result is then the following. 

Proposition 3.1 Let Xi be complete C ~ vector fields in IR d, such that the Lie algebra 
generated by the Xi is p-nilpotent. We consider the solution of the Swatonovich 
stochastic differential equation: 

I  ook 
( = xo 

Then, for all t, 

~t=exp(~=ll,s~h=mcJtXS)(Xo) a.e. (3) 

Proof Let ~}') be the solution (defined on [-0; t]) of the differential equation: 

where 

�9 A " ( s ) =  
5~ B i 

i = o  tk + l - -  t k 

. 6'~B i ~ _ B i = Btk§ 1 tk 

k 
�9 t k = ~ t .  

{ d_ :(.) = 
ds ~ 

~(o ") = Xo 

Xi, i f  s ~ I k = [tk; tk+ 1[ 

It is well-known that it (") Proba > ~t" 



Asymptotic expansion of stochastic flows 229 

According to the results of  [141, we can write 4[ ") = exp(Z} ")) (Xo), where: 

p-1 ( _  1)~(~) I (") 
Z}")= ~, 2 2 [,m _ l ,  ~ m,~ 

and I(,,,"?,, = f [ A " ( s , ( , ) [ A " ( s ~ z ~ ) . . .  F A " ( s , ~ m - , )  A" ( s , ( , , ) ) ]  . . .  ] dsl . . .  dsm �9 
T m  (t) 

R e m a r k .  Actually, Strichartz does not  give exactly this expression of (t ("). One has 
to transform 

[ A " ( s ~ ( 1 ) ) [ A " ( s ~ ( 2 ) ) . . .  [A"(S~(m- l))A"(so(m))] �9 . �9 ] 
into 

[ . . .  [An(sa(1))An(s , (2) )]  . . . A" ( s , (~ ) ) ]  

to obtain  the results of  Strichartz. However,  these two expressions are identical: 

= V ( -  1)~(~) 

Indeed, for J = (J l , .  �9 �9 ,jm), let us denote 

�9 i ( J )  = ( J m , . . .  , J l ) ;  

�9 x ~  = [ x j ,  [ x j 2  �9 � 9  [ x j ~ _ ~  x j m ]  . . .  1; 

�9 x / =  [ . . .  [ x j ,  x~2] . . .  x j~_l]xj, , ,] .  

It  is easily proved by induct ion that Xd  = ( - 1 ) r J [ - l x ~  r / ( J ) .  For  a e aT,, we define 
the permuta t ion  i(o-) by i (a)(k)  = a ( m  + 1 - k). The announced  identity can then 
be deduced from the statement: e( i (a))  = m - 1 - e(a). 
We return now to the p roof  of  3.1. First of all, let us introduce some notations.  

k 

When nl  . . . . .  nk are k integers such that ~ n~ = m, we denote: 
i = 1  

�9 Po = 0; 

J 
�9 f o r j ~ { 1  . . . . .  k } , p j =  ~ ni; 

i = 1  

Finally r . . . .  ~ represents the subgroup of the permutat ion group am isomorphic  
to the subgroup a,~ x . . .  x a ~ ,  and given by 

a . . . . .  ,~ = {z E a m / V i  ~ {0 . . . .  , k - 1}, z ( { p j  + 1 . . . . .  p j+ 1}) = {P~ + 1 . . . .  , Pj+I }}.  

If  a s am, a is its class in the equivalence relation defined by a . . . . . . .  . Then, we call 
(following [3])  

, ~ ( n ~ . . .  nk, e)  = {(tz  . . . . .  t,,) e l R + * " / t ~ ,  . . . . .  t ~ , )  < t ~ p , + ,  . . . .  

. . . - ~  t a ( p 2  ) < . . . < t ~ ( p k _ ~ + l  ) = . . . = t ~ ( m )  } �9 
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I t  is c lear  t h a t  this  de f in i t ion  does  n o t  d e p e n d  on  the  e l emen t  chosen  in #. F o r  

s impl ic i ty ,  we will  wr i te  2(n~ . . .  nk) for  2(n~ . . . nk, Id), t h a t  is: 

2 ( n l  . . .  n k ) =  { ( t l , . . . , t m )  e ] R + * ~ / t l  . . . . .  t m < t i n + ,  . . . . .  tp= < . . .  

�9 " " < ~ P k  I - t -1  ~ ' �9 * = ~ m }  " 

O n c e  these  n o t a t i o n s  are  i n t r o d u c e d ,  we have,  for  a g iven  m, a n d  a g iven  ~r ~ o%: 

i l  . . . .  , i r a  (1 /  • . . .  •  

i l  <= . . .  < i m  c~ T i n ( t )  

Here ,  A~' r ep resen t s  the  va lue  of  A" in the  i n t e rva l  Iz. 

2" r 
A~ = ~ i~_ 0 ~5~ Bi Xi  . 

Le t  (nx . . . . .  Ilk) be such  t ha t  I = (i~ . . . . .  ira) ~ ,~(nl . . . nk). 

k - 1  

f ds~.., dsm = I-I f 
( l q  x . . . x l i ~ )  i = 0 t k  i < Spi  . 1 < " " " < SPt+ ~ < ~ki* 1 

n T m  ( t )  

= ~ n l ! . . . n k !  

I t  fo l lows 

zV'o= E E 
n x  . . . . .  n k  I e , t , ( n ~ . . . n k )  

~ n i = m  

f FAn. F A  n. ,, n . . . . . . . . . . .  L .... ) . . .  [ A i  . . . . . .  Air . .  ] d s l  . d s m .  

dsp~+ l . . .  dsp  i+ t 

r A  ~. r A  ~. r A  ~. A ~. q ] - -  
L 1r L la(2) �9 �9 �9 L t~(m-l~  la(rn}J �9 " ~ 

n l ! . . ,  nk!  

1 
E E 

n t  . . . . .  n k  l ~ 2 ( n a . . . n k )  F I I  ! " " " I l k !  

~ n f  = # t  

, i lk) e { 1 , 2 }  k ni = m . 
i 

(8~ B j~ 6~ B J ~  re(l)  �9 . . ta(m) ? . 

where  

c~ ")'~= E ( -  1)e~'~ 

~ .d e(o) 
F o l l o w i n g  [3] ,  let  us cal l  

d~ = {(n , . . .  

p - 1  

z[")= Z Z 
m = l  ] , l = m  

t )  m 1 

= E E ~ n~! n~! 
n~ . . . . .  n k  l e X ( n i  . , . n k )  ' ' "  

~ ' n i = m  

57(  f l J - , X j , ,  . . .  E ( ~ r  ~  E i . . . . . .  1 X j  . . . .  

L j l  = 0 L j m -  1 = 0  j m = O  

1 
, ~ a" B ~ . . . a :  B ~ ) X  J .  

n l  . . . . .  I e . ~ ( , l  . . . n ~ )  . . . .  I l k !  I Y l = m  

This  y ie lds  the  e x p r e s s i o n  for  Z}"): 
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For v E ~r and for some martingales X i, we define the following Ito iterated 
integral 

i d x 1 . . ,  x re,v) = f d y e . . ,  dytk~ with ~Y! 
if n i  1, 

r~(t) (Y's ( X  p~-z, XP')s  if ni = 2 .  

We apply then the lemma (after Lemma 5 in [3]): 

Lemma 3.1 I f V i ,  ni < 2, then ~ 6f~B -~I . . .  fi~mBJ'~converges(inL2sense) 
l e 2 ( n t  . . .  n ~ , 5 )  

to the I to iterated integral I t(B ~ .... . �9 �9 B j~176 nl . .  �9 nk). Otherwise, this quantity tends 
to O. 

And we obtain c[ ")' s ~  c/, with 

ct s = ~ (--/ \ 1 )  e(~) ~ 1 It(BJ.- '(~, . . .  BJ.-',.,,, v) 
) ~ d ~  n l !  . . . n k !  

\ e(o) ) 

",m-k ~ Id  Bj~-~(1) " " " BJ"-'~")' v). 

1 
Now, ~ 2~-_ k ~ It (B3~-',, �9 �9 �9 B i~-'(~), v) is nothing else but the expression of 

the Stratonovich iterated integral in terms of the Ito iterated integral (we refer the 
reader to Proposition 1 in [3]). This yields the expression for c~: 

c~ = ~ ( - -  1)e(~) U "~ 

\ e(o) / 

The convergence of c} ~' J to c/ implies  the L 2 convergence of Z} ~ to Zt, where: 

p - 1  

Z Z c/X . 
m = l  ]Yl=rn 

This ends the proof of Proposition 3.1. 

3.2 Identification with already known asymptotic expansion 

In the nilpotent case, Ben Arous has derived in I-3] the representation 

~, = exp ~ flsUt s (Xo) (4) 
\ m  = 1 [YI=m 

where fij corresponds to the m-homogeneous term of degree 1 in each variable in 
the Campbell-Hausdorff series H(X2 . . . . . .  Xj,~), defined by: 

H(X1  . . . .  , X m ) =  ~ ( -  1)k-1 l X p  
k>=l k ~ PP!  " P ~ B k  
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Here, Bk, f i  and X e are given by the following expressions: 

Bk=  , p i ~ N ,  V j s { l . . . k }  p i > O  , 
i =  

f = Y, pl, P! = I1 f i~ ,  
i , j  i , j  

X P = [ X 1 .  . . [ X l . . . I X  m,  . . I X  . . . .  I X 1 ,  - - [ X l -  �9 - [ X m "  �9 ' [ X m , X m ] '  �9 "] �9 
t Y k_..------ ) ~ I t d 

Y M Y Y 

p~ times Pl times p~ times p~, times 

That  is, flj is the coefficient of s ~ . . .  Sm in H ( s l X ; , , . . . ,  smXim). 
The identification of the expressions (3) and (4) of #t, using the independence of 

the B J, leads to the necessary relation: 

Proposition 3.2 

. . . .  m~[g~_l) [xjo,,[x,o<,...[xj ...... Xjo<.,]...]. 

\ ) e ( a )  
However, we are going to derive a purely algebraic proof of this expression for fix. 
This allows us to explain a large part of the "miracle" pointed out by Ben Arous in 
the introduction of [3], by showing that the coefficient flj has not much to do with 
the Campbell-Hausdorff series�9 

The extreme simplicity of that expression must also be noticed. This could be 
very useful in simulations of diffusion processes. 

Proof. The main algebraic results used in the proof can be found in [14]. 
Without loss of generality, one can assume that V i,j~ = i. Thus, according to the 

expression of H ( X ~  . . . . .  Xs~), 

1 i ( -  1)k-1 = - -  ~ X t" 
/?J rn k = 1 k e ~  ' 

( 
with/3k = t(P{)~:i~ii:~,~ ~ Bk, Vi 

Let us define/3k(p 1 . . .  pk) = {p  

If P~/~k(p 1 . . .  pk), then X e has 

[x~, [ x+ . . .  [x~,~_~ x+~ ] . . .  ] 

{ 1 . . . m )  ~ , p i =  1 . 
j = l  

=(p l )~s~ ,v je {1 . . . k } /= , : , i p i } .  

the form: 

with ql < . . -  <qp* 

Let us call 
~rm(Pl " '  P ~ ) :  I O" @ O'm~ 

q p t + . . ,  +pk- l-r 1 

G(1) < . . .  

(V t ~r p i + l  < 

�9 . .  <qvl+.. .+pk . 

< o-(pl), ] 
t 
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We derive: 

k = l  p l . . . p k a ~ a z ,  n ( p l . . . p k }  Iq~ k 
~ p J = m  

[ X a ( 1 } [ X a ( 2 )  �9 �9 �9 [ X a ( m - 1 ) X a ( m ) ]  �9 �9 . ] 

1 ( -  1) k - :  

Y~m k k = l  a e a m  
d(m, k, a) [ X a ( 1 ) [ X a ( 2 )  . . , [ X a ( m - l ) X a ( m )  ] . , .  "] 

d(m, k, ~) is the n u m b e r  of ways of choosing k strictly positive integers 
pl . . .  pk 

o(1) < . . .  

satisfying ~ pJ = m, and 

cr p~+  1 < 

Strichartz has stated in [14] that  

< a(p*), 

. . .  <or pi 

( m - e ( o ' ) - l )  
d(m, k, a) = \ k - e(a) - l ] if k > e(a) + l 

0 otherwise 

To  prove  this assertion, he considers the sequence 1 2 . . .  m, cut in k parts,  k - 1 
barriers  have thus to be placed on m - 1 locations, and the integer pk is then the 
n u m b e r  of  integers in the k th part.  

In order  to verify the condit ion a p i + l  < . . .  < a  pl , all the 

terms in each par t  must  be well ordered. The  locations of  the errors must  then be 
some barriers.  If  e(o-) > k - 1, the errors are more  numerous  than the barriers,  and 
thus, the lat ter  condi t ion cannot  be satisfied. There is necessarily one error  between 
two barriers. In that  case, d(m, k, a) = 0. If  e(a) __< k - 1, e(a) of the barriers  have to 
be located on the errors sites, and the remaining k - 1 - e(a) barriers can be placed 
on the rn - 1 - e(o-) available sites. The  result follows. 

flJ ~ ~ ( - 1 ) ~ - l ( r n - e ( a ) - ~ )  = [X~(~) IX,(2). . .  [X~(~_ ~)X~(~)]... ] .  
~" e ~'m k = e ( a ) +  1 mk \ k - e ( a ) -  

And the p roof  of  the Propos i t ion  3.2 is then ended by noticing that: 

( -  1) k-~ ( m - e ( a ) - ~ )  ( -  1) ~(*) 

k=e(a)+l ~ - \ k - e ( a ) -  = 2 I ra -  1"~' 
m ~ e(a)]  

which is also p roved  in [14]. 
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4 The general ease 

In that section, the proof  of Theorem 2.1 is given. Since we are interested in the 
small time behavior  of ~t, we scale Eq. (1) by a small parameter  e > 0, and introduce 
the diffusion process ~ on 1R e, defined by 

d~[ = ~ eXi(~)dB~ + ~2Xo(~)dB~ 
i = 1  

= Xo  

~.~ has the same law as ~ o ,  so that  we have to show: 

Theorem 4.1 Let us fix T < O. Given t < T and ~ > O, we define Rv(r t) by 

~ = exp(~'P)(Xo) + ~VRv(,, t) a.e. (5) 

p - - 1  

where ~;'~= ~, e" ~ c / X  J a.e. 
m = l  li J l l  = m  

Then, 3e, c > O s u c h t h a t V R > c ,  l imP sup [IRp(e,s)[I > R <=exp - . 
~ 0  [ _ O < - s < - T  

Now, one can apply the theorem with T = 1. Since ~.~ and ~.~' v have the same laws 
as ~,~o ~ ~  respectively, Rv(e, e) has the same law as . ' /2Rp(e2o). Therefore,  

P I sup ]]Rv(s) ll s m ~  R~vI=P [ sup 
L O _ < s _ ~ z  L O < _ u _ <  J. 

= < P [  sup 
I _ O _ < u <  1 

II R.(e, u)II > R 1 

and Theorem 2.1 is deduced from Theorem 4.1. 

Proof of Theorem 4.1 As in the nilpotent  case, we consider the solution ~}"~'" on 
[0; t] of the differential equation: 

d ;:(.),. -__ A.,,,(s)(~(.~,~ ) 
d s  ",s 

= x o  

2n r 

where A ~'"(s) = ~ i= e Ilill 6 k B Xi, when s s Ik = [tk; tk § 1 [. 

1 if i r  
Remark. By analogy with the nota t ion II J [], N ill = 2 if i --- 0 " 

F r o m  the results of Strichartz (see Theorem 3.2 of [14-1), it can be shown that  for 
almost all co, and for all n, there exist ~o(co, n) and Co(co, n) such that  

~}")' ~(co) = exp(Z} ~)'"''(co) + evS~(e, t)(co))(Xo), (6) 
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where for all e < Co(co, n) and all x ~ 1R e, II S~(~, t) (co) (x) ll ~ Co(cO, n), and 

~-  ~ ( - 1 ) ~  z: Z Z 
m = l  a e a ~  m 2 m -  l 

e(~ 

. . .  f [ A " ' n ( s , ( 1 ) ) [ . . .  [Ae 'n(s , (m-1))A~'n(s~( ,n))]  . . .  ]dsl . . .  dsm a.e. 
T, .  (t) 

p - 1  

= Y, Z   JJ"c: 'JxJ .  
m = l  I J l = m  

We reorder  Zt (")' ~' p by increasing powers of e, so that  

= + t)  

p - - 1  

where (t (")'~'v = Z em Z c} ")'sXs, and where Q~(e, t ) i s  a polynomial  (with 
m = l  11 J l ] = m  

r andom coefficients) of e, and of the (X s)rJI <., I J II => p. Since the X~ are supposed to 
be bounded,  there exists for almost all co and for all n, ~1(o~, n) and Cl(co, n) such 
that for all e < el (co, n) and all x ~IR d, Pl S~(e, t) (co) (x) + Qp(e, t) (co) (x) II <= C1 (co, n). 
Gronwall ' s  Lem ma  gives then for almost  all co and all n, the existence of e2(co, n) 
and Cz(cO, n) such that 

~")' ~(co) = exp ((t (~)' ~' P(co))(Xo) + eVR~,(e, t)(co) (7) 

where for all e < e2(co, n), 11R~(e, 011 < C2(co, n). 
As in Sect. 3, the convergence of c~ ")' J to ct s implies the convergence in 

probabil i ty of exp((ff )' ~' P)(Xo) to exp ((~' P)(xo). Since ~}")' ~ converges in probabil i ty 
to  ~ ,  Rp(e, t) can be defined as the limit in probabil i ty of R~(t, e). Then, we clearly 
get the relation (5) by taking the limit in the expression (7). It just remains to prove 
that: 

3 ~ , c > 0 s u c h t h a t V R > c ,  l i m P  sup IlRp(e,s) ll > R  < e x p  - . 
~ 0  O<_s<~T 

Now ~ is a diffusion process with coefficients which are C ~ in e. It is then C ~ 
with respect to e, and its stochastic Tay lor  expansion (see [13) is given by: 

p - 1  

~: = Xo + ~ eigi(t) + ePMp(e, t) ,  
i = 1  

i g=O 
l d  

with ai(t) = ~ ~ ~t , and 

~ e l , C l > O s u c h t h a t V R > c l ,  limP~o O<_~<_TSUp IlMp(e,s)ll ~ R  -<_exp c lT]  

Moreover  exp((7'P)(xo) is the solution at time 1 of an ordinary differential 
equation,  whose coefficients are CO~ functions of e. Consequently,  the function 
e ~ exp((t"' P)(xo) is C ~o with respect to e, and its Taylor  expansion a round  0 can be 
written: 

p - 1  

exp(~/'P)(x0) = Xo + ~ eihi(t) + :Pv(e, t) . 
i = 1  



236 F. Castell 

Let us assume that we have already proved that: 

�9 Vie {1 . . . .  , p - 1}, hdt) = gi(t) a.e., 

:I  I �9 3ce2, c2 > 0  suchthat  VR>c2,1~ oPI_o-<s_<TSUp llPp(e,s)ll =>R <exp  c2T] 

We deduce then that almost everywhere, Rp(~, t) = Mp(a, t) - Pv(e, t), and therefore 
that, 

3e, c > 0 s u c h t h a t V R > c ,  l imP sup IIRp(e,s) l[ > R  < e x p  - , 
~ 0  [_O<_s<_T 

that is the desired result. 

So, it only remains to show the two preceding assertions. 

Step 1 We first prove that Vi ~ { 1 , . . . ,  p - 1}, h~(t) = gi(t) a.e. 

1 ~ ~ = 0  ' We define g[") (s) = ~. &-5 ~}")'~ 

For g > . . . ,  g, in IR~, and x in IR, C~(gl,. �9 �9 gl) denotes the coefficient ofx '  in 
the expansion of Xdxo + xg~ + . . .  + xlgl) (composition of formal power series). 
From the differential equation satisfied by { (")' ~, we have: 

n 

d g? Z 7 Ys (s) = 6~BiXi(xo) 
' = 1  

2" 
d g(2,) ~ t 6;BiC? ds (s) (gl ")) + Xo(xo) 

i = 1  

2" 
dsd g[,) (s) ~ tg)r, BiCl-~(g] n) . . . . .  g [~  + C~o-2(g]"), . ". ,g~"-)2) 

i = 1  

for s ~ Ik . 

This can be written (using the appropriate functions F]-~) 

d gl (S) g~m 
dss ! = ~ F[-~ " 2" F~_ 2 . lgIn)(s) \g[~)l -7 6~ Bi + 

for s e Ik. 

It is known from [-1] that the coefficients of the stochastic Taylor expansion of the 
diffusion 47, satisfy: 

= ~ F [ - I !  g~:(s) dB~+F~  -2 �9 ds .  

\ g,(s) i=1 \g,-l(S) \g,-2(s) 
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Proba 
Therefore, Vt, Vl, (g~")(t) . . . .  , g}")(t)) ' (g i (0  . . . .  , gz(t)). 

Let  hi(t) = ~ ~ exp (~['P)(Xo) 

and h!n)(t ) _- _li! 0e ~0~ exp (~[,), ~, P)(Xo) ~=o. 

Proba 
We want to show that  h[")(0 ~ hi(t), Vi. For  that  purpose, we introduce the 

map ~b defined for the appropr ia te  l, by: 

qS: IR l -~ IR d 

(vj),j , ,<, , e x p (  ~ v j X J ) ( X o )  
J, llJii<p 

~b is C ~ (this is a well-known result about  the dependence of the solution of 
a differential equat ion on its parameters), and it is clear that 

exp ((7' P) (Xo)  = (~ ((~ 1[ J 11 e J)'[ a r [l < P) 

exp(([n)'~'P)(xo) = ~b((e Ilsil c[n)' J)li Jii <p). 

The composi t ion of the Taylor  expansions of ~b on one part, and of the mapping 
e ~ (e II J II c~,), s)t t s tL <p on the other  part, allows us to express h[")(t) as a universal 
polynomial  of the derivatives of q~ at zero up to the order  i, and of the coefficients 
(c~")'s)!iJji_< i- The expression of hi(t) can be obtained in a very similar way, by 
substituting the e[ ")' s by the c s. The convergence of c} ")' J to c / ,  already seen in Sect. 
3, leads to the convergence of h}")(t) to hi(t). 

Furthermore ,  the identification of the Taylor  expansions of exp (~}")' ~' P) (Xo) and 
of ~t (")' ~ in expression (7) leads to the equality g}")(t) = h[ ") (t) a.e. By taking the limit, 
we obtain: 

Vi < p - 1, hi(t) = gi(t) a.e. 

Step 2 It remains now to prove that  lim P sup I[ Pp(e, s)i[ > R < exp - . 
e--*O O < s < T  

Let K be a compact  set of IW containing 0, and let T~: be the infimum of the set 
{t, (e II J il etS)II s Jl <p ~ K}. We are going to show that: 

Lemma 4.1 Let  T be strictly positive. Then, 3ce, c strictly positive such that 

(5) VR > c, t =< T, e < 1, P sup [] Pp(e, s)[I > R; t < < exp - . 
L O N s < = t  

Before proving the lemma, we recall the following definitions, first introduced by 
Azencott  in [-1]. Let  ff be a stopping time, and let Xt be a stochastic process with 
values in IW, which is cont inuous on [0; if[-. X is said to be in ~#/(e, c, ~) if and only if 

V R > c , P  sup IIX, II > R ; t <  __<exp -- . 
O < u < t  

The following properties are then obvious: 
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(P1) Let (at be a continuous process on [0; ( [  with values in the space of 
the polynomials of degree less than q, in p Euclidean variables, with coef- 
ficients bounded by some constant A on [0;([ .  The image o f  
~ ( e t ,  cl, () x . . . x ~P(%, %, () by the mapping 

( X ~ , . . . , X  r ) ~  Y, where Yt=(at(X? . . . . .  Xp ) ,  

is in some ~#/(7, c, ~), with e, c determined by A, p, q, cq, c ~ , . . . ,  ~ ,  %. 

(P2) If ~ is bounded by some fixed T, the image of "/~(~, c~, () by the mapping 
X ~ Y, where Yt = fo X ,  dB,, is in some ~ ( e ,  c, (). This is also the case for the 
mapping X ~-~ ]1, Yt = f t  X ,  du. 

�9 . a O  . . 

We consider again the map (a introduced in step 1, and the identity: 

exp ((~' P) (Xo) = (a ((e II J I! C {)11 J"l < p)" 

By composition of the Taylor expansion of q5 around O, and of the one of the 
mapping e ~ (~lIJi c{)!l sl <p, we obtain, for all t < Tk, and all compact neighbor- 
hood L of K in ]R t, 

p - 1  

exp(~'P)(Xo) = Xo + ~ eihi(t) + ePVp(e, t),  
i = 1  

a.(a 
where IlPp(e, t)N < C 8V p gll(~ilJII ~C~S)ljl<p)ll p 

X~ = t, and X~ = Bt (where B~ is a Brownian), are in some ~#/(e, c, T A T~:). Prop- 
erty (P2) allows then to say that the iterated integrals B s are also in some 

~/r(c~, c, T A T~). Now, c s = ~ ( - 1)~(~) B/~ is a linear combination of the 
~eam rnZ (m = l ~ 

\ e(a) ] 
B J. Property (P1) shows then that for ~ ~ 1, Pp(~, t) is in some ~//(~, c, T A T~) (with 
a et c independent of e). And the proof of Lemma 4.1 is complete. 

Let us fix T > 0. Let K be a compact set of IR ~ of the form 1-] [ - k j; k j] .  
J ,  li J !r < P  

L O _ _ < r ~ T  I_O<=t<=T 

According to Lemma 4.1, the first term is bounded up by exp - ~ - ~  for 

sufficiently large R, and for e < 1. With regards to the second term, we have, for 
sufficiently small e, 

P[T_~ T~] <= 

< 

< 

This ends the proof of step 2. 

E P I  sup 18 Jis >~ kj] 
J, HJll<p [_O<~t<-T 

2 P[ sup le/l=~l~ij 
,l, JJJJi<p l_O~t<T 

exp c j Z s C ~ j i t J i i  . 
J ,  : Y 11 < p \ 
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