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In Theorem 1.1 of [1] a mistake was made in the s ta tement  of condition (ii). The  
theorem should read as follows. 

THEOREM 1.1. (F  = C or F = ~ )  An n x n matrix X admits an H-polar decompo- 
sition if  and only if all the conditions (i), (ii), and (iii) below are satisfied. 

(i) For each negative eigenvalue ~ of X[*]X the part of the canonical form of {X[*]X, H}  
corresponding to )~ can be presented in the form 

{diag (Ai)~-l, diag (Hi)~n=l}, 

where, for i = 1 , . . . , m ,  

(ii) 

A~ = Jk~ (A) �9 &, (~), H~ = ek, �9 - eke .  

The part of the canonical form of {X[*]X, H} corresponding to the zero eigenvalue 
can be presented in the form 

{diag (Bi)~'=o, diag (Hi)P_o}, 

where Bo = Oko, Ho = Ipo | - I ~  o, Po + no = ko and, for each i = 1 , . . . ,  m, the pair 
{B~, H~} is of one of the following two forms: 

B~ = &, (o) �9 Jk, (o), H~ = qk, �9 -Ok , ,  k~ >_ 1, 

or 

B~ = &,(o) �9 &~_1(o), H~ = ~ ( e k ,  | Qk,-1), 
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(iii) 

with ~i = 4-1, and ki > 1. 
Assume that (ii) holds and denote the corresponding basis in Ker (X[*]X) *~ in which 
this is achieved by 

m l i  {ei,j}i=oj=~ 
where Io = l~o and t~ = 2ki in case Bi is an even size matrix, and t~ = 2ki - ! in case 
Bi is an odd size matrix.  

rrt 14 There is a choice of  basis {ei , j}i=oj=l such that (ii) holds and 

K e r X  = span{ei,1 + ei, ~+1] li = 2ki, i = 1 , . . . ,  m}| 
ko | span{ei,ll Ii = 2ki - 1, i = 1 , . . . , m }  | span{eo,j}j=lo 

The mistake is in the fact that  for both cases in condition (ii) it is stated in Theorem 
1.1 of [1] that  ki > 1; it is essential that  k~ = i is allowed in the first case. Note that,  in par t 
(ii), pairs {Bi, Hi} with Bi = Jl(0) | Jl(0) = O2 and Hi = Q1 | -Q1 = diag(1, -1)  could 
in principle be subsumed under the pair {Bo, Ho}. However, the condition (iii) involving 
the interplay between the basis {ei,j }~-" otj~=l and Ker X necessitates distinguishing between 
{Bo, Ho} and such {Bi, Hi}. 

The mistake has had effect in the statement of Theorem 3.4 of [1]. This should read 
as follows (the proof remains the same as in [1]): 

THEOREM 3.4 Let X be an H-plus  matrix. Then X has an H-polar decomposition i f  
and only i f  the following conditions are satisfied: 

(a) X[*]X is invertible, or 0 E ~r(X[*]X) and there are at least as many linearly 'indepen- 
dent positive eigenvectors corresponding to the zero eigenvalue as there are Jordan 
blocks of  order 2, 

(b) In case 0 E cr(X[*]X), the part of  the canonical form of  {X[*]X, H} corresponding to 
the zero eigenvalue of  X[*]X can be presented in the form 

{ O k • B | 1 7 4 1 7 4 1 7 4 1 7 4  G | 1 7 4 1 7 4 1 7 4 1 7 4  (3.4) 

(o o) ~ 
where G = Ip | - iq (p + q = k ), B = 0 0 ' 0 - 1  

(o 
a n d K  are repeatedm t imes each in ( 3 . 4 ) , C =  0 0 |  \ 1  0 |  

the summands C and L are repeated r t imes each in (3.4), and this f o rm is achieved 
with respect to a basis {eiJ l"~+rji=o j=ll~ (lo = k, li = 2 for  i = 1, .. . , m  and li = 3 for  

i = m + l , . . . , m  + r) in Ker (X[*IX) 2 such that KerX is given by 

span  {eo~,..., eo~} �9 span {e~ + e~,..., e~ + ~} �9 s p a ~  {e~+~ ~,. ~ o, e~+~ ,}. 

(c) X[*]X does not have negative eigenvalues. 
In particular, a strict  H-plus  matrix  has an H-polar  decomposition. 
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Note that the original versions of Theorems i. 1 and 3.4 in [1] are valid if the additional 
assumption that Ker (X[*]X) is H-semidefinite is made, i.e., there do not exist vectors 
x, y ~ Ker (X[*]X) such that [x, x]. [y, y] < 0. 

The correction made in Theorem 3.4 has some impact on the subsequent sections 
of [1]. First of all, the two paragraphs following the proof of Theorem 3.4 are incorrect. 
In fact, if H has exactly one positive eigenvalue and X is an H-plus matrix, X[*]X and 
XX[*] are not necessarily similar, contrary to the claim made in these two paragraphs. A (10 ') (10 0) counterexample is given by the pair of matrices X = % and H = for 

w h i c h X [ , ] X =  (1  _-11) ( 0  00) 1 and XX[*] = Note that in this example X[*] is an 
0 

H-plus matrix as well but neither X nor X[*] admit H-polar decompositions. 
The two paragraphs following Theorem 3.4 of [1] have subsequently been employed 

to prove Proposition 6.3 and Theorem 6.4. Proposition 6.3 is easily corrected and its 
statement should be as follows. 

PROPOSITION 6.3 A matrix M satisfying the Stokes criterion allows an H-polar 
decomposition, unless one of the following two cases occurs: 

(a) All eigenvalues of M[*]M vanish and M[*]M has one Jordan block of order 2, or 
(b) M[*]M = O, and Ker M is NOT a three-dimensional subspace having an H-orthogonal 

basis consisting of one H-neutral vector and two H-negative vectors. 

The original statement of Theorem 6.4 turns out to be correct, although we have 
rephrased part (4) (see below). In its proof one should replace the last two paragraphs, 
since they are based on the two incorrect paragraphs following the proof of Theorem 3.4 
in [1]. For the sake of convenience we now state Theorem 6.4 and give a new proof for the 
part that has to be replaced. We recall that W is the class of finite linear combinations 
with nonnegative coefficients of real H-unitary matrices in the connected component of 
the identity; here H = diag [1, -1,  -1,  -1]. Note that VV is closed (see [3]). 

THEOREM 6.4 Let M be a real 4 • 4-matrix satisfying Ml l  >_ O. Let a be the sign i l  
of the product of the nonzero eigenvalues of M.  Then M E W if and only if one of the 
following four situations occurs: 

(1) M[*]M has the positive eigenvalue A0 corresponding to an H-positive eigenvector and 
a positive and two nonnegative eigenvalues )~1, )~2 and 3,a (with A1 _> ,~2 >_ A3) 
corresponding to H-negative eigenvectors, and v~oo • x / ~  >_ Ix/~2 • crxff~l; 

(2) M[*]M is diagonalizable with one positive and three zero eigenvalues, and a = +1; 
(3) M[*]M has the positive eigenvaIue ~ and the nonnegative eigenvalues # and ~ but 

is not diagonalizable. The eigenveetors corresponding to # and y are H-negative, 
whereas to the double eigenvalue )~ there corresponds one Jordan block of order 2 with 
~he positive sign in the sign characteristic of {M[*]M, H}. Moreover, a = +1, # = v 
and A > tt; 

(4) M[*]M has only zero eigenvalues. The matrix M has at most rank one and I m M  
and Im M [*] are both H-nonnegative. 
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PROOF. 
If M satisfies the stokes criterion and either is invertible or is singular having an 

H-polar decomposition, then the proof given in [I] applies without changes. 
If M satisfies the Stokes criterion and M[*]M is hi!potent, then M is a non-strict 

H-plus matrix. (Observe that every matrix that satisfies the Stokes criterion is H-plus; 
see, e.g., Theorem 2.3 in [2].) Thus [Mu, Mu] >_ 0 for any u E ~ 4  and therefore I m M  
is an H-nonnegative subspace. Since H has only one positive eigenvalue, the rank of M 
must be zero or one. Let us assume it is one. Then M has the form 

M ---[., v]r 

where # and r! are H-nonnegative vectors with positive first entry. We easily compute 

M[*] = [., {] ~7, M[*]M = [-, ~] [(, ~] rl, M M  [*] -- [', (] [~, rt] ~. 

Then the largest eigenvalue of M[*]M equals [~, (] [~/, r/] with corresponding eigenvector ~. 
Hence if both  # and ~ are H-positive vectors, then M admits an H.polar  decomposition 
by Proposit ion 6.3, and the proof is reduced to the case in which the proof in [1] applies. 

We now restrict ourselves to the following three cases in which at least one of ~, r I is 
H-neutral:  

(a) [r C = [~, ~] = 0; 
(b) [~, f] > 0 and It/, ~?] = 0; 
(e) [r r = 0 and [V, ~] > 0. 

Writing ~ = (1, 1, 0, 0) T and 0 = (1, 0, 0, 0) T so that  r is H-neutra l  and 0 is H-positive, 
we first find the H-uni ta ry  matrices U and V in the connected component of the identity 
and the positive numbers c and d such that  ~ = cU# and ~ = dVr in case (a), ~ = cUO 
and ~ = dVr in case (b), and ~ = c u e  and y = dVO in case (c). Such U, V, c and d exist, 
Since multiplication by cU from the left and by dV from the right pertains to a bijeetive 
transformation of W onto itself, it suffices to prove that  the following three matrices belong 
to ]4): 

[ . ,#]0= [10 O 1 ] @  [00 00] 

0 [0 

This is indeed the case. To see this introduce 

X(e)  = L I _ e  2 - 1 - r  @ - 2 r  ' 

Y(e)  = L-I  +e 2 l + e  2 | 2e ' 

[1+ e2 1-r [2 0 20el 
Z(e) = 1 -  e 2 l + e 2 @ 
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Then one checks that 

X(e)[*]X(e) = Y(c)[*]Y(e) 

From this it easily follows that X(e), Y(r and 

lim~4o X ( e ) = [ l  -1-1] 

+ = lim 

lira l ( z (e )  + X(e)) = 
e$0 

The proof is then completed by observing that 

= Z(r = 4~2[. 

Z(e) are in W. Further, we have that 

[10 ;1]| 0 00] 

)42 is a closed set. [] 
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