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Summary.  We describe geometric properties of { W > e}, where W is a standard 
real-valued Brownian sheet, in the neighborhood of the first hit P of the level 
set { W > c~} along a straight line or smooth monotone  curve L. In such a neigh- 
borhood we use a decomposit ion of the form W(s, t)=e-b(s)+B(t)+x(s, t), 
where b(s) and B(t) are particular diffusion processes and x(s, t) is comparat ively 
small, to show that P is not on the boundary  of any connected component  
of { W >  c~}. Rather, components  of this set form clusters near P. An integral 
test for thorn-shaped neighborhoods of L with tip at P that do not meet { W > c~} 
is given. We then analyse the position and size of clusters and individual con- 
nected components  of { W > c~} near such a thorn, giving upper  bounds on their 
height, width and the space between clusters. This provides a local picture of 
the level set. Our calculations are based on estimates of the length of excursions 
of B and b and an accounting of the error term x. 

Mathematics Subject Classifications (1991): 60G60, 60G15 

1 Introduction 

Let {W(s, t), s > 0 ,  t > 0 }  be a standard Brownian sheet. For  any real number  
e, consider the level set 

L(c~) = {(s, t)elRZ'W(s, t)=c~}. 

This study originated with some geometrical questions about  L(e), not all of 
which are easy to make rigorous. For  instance, is L(e) a curve - or a countable 
union of curves - in the classical sense, or is it like the boundary  between 
light and dark in Escher's " D a y  and Night"  [6]? That  woodcut  pictures a 
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flock of white geese against the night sky which blends into a flock of black 
geese flying in the opposite direction in daylight. One side is white on a dark 
background, the other is black on a light background, and it is difficult to 
say where the one ends and the other begins. 

As posed, this question is probably not answerable - the two alternatives 
are not mutually exclusive, for example - but Escher's image gives us a way 
to think of the level sets. They are quite granular in character: L(~) separates 
the open sets L+(e)={W>c~} and L - ( c 0 = { W < e } ,  and it is easy to see that 
L + (e) has many small components, corresponding to local maxima of W which 
barely exceed e. Each of these is completely surrounded by the set L- (e). Similar- 
ly, there are small components of L-(e) surrounded by L + (e). Let us call all 
these small components bubbles. Then we can say that on one side of L(e) 
is the set L + (e) containing many bubbles of L-(e) and on the other side, the 
set L- (e) containing bubbles of L + (c~). Because of the irregularity of the sample 
paths of the Brownian sheet, we expect that each bubble will be surrounded 
by smaller bubbles, each in turn surrounded by even smaller bubbles, and so 
on. The bubbles will tend to cluster, then coalesce, at the boundary, so that 
one can visualize the one set of bubbles passing into the other like Escher's 
geese. 

These considerations are implicit in an article by Kendall [9]. He showed 
that L(e) is totally disconnected at a typical point, but is not totally disconnected 
at every point (indeed, a set dividing the plane into two non-empty disjoint 
open sets cannot be totally disconnected [8]). Kendall chose his " typical"  point 
as follows. Fix (u, v)slRZ+. Let C(u, v) be the component  of the set {(s, t)" W(s, t) 
=W(u, v)} which contains (u, v). He then showed that C(u, v) almost surely 
reduces to the singleton {(u, v)}. In this case the point is fixed and the level 
set is chosen randomly, but making free with Fubini's theorem, this implies 
that for a.e. e the set L(c~) is totally disconnected at almost every one of its 
points, where the "almost  every" is with respect to local time on L(e) [3, 1]. 
One can see from Kendall's proof that this typical point is a.s. not on the 
boundary of any component  of L-(e) or L + (e), but is rather a limit point of 
components - bubbles - of each. 

We want to study points on the boundary of one of the connected compo- 
nents of L-(e), so we will choose a different type of "typical"  point as follows. 
Say ~ =  1 for simplicity. Consider the connected component C O of L-(1)clR 2 
which contains the origin (and thus the coordinate axes). Fix to > 0, and proceed 
from the t-axis along the horizontal line t = t o until first encountering the bound- 
ary of C o at the point (S, to), where S = i n f { s > 0 :  W(s, to)> 1}. Then the point 
(S, to) is in L(1). It is different from the points studied by Kendall, for it is 
in the boundary of the component Co. 

We will study the geography of the sets L + (1) and L-(1) in a neighborhood 
of (S, to) - the "lay of the land" on a microscopic scale, so to speak. (Figure 1 
shows a computer simulation of these sets on a macroscopic scale. Earlier such 
pictures can be found in Adler's book [2, Chap. 8, Figs. 8.0.1 and 8.0.2].) We 
first show that L(1) is disconnected at the point (S, to) and that (S, to) is not 
on the boundary of any single component of L + (1), but is rather a limit point 
of a sequence of distinct components of that set. We then describe how these 
components cluster around the point (S, to): we show in Sect. 3.1 that there 
is a " thorn-shaped" neighborhood of the segment L=]0 ,  S[- x {to} which is con- 
tained in L-(1). After this, we concentrate on the distribution and size of the 
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Fig. 1. A level set: the set { W > 0} is in black 

bubbles near (S, to). As one approaches (S, to) along the segment L, one passes 
by infinitely many  components  of L + (1): if sn is the s-coordinate of the position 
where we encounter the n-th component,  then r , = S - s n  converges to 0 at a 
super-exponential rate (see Theorem 3.7). Bounds on the height and width of 
theses components  are given in Theorems 3.9 and 3.11. 

They key to these results is a local decomposit ion of the Brownian sheet 
in the neighborhood of (S, to) of the form 

W(s,  t) = 1 - b (s) + B (t) + x (s, t), 

where b and B are particular independent diffusion processes and x is small 
relative to these two processes. There are four cases to distinguish, depending 
on the relative positions of (s, t) and (S, to) (see (3)-(6)). In the most  interesting 
case, where s < S  and t > t o ,  b is a Bessel process of dimension 3 and B is a 
standard Brownian motion. It  is natural  to expect that components  of L + (1) 
are closely approximated by those of the set {B>b}. We establish this in a 
companion paper  [5] in which we study the structure of these components.  

If  we interchange the coordinates s and t in the Brownian sheet, we get 
another  Brownian sheet, so that the same results hold when we approach the 
level set along a vertical line as when we approach it on a horizontal line. 
On the other hand, as Fig. 1 makes clear, the Brownian sheet is not invariant 
under rotations: the horizontal and vertical are distinguished directions, so one 
might expect that things would be different if we approached the level set along, 
say, a diagonal line. However, this is not the case. We show in Sects. 2.3 and 
3.2 that the results are unchanged for lines with positive slope, and the same 
methods apply to smooth monotone  curves. This does not follow directly from 
the results about  horizontal lines, and in fact, though the proofs are similar, 
we know of no single elegant p roof  which handles both cases simultaneously. 



156 R.C. Dalang and J.B. Walsh 

2 Points of  disconnection of level sets 

Let (~2,~,P) be a complete probability space and let {W(s, t), s>_O, t>0}  be 
a Brownian sheet defined on this space. Recall [12, Chap. 3] that this is a 
mean zero continuous Gaussian process with covariance function 

E { W(s, t) W(u, v)} = rain(s, u) min(t, v). 

Given a rectangle R = [-u 1, l/2] X [/)l,  U2], we set 

ARW= W(u2,/)2)- W(u2, Vl)- W(ul, v2)-~- W(Ul, u1)- 

Recall that the map R~-,A R W extends to a a-additive L2-valued measure A 
W(A) defined on the bounded Borel subsets of N2+, such that W(A) is Gaussian 
with mean 0 and E{W(A)W(C)} equals the Lebesgue measure of Ac~C. In 
particular, if A c~ C = ~b, then W(A) and W(B) are independent. 

For  c~ > 0, in addition to the level set L(~) defined in the introduction, we 
set 

L-(c~)= {(s, t)e]R2+ : W(s, t )< ~}, L+ (~)--{(s, t)e]Ri+'W(s, t )>e} .  

Our objective is to "build a map"  of these sets in the neighborhood of a particu- 
lar point. 

2.1 Approaching the boundary: horizontal lines 

Fix t o > 0 and define 

S = i n f { s > 0 :  W(s, to)> 1}. 

Theorem 2.1 Let ~>0. With probability one, there exists a closed curve lying 
entirely in {(s, t )eN2 : W(s, t )< 1} which contains (S, to) in its interior and which 
is contained in a disc of radius ~ centered at (S, to). 

Remark 2.2 The point (S, to) is of course on the boundary of the component 
of L-(1) which contains the origin. By Theorem 2.1, there is a sequence of curves 
in L-(1) decreasing to (S, to); these evidently disconnect the point from L(1), 
and also from L § (1). Now the latter set, being open, is the union of a countable 
number of connected components. The point (S, to) is not in the boundary of 
any single one of them, for otherwise this component would intersect one of 
the curves. Instead, (S, to) must be a limit point of different components of 
L + (1), and we can think of L + (1) locally at least - as a collection of bubbles 
clustering about the point (S, to). The nature of this clustering is described in 
Sect. 3 (see also [5]). 

We will need some definitions and lemmas before we prove Theorem 2.1, 
but we can explain the idea right now (this idea was the key to Kendall's 
analysis). Near (S, to), W(s, t) is very nearly a sum of two functions of one 
variable, say W(s, t ) ~ l  +f(s)+g(t). We then choose sl <S<s2 and tl <to<t2 
such that f(si) and g(ti) are negative, and then let the curve be the boundary 
of the rectangle [sl, s2] x [ t l ,  t2]. The sum f(s)+g(t) will be negative at the 
corners; with some care in choosing the points, we can make it negative on 
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the entire boundary. For ease of reference, this idea is formalized in the following 
elementary lemma, whose proof is left to the reader. For a real-valued function 
f on IR +, we define 

f* (h )=  sup f(u). 
O~u<=h 

Lemma 2.3 Let hi, he>O, and consider functions f g: [0, 1] ~ I R  and 7: [0, 1] z 
P, such that 

(~) m a x ( f  (hi), g(h2))+max(f*(hO, g*(h2)) + sup y(u, v)<O. 
ONu<hl,O<=v<=h 2 

Then the function (u, v)~--~f(u)+ g(v)+ y(u, v) is strictly negative on the two seg- 
ments [0, hi] x {h2} and {hi} x [0, h2]. 

By Brownian scaling, we can suppose that to = 1, and we will assume this from 
now on. Start at the point (S, 1). Move along any one of the four directions 
parallel to the axes. The processes we see are Brownian motions in two of 
the directions, a Brownian bridge in the third, and a Bessel process of "dimen- 
sion 3" (or Bessel(3) process, for short) in the fourth; all four will be independent. 
To be more precise, note that W(S, 1)= l and define, for u > 0  and v>0,  

b(u)= 1 - W ( S - u ,  1); c(u)= W(S+u, 1) -  1; 

B(v)=W(S, l+v/S)- - l ;  C(v)=I-12V(S, 1+v/S), 

where I?f(s, t)= t W(s, 1/t). Notice that by the time inversion property of the 
Brownian sheet [12, Chap. 3], if" is again a Brownian sheet. Let us also define 
four two-parameter processes x, 2, X and Jf by 

x(u, v)=ARIr 2(u, v)=aR~.,v~ ~ 

wlaere u, v > 0 and 

R l ( u , v ) = ~ S - u , S ] x [ 1 , 1 + v ] ,  R2(u ,v )=[S ,S+u]•  ]. 

Lemma 2.4 (i) The processes {B(v), v>0}, {C(v), v>-0), {c(u), u>0} and 
{b (u), 0 <- u <<_ S} are independent. The first three are Brownian motions independent 
of S and the fourth is equivalent in distribution to a Bessel(3) process ~ restricted 
to the interval [0, U], where U = sup {u: ~(u)= 1}. 
(ii) X and X are independent Brownian sheets, and, conditioned on S=s, x and 
2 are independent Brownian sheets restricted to [0, s] • N~+. 

Proof Set ~(s,  t)=o{W(u, v): O<_u<s, O<v<t}. Then S is a stopping time 
relative to {~(s,  co), s > 0}, the process B is measurable with respect to ~ (S, oe), 
and c is independent of this o--field by the strong Markov property applied 
to S. 

Now S is also a stopping point relative to {~-(s, 1), s>0},  b and C are 
measurable with respect to ~ ( S ,  1), and B and c are independent of this G-field. 
The remaining independence follows by inverting time in the second variable: 
W equals W on the line t =  1, so S is also a stopping time relative to {~(s,  l), 



158 R.C. Dalang and J.B. Walsh 

s>0}.  The above argument shows that c and C are independent of ~ ( S ,  1), 
hence of b and B. 

It follows that all four processes are independent. The definition of the Brow- 
nian sheet implies that the first three are Brownian motions, and the fact that 
b is a Bessel(3) process follows from Williams' decomposition of the Brownian 
excursion [11, Chap. XII (4.4)]. We get (ii) from similar considerations. []  

Define 

M(h, k)=sup{lx(u,  v)[, IX(u, v)[, [2(u, v)l, 13~(u, v)l: u<h, v ~ k } .  

An upper bound on M is given by the law of the iterated logarithm for the 
Brownian sheet [12, Theorem 3.5.A]: 

(2) a <  1/2 ~ lim sup (hk) -~ M(h, k)=0. 
e~O O<=h<e,O<_k<~e 

Proof of Theorem2.1 Recall that we have set t o = l .  For h>0 ,  consider the 
rectangle 

Rh = I S -  h, S + hi x [1/(1 + h/S), 1 + hiS] 

and the events Fh= {W< 1 o n  ~Rh} and 

A h = { m a x ( - b ,  B, - C ,  c)(h)< - 5  ]//h, max(lBl*, ICl*, Icl*)(h)<~/h}. 

Note that p ~ P(Ah) is strictly positive and independent of h by Brownian scaling. 
Let (h,) be any sequence which decreases to 0. By Fatou's Lemma, 
P(lim sup Ahn)>=p> O. Then Blumenthal's zero-one law for the four dimensional 
diffusion (b, B, c, C) implies that P(lim supAh~)= 1. 

We claim that for a.e. co~f2, there exists ~(co)>0 such that if 0 < h <1/(o)), 
then co~A h implies cO~Fh. This will complete the proof, since then P(lim sup Fh~ ) 
>P(limsupAh~)=l.  In order to verify the claim, for co~2, let t/(co) be small 
enough so that if max(h, k)<tl(co), then M(h, k)<(hk) 1/4 (such an ~(m) exists 
by (2)). 

Fix coMimsupAhn and choose n e N  such that hn<~(o)) and o)~Ah. Let 
us show that cOSFh. We shall omit the subscript n below. For u, v>0 ,  it is 
immediate to check that 

(3) 

(4) 

W ( S -  u, 1 + v/S) = 1 - b (u) + B (v) - x (u, v/S), 

W ( S  +u,  1 + v / S ) =  1 + c ( u ) +  B(v )+  X(u ,  v/S). 

It is also straightforward, but a bit lengthier, to check that 

(5) W(S + u, 1/(1 + v/S))= 1 + c (u)-- C (v) + X (u, v/S) 

- (v /s )  w ( s  + u, 1/(1 + v/s)),  

(6) W(S -- u, 1/(1 + v/S)) = 1 - b (u) - C (v) - 2 (u, v/S) 

- (v /s)  w ( s -  u, 1/(1 + v /s)) .  

Let us consider the restriction of W to the two segments 

0~ Rh=O RhC~ {(S, t): O<_sGS, t >= 1}. 
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We apply Lemma 2.3 with hi = h 2 = h ,  f ( u ) =  - b ( u ;  co), g(u)=B(u; co) and 7(u, 
v) = - x  (u, v/S; co). Given our choice of h and since co ~ Ah, condition (1) is satisfied 

since the left-hand side of the inequality is less than - 5 V h + m a x ( 0  , ] /~)+ ]//h 
<0.  It follows from Lemma 2.3 that W( ' ;  co)< 1 on 01Rh. 

The argument in the other three quadrants is similar. For  instance, on 

03Rh=~RhC~{(S, t): s>=S, 0 < t <  1}, 

we apply Lemma 2.3 with h 1 = h2 = h, f ( u ) =  c(u; co), g(u)= - C ( u ;  co) and 

(u, v) = g (u, v) - (v/s)  w ( s  + u, 1/(1 + v/s)).  

Condition (1) is satisfied since the left-hand side of the inequality is less than 

- 5 ] / ~ + ~ / h + ] / / h < 0 .  It follows again from Lemma2.3  that W( ' ;  co)<l  o n  
03R h. The proof  of the remaining two cases is similar and is left to the 
reader. []  

2.2 Surrounding (S, 1) 

In [9], Kendall showed that a " typical"  point in a level set is disconnected 
from the rest of the level set in a strong way: there exist two sets of closed 
curves containing the point in their interior and decreasing to this point, such 
that W >  1 on one set of curves and W< l on the other. The point (S, 1) is 
not of this type: Theorem 2.1 shows that there are indeed curves around it 
on which W< 1, but it cannot be in the interior of a closed curve on which 
W >  1, since the segment [0, S[ x {1} is contained in L- (1). There are two natural 
questions to ask about the contrast between these two types of points. First, 
to what extent does the set L+(1) " sur round"  the point (S, 1)? Second, how 
close does the set L + (1) come to the line segment [0, S[ x {1} ? We will address 
the first question here, and leave the second to Sect. 3.1. 

We can rephrase the first question as follows. What  kind of curves in L + (1), 
connected but not necessarily closed, lie near (S, 1)? We will show that the 
point can be "sur rounded"  on its right hand side by such curves. 

More exactly, for each h > 0  let Fh be the square of side 2 h centered at 
the point (S, 1) and let 7h be the curve consisting of the top, right hand, and 
bot tom sides of F h (so Vh consists of three sides of the square, open on the 
left). Then we have the following result. 

Theorem 2.5 With probability one, there exists a sequence a,+ O such that W 
is strictly greater than 1 on each 7,.. 

Proof For  a process Y(t), let Y.(t)=inf{Y(v):  O<_v<t}. Set F h = { W > I  on 7h} 
and 

A h = {min (B, c, -- C)(h) > 51/~, min ( - b*, B. ,  c . ,  ( - C).)(h) > -- l//h}. 

As in the proof  of Theorem 2.1, note that P(Ah) is strictly positive and indepen- 
dent of h, and thus P( l imsupAh . )= l  if h,.~0. And as in that proof, we only 
need to show that for a.e. co~f2, there is t/(co)>0 such that if 0<h<t/(co),  then 



160 R.C. Dalang and J.B. Walsh 

o~sAh implies (~eFh. Using (2), we choose q(co) so that max(h, k)<t](co) implies 
M(h, k) < (h k) 1/4. 

Fix coslim sup Fh~ and let n ~ N  be such that h,<tl(co) and o~Ah . We show 
that co~Fa n. We will omit the subscript n below. Looking at the decompositions 
(4) and (5) of W near (S, 1), it is clear that a slight variation on Lemma 2.3 
implies that W(" ;co)> 1 on FhC~ {(S, t): s>S,  t>0}.  In order to handle the seg- 
ment [ S - h ,  S ] x  { l+h} ,  we use (3). The lower bound on B(h), together with 
the lower bound on -b*(h)  and - x ( u ,  v/S) and another slight variation on 
Lemma 2.3 show that W(- ; co) < 1 on this segment. The last segment is handled 
in a similar fashion using (6). [] 

2.3 Approaching the boundary: other lines 

By symmetry, the result of Theorem 2.1 will hold if we approach the boundary 
of Co along a vertical rather than a horizontal line. Since most properties of 
the Brownian sheet depend strongly upon orientation, it is not obvious that 
the conclusion of Theorem 2.1 remains valid if we approach the boundary of 
Co along lines with positive slope. We will show here how to modify the argu- 
ments of Sect. 2.1 to handle this situation. 

We can redflce the problem to one special case. If a > 0, and if IFV is defined 

by W(s, t )= W(s~_a, t/]/~), then W is a Brownian sheet. Thus to understand 
the behavior of W along the line t - - a  s, it is sufficient to study the behavior 
of W along the diagonal t=s. We will limit ourselves to this case. Let 
S=inf{s:  W(s, s)> 1}. 

Theorem 2.6 Let e>0.  With probability one, there exists a closed curve lying 
entirely in {(s, t ) ~ (  2" W(s, t )< 1} which contains (S, S) in its interior and which 
is contained in a disc of radius ~ centered at (S, S). 

The key to Theorem 2.1 was the approximation of W by a sum of two one- 
parameter processes. We will use the same idea but need different processes 
here. Set go (u)= u ~ and 

R~={(s,t):O<_t<_s<_u}, R2={(s,t):O<_s<_t<_u}. 

Consider the stochastic processes 

B 1 (u) = W(R~(,,)), B 2 (u) = W(R~(,)). 

Lemma 2.7 Set X (u) = B t (u) + B 2 (u) and Y (u) = B 1 (u) - B 2 (u). Then 
X = {X (u), u_> O} and Y= { Y(u), u >_>_ O} are independent Brownian motions. 

Proof Clearly both X and Y are continuous Gaussian processes of independent 
increments and therefore are continuous martingales. Standard properties of 
the Brownian sheet show that E {X (u) z} = g { Y(u) 2 } = u, and a simple calculation 
shows that E {X(u) Y(v)} =0,  so these two Gaussian processes are independent 
Brownian motions. []  
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s 

Fig. 2. Decompos i t ion  of W and  the square  Qh 

Note that along the diagonal, W(t,  t )=X( t~) .  Set o-=inf{u>0:  X(u)--1} and 
for u > 0 define 

b (u) = X (a) - X (a - u), c (u) = X (a + u) - X (a), 

B ( u ) = a - ~ ( Y ( a )  - Y (a - -au ) ) ,  C ( u ) = a - ~ ( Y ( a  + a u )  - Y(a)). 

Lemma 2.8 The processes {b(u), 0<u_<_a}, {c(u), u~0},  {B(u), 0_<u_<l} and 
{C(u), 0-< u_< 1 } are independent. The f irs t  is a Bessel(3) process run until it last 
hits one, and the other three are Brownian motions. 

Proo f  The fact that b is a Bessel(3) process follows directly from [11, Chap. XII 
(4.4)], and the fact that c and C are Brownian motions follows from Lemma 2.7 
and the strong Markov property. Independence of these two processes is checked 
straightforwardly by using the definition of independence and conditioning on 
a. Observe that the conditional law of B given o-= s is the same as that of 
s -~ (Y ( s )  - Y ( s - s u ) ) ,  which is that of Brownian motion. Since this conditional 
distribution does not depend on s, B itself is a Brownian motion. 

To see the independence, notice that c and C are independent of the pre-a 
sigma-field of X and Y, and hence of b and B, which are measurable with 
respect to this sigma-field. On the other hand, for all choices of n, times uo < . . .  
< u, and Borel sets A o . . . .  , A,, we have 

P {B(uo)eAo,  B(Uk)-- B(Uk_ 1)~Ak, k = 1, . . . ,  n la(X)}  
= P { a - ~ ( Y ( a )  - Y ( a - - a U o ) ~ A o ,  a-~(Y(a--CYUk_O 

-- Y ( a - - a  Uk))~ Ak, k =  1, . . . ,  n iX(u) ,  u_>0} 
=g(~), 

where 
g(s) = P {s -~  (Y(s ) - -  Y ( s -  s Uo))eAo, s -  ~ ( Y ( s -  s Uk- 1) 

- Y ( s - s u k ) ) S A  k, k =  1 . . . .  , n} 

= P { Y (uo)s A o, Y ( u , ) -  Y (Uk- Oe  A, ,  k =  1 . . . .  , n} . 

Therefore g(s) does not depend on s. It follows that the conditional probability 
above is constant, which proves that B and a(X)  are independent. Thus all 
four processes are independent. [ ]  

For  (s, t)~N2+, let T(s, t) be the right triangle whose apex is at (s, t) and 
whose hypotenuse is on the main diagonal (see Fig. 2). Let z(s, t )= W(T(s ,  t)) 
and note that 

(7) W(s,  t) = B 1 (s 2) + B 2 (t  2) - -  z (S, t) 
= �89 (s 2) + Y(s 2) + X(t  2) -- r(t2)) -- z(s, t). 
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The processes X and Y can be expressed in terms of b, B, c, and C, but 
the expression depends on the values of s and t. If s < S, then 

(8) X(s~)=x(0.)-b(0.-s 2) 

while if s > S, then 

(9) X (s2)= X (0.) + c(s2--0.) 

and Y(s2)= Y(0.)--0- ~u(1-s2/0.) ,  

a n d  Y(s  2) = Y(o-) �9 2 + 0.~ C ( s / 0 . -  1). 

Finally, the following supplies a global bound on the error term z(s, t), which 
will play the role of (2) in Sect. 2.1. For each 1 > 6 > 0 and K > 0, 

( 1 0 )  lim~-(1-~)sup{[z(s, t)[: s + t < 2 g ,  [ s - t l < ~ } = 0  a.s. 

This is a consequence of [7, Theorem 2], which implies that in the region where 
[ s - t [<~/  and s + t < _ 2 K ,  the modulus of continuity co(e) of z is bounded by 
1//~ ~-~, for any 6>0.  Thus, taking ~/=e, (10) follows. 

P r o o f  o f  Theorem 2.6 The curves around (S, S) on which W< 1 will again be 
rectangles, with sides parallel to the axes rather than at 45 ~ angles. Set Qh 
= [ a ~ h ,  a [ / ~ h ]  2. Let Fh= {W< 1 on C3Qh } and 

Ah = {max(-- b, c)(h) < - 5 I/h, max(I c I* (h), 0--~ I B I* (h/a), 0. } I C I* (hi0.)) < l / h } .  

As in the proof of Theorem 2.1, note that p - P ( A h )  is strictly positive and inde- 
pendent of h, and this implies P(lim supAh,)= 1 if h, 40. 

The remainder of the proof is also similar to that of Theorem 2.1. This 
will be clear once we write out the analogues of (3), (4), (5) and (6). By (7), 
(8) and (9), the first two become 

(11) W - '  + (u, v) = 1 - (b (u) + 0. ~ B (u/0-))/2 + (c (v) - GG ~ C (v/o-))/2 - z - '  + (u, v) 

(12) W +' + (u, v)= 1 +(c(u)  +0. ~ C(u/0-))/2 + ( c ( v ) - 0 .  ~ C ( v / 0 . ) ) / 2 - z  +" + (u, v) 

and the last two are 

(13) W +' - (u, v)= 1 + (c(u)+ 0. ~ C ( u / 0 . ) ) / 2 - ( b ( v ) - 0 .  ~ B ( v / 0 . ) ) / 2 - z  + ' -  (u, v) 

(14) W - '  - (u, v) = 1 - (b (u) + 0. ~ B (u/0.))/2 -- (b (v) - 0. ~ B (v/0.))/2 - z - '  - (u, v), 

where 

w+- +- (. ,  v ) =  w ( z+- +- (. ,  

For example, in case (11), we would apply Lemma 2.3 with h 1 = ha = h, 

f ( u ) =  - ( b ( u ) + ~  ~ B(u/0.))/2, g (u) - - - (c (v) -0 .  ~ C(v/a))/2,  

and y(u, v )=z(~ /~-u ,  ~ ) .  Condition (1) is satisfied since by (10), for small 
h, the left hand-side of the inequality is < - 4 ~/h/2 + 2 V~/2 + ~/h = 0. The other 
cases are similar and are left to the reader. E3 
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, (S,1) 

Fig.  3. A thorn ,  a n d  the sets To~ ' a n d  curves  7p~ = Yoe,, fll < fig < f13 

Remark 2.9 The result of Theorem 2.6 remains valid if one approaches the 
boundary of Co along smooth monotone curves, say. This can be checked using 
the same methods as above. 

3 Local geography of the level set 

In order to understand the geography of L(1) in the neighborhood of (S, 1), 
where 

S= in f{ s>0 :  W(s, 1)= 1}, 

we consider W(S-- s, 1 + t) for small s and t. It is clearly smaller than 1 if t = 0 
and 0 < s < S, and by continuity it must be smaller than 1 in some neighborhood 
of the segment [0, S [x  {1}. What does this neighborhood look like? It can 
be rather complicated - it will not be simply connected, for instance - but 
we can ask whether or not there is a neighborhood of a simpler character. 
The class of convex neighborhoods is not appropriate, for any convex neighbor- 
hood of the segment intersects { W > 1} (see Theorem 3.1(b) below). The natural 
neighborhoods to consider are shaped like a thorn, with the tip at (S, 1) (see 
the first picture in Fig. 3). The purpose of this section is to determine the exact 
shape of these particular neighborhoods and to describe the size and position 
of the connected components of {W> 1} just beyond the thorn. The shape 
of individual clusters and components is described in the companion paper 
[5]. 

If A is an event in a{b} (resp. a{B}), then PC(A) denotes the conditional 
probability of A given that b(0) = c (resp. B(0) = c). 

3.1 The thorn: horizontal lines 

It is easiest to visualize neighborhoods of [0, S [ x  {1} if we translate the origin 
to the point (S, 1) and reverse the s-axis: let 17V(s, t )= W ( S - s ,  1 + t /S) -  1. Clearly, 
{W> 1} corresponds to {1711>0}. By (3), 

(15) ~V(s, t)=B(t)--b(s)-x(s,  t/S), s>0 ,  t > 0 ,  

where B is a standard Brownian motion starting from 0, b is a Bessel(3) process 
starting at 0 and independent of B and x is comparatively small by (2). By 
(6), a similar decomposition holds for s > 0  and t<0.  We only study the first 



164 R.C. Dalang and J.B. Walsh 

case, since it is then not difficult to check that the results are not affected by 
the additional error term in (6), and so it is sufficient to consider thorns which 
are symmetric with respect to the segment [0, S[ x {1}. 

Let z(s) be a continuous non-decreasing function on IR+ with z(0)=0 and 
z(s)>0 if s>0 .  Let T~ be the thorn-shaped neighborhood T~= {(s, t): s>0 ,  0 < t  
__< z (s)} and let 7~ be the upper boundary curve of T~, i.e. the graph of t = z(s). 
We say that T~ is initially in {17V<0} if with probability one, there exists t />0  
such that T~c~ {(s, t): 0<s=<~, t>0}  c {17V< 0}. 

Theorem 3.1 Suppose that s~-,z(s)/s is increasing for s>0 .  Then 
(a) T~ is initially in {17V<0}/f and only if 

(z@)) ~ d s f(+)= j" - - < o o .  
O+ S 

(b) I f  this integral is infinite, then 7~ is not initially in {ITV<0}. Moreover, for 
all ~c > O, there is a sequence (s,) ~ 0 such that ffV (sn), z (s,) > ~c z (s,) ~, for all n. 

Remark 3.2 (a) For fl>0, let 

OB(s)=s (log l ) -  Z (log log l )  -~. 

Then s~--~O~(s)/s is increasing and I (0 r )<  + oo if and only if f i> 2. 
(b) If we had set ~V(s, t ) = W ( 1 - s ,  l + t ) - l ,  Theorem 3.1 would remain valid. 
Indeed, (15) would become W(s, t )=B(St ) - -b(s ) -x (s ,  t). But the distribution 
of B(S' )  is the same as that of S �89 and the factor S I clearly does not 
affect the calculation below. 
(c) For later reference, we point out that a proof similar to that of Theor- 
em 3.1 (b) shows in fact that for all • > 0, the events 

{ 17V(v,, 0p(e-"))> K Oz (e-") -~, b(v,) < 0p(e -")~} 

occur infinitely often, where v, is the unique time in [e-", e l-n] such that b(v,) 
= rain b(u). 

UE[e-n  el -n ]  

The proof of Theorem 3.1 uses the following property of the Bessel(3) process 
b. 

Lemma 3.3 There is a positive constant k such that 

P{ min b(s)<a} <=ka, for all a>0 ,  
l~<s_<e 

and a positive constant k' such that P{ rain b(s)<a}>k'a  for all suffi- 
ciently small a. 1 ~s<<_e 

Proof. The first statement follows immediately from [11, Chap. 6, Corollary 3.4], 
since using the explicit density of b(1) (see (22)), the probability in question is 

< P {min b(s)<a} =aE{1/b(1)} < oo. 
s > l  
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Concerning the second statement, let ~ be a random variable with a uniform 
distribution on [0, c], c > 0, and set T(a)= inf{t > 1: B(t)= a}, where B is a Brow- 
nian motion independent of ~. We apply a path decomposition theorem [11, 
Chap. 6, Theorem 3.11] to see that 

pc{ min b(s)>a}=PC({a>=a}w{a<a,T(a)>e-1}) 
O<_sK~e-1 

= 1 - a/c + (a/e) pc { T(a) > e -  1 } 

<= 1 - -  a /c  + (a/c) pc{ T(0) > e-- 1}. 
Thus 

pc{ min b(s)<a}>(a/c)U{T(O)<e-1}.  
O<_s<_e-1 

Integrating with respect to the density of b(1) and using the Markov property 
of b gives the conclusion. []  

Proof of Theorem 3.1 First suppose that the integral is finite. We claim that 
T~ is initially in {I7V<0}. Set q~(s)=z(s)/s, put e , = e  (1-")(:-~), where 0 < 3 < 1 / 4 ,  
and let 

m,=min{b(s): e -"<s<e:-"} ,  Ao={m,<=B*(~(el-"))+e,}. 

Now t<s  in a neighborhood T~, so by (2), for all large enough n and 
s ~ [e -", e: -"], we have ] x (s, t) [ < (s v t) 1 - ~ < e,. If A, does not occur, then 

st[e-" ,  e 1 -"], t_<z(e 1-") ~ B(t)-b(s)+e,<O 

since z is non-decreasing. Thus lYV(s, t) < B (t)-- b (s) + e, < 0. It follows that 

T~c~([e-', e 1-"] x [0, "c(el-n)])c {W<0} on (2\An. 

So it will be sufficient to prove that A, occurs only finitely often. Since b and 
B are independent by Lemma 2.4, Brownian scaling yields 

P (An)  = P {e  - n/2 m o  <= z (e I - n)3 B *  (1) q- e .}  

= e {too -< K r (e ~ - ' )~  B* (1) + e "/2 ~.} 

where K denotes a constant whose value may change from line to line, and 
we have used the fact that e" z(el-")=eO(e:-"). Since 3 <  1/4, e "/2 e , ~ e  -"/4 for 
large n, so that by Lemma 3.3, the last expression is 

< K ~ qb(e:-")~ a P {B*(1)Eda} + K e -"/4 
0 

= K ~ (e 1 -")3 E {B* (1)} + K e- n[4. 

Now sum this over n. The sum of the exponentials is finite and ~b is monotone,  
so we can estimate the sum as an integral to see that 

P(A. )<oo  ~* q ~ ( e : - 9 ~ / x < o o  ~ .[ 4)(s)~s -~ ds<oo,  
n = l  1 0 
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which, thanks to the Borel-Cantelli Lemma, proves our claim. This implies 
the "if"  part of (a). 

Now consider the process along the top boundary 7~ of T~. Suppose the 
integral in (a) is infinite, and fix ~c > 0. We claim there exist s,--+ 0 such that 
~V(s,, z(s,))>~z(s,) ~, This will prove (b) and the "only if" part of (a) at the 
same time. Define b(u)= e "/2 b (e-"). Then b (s)= s ~ b'(log (l/s)) and 

~V (s, z(s)) > tc z(s,) ~ ~ B(z(s)) > tr z(s.) ~ + s ~ ~Oog(1/s)) + x(s, "c(s)). 

So it will be sufficient to show that there is a sequence u, 1" oo such that 

(16) B('c(e-"')) > ~c "c(e-"")~ + e -u~/2 b(un) + x(e-"-, r(e-"")). 

Fix 0 < C < D  and let p o = i n f { u > 0 :  g(u)=D} and, having defined Po, % . . . .  , o-,, 
p., put 

% +1 = inf{u > p,: if(u) = C}, p, + ~ = inf{u > o, +, : b(u) = D}. 

Since ~" is a stationary Markov process, ( a , + l - a , ,  h eN )  and (P ,+I -P . ,  h e N )  
are both iid sequences with finite mean [10, Sect. 5.4, p. 145], and, in particular, 
r  for all n~N. Let v, be the (unique) time at which g takes on its 
minimum in [a,,  p,] and define 

/7.={ min ~(u)<(a(e-~")~:-e-~"(~-a)}, 
0"~ <2 U ~,On 

G, = {B(z(e-~"))=> (K + 1) z (e-*")~}. 

On F.caG,, there is u,e[a, ,  p,] such that (16) holds, namely the time u ,=v , .  
So we only need to show that F, ~ G, occurs infinitely often. This is just a 
property of the law of the independent processes b and B, which we now prove, 
without using the fact that these two processes come from a Brownian sheet. 

We can assume that b and B are canonically defined on the product of 
two canonical probability spaces ((21,ffl,P1) and (f2>ff2, P2), i.e. b(c91, c92) 
(resp. B(oq, coz) ) does not depend on 092 (resp. co 0. We can also assume that 
F , e ~ ,  and replace F, ca G~ by (F, x (22) ca G~. 

Observe that the events /7, depend only on ~ and are independent of each 
other, and, by the strong law of large numbers, that p,/n ~ c~ > 0. In addition, 
setting n~ o = rain {~ (u): 0 < u < p ~ }, letting pC denote conditional probability given 
go = C and using Lemma 3.3, we see that 

P1 (F.) = pC {rho < ~b (e-'-)�89 - e -  ~"(~-- a)} 

>__pf {r~o <O(e-(=+ ,),)~_e~(~ a),} 

K (~b (e - (a + 1).)�89 _ e~(�89 - a)n). 

Since the sum of the exponentials is finite, it follows that 

~p~(F,)>= SKqb(e-(~+l)")4du+K'=K S O(s) �89 d s + K ' =  + ~ "  
neN,  1 0 + 

By the converse of the Borel-Cantelli Lemma, P~ (lim sup F,) = 1. 
n ~ N  
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Now fix 0) 1 ~lim sup F.. There is a sequence (nk(~ol), keN)  increasing to + oo 
such that col ~F,k(o,1 ), for all keN.  The col-section of G,~(,o~) is 

Gnk (031) : {(D 2 e ['22 : B(z(e-  ~"~('~))) > (~c + 1) z(e-  ~"~(~"))~}. 

Now, P2 (G,~(~01)) = P2 {B(1) > ~ + 1} > 0 and r(e-  ~-~(~'x)) + 0. Since 

P2 (lira sup G,~ (~01)) > lim sup P2 (G,~ (co 0) > 0, 
k e n  k c ~  

it follows by the 0-1 Law that P2(lim sup G,~(o)O) = 1. Thus P~-almost all sections 
of lira sup(F, x f22)c~ G, have full P2-measure, hence the P1 x G-measure of this 
set is 1. The proof is complete. [] 

3.2 The thorn: other lines 

We would like to know whether the results of Sect. 2.3 hold when we approach 
the set {W> 1} along lines which are not horizontal or vertical. Specifically, 
we want to know about thorns along lines with positive slope. We will use 
the setting and notation of Sect. 2.3. As mentioned there, we need only consider 
the main diagonal. 

Let us rotate coordinates by setting ~ = 2 - ~ ( t + s )  and ~/=2-~( t -s ) ,  so that 
the ~-axis lies along the main diagonal. Define if" by I?V(~, q)= W(s, t), let 
$ = i n f { ~ > 0 :  ff'(~, 0)= 1} and let W(~, r/)= FV(~-~, ~/)-1. 

Let r be a continuous non-decreasing function on ~ +  with 3(0)=0 and 
z(~)>0 if ~>0.  Let T~ be the thorn-shaped neighborhood T~= {(~, q): 0 < ~ < S ,  
0<~/<r(~)} and let 7~ be the upper boundary curve of T~. Then we have the 
following analogue of Theorem 3.1. 

Theorem 3.4 Suppose that ~ ~ z (~)/~ is increasing for ~ > O. Then 
(a) T~ is initially in {l~'<0} if and only if 

~) ~ du 
I (r) = - ~ - - < o 0 .  

O+ U 

(b) I f  I(r) is infinite, then 7~ is not initially in {I~<0).  

Remark 3.5 This states that the thorn has exactly the same shape as in the 
horizontal and vertical cases. This might seem surprising in light of the strong 
horizontal-vertical orientation of the set ~ W > 0} which is so visible in Fig. 1. 
However, Theorem 3,4 is only an order-of-magnitude result: it tells us that the 
tip of the thorn has the same order of sharpness in the two cases, but it does 
not distinguish between one thorn and another which is, for example, twice 
as sharp. Finer results might well show a difference. 

Proof of Theorem 3.4 We can reduce the proof of this theorem to the calculations 
we did in Theorem 3.1. Let B a, B z, X and Y be defined as in Sect. 2.3 and 
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note  that  along the first diagonal  17V(~, 0) = X(42/2) = B 1 (~2/2) + B 2 (~2/2), and 
that  Eq. (7) becomes 

I/~V({, t/) = B 1 ((4 -- t/)2/2) + B 2 ((4 +/1)2/2)-- ~({, q) 

= �89 ((X + Y)((4 -- 17)2/2) + ( X -  Y)((4 + / / )2 /2) ) -  ~ (~, q), 

where, by (10), ~({, t/) is small compared  to X and Y if t/ is small. We will 
express this in terms of Bessel processes and Brownian motions.  Let  a = $ 2 / 2  
and recall tha t  

b ( u ) = X ( a ) - X ( a - u ) ,  B(u)=a-~(Y(a)  - Y ( a - a u ) )  

are, respectively, a Bessel and an independent  Brownian mo t ion  (Lemma 2.8). 
Thus 17V(4, t/) is equal to 

�89 [a~ (S (1 - (4 +/7)2/(2 a))-- B(1 - ({ - q)2/(2 a))) 

- b (a - ({ + q)2/2) - b (a - (4 - t/)2/2)] - z (4, t/). 

Let  u = $ - 4 ,  and v = q .  Then  1-({+_q)2/(2rr)=(2S(uT-v)-(uT-v)2)/(2a) and a 
- (4 + t / )2/2  = ~ ( u  -T- v) - (u -T- v)2 /2 .  

When  u and v are small, we can neglect ~(~, ~/) and the second order  terms. 
Using Brownian  scaling, we see that  

W(~, ~)~ ( B ( u - v ) - B ( u + v ) - b ( u - v ) - b ( u + v ) ) .  

But when u is small and 0 < v ~ u, as we have near  the tip of the thorn,  the 
distr ibution of (b (u + v)+ b (u -v ) ) /2  is essentially the same as that  of b (u), whereas 

the distr ibution of (B(u + v)-B(u--v)) /2  is exactly that  of B(v)/]/~. This means  
that  up to negligeable terms, ~ has essentially the same decomposi t ion  as ITv 
in (15). Therefore,  the remainder  of the p roof  of this theorem will be essentially 
identical to the p roof  of Theorem 3.1 concerning the case of hor izonta l  lines. 
The details are left to the reader. [ ]  

3.3 Supergeometric spacing of bubbles near the thorn 

As we move  away from the thorn  Tp, we encounter  components  of {!TV>0}. 
We are going to describe the posi t ion and shape of these components .  Intuitively, 
the first components  we encounter  will be small, and then we will encounte r  
larger and larger components .  We are going to make  these statements precise. 
Set 

b+(s)=b(s)+s 314, b - ( s ) = b ( s ) - s  3/4 . 

Notice  that  the thorn  Tp is conta ined in {(s, t): s >  t}. By (15) and (2), the following 
implications are true for all small s and t such that  s >__ t: 

(17) 

(18) 

b + (s)KB(t) ~ W(s, t ) > 0  ==> b- (s)KB(t) 

b-  (s) > B (t) =~ W(s, t) < 0 ==> b + (s) > B (t). 
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Observe that b + (s)>0 for all s, and, by [10, Example 5.4.7], sF-+s 3/4 is a lower 
escape function for b, so there is a random variable t / - >  0 such that b - ( s )>  0 
when 0 < s < q - .  In particular, by (18), lTV(s, t )<0  on the horizontal segments 
where s>_>_t and B(t)=0. Set 

(19) Q = {(s, t): s>t>=O, ~V(s, t)>0}. 

Remark 3.6 For small s and t, any point (s, t )eQ is contained in a horizontal 
strip of the form N~+ x [ts, t2], where [ts, t2] is an interval where B is accompl- 
ishing an excursion above 0. Points in Q which are sufficiently near the origin 
and are in different horizontal strips are in distinct connected components of 
Q. Indeed, assume As = (us, v l)e Q, A2 = (U2, U2)ff Q,  with us < q- ,  U2 < ?~-- and 

t s < I )  1 < t  2 < t3 < V  2 < t4 < ' c ( r ] - ) ,  

where z = O ,  (defined in Remark 3.2), a>2 ,  and both [ts, t2] and It3, t4] are 
intervals where B is accomplishing an excursion above 0. Then by Theorem 2.1, 
any curve F in Q with extremities A~ and A2 must be contained in Qca(T~) c. 
But if i=3,  4 and 0 < s < q - ,  then b - ( s ) > B ( h ) = O ,  so by (18), 17V(s, t )<0  on 
the horizontal segment ]0, q - [  x {t~}, i=3,  4. Now F must pass through one 
of these two segments, a contradiction. 

When/~ < 2 and we follow the curve V~,~ towards the origin, we will encounter 
components of 17V > 0 infinitely many times. Due to the irregularity of the sample 
paths of 17V, these components will never be isolated. But they will tend to 
occur in clusters, and the space between clusters will get larger and larger relative 
to the remaining distance to (S, 1). The following theorem makes this statement 
precise. 

Let ~-- be the class of continuous increasing functions v defined in some 
interval [0, q[ - where q may depend on z - such that z(0)=0, v(s)>0 if s>0 ,  
and s~-+v(s)/s is increasing on ]0, q[. Let Q be defined as in (19). If a given 
point (s, z(s)) is in Q, let Q~ denote the connected component of Q which contains 
(s, ~(s)). 
Theorem3.7 Consider Zs~J -  such that I ( r O = + o o .  Fix  0 < ~ < 1  and let z2, 
r 3 ~ J be such that s 3/2 < r s (s) <= zz (s) <= r (s) < ~ s and s ~-~ ~2 (s)/~3 (s) is increasing 
and ~3 (s)/z3 (c s) is bounded in a neighborhood o f  the origin. Assume 

= - - < + o 0 .  
o+ "c3(S)] S 

Then with probability 1, there exists t 1 > 0 such that for  0 < s < tl, 

Q, 4= • ~ ([~(s), e s]x [0, ~2 (s)])= { fv< 0}. 

Remark 3.8 (a) Consider the function 0r defined in Remark 3.2. If vi(s)= 0r 
i=  1, 2, 3, with t3 <f12 <fix <2,  then the conditions of Theorem 3.7 are satisfied 
and I'(T1, zz, %) < + oo if and only if fll +/~2 - -  ]~3 > 2. 
(b) If sl > s 2 > . . .  denote the s-coordinates of one point from each cluster encoun- 
tered along 7o~, fl<2, as we approach the origin, then S,/Sn+s >S,/O~(Sn) T O0 
as n ~  oo. For a geometric sequence, this ratio is constant: this justifies the 
title of this subsection. 
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(c) Theorem 3.7 shows in particular that there are no long bubbles parallel 
to 7o2. Rather, the shape of the thorn is due to isolated short bubbles. 
(d) In view of Theorem 3.1, the assumption zl (s) > s 3/2 is not a serious restriction. 

Proof of Theorem 3.7 We shall show that there are only finitely many s for 
which 

b-(s)<B*(z t (s ) )  and min b-(u)<B*(z2(s)) .  
~3(s)<u<~s 

By (18), this will complete the proof. Set 6=1/4, c = ] ~ ,  e',=c ("-z)(1-o) and 
t A. = A.  c~ A',[, where 

A;={ min b ( u ) < B * ( ' C l ( c n - 2 ) ) + ~ ' n }  , 
cn-- I <u<Cn- -  2 

A~'={ min b(u)<B*(zz(C"-Z))+e',}. 
"~3(cn)<u<C n 

Since c s < c  n for ss lc"-1 ,  c n - - 2  [ ,  it will be sufficient to show that P(lim sup A,) 
= 0, and, by the Borel-Cantelli Lemma, we only need to show that ~ P(A,)< oe. 
By Brownian scaling, P(A, )= P(C', ~ C~'), where 

C'.={ min b(u)<=KB*(1)Ol(c"-Z)~+e'.c-"/2}, 
C - I ~ u ~ C - 2  

 2(c ) }, C'.'={ min b(u)<KB*(1)  . -2  ~ , - . / 2  
4~3(c") < u < 1 

and 4)i(s)= zi(s)/s, i=  1, 2, 3, and K denotes a constant. Thus 

o0 

P(C'. n C~) = ~ P(D'.(a) ~ D;(a)) v(d a), 
0 

where v(da) is the density of B*(1) and D',(a) and D'~(a) are defined by replacing 
B*(1) by a in the definition of C', and C~', respectively. Let 

ai(n , a)=Ka4h(c"-2)~+e'~c -"/2, i=1, 2. 

Using the Markov property of b, we obtain 

where 

P (D'.(a) ~ D~ (a)) = E { P(D~ (a) ib (1)) pb(1)(/3'. (a))} 

= P(D, (a)) P (Dn(a)), 

/3',(a)={ min b(u)<=cq(n,a)} 
d l < u K d 2  
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and d~=c-i-l>O, i=1,  2. By Lemma 3.3, P~ a). In order to 
estimate P(D~(a)), we again use the scaling property of b and Lemma 3.3 to 
observe that 

P(D~(a))=P{ min b(u)<~2(n, a) 03(c') -~} 
1 <u< 1/r n) 

<= K (a + l) ( ~  (cn- 2)) ~ 

(the last inequality is valid for large n and uses the fact that e', c-"/z< $2 (c"-2)�89 
since s3/2<r2(s ) by assumption, and that K(o3(cn)~(~a(cn-2), also by assump- 
tion). Thus, for large n, 

( • 1  42 n -2  �89 p(A~)<__ S [K(a+l)d~c-~/2(r ( c " - Z ) ~ + K a ( a + l ) ( ~ - ( c  )) ]v(da) 
o ~r ] 

<=KE{B*(1)+I}d.c-"/2+KE{B*(1) 2} (c "-z) , 

since (~2/(~3 is bounded for large n by assumption. Summing over n, using the 
monotonicity of r r162 to replace the sum by an integral and applying (20), 
we conclude that ~ P(A,) < ~ .  [] 

3.4 Height of bubbles near the thorn 

The following theorem shows that bubbles that meet a particular curve near 
the thorn will not be very tall. Let Q be defined as in (19). As before, K denotes 
a constant whose value may change from line to line. 

Theorem3.9 Let z a, T 2 ~ -  be such that SS/4~TI(S)'(Tz(S), S~"'~'CI(S)/T, 2(S ) is 
increasing with limit 0 as s~O and, for each c>1,  z2(cs)/zz(s ) is bounded in a 
neighborhood of the origin. Suppose 

l(S) as 
1 < ~ : ) .  

J ( z l ' z 2 ) =  ]" (SZ2(S ) )  ~ S 
0+ 

Then with probability one, there is q > 0  such that if 0 < s < q  and (s, zl(s))6Q, 
then Qs is contained in N+ x [0, Zz(S)]. 

Remark3.10 (a) If zl=O~, f l<2,  as defined in Remark 3.2, and fl'<fl, then 
J(4Jp, ~r < + ~ if and only if fl' < 2 f l -  2. 
(b) If 

I 1 ~  ~ ('Cl(S)/S) �89 dS<O0, 
O+ 

the integral in (i) is always finite, but the theorem is empty since Q does not 
intersect 71. Thus the theorem is only of interest when 11 diverges. 
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Proof of Theorem 3.9 Suppose the integral is finite. Let 7~ be the graph of 
~. Both "c~ and -c a are defined near 0, so for all large n we can define 

A,={3se [e - " ,  e l - - ' ] :  (s, "Cl(s))EQ, QsC3(]R+ x [-'c2 (s), oo[)~= q~}. 

We must show A. occurs only finitely often. Let 5 = 1/4, e .=  e (i -')(~ -~) and 

m, = inf b(s), M, = sup B(t). 
e - n < s < = e  1 - ~  ~l(e n)<=t<--rl(el-n) 

By (18), if m . > M . + e ~ ,  then (2 does not intersect 71 between s=e -"  and s=e ~-" 
On the other hand, since Q~c(T~,~) ~ by Theorem 3.1 and Remark 3.2(a), if there 
is some teE'c~(el-'), zz(e -n ) ]  such that B ( t ) < - e . ,  then W(s, t )<0  for all small 
s, so Q~cN+ x [0, t]. Since m.<B*('cl(el-")),  it follows that 

P(A,)<P{m~<B*('cl(el-'))+e., inf B(t)> --~,}. 
z l ( e  1 , , ) ~ t = < z a ( e -  n ) 

Let 2,=~2(e-~)/'cl(e ~-') and observe that e ~/2 ~,<e -'/4. Set (oi(s)='ci(s), i= 1, 2. 
Using Brownian scaling and the independence of b and B, the last probability 
above is 

= P { m o < K ( ~ ( e  1-.  12 . ) B (1)+e' /2g, ,r l (el- ' )  ~ inf B ( t ) > - e , }  
1 <t<.~ 

co 

<= ~ P{mo~Kd~l (e i - ' )~a+e  -~/4} P{B*(1)eda, inf B ( t ) > - e - ~ / s } ,  
0 1 <t ~ ~.n 

since e,z~(el -")-~<e -"Is because sS/4<z~(s) by assumption. By Lemma 3.3, 
the first probability is dominated by K(~bl (e ~ - . ) i  a + e-"/4). To bound the second 
factor, apply the reflection principle at T(a), the first hit of a by B: 

P{ inf B(u)>--e-~/SlT(a)<l}=P{ sup B(u)<2a+e-'/S[T(a)<l} 
1 < u < ~ , ~  l _ < u _ < 2 . .  

< p0 {(2, -  1) ~ B* (1) < a + e-"/s} 

by the strong Markov property at T(a) and scaling. Applying the reflection 
principle again and since B(1) is standard Normal, this is 

=pO {I B(1)[ <(a+e- ' /s)(2.  - 1) -~} <=K(a+e-'/s)()~. - 1) --~ �9 

Thus, the above integral is 

oo 

< K  ~ (q~t (e 1- ' )~a+e- ' /~)(a+e- ' / s ) ( ,~ ,  - 1) -~ P{B*(1)~da}. 
0 

Since q51 is increasing, this is 

<= K(e -  3./s + e-"/s E {B* (1)} + ~bl (e ~ ")~ E {B* (1)a})(2. -- 1)-5. 
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It follows from our assumptions that (2 , -1 )  -~ is <=K(~l/~2(e I -n))@ for large 
n, which is decreasing in n by hypothesis, hence the last expression is bounded by 

K(e-3,/8 + e-"i8 + q$1 ( el -n) ~b 2 (e 1 -n)-~). 

Summing over n and dominating the sum by an integral, we conclude that 
~ P(An)< oo since 

n 

1 

~ 01(e -x) 02(e-X)-~ d x =  ~ ~,(y) q~2(y)-~ y -1 dy< oo 
0 0 

by hypothesis. Thus A, only happens finitely often by the Borel-Cantelli Lemma, 
proving the theorem. [] 

3.5 Width of bubbles 

Recall that Q = {(s, t): s > t > 0, lTV(s, t)> 0}. K and c are constants whose values 
may change from line to line. We work with the functions 0~ defined in 
Remark 3.2. 

Theorem 3.11 Let fl<_2 and fix f l ' < 2 f l - 2  and e>0.  For s>0,  let V~=]s 
-e~t~,(s), s+ eOp,(s)[ x [0, oo[. Then with probability one, there exists an r />0 
such that if 0 < s < t l and if Q~ is the connected component of Q which contains 
the point (s, Oa(s)), then Qs is contained in the vertical strip V2. 

There is one calculation to be made before we prove this. We separate it out 
as a lemma. 

Lemma 3.12 Let a > 0 ,  2>0,  and put L=a2 -~. Set q(a, 2)=pa{b ever has an 
excursion below a of duration => 2 2}. Then there exists a constant C, independent 
of a and 2, such that 

(21) q(a, 2) < C(L+ 1) 4 e- ~I(CL2) 

Proof By Brownian scaling, q(a, 2)=0(L), where O(L)=pL{b has an excursion 
below L of duration >2}. Let T(L) be the first time b hits L and let S(L) 
be the first time after t = l  that b hits L. Consider time 1. If b(1)<L, then 
b must stay below L at least one unit longer to complete its excursion, and 
if b(1)>L, b must first return to L, then make its excursion. Thus O(L)<p~ +P2, 
where p~ = pL {b (1) < L, S (L) > 2} and 

P 2  = pc {S(L)< 0% there is an excursion below L of duration => 2 after S(L)}. 

Applying the Markov property of b at time 1, we have 

Pl < pL {b(1) <L} P~ {T(L) > 1}. 
Clearly 

L 

(22) pa{b(1)<=L } <=po {b(1) <L} =K y x 2 e -:~/2 dx, 
0 
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where we have used the density of b(1) (see e.g. [11, Chap. 11, Sect. 1]). By 
[4, Theorem 2], the second probability on the right hand side is bounded by 
cexp(-1/(cL2)). With this, we see that p l < C L  3 e x p ( -  1/(cL2)). Turning to P2, 
we note that if S(L)<oe, then b(S(L))=-L, and the probability of having the 
excursion after S(L) is just 0(L). Thus Pz = pL {S(L) < oe} q(L), hence 

or equivalently, 

(23) 

dl (L) < c L 3 e-1/(~L~) + pL {S (L) < oo } ~ (L), 

dI(L)<=cL 3 e :/(:L:)(I--pL{S(L)< 00}) -1  

Now by [-11, Corollary 3.4] 

(24) 

It follows that 

px { T(L) < oo } = Px {min b (s) < L} = L/x. 
s > O  

co 

pL{S(L)= o~} = ~ (1 --L/x) pL{b(1)edx}. 
L 

Notice that for x>L, pL{b(1)Nx} <pL{B(1)<=x}, where B is a standard Brow- 
nian motion (since b has the same distribution as the modulus of a three-dimen- 
sional Brownian motion) so that this is 

o0 co 

~ (1-L/x)ce-(x-L)2/2dx=c ~ ( ~ + L ) - : e - " d u  
L 0 

after the change of variable u = ( x -  L)2/2. It is easy to see that this is a continuous 
decreasing function of L which is asymptotic to 1/L for large L. Thus there 
is some constant K such that pL {S(L)= oe} > K/(L+ 1) for all L, which, together 
with (23), proves the lemma. [] 

Proof of Theorem3.11 Fix fi" such that f i '<f i"<2f i -2  (which is <fi  since 
/3 < 2). Let I ,  = [e-", e 1 -"] and let A, be the event on which there exists a compo- 
nent Qs of (~ which contains a point (s, ~b~(s)) for some sel ,  and which is not 
contained in the corresponding strip V~L Then there exist u and v such that 
the points (s, ~ (s)) and (u, v) are in Qs while h u -  s I > e ~O~, (s) >= e ~9~, (e-"). 

Let J be the interval with endpoints u and s. Since Qs is connected, there 
is a continuous curve {(g 1 (x), g2 (X)), 0 ~ X ==_ 1 } in (2~ with (g: (0), g2 (0)) = (s, Op (s)) 
and (g1(1), gz(1))=(u, v). By (17), it follows that on the set A,, we have B(gz(x)) 
>b-(gl(x))  for all xe[0,  i]. Now tp~,,(s)<Op,,(e 1-") so by Theorem 3.9 and 
Remark 3.10(a), if n is large enough, then Q~clR+ x [0, 0p,,(e 1-")]. This implies 
that B* (tp~,, (e ~-")) > b-(g:  (x)) for each x. Since g a runs through the interval J, 

B*(Op,,(el-"))>b-(u), VueJ. 

Thus, J is contained in an excursion interval of b- below the level B* (Op,, (e 1-")). 
Let us simplify notation by setting 6 = 1/4, e', = e ~2 -")(:-~) and 

v' = tpe, (e- n), z" = ~ / / p ,  ( e  1 - n), 
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For large n, if there is seI .  and a component  Q, of (~ which contains (s, 0~(s)) 
and intersects (Vr then 

(25) there exists an interval J of length at least e z' which intersects I .  and 
is an excursion interval of b below the level B* (r")+ d.. 

Let D. be the event on which (25) happens and let us estimate P(D.). Now 
P (D.) < P (O., t) + P (D., 2), where 

D., 1 = D. c~ {b (e - ") < (log n) p''/2 B* (z")}, 

D., 2 = D. c~ {b (e -") > (log n) p''/2 B* (-d')}. 

Using scaling, the independence of b and B, the density of b(1) (see (22)) and 
the definition of Ce,, in Remark 3.2(a), we obtain 

P (D., ~) = P {b (1)__< K B* (1)/n} < K E {B* (1)3}/n 3 . 

Thus ~ ( D . , 1 ) < o o .  Note that (logn)/~"/2_>l for n__>3, so e-nCJ on D.,2. It 
follows that the excursion interval J starts after time s = e-". Use again indepen- 
dence and scaling to see that P(Dn~2 ) is the probability that b(1)>B*(1)/n and 
b has an excursion below e"/2~/r ' 'B*(1)+d .e  "/2 after time s = l  of duration 
> ~ e"z'. Setting ~(a, n)= a e n/2/~;;+gn en/2, conditioning on B*(1) and using the 
strong Markov property of b at time S(c~(a, n)), this probability is 

oo 

< ~ P"/" {min b(u)<o~(a, n)} q(ot(a, n), ~e"z') v(da), 
0 u>l 

where v(da) is the density of B*(1) and q( . , -)  is defined in Lemma 3.12. Let 
f l"- f l '=2d>O and L=c~(a, n)(ee"z')-~=e-~(a(logn)-a+d,(z')-~). For large n, 
since 

O(L)< K(a+ 2) 4 exp(--(a + 1)-2(logn)2d/C) 

by Lemma 3.12, Lemma 3.3 implies that 

P ( D n ,  2) ~ K ; ~ (a, Y/)(a + 2) 4 exp (-- (a + 1)- 2 (log n) 2 a/C) v (d a). 
0 

Sum this over n>2 ,  estimate the sum by an integral and interchange order 

to see that ~ P(D,,2) is 
n=2 

< c + ~ v (d a)(a + 2) 4 a ~ 2 x -~ (log x) - ~''/2 exp ( -- (a + I) - 2 (log x) 2 a/C) d x. 
0 2 

Let y = (log x)/(a + 1)~/a to see that the inner integral is 

oo 

< ( a +  i) (2-e'')/(2a) f y-l~"/2 exp(_y2d/C) dy. 
0 
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This integral  converges at 0 since f l "<  2 and  clearly converges at ~ since d > 0. 
Consequent ly  the double  integral  is finite. Thus  ~ P ( D . ) <  o% and  the conclus ion 
follows from the Borel-Cantel l i  Lemma.  []  

Acknowledgement. The first author thanks Jim Pitman for several stimulating discussions. 
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