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Summary.  We study the behavior of a d dimensional Brownian motion in a 
soft repulsive Poissonian potential over long time intervals [0, t]. We introduce 
certain t and configuration dependent scales, which grow almost linearly with t. 
For typical configurations with probability tending to 1 as t goes to oc, the size 
of displacements of the process is bounded above by these scales, (confinement 
effect). The proof involves calculations beyond "leading order". To this end 
we use a coarse grained picture of the environment (method of enlargement 
of obstacles) and of the path (a backbone of excursions between clearings and 
forest parts in the environment). These coarse grained pictures are also used in 
the sequel [11] to the present article, when proving the pinning effect. 
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O. Introduction 

We study in the present article and its sequel [11], the behavior of a canonical 
Brownian motion Z., in dimension d _> 1, under the influence of random soft 
obstacles. These obstacles are given by means of a Poissonian potential which 
is the sum of translates at the points xi of a Poisson cloud, of a non-negative, 
bounded measurable, compactly supported shape function W(.). We also assume 
that W(.) is not a.e. equal to 0. We let Px, x C Nd, stand for the Wiener measure 
starting from x and P for the law of the Poisson cloud with constant intensity 
u > 0, on the space f2 of simple pure point measures on I~ d. We are specifically 
interested in the behavior of the path Z., for large t, under the "quenched" path 
measure on C(R+, IRd): 

/0' } 1 e x p { -  V(Zs,w)ds Po- (0.1) Q"" = s~,~ 
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Here co = ~ i  6x, stands for the typical cloud configuration, V(x ,  co) = ~ W ( x  - 
/ .  

xi) = / W ( x  - y ) c o ( d y )  is the Poissonian potential, and St,~o the normalizing 
, /  

constant. In a slightly formal way Z. under Qt,co, is a Brownian motion feeling 
a time non homogeneous drift: 

{ (0.2) dZs = dfls +--u ( t -  s, Zs)ds, O < s < t , 

Z 0 = 0  

where/3 is a d-dimensional Brownian motion and u is the solution of the random 
parabolic equation: { 1 

Otu = - A u  - V( . ,co)u  
2 

Ut= 0 = 1 .  

Various models of random motion in typical landscapes of random potentials 
can be found in the physical literature of disordered media. We refer for in- 
stance to Nattermann-Renz [5], Krug-Halpin Healy [4] for polymer models in 
columnar disorder, to Zeldovitch-Molchanov-Ruzmaikin-Sokolov [2] for ques- 
tions of intermittency, and on the mathematical side to GLrtner-Molchanov [2], 
Carmona-Molchanov [1], Hanin-Mazel-Shlosman-Sinai [3]. Models with Gaus- 
sian potentials are common but models with potentials bounded below are studied 
as well, see [3] and [4]. Our Poissonian potential should be viewed as an ex- 
ample of a translation invariant potential with independence properties, which is 
bounded from below. In this respect the assumption W > 0 is crucial. 

In our previous work [6], [7], we showed that for typical configurations, the 
particle under Q~,co settles at time t "near points of low local eigenvalue". They 
typically lie at distance "almost t" from the origin and correspond to certain big 
holes or "clearings" in the cloud configuration of size of order const (log t) I/d 

and volume of order const(d, u)(log t). 
The object of the present work mad its sequel [11] is to conduct a more 

detailed study of the path behavior, and in particular of the mechanism through 
which the particle settles down. This last point is intimately connected to a certain 
variational problem which we now motivate by a heuristic argument. If we use 
"an eigenfunction expansion", then 

(0.4) St co = e t (1  zx-V)l(0)"=" ~ qoi(0) < qoi~ 1 > e -x '  
i 

1 A + V and ~oi are the corresponding where )~i _> 0 are the "eigenvalues" of - g  
"eigenfunctions". For large t only ),i "near 0" should matter. The corresponding 
eigenfunctions should be "localized near a point" and exhibit an exponential 
decay "at rate c~". In particular ~i (0) should be viewed in (0.4) as exponentially 
small in the distance from the origin to the point around which qoi is localized 
and < ~i, 1 > should be viewed as a "constant". The "preferred location" 
of the particle at time t should therefore be the site where the eigenfunction 
corresponding to the dominating term in the right member of (0.4) localizes. 
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This location should come as a locus of  minimum of the formal variational 
principle 

(0.5) min(c~ Ixl + t . 

X 

x being the "localization point" corresponding to Ai(x). 

It turns out that the (very) heuristic variational principle (0.5) is not the most 
appropriate to begin a rigorous mathematical investigation, and a suitable refor- 
mulation of  it will only be studied in the sequel [11] of  the present article. 

The object corresponding to the above mentioned heuristic coefficient c~ is 
the 0-th Lyapounov coefficient introduced in [8]. We know from [8] that there 
exists a norm a0( ' )  on N a, such that 2-a.s.: 

(0.6) lira 1 y ~ c , o  tY--~ ] - -  log eo(O,y,co) - so(y)[ = 0 ,  where 

H (y ) C<~ ] 
eO(x , y ,w)  = E x [ e x p { - - f 0  V ( Z s , ~ v ) d s } , H ( y ) <  , 

(0.7) x , y  E •a, ~v C ~ , 

if  H ( y )  stands for the entrance time of Z.  in B(y)  ~f /3(y,  1). It is also shown in 
[8] that s0(-) governs as well the •-a.s. directional exponential decay of  9(0,-,  co) 
if 9(',  ", ~v) stands for the 0-Green function of  - � 8 9  A + V ( . ,  co), and that when W(.) 
is rotationally invariant, o~0(.) is a multiple of  the Euclidean norm. 

Our starting point is a variational principle which turns out to govern the 
scale in which the particle Z.  evolves: 

(0.8) #t = min {u + tA(B~o(0, u))} 
uZ0 

where B,~o(O , u) denotes the open ball in the c~0 norm with center 0, radius u and 
A(B,~o(0 , u)) its principal Dirichlet eigenvalue for - � 8 9  ~ + V. 

From our work [6], we know that P-a.s. 

(0.9) A(B~0(0, u)) ~ ~(d, p) / ( log  u) 2/d, as u --+ ~ , 

see (1.4), (1.6) below. It is easily deduced, see Lemma 1.2, that for typical cloud 
configurations, #t ~ ~(d, u) t(Iog t) -2 /d  and the loci of minima in (0.8) occur in 
a scale which is o( t / ( l og  t) 2/~) but grows faster than t 7, for 7 < 1, as t tends to 
infinity. We define in (1.8) a family of  scales Sn(t  ), ~ c (0, 1], decreasing with 
~7 and approximating from above the loci of  minima in (0.8): 

So(t  ) = inf{v _> 0, flu + tA(B~0(0 , u)) _> I~t, for all u _> v} . 

Much of the work in the present article is in a sense preparatory to the deriva- 
tion of the "pinning effect" in [11]. However  we prove here in Theorem 4.1 a 
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"confinement result" which shows that for typical configurations, with Qt,~ prob- 
ability tending to 1 as t tends to infinity the path Z. does not leave Bo0(0, Sn(t)) 
(with the notations of (0.8)) up to time t, when ~/C (0, 1). 

One substantial difficulty in the derivation of the confinement result stems 
from the fact that the scales Sn(t) are negligible in comparison with t(log t) -2/~ 
which governs the leading behavior of - log St,u, and of #t in (0.8). This forces 
us to conduct estimates "beyond leading order". 

Let us finally explain how the article is organized. 

Section I introduces and derives some first properties of the various random 
spatial scales which are relevant to our study. 

In Sect. II, we present lowerbounds on St,~ and similar expressions, see 
Lemma 2.1 and Theorem 2.2. In contrast to [7], we do not seek to express 
our results in terms of deterministic rates. This turns out to be more convenient 
when we later take advantage of cancellations. 

Section III deals in essence with upperbounds, and is the backbone in the con- 
struction of the present article. These upperbounds rely on both a coarse grained 
picture of the Poissonian cloud and of the Brownian path. The coarse grained 
picture of the cloud stems from the "method of enlargement of obstacles", see [6], 
[7], and produces "clearings" and "forest" areas in the cloud. The coarse grained 
picture of the path uses a finite covering of path space of low enough combina- 
torial complexity which keeps track of the skeleton of excursions of the process 
in and out of the clearings. Our main results are Theorem 3.2 and Lemma 3.3. 
The main novelty when for instance compared to [9], is that exponential bounds 
are derived with exponential precision finer than the principal rate t(log t) -2/d. 
As mentioned above this is forced upon us because we are trying to track the 
trajectory in scales which are o(t(log t)-2/d). 

In Sect. IV, we combine upperbounds of Sect. III and lowerbounds of Sect. II 
and derive the above mentioned confinement property. 

Section V investigates more closely the behavior of the various spatial scales 
in the one dimensional situation. In particular, we show in Theorem 5.1 that 
for large t with high ]P-probability these various scales are "comparable" to 
t /( log t) 3. Similar results in higher dimension would very much be of interest. 
Even the correct scale replacing t /( log t) 3 when d > 1, is unclear. On this last 
issue see however [4]. 

I. The spatial scales 

The goal of this section is to introduce the collection of spatial scales in terms of 
which the confinement result (see section IV) will later be expressed. We keep 
here the notations from the introduction. Throughout the sequel for A a closed 
subset of R ~, 

HA = inf{s >_ O, Zs E A } ,  
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denotes the entrance time of Z.  in A, so that H ( y )  = H~(y,1 ) in the notations of  
(0.7). For U an open subset of  Nd, 

Tv=in f { s_> O,Z~ ~ U } ,  

denotes the exit time of Z.  from U. We let 

(1.1) a = a(W)  > O, 

be the smallest number such that W(-) = 0 outside/~(0, a). 
We will need the following result. It was shown in [10] (0.6), when d > 2, 

and when d = 1 the same claim follows from Theorem 2.6 of  [8] and the ergodic 
theorem, that one has a "non degenerate velocity" to reach B(y) (= /} (y ,  1), see 

/0 / weighted measure e0(0, y, a0 -1 exp ~k- V(Z~, cJ)ds P0: (0.7)) under the there 

is a K(d,  u, W) ~ (1, oo) such that P-a.s.: 

1 
[H(y)  exp a0 

(1.2) < K(d,  u, W), 

where we recall that H ( y )  = H~(y). 
Let us also recall some results on the Poissonian potential and on the principal 

Dirichlet eigenvalues A(U) o f - � 8 9  A + V in large boxes U = ( - t ,  t) d. From [6], 
we know that P-a.s.: 

(1.3) sup V(.,cv) = o(log t), as t ---+ 0% and 
(-t,~/ 

(1.4) ~ ( ( - - t ,  t )  d) ~ a(d,  u) / ( log t) 2/d, as t --+ ~ ,  provided 

(1.5) g(d, u) = Ad/R 2, with Ro = (d/~'Odd) lid , 

1 A in B(0, l) and Wd for if Ad stands for the principal Dirichlet eigenvalue of - ~  
the volume IB(0, 1)t of  B(0, 1). 

We now define Q1 to be a set of full measure where (0.6) (the "shape the- 
orem"), (1.2) - (1.4) hold. The family of scales we want to introduce involves 
certain variational problems where the principal Dirichlet eigenvalue A(Bc~o(0, u)) 
of  - � 8 9  A + V in the open ball of  radius u centered at 0 for the oz0(-) norm (see 
(0.6)) plays an important role. The following lemma will be useful: 

L e m m a  1.1: ~(Ba0(0, u)) is a measurable function of w, continuous decreasing 
in u E (0, oo), tending to +oo as u --+ O. For cv E s 

(1.6) s u)) ~ O(d, u)(log U) -2/d, a s  u -~ vc . 
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Proof." The first part of  the statement is fairly standard, in fact very much in the 
same vein as Lemma 1.2 of  [7]. As for (1.6), observe that for a suitable constant 
C > 1 :  

C '  C C_ B~0(0 ,u) C ( - C u ,  Cu) d, for u > 0 .  

The claim (1.6) now follows from (1.4). [] 

Our basic variational formula comes with the definition of #t via: for t > 0, co E 
;2, 

#t = inf .  {u + tA(B~o(O , u))} E (0, ec) 
(1.7) u>0 

= t inf .  { u - 1  + A(B~0(0, u))} " 
u>0 t 

The second formula shows that # , / t  is a finite concave, and therefore continuous, 
function of  l i t .  

We now want to introduce a family of scales which approximates from above 
the loci of minima of  u --+ u + t),(B~0(0 , u)). For ~7 E (0, 1], t > 0, co E /2, we 
define the "upper scales": 

(1.8) S~(t,  w) = inf{v > 0; ~?u + tA(B~0(0 , u)) _>/~t, for all u >_ v} . 

It is immediate to argue that Sn(t ,  ~o) E (0, ec) and that it is a decreasing function 
of  ~7. We also introduce one "lower scale": 

Sl(t ,  co) = inf{u > O, u + tA(B~o(O, u)) <<_ Izt} . (1.9) 

Obviously: 

(1.10) s l ( t , w )  < S,(u, co), f o r t  E (0, 11, t > 0, co e ~ .  

We record some elementary properties of  these quantities. 

L e m m a  1.2: When  co ~ [21: 

(1.11) #t ~ 8(d, u) t(log t) -2 /a ,  as t -+ cxD, 

(1.12) for H E (0, 1], Sw(t,o:) -- o ( t / ( l o g  t )  2/d) as t --+ 00, and for 7 E (0, 1),  

(1.13) t "Y = O(Sl(t,co)), as t --+ ~ . 

Proof" Observe that (1.1 1) is an elementary consequence of  (1.6), (1.7). Observe 
also that 

(1.14) r 1S~(t, co) + tA(Ba0(0, Sn(t ,  co))) = t~t , 

and li---m Sn(t  , co)/t(log t)  -2 /d  > 0, would contradict (1.6), (1.11). This proves 
(1.12). Analogously 

(1.15) Sl (t, co) + t/k(Bao(O, sl (t, co))) = I~t , 
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which together with (1.6), (1.11) forces l ims~(t ,w)t  -~ > I, when 7 C (0, 1), 
and therefore (1.13). L'] 

As a result of (1.14), whenever co E S?l, and 0 < r / <  rf < 1, 

(1.16) ~S~(t ,w)  >>_ ~7'S~,(t,aO, for t > 0 .  

In particular ST(t , ~) - S~7,(t , w) ~ oo, as t ~ c~. 
Finally we introduce another scale which roughly describes the mutual dis- 

tance between points of low local eigenvalues. This last scale will play an im- 
portant role in the study of "pinning of trajectories" in the sequel of the present 
paper (see [11], section II). We define the local eigenvalue at a point via: 

(1.17) At(x,w) = A(B(x, t l /3)) ,  x E R d, t > O, w 6 F2. 

The scale controlling the "mutual distance between points of low local eigenval- 
ues" is defined as: 

D,(w) = inf{[x - x ' l ;  x , x ' 6  B~o(O, S�89 , Ix - x '  I > 3t  1/3 , 
(1.18) 

L(x, ~), L(x', ~) _< (~ +s�89 

Observe that for ~ E S21, (#t + S�89 ~ e(d, u)(log t) -2/d. It follows from 
the method of enlargement of obstacles, see the proof of Theorem 3.1 of [7], 
especially (3.20) - (3.22) that there exist a set Y22 C Y21 of full F-measure such 
that: 

(1.19) for cd E f22, for all 7 r (0, 1), t "r = o(Dt(w)).  

II. Lower bounds 

We now develop lower bounds on the norming constant St,~ (see (0.1)). In 
contrast to the strategy used in [7], section II, we do not try here to express our 
lower bounds in terms of "deterministic functions". 

Throughout this section w is a fixed element of ~2, and the dependence on 
w in the notation is dropped whenever this causes no confusion. 

Let B stand for some bounded open connected subset of R d and ~ be the 
1 A + V  i n B  with unique non negative principal Dirichlet eigenfunction of - ~  

unit LZ-norm. For s > O, x, y C Rd: 

~(x) = f rB(s ,x ,y )  ~?(y)dy , (2.1) exp{-A(B)s} 

where for U an open subset of R a r v ( s , x , y ) ,  s > O,x ,y  E S~ d is defined as: 

(y x)  2 
r v ( s , x , y )  = (27rs) -a/2 exp 

(2.2) vs 

E ~ , , [ e •  fo V ( Z , , w ) d u } ,  Tv > s I , 
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provided ES,y stands for the Brownian bridge expectation in time s from x to y 
(and ru(s ,x ,y)  = 0 if x or y does not belong to U). In other words, r~ is the 
kernel of e t (1 zs-v) with Dirichlet conditions on U. 

Let B stand for the xfd neighborhood B. If we cover B by disjoint boxes 
q + [0, 1) d, q 6 Zd, it is easy to argue that for some y 6 B, 

(2.3) [ g)2(z)d z > 1 
ay+ (--1,1) d -- 2 IBI 

In fact the factor �89 is unnecessary here, but is present in view of applications 
given in section I of the sequel to the present article [11]. We begin with a general 
lemma: 

L e m m a  2.1: There exists c(d) > O, such that for x E IR a, B a bounded connected 
open set of R d, and y satisfying (2.3), we have for t > 2: 

fot E.[exp{- V(Z.,co)ds}] > c(d)~ exp{-A(B)t-2 sup 
- [B[ y+(-2,2) d 

�9 V(Zs,w)ds},  H(y) < . 

V(.,~)} 

Proof." The left hand side of (2.4) is bigger than (integrate only over {H(y) < t}): 

V(Z~,w)ds}, H(y) < t ,  Ez,~,~[exp{ - V(Z~,w)ds}l ] , 

and letting C stand for the "box" y + ( - 1 ,  1) d D B(y),  

Ez,~ [ exp { - fo' V (Z~,,w)ds }] >- 

Ez..,[Z. EC, exp{- fo'V(Z.,~)ds} ft.(t-2,Z.,z)dz]. 
Observe that 

0 < ~o(z) = 

(2.6) < 

< 

f 
exp{/~(B)} / rs(1,z,z') ~(z')dz' 

, i  

\ 1 / 2 /  f 
exp{/~(B)} ( f  r2(1,z,zt)dz t) ~J g)2dzt)l/2 
exp{A(B)} , 

where we used that r2(1,-, .) < rs(1,. ,-)  (see (2.2)). Consequently, the right 
hand side of (2.5) is bigger than: 
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exp{-)~(B)}Eze~.~[Z2EC, e x p { -  foZV(Z~,c~)ds} 

- 

= exp{- .k(B)( t  - 1)} Ez~[Z2 E C, e x p { -  V(Z~,~)ds ~(z2)J 

> exp{-A(B)( t  - 1)} inf ra~(2,., .) [ ~(z)dz Q C• Jc 

Observe now that inf r~a(2, . , . )  _> 2 e x p { - 2  sup V(.,cJ)} �9 c(d), if 
C x C y+(_2,2)8 

] 
= - inf r(-2.2)d,v-0 (2, . ,-)  > 0 (2.7) c(d) 2 (-1,1)d x(-1,1)~ ' ' 

with obvious notations. Using (2.6) once more, the right hand side of  (2.5) is 
bigger than: 

2c(d) exp ( - X(B) t - 2 sup  
k y+(--2,2) a 

V( . ,  u3)} Jfc~2(z)dz 
> c(d) - e x p { -  2 y+(-2,2  snp 

using (2.3). 
If we insert this estimate in our first lower bound on the left member of (2.4), 

we obtain our claim. [] 

We now give an application of the previous lemma to the derivation of a 
lower bound on St,~. To this end we introduce 

(2.8) ~p(y,c~) EoIH(y)<2KIy[, exp{  fH(y)  }] = - V(Z,, co)ds /eo(O,y, ~') , 
.JO 

where K(d, u, W) is the constant appearing in (1.2). It is easily seen that 4( ' ,  a0 
is bounded away from 0 on compact sets of R d and since w E 122, by (1.2): 

i 
(2.9) lim ~)(y, cJ) > - . 

y--+oo 2 

Theorem 2.2: Assume cJ ~ J?2, for large t, for any bounded connected open set 
B included in B(O, t/2K) (K the constant from (1.2)) and y satisfying (2.3), 

(2.10) St .j " c(d) e x p { - A ( B ) t  - log t} eo(O,y,w)~,(y,co). 

Proof" Observe that y E B C B(0, t/2K), and therefore H(y )  < 2K lYl implies 
H(y )  < t. Consequently: 

eo(O,y,cJ)~(y,cJ) <_ E0 [H(y)  < t, exp { - V(Z~,cJ)ds . 
J0  



10 A.-S. Sznitman 

Our claim (2.10) now follows from (2.4) and (1.3). [] 

Remark 2.3." One can combine (0.6), (1.4), (2.9) and (2.10) to show that for 
co E g22, 

(2.11) lim (log t) 2/a log St,~ >_ -P(d,  v) 
t--~oo t 

and if one also uses the upper bound (1.17) of [7] one easily sees that for co E f22, 

lim (log t) 2/d 
log St,~o = -~ (d ,  v) . 

t -§ t 

This was shown to be P-a.s. the case in [6]. [] 

III. Partitioning of the path space 

The goal of this section is to introduce for each ~/ E [�89 1), /3 E (0, 1), t > 
0, and co in a set of full P-measure a suitable covering ~,~, t ,~  of the path 
space C(R+, Rd). This covering will on the one hand cover "most of the space 
C ( ~ + , ~ )  ' '  as far as the measure Qt,~ is concerned. On the other hand the 
covering will not have too high complexity, in the sense that the number of 
elements of the covering will be exp{o(Sl(t, Lv))) for large t. 

We shall also derive certain uniform upper bounds on terms like 

exp  
for G an arbitrary element of the covering, see Theorem 3.2 below. This together 
with the lower bounds on St,~ from Theorem 2.2 will provide uniform upper 
bounds on quantities like Qt,~(G), G E ~,/~,t,~. 

As a consequence of the "low complexity" of the family ~,~, t ,~  it will 
follow that the union of any subcollection of G ' s  for which Qt,~(G) is known 
to have a uniform decay at exponential rate Sl(t, co) has Qt,~-probability tending 
to 0 as t tends to infinity. 

The construction of this covering will involve on the one hand a suitable 
coarse grained picture of the cloud of obstacles. This picture stems from the 
method of enlargement of obstacles and singles out certain "big holes" in the 
cloud, called the clearings and "dense parts" called the "forest". The typical scale 
of the clearings will be (log t) 1/a. 

On the other hand we shall construct a suitable coarse grained picture of the 
excursions of the process Z. in and out of the clearings. 

The fact that we aim at working with an increased precision (exp{o(Sl(t))}) 
will force us to define excursions in a new way, departing for instance from our 
work in [9], where the precision was only exp{o(t/(log t)2/d)}. 

We first recall notations concerning "clearings" and "forest". We define the 
boxes Cn,m, n > 1, m C Z a via 
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(3.2) Cn, m = {z ~ ]~d mi(log 2n) 1/d _< zi < (mi + 1)(log 2n) l/d, i = 1, ,,.,d} . 

The coarse grained description of the cloud will depend on three parameters 
r > 0, b > a(W), 0 < 6 < 1, which will be chosen below in term of ~7 E [�89 1). 
The integer n is viewed as a function of t _> 2, via: 

(3.3) 2 n(t) < t < 2 n(O+l . 

Before explaining how r ,b ,  6 are picked for a given ~/, we fist introduce the 
coarse grained picture of the cloud corresponding to r, b, & 

For a given ~ = ~ ~x~ ~ D, we say that xi E Cn,m is good at level n if for 
J 

all balls C = B(xi,  10 e+l b), with 0 _< g and 10 e+l b < �89 (log 2n) x/d, 

( U > 
x) C Cn ,m 

The parameter b describes the size of the enlarged obstacles, whereas ~ deter- 
mines whether a point is "good" in the sense that it is well surrounded in scales 
going from unit up to (log 2n) l/d, in the sense of (3.4). We let Goodn,m stand 
for the set of good points in Cn,m and Gn = U Goodn,m. 

mE~ d 

We then chop identically each segment [mi(log 2n) Ua, (mi + 1)(log 2~) l/d] 

in at most [ 4  (log 2n) l/d] + 1 segments of length ~ except may be for the 
"last one". 

The third parameter r > 0, enables to define forest boxes and clearing boxes. 
To this end we introduce the event ~g~,m, "there is a cleating of size r(1og 2~) 1/d 
in the box C,,m" via 

(3.5) = c O, 10o, 1 _> 2 1B(0, r(log 2")l/d)l}, 

provided U,,m denotes the open subset of C,.m obtained by taking the comple- 
ment in the interior of Cn,m of closed subboxes which receive a good point of 
Cn,m. We then introduce ~ ( ~ )  the closed subset of R ~, union of the C,,~, 
m C Z d, where "there is a clearing of size r(log 2~)1/d": 

(3.6) l~,(~)(z) = Z 1~,, (z) lcl,,,,,(oJ). 
m 

Dropping the subscript n, we let ~/~1 stand for the open set of points in R d at 
distance strictly less than (log 2~) 1/d from ~ ,  if ~ is empty, so is , ~ a  

Let us recall some results from [6], Lemma 2.2, Proposition 2.3, which yield 
some control over the size of clearings. Define for r > 0, b > a, 0 < 6 < 1, 

(3.7) c~ = (u 2 -d  IB(O, r)l - u6 - 2 d log 2(~-d /b)d) /Zd  , 

and when c~ > 0, 

(3,8) m0 = [c~ -1] + 2 .  
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When a > O, P-a.s. 

there exist n0(co) such that for n _> n0(co), for any m E [ - 2 "  - 1,2"] d, 

among the C,,,,,,, with sup Im~ - m ' l  de f lira - -  m ' l l  --< 2 ~ - x ,  there are 
i 

(3.9) at most m0 clearing boxes, and if C,,,m is a cleating box, 

m E [ - 2  ~ - 1, 2"]`/, the connected component  of  ~/~1 containing C,,m 

is included in Vn, m de2 ( U Chum). 
IIm'--m II <3m0 

Moreover,  f rom Lemma  3.2 of  [7], we know that for r,  b, g satisfying o~ > 0, 
P-a.s. for any 7 E (0, 1] A Q, 

for large n, for m E [ -2"~r ,2" 'q  ̀ /, 
(3.10) 

[~,,,,[ <_ 1_ [Td +No(u~5 + 2 ̀ / log 2 (v/d/b)`/)]  (log 2" ) .  
l/ 

for large n, for m,m'  E [ - 2  n - 1,2nl d, lira - m' l [  ~ 2 "'r and 

(3.11) V,,m[-qVn,rn,=~), [~,,,,l+l~,,,,,l<_![d(l+,.,/)+2go(u~5 zl 
+2 d log 2 (v/-d/b)a)] (log 2" ) ,  

provided No = (6rn0 + 1)`/, and ~ , , m  denotes the complement  in V,,m of closed 
subboxes of  C,,,m,, [[rn' - rn[I <__ 3m0 which receive a good point of  C,,m,. 

The point of  the construction we have just explained is that when n is large, 
it provides good lower bounds on ~(O),  for O an open subset of UmE[_2.,2n_l]d 

1 C,,,m in terms of the principal Dirichlet eigenvalue of - ~  A in a ball having 

volume equal to the maximal I~dZ,,ml, m E [ - 2 "  - 1, 2"]`/, such that V,,m N O n 
~ g l  r 0. For instance see (3.11), (3.19) of [7]. 

We define the open set 

(3.12) ~.~'~ = ( - 2 " ( l o g  2") l/d, 2n(log 2")1/`/) ̀ / and ~ =  2 o~-. 

To control excursions of the process, we recall that from Lemma 1.3 of  [9], there 
exist positive constants cl(d, u, W) E (0, 1), c2(d, u, W) such that P-a.s. 

for large n, s u p  E~ [exp { - V (Z~, co)ds _< e x p { - c l v }  , (3.13) 
x E.~'~ 

1. 

as soon as v _> c2(log 2"), with the notation: 

(3.14) Tv = inf{s >_ 0, IZs - Z0l _> v } .  

We now define ~23 as a set of  full P-measure on which (3.9), (3.10), (3.11), (3.13) 
hold for all rationals r > 0, b > a(W),  0 < 6 < 1, with a > 0. 
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We now explain how r,  b, 6 are picked for each ~ E [�89 , t). For each such 
given r/, we choose r > 0, b > a(W),  0 < 6 < 1, rationals satisfying c~ > 0, and 

(3.15) for co E f23 and large t, AG-~6 c) _> 2 g(d, v ) / { ( l  - ~?)(log t) 2/a } ,  

(3.16) 

for co E f23, e > 0, when t is large for any open sets O1, 02 C_ 3,'n~, 

with diam (O1 U 02) _< 3t  3/4 and dist (O1 N ~ g j ,  O~ A ~ 1 )  

> (log t) 1+r A(O1) < (16V/s ,~(d, u)(log t) -2/d implies 
_ _ ~ 1 5  j 

A(02) _> c3(d) A(OA), 

where c3(d) is some dimension dependent constant belonging to (1, ec). 

(3.17) 

for co E X?3, e > 0, when t is large if O1 and 02 are open subsets 

of  ( - 2 t , 2 t )  a such that dist (~gl  A O1, ._/gl fq 02) _> (log t) TM, 

diam (Os) < t ~/3, and A(Oi) < (tr~2/d ?(d,  u)(log t) -2/~, i = 1 2, 
then dist (O1,02) _> t 1/2. 

Let us give here a word of comment  on (3.15) - (3.17), which are applications 
of  the method of  enlargement of  obstacles. 

In fact the estimate (3.15) can be realized uniformly in cv E 22. It fol- 
lows for instance from (A.12) of  [6] where one takes ~ = I~ a and M > 
2e(d, u ) / ( l  - 7]). Heuristically it corresponds to the fact that when x E ~-g~, 
the ball B(x,  2r(log 2~) l/d) has a non vanishing fraction of its volume covered 
by subboxes receiving a good point and the process has a positive chance of 
being destroyed before moving to distance r(log 2~) 1/d when its starts in a box 
receiving a good point. 

As for (3.16) it is proven basically as (3.26) of  [7]. Heuristically it comes 
from the fact that when co E f23, for large n we can find some Vn,n, intersecting 
0 t  ~ ~ 1  such that 

I ~ , m l " _ > "  t2 d_ l o g 2  n .  
16 v 

and by (3.11) for all m '  with V,~,,,,, A 02 N, /g l  r ~), 

]~dd~,,~,["_<" 1+  - ( l o g 2 " ) = - -  - ( l og2  ~) 
4 u 16 u 

and now the method of enlargement of  obstacles forces 

A(O2) "_>" Aa �9 ~ u - log 2 n . 

In fact we can pick here c3(d) E (1, ( ~ 2 / d ~  ,13~ ~. The estimate (3.17) is a simple 
consequence of  (3.16). 

Our next objective is to describe the excursions of  the process Z.  in and out of  
the clearings. Indeed the coarse grained picture of  the path that we are soon going 
to consider will keep track of a skeleton of such excursions. We aim at producing 
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uniform estimates on Qt,a~(G), G c ~2 (the covering), which detect exponential 
decays with a precision of order Sl(t). This forces us to pick a neighborhood 
of ~/~ of size A(t,w) much larger than (log 2~) lie (see (3.18) below), when 
defining excursions in and out of . /& This departs from our choice in [9], and 
reduces the complexity of excursions to be considered (see the constraint on Nt 
in the set E defined after (3.28)). 

From now on for the rest of section III we pick a fixed w ~ s ~] E [�89 1) and 
/3 C (0, 1). By our previous discussion ~ determines the value of the parameters 
r, b, 6 so that (3.15) - (3.17) hold. Our size of neighborhood is 

(3.18) A(t,  w) = t (log t) -z/a . (log t)l+~/Sl(t) 

Since w is fixed, it will usually be dropped from the notations. From (1.12), 
(1.13) we know that for any p > 0: 

(3.19) At = o(t p) and log t = o(At) as t ~ o e .  

We now introduce 

(3.20) ~ =  the At-open neighborhood of ~ .  

It is important for the sequel to control the size of the connected components of 

~/~, very much in the same spirit as (3.9). To this end we have 

L e m m a  3.1: For w E J23, ~7 E [�89 1), /3 E (0, 1), for large enough t, whenever 

C~,m C_ ~ and dist (C~,m, ~ )  <- At, the connected component of ~ containing 
Cn,m is included in 

(3.21) Vn, ~ =  ( U Cn,m)O~ provided 
Hm'-mll<M(t,w) 

(3.22) Mt = ([2 At(log 2n) - l /d ]  + 2) m0 

(see (3.8)for the definition of too). 

Proof." The proof is quite similar to that of Lemma 2.3 of [6] which yields (3.9) 
here. Pick n large enough so that 

2 nc~-I > Mt + z~t 

where c~ defined in (3.7) is positive by our choice in (3.15) - (3.17). Then define 

Wn,m = U C.,m' 
IIm'-mll<_[2"'~-l-At] 

and consider the connected component of  . ~  N W~,m containing C,,m. Any point 

in ~/~fqWn,m lies within distance A t of some clearing box C~,m, with Jim ~ - m  II <- 
2 nc~-l, provided n is large. 
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By (3.9), for large n there are at most m0 such boxes. Therefore the projection 

of the connected component  of  ~7~ A W,,m containing C~,m on each coordinate 
axis is a segment of  length at most (2 At + (log 2n) l/d) m0 which also contains 

the projection of C~,m. 

It follows that the connected component  of  ~ A W~,m containingC, , , ,  does 

not intersect OWn,,~, and therefore coincides with the component of ~/~ containing 

Cn,m. It now follows that this component  is included in Vn'm" [] 

A._.nn important consequence of the lemma is that for large t, any component 

of  .7~ intersecting ~ has diameter smaller than: 

(3.23) v~ (2Mt  + 1)(log 2n) 1/d < c4(d, 11, W,  rl) At . 

We are now ready to introduce the excursions of  the process Z.  between ~-~ and 

~/~c. We let 0t, t _> 0, stand for the canonical shift on C(•+, Rd), and define 

(3.24) 

R1 

D1 

Rk+l 

Dk+l 

= i n f { u > 0 ,  Z , E ~ } _ < o o ,  

= inf{u _> R1, Z, ~ . /~} _< 0% and by induction for k _> 1 

= R~ o ODk + Dk, k >_ 1 , 

= D l o O o k + D k ,  k_> 1,  so that 

0 <_ R1 <_ DI <_ R2 < ... < Rk <_ Dk <_ ... <_ 00, and all these inequalities, 
with the exception may be of the first one, are strict if  the left member  of  the 
inequality is finite. We then define 

(3.25) Nt = ~ l{Ri <_ t } ,  
i>l 

which measures in some sense the number of  excursions between ~7~ and ~ c  
up to time t. To control displacements at distance t% we also introduce 

g 1 

(3.26) 
Hi+l 

= Tt~ (see (3.14) for the notation), and for i > l 

= H 1 o 0,q~ + H  i , as well as 

(3.27) It = ~ l (Hi  < t} , 
i>1 

which measures the number of  successive displacements at distance t ~ performed 
up to time t. We define cs(d, u, W)  via: 

(3.28) c5 ci = 2e(d ,  u) (see (3.13) for the definition of cl), 

and the event 

E = {To~7 > t, 1 < Art _< c5 Sl(t)(log t) - I - ~ ,  It < [ t l -~ ]}  . 
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As we will shortly see, E carries most of  the mass of  Qt,~ and we will cover E 
by a family ~ of events of  complexity exp {o (S l ( t ) ) }  as t --+ c~. We now come 
to the description of the covering ~ ,~ , t ,~ .  When this causes no ambiguity, we 
will write ~ .  We define for i > 1: 

(3.29) 
R/- = [Ri], R ~ - = [ R i ] + I ,  

D/-  = [Di], D + = [ D i ] + l .  

The coUection ~ consists of  two types of  events, depending on whether the 
time t occurs during an interval [Dk, Rk+l) (first type) or [R~, Dk) (second type). 
Events G of the first type have the form 

G = {RN+I A T ~  n > t >_ DN, ZR, C B(xl),  ZD~ ~ B(yl)  , ..., 

ZRN C B(XN), ZDN E B(yN),  Zt E B(XN+I), R 1 = rl,  D ~  = dl, ... 

R u = ru,  D N = dN }, where 

(3.30) 1 _< N _< c5 Sl(t)(log t) -1-;~ , 

(3.31) 1 ~dA57nn~ fo r I < i < N + I ,  I < _ j < N  x i , y j  ~ ~ _ , 

(3.32) 
for 1 < i < N,  B(xi)  intersects ~/~, B(yi)  intersects the connected 

component  of  ~/~ containing B (xi), 

(3.33) 
the number of  distinct connected components of  ~ containing some 

B(xi) ,  is smaller than m0 [ t l -~] ,  

(3.34) 0 ~ rl < d t  <_ ... <_ rN <_ dN <_ t are integers. 

In close analogy, events of  the second type have the form: 

G = {DN A T:~, > t > RN, ZR1 C B(Xl), ZDI E B(yl)  , ..., ZRN C B(XN) , 

(3.35) R F = r l ,  D ~  = d l , . . . , R  N = r N }  , 

and now the parameters N ,  Xl , Yl , ..., XN , YN , rl , dl , ..., d u - 1 ,  rN , satisfy entirely 
analogous constraints to (3.30) - (3.34), with obvious modifications. 

The above defined events G keep track of a coarse grained information on 
the structure of  excursions of  the path Z.  between clearings and forest. 

To each above defined element G of the covering ~ ,  we associate its "cost" 
defined for G of the first type through: 
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(3.36) 

cost(G) = 
N 

- l o g  eo(O, xl)  V (Af 70) + Z a(yk,xk+~) V (h i r k )  
k=l 

N 

+ ~ t~(~(~(x~))/~ 1), 
k=l 

where we used the notations: 
Af = 2g(d,  u)/{(1 - r/)(log t) 2/d} ( f  stands for forest, see (3.15)), ~ ( x )  when 

B(x)  N u ~  r ~, is the component of ~ containing B(x)  

(3.37) a ( z , z ' , ~ )  = - inf log e0(x ,z ' .~) ,  z , z '  C ~d 
xCB(z) 

~-k = (rk+~ -- dk -- l)+, for l < _ k < N ,  
(3.38) 

7-N = ( t - - d N - - 1 ) + ,  To=r1,  and 

(3.39) t~ = (dk -- rk --1)+, 1 < k < N .  

Analogously when G is of the second type we define 

(3.40) 

N - 1  

cost(G) = - log eo(O,x) V (A/~-0) + Z a(yk,xk+l) V (Ay Tk) 
k=l 

N 

+ ~ tk(~(~(xk))/~ 1) 
k=l 

the only difference being that now in the definition of tu, in (3.39), dN is to be 
replaced by t. In other words, tu = (t -- ru -- 1)+ in (3.40). 

To unify notations we also set rN = 0, for G of  the second type. 
Since (3.30) holds, the ~-k, 0 < k < N ,  tk, 1 < k < N ,  always satisfy 

(3.41) 
N N 

t - 2csS l ( t ) ( log  t) - 1 - ~  - 2 < ~ 7 " i  + Z t k  < t .  
0 1 

It is may be useful to mention that condition (3.33) plays an important role in 
making cost (G) a useful quantity. The true implications of (3.33) will become 
apparent in Lemma 3.3 below. The main object of  our rather lengthy construction 
is 

Theorem 3.2: For ~ E ~23, ~7 ~ [�89 1),/3 E (0, 1), 

(3.42) lira (log t) 2/d log Qt,~(E c) < 0 ,  
t ---+e~ t 

(3.43) for  large enough t, E C U G and I ~ l  = exp{o(Sl( t ) )}  as t --+ cx~, 
G E ~  
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(3.44) 

lira Sl(t) -1 
t ----+ O~ 

G ~  

Proof." We begin with (3.42). From standard Brownian estimates and (2.11), we 
know that lim (log t) 2/d t -1 log Qt,~(T.7, _< t) < 0. From the strong Markov 

property and (3.13), for large t: 

J0' Eo[T~ > t ,  Nt >_csS l ( t ) ( l og t ) - l - r  - V(Z~,w)ds <_ 

[RM < T~, exp { - c~)ds , with M = [cs Sl(t)(log t) -1-~] E0 

_< exp{-Cl(M - 1) At} , 

since At >_ c2(log 2n), and ZD~ and ZR~+~ lie at distance > At for i > 1. Observe 
now that 

Cl c5 Sl(t)(log t) -1-'~ At = 2 0(d, u) t(log t) -2/d . 

It now easily follows from the previous upper bound and the asymptotic behavior 
of the normalizing constant St,~ that 

lira (log t) 2/d log Qt,~(T~ > t, Nt >_ c5 Sl(t)(log t) -1-;~) < 0 .  
t - ~  t 

By similar arguments, see also (1.32) of [9]: 

lim (log t) z/d log Qt,~(T~ > t, It >~ [tl-~]) < 0 .  
t - - - + ~  t 

The last observation is that for large t: 

Q,,~(N, = 0) 
{ 2~(d, u) t } 

<Qt,~(T~c > t ) < S t , ~  x c ( d ) ( l + t  'l) exp 1 - ~ /  (logt) 2/6 , 

by (3.15) and (1.17) of [7] (with B = 1). This finishes the proof of (3.42). 
Let us now prove (3.43). The argument is somewhat in the spirit of [9], see 

after (1.43). Let us first bound [.~l- The number of points in @a Gd A ~ is 

no larger than c(d)2 ~ log 2" < d(d)  t~(log t), and for fixed N between 1 and 
c5 $1 (t)(log t ) -  1-;~ the number of possibilities for xl, yl, ..., xN, yN (and possibly 
XN+l) is no larger than: 

{ct(d) td(1og t)} 2N+l ~ exp{3c 5 Sx(t)(log t) -1-3 log{c'(d)td(log t)}} 

= exp{o(Sl(t))}.  

Similarly the number of possibilities for rl, dl, ..., riv, dN is no larger than 
(t + 1) 2N < exp{2c5 Sl(t)(log t) -1-~ log(1 + t)} = exp{o(Sl(t))}. 
It then easily follows that ]~c~ I = exp{o(Sl(t))}. 
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Let us now explain why for large t, E C U~ G. For large t the requirement 
TN > t, It < It 1-~] implies by (3.9) that the sequence ZRj, 1 < j <_ Nt, does 
not meet more than mo[t 1-~] distinct cleating boxes C,,~. Once this remark is 
made this easily yields that E is covered by the union of sets G of the first type 
and second type which in particular fulfill (3.33). 

Let us now prove (3.44). We will restrict the estimates to the case of events G 
of the first type. The case of events of the second type being entirely analogous. 
For any such G as in (3.36) 

r 

Eo[T.~2 A t  >--DN~ Zgl C B(xl), ZD1 E B(Yl),...,ZRN E B(XN) , 

z ~  ~ B(yN) , 

(3 D45) /o 1 R~ = rl, D~ = dl,. . . ,  RSv = rN, D N =dN, exp f~L -- g(zs ,  cJ)ds 

EZDu JR1 A T ~  > t - DN. ~ Zt_DN C B(XN+I) , 

e Pl /o 
The term in the inner expectation can be bounded in two ways. When t is 
sufficiently large, using (1.3), it is on the one hand smaller than 

eo(ZDN, XN+I, a;) <_ exp{--a(YN, XN+I) + log t} , 

on the set {ZDN E B(yN)} with the notations of (3.37), using the upperbound 
following (1.28) of [8], see also (1.51) of [9]. On the other hand, by (1.17) of 
Lemma 1.3 of [7], applied with B = 1, and U = ~ A  ~/~c, so that A(U) > Af, 
by (3.15), the inner expectation can also be bounded by 

c(d) (1 + t a) exp{-Af(t - ON)} <_ c(d) (t d + l) exp{--Af TN} 

on the set {D N =dN }. Here we implicitly assume that t is large enough so that 
AU _< 1. It now follows that the left member of (3.45) is smaller than: 

Eo[T~ >_DN, ZR~ EB(Xl),...,ZDN E B(yN), R~ = r l , . . . , D ;  =dN , 

x exp{-(Af ~-N) V a(yN, XN+I) + log c(d) + log(1 + td)} l 

The expectation in the above expression is smaller than: 

E0 ITs, > RN, ZRI ~ B(xl) ,  ...,ZRN E B(XN), g ~  = r~, . . . ,R N = rN , 

exp { -- ~oSN V(Zu,~)du}  EZ~N [DI A T, y2 >_ (dN -- RN)+ , 
f(d~ --RN ) . . . .  

exp{ J0 V ( Z ~ , ~ ) d , } j j .  



20 A.-S. Sznitman 

Now applying (1,17) of [7] again, we see that the inner expectation is smaller 
than: 

c(d)(1 + t d) exp{-{1 A A(~(xN))} (dN -- RN)+} 

< c(d)(1 +t a) exp{-{1A.~(~:~(XN))}tN}, o n  {R N = rN}. 

If we now proceed by induction, we see that for G of the first type and t large 
enough so that Af <_ 1: 

N 

(3.46) - { - l o g  eo(O, xl,cO) k/ ()~f To) + Z ()~f Tk) k/ a(Jk,Xk+l) 
1 

N 

tk(1 A A(~(xk)))} + (2N + 1)(log c(d) + log(1 + td)).  + 

1 

In case of G of second type we obtain a quite analogous estimate. Now since 
N <_ c5 &(t)(log t) -1-3 ,  the last term (2N + 1)(log c(d)+ log(1 + td)) is clearly 
O(Sl(t)) and our claim (3.44) follows. [] 

We will now derive a lower bound on cost (G) which will also highlight the 
role of condition (3.33). 

Lemma 3.3: For co E f23, ~/E [�89 1),/3 E (0, 1), 

( log  t )  1 + t 5  { c o s t ( G )  ( r l sup{- logeo(O,  xi)} lim inf - 
(3.47) t~oo Sl(t) at& ~ 

2~(d, u ) ) }  
+ t rain A(~(Xk)) A - -  2/d > --(3<3, 

l<k<U (log t) 

where for G of first type i varies between 1 and N + 1, and for G of second type 
i varies between 1 and N. 

Proof" Observe that for a, b >_ 0, a V b > ~Ta + (1 - ~7)b. Therefore 

cost(G) >_ ~7" ( - l o g  eo(O, xl) + ~ a(yk,xk+l)) + 
k 

2e(d, u) 
(log t) 2/d ( ~  "rk) + mi~n(A(~(Xk)) A 1)- ( ~  tk) 

k k 

Now for large t, using (3.41) and 2a(log t) -2/d < 1, we find that for G E ~ :  

cost(G) > ~7' ( - l o g  e0(0,xl)+ Z a(yk,Xk+l)) 
k 

+t min A(~(Xk)) A 2~ t<~<N ~ 2/d -- 4a(1og t)--2/d(c5 Sl(t)(log t) -x-~ + 1) . 

We will now give a lower bound on the expression 
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(3.48) - l o g  eo(O, xl) + ~ a(yk,xk+l) �9 
k 

The key observation is that for any 2 _< i(_< N + 1 if G is of the first type or 
< N,  if G is of  the second type), we can extract a sequence xkq), 0 < j < g, of 
at most m0 [t I -~ ]  + 2 points such that 

(3.49) 0 = Xk(0), Xl = x~(a) and for 2 < j  _< g, xk~/)-i and Xkq-1) 

belong to the same component of ~g,  and xk(e) = xi or belongs to the same 

component of  ~g.  
The construction of  this sequence follows the same idea as in [9] (see before 

(1.44)). We first pick 0 and xi. I f  xl = xi or lie in the same component of  ~ g  
we are finished. Otherwise we look for the last k _< i such that xk belongs to 
the component ~(Xl)  and define k(2) = k + 1. If  Xk(2) = xi or lie in the same 

component of  ~g ,  we are finished, otherwise we proceed as before. Observe that 
(3.48) is bigger than: 

g 

- log eo(0, xl) + Z a(ykq~-l, xkq)) = 
j=2 

- log eo(O, xl) + Z a(xkq-a), x~q)) + a(xk(e), Xi) 
j=2 

g 

+ ~ {a(yk~-l ,xk~)  -- a ( x ~ _ l ~ , x ~ ) }  -- a(x~(e~,xi). 
j=2 

If  we now make use of  the natural subadditive property of  a (., .) (see [8], (1.10)): 

- log e0(0,y) _< - log e0(0,x) + a(x ,y) ,  and 

a(x , z )  <_ a (x , y )  +a(y , z ) ,  for x , y , z  E R d , 

we see that the right member of  the above equality is bigger than 

g 

(3.50) - log eo(O, xi) - Z a(xk(i-~), Yk(i~-l) - a(xk(~),xi) . 
j=2 

Now by (1.1I) of  [8] and (1.3) we have the following bound on a(-, .) for large 

t and any z, z ~ E ~'~: 

(3.51) a(z , z ' )  < c(d, u, W)(1 + [z - z ' l)  (log t ) .  

By construction, B(Ykq)-l) intersects ~(xkq-1))  and xk(e) = xi or lie in the same 

component of  ~g,  and all these components intersect ~ ,  and have diameter 
smaller than c4 At (see (3.23)). Since g _< m0 t I -~  + 1, our lower bound (3.50) 
on (3.48) together with (3.51) enable us to conclude that (3.47) holds. [] 
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We now develop a variant of  Theorem 2.3, Lemma  3.3 which will be of use 
in the next section. 

Proposition 3.4: Forw E g23, fl E [1, 1), /3 E (0, l), 

lira S1 (0 -1  sup ~{Iog(Eo[GR{H(z)<_ t}, exp{-- ji'v(z~,a~)ds}]) 
G E ~ ' , z E ~  

(3.52) + r / x  - l o g  eo(O,z)+t 1 <k<Nmin A(~(Xk)) A ~ 2 ? ( d '  ~ ) ( l o g  t )  2/d } ~ 0 . 

Proof." The proof).s analogous to (3.44), (3.46). For large t consider some G E 

�9 ~t,~ and z E ~ .  If  B(z) intersects some ~(xk) ,  k _< N,  - l o g  eo(O,z) <_ 
- log eo(O, Xk) + c(d, u, W)[1 + Izk - xkl](log t). 

I f  we restrict in (3.52), G E f f  and z E ~ b y  the condition B(z) intersects 
some ~(xk) ,  k _< N,  the resulting statement is a direct consequence of (3.44), 

(3.47) and our bound (3.23) on the size of  components of  ~ meeting o~. 
I f  B(z) does not intersect any ~(xk) ,  k < N ,  then 

c n {H(z) _< t} c U ~ n {Dk0 < U(z) < R~0+, A t} 
k0 

with the convention Do = - l ,  and k0 runs between 0 and N when G is of  first 
type and 0 and N - 1 when G is of  second type. 

Our claim (3.52) will now follow thanks (3.30), once we prove: 

lira S~(t) -1 sup IlogEo[GCq{D~ o < H ( z )  < Rk0+l A t} ,  
t - - ~  C~z,k~ k k 

/0' Ii (3.53) + e x p t  [ - V(Zs,~)ds + ~ x - l o g  eo(O,z) 

2e(d, u) } 
+ t  min A ( ~ ( x ~ ) ) A - - a / e  < 0 

l<k<N (log t) -- ' 

where now G E ~ ,  z E ~ a n d  B(z) does not intersect any ~(xg) ,  and ko runs 
between 0 and N or 0 and N - 1 depending on whether G is of first or second 
type. 

Now the analogous estimate to (3.46) can be performed, and the term 
a(y~o,Xko+l) if k0 _> 1, or - l o g  eo(O, xl) if k0 = 0, can be replaced by a(yko,z) 
when k0 >_ 1, or - log e0(0, z) if ko = 0. So now the argument used in Lemma  
3.3 with xi replaced by z, immediately yields (3.53). [] 

IV. Confinement property 

We are now going to show in this section that for typical cloud configurations 
with Qt,~ probability tending to 1 as t tends to infinity the path Z. does not exit 
the ball B~o(O, Sr~(t)), up to time t, this for each ~ E (0, 1). This result will be 
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our first application of  the (long) construction of section III. Further applications 
will come in the sequel [11] to the present article. 

T h e o r e m  4.1: For w E ~Q3, r] E (0, 1), 

(4.1) lira Qt,,~ (Ts~o(O,S,(t)) <_ t) = 0 .  
t---+ O~ 

Proof" We pick some fixed co E g?3. With no loss of  generality we can assume 
r/ E [�89 1). We choose r/a E (% 1). We now apply the construction of section 

1 III with rh and/3 = 2" From the lowerbound (2.10) applied to B = B~0(0 , sl(t)), 
(2.9) and (0.6) and (1.15): 

(4.2) lira (log St,~ + #t)/sl(t) >_ O . 
t---+ ON) 

Now from (3.42), (3.43) it suffices to show that 

lim S~i(t) - I  sup { l o g  EoIG n {Te~0(0,sn) _< t } ,  
t---+oo G E ~  

(4.3) 
e x p { - f o t V ( Z s , w ) d s } ] * # t } < O .  

We can cover ~-~B~o(O,S~(t)) for large t by balls B(z), z C D = ~ E d Y~ 

(~ , Sv(t))). The number of  these balls is polynomially growing in t. 
Consider some G E ~ .  I f  some xi which comes in the definition of G, and 

by construction belongs 07- 1 to ~ 77 ~ ~ ,  is in D,  therefore satisfies Cto(xi) >_ S~(t), 
then 

{r ,  oo(O,,~(,)~ _< ~} c c n (m~,-) _< ~}, G r~ otherwise 

a~{r~oo(O,,,(,))<,} ~ u c~(.(~)<~}, 
zED 

and c~o(z) > Cto(xi) for all i. Therefore (4.3) follows from: 

(4.4) 

lim S~71(/) - !  
l---r OO 

/0 < o, 
G,z 

where G runs over ~ ,  z over D with c~0(z) _> C~o(xi), for all X i coming in the 
definition of G. Now by (3.52) it suffices to show that 

lira S ~ ( t ) -  
t - ~ O O  

{ } •  # t + r h  logeo(0,  z ) - t  rain A(~(x~) )A 2 8 ( d , u )  
G,z l<k<U (log t) 2/d < 0 

where G,z vary over the same set as before. Now if we use (3.23), for large t, 
and any G and z as above 
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N 

U ~ ( X k )  C Bao(O,R),  provided 
k=l  

R = ao(z)  + const At . 

If  we use (0.6) we see the expression in (4.5) is smaller than 

{ (~+nl) } 
lim Snl(t) -1 sup I~t - - -  ao(z )  - t A(Ba0(0,R)) 

t - - ,  e e  G ,z 2 

= lira Sn~(t) -1 sup /~t - - -  R - t A(B~0(0,R)) . 
t - - ,  o a  G , z  2 

Since by construction R >_ S~(t),  using (1.14) this last expression is smaller than: 

t~eolim S ~ ( t )  -1 { (~1 - ~ ) 2  S~(t)} < 0 , 

which completes our proof of  (4.1). [] 

V. More  on the scales in the one d imens ional  s ituation 

We now come back to the study of the various scales introduced in section I, in 
the case of  a one dimensional medium. Our goal is to show that for large t with 
probability close to 1, the scales Dr(co), sl( t ,  co), S~(t,  co) are "comparable" to the 
scale s( t )  = t / ( log  t) 3. 

The reason why we are able to push further our estimates in the one dimen- 
sional case, is roughly that for large g the distribution of A((0, g))- l /2  under ]? is 
comparable to that of  a maximum of i.i.d, exponential variables, see (5.4), (5.5) 

below. 
One first naive reason leading to the scale s( t )  = t(log t) -3,  is to consider 

the function 

(5.1) u > 0 ~ u + t  A(Bc~o(O,u)) , 

coming in the variational problem defining #t, in (1.7). I f  one replaces A(B~ 0 (0, u)) 
by the equivalent function O(d, u)(log u ) - 2 / d ( d  = 1), the new variational prob- 
lem reaches a minimum at a u( t )  ~ s(t) .  A somewhat deeper heuristic argu- 
ment  can be given along the following line. One breaks space into "independent 
blocks of  size s ( t )"  and then argues that s( t )  ~ t size of fluctuations under P of 

),(B~ 0(0, s(t))). 
Let us now introduce some more notations and assumptions. We assume in 

this section that 0 is a point of  density of  the shape function W(.), that is 

f l im 1 [ W (y )dy > 0  and lim 1 W (y )dy > 0  (52)  D 

x--,---0§ x J 0  x--~--0§ x x 

This represents no loss of generality but simply a possible translation by a de- 
terministic mnount of  the given Poissonian point process and of the given shape 
function. 
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We consider the subspace ~ C /2 of full P-measure consisting of cloud 
configurations aJ putting infinite mass in N_ and R+ and no mass in O. For 
cv C f?, we define the sequence of strictly increasing positive random variables 
(T~)k_>l, such that: 

cv = Z 6r;@)+ Z 6-r;-(~)' for a; C ~ .  
k>l  k>l  

We also introduce the variables: 

g~ = Ts - T ? ,  k > 1, go = T~-+ T1- , 
(5.3) 

M ~  = max(s 1 < k'  < k), M~ = max(M~ +, Mk-) .  

Our results rely on the following eigenvalue estimates. On the one hand, since 
V(x,co) = 0 when Ix - T1f ] > a for all k > 1, we have for i , j  > 1: 

7r 2 
(5.4) A((-T~+~, Tf~)) < 2/(max(M~-,Mj+,eo) - 2a) 2 . 

On the other hand we know from (5.5), (5.7) in lemma 5.2 of  [7] that 

for i , j  _> 1 with max(M/+, Mj-, go) >_ L ,  
(5.5) 71-2 

A((-T/7..a, Tj+I)) _> -~ /(max(Mi-, Mj +, go)+K) 2 , 

where L are K are positive constants depending on W(-). Our main result is 

Theorem 5.1: (d = 1) 

(5.6) 
l i ra  l i ra  P[pt(log t )  - 3  < S l ( t )  < SI(t) < _1 t(log 0 -3 
p ---~0 t ~ . ~  p 

Dt > p t ( l o g O  -3 ] = 1 .  

Proof." We pick n(t) via 

(5.7) 2n(log 2n) 3 ~ t < 2n+l(log 2n+l) 3, SO that as t --+ oc 

(5.8) s(t) d_ef t(log t )  - 3  (which is of order 2 n(O) . 

From the law of large numbers, we know that IP-a.s 

(5.9) T+/m , 1/u and T Z ~ l/t; as m----+ +co .  

Our claim (5.6) will follow, once we show: 

(5.10) lira lira i?[sa(t) _> c~0min(T~,-k0 Tzo_k0)] = 1 
k0~oo f ~ o o  

(5.11) lira lim 

and for k0 >_ 1, 

p{s~(t) _< aomax(T~.+ko, T2;;+,0)] = 1,  
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lim lim 1?[Dr < 2 n-kl; 
(5.12) ~,--,oo t~o~ 

S�89 (t) + 2ao t 1/3 < ao min(T~,+ko, Tz~+k0)] = 0 ,  

where ao stands for ao(1). Let us start the proof of  (5.10). For n >_ 1, k E Z 
with n + k >_ 0, we define: 

In, k = ( - - T 2 ~ + k + l  , T~++k+l ) �9 

Observe that the inequality, 

A(In,-k) > A(In,o) + __c~~ max(T2~+l, T~,+I)+ , 
t 

with k > 0, n - k > 0, implies that 

S l ( t )  __~ o~0 min(T~_~, T~,_k) �9 

Moreover,  as follows from (5.8), (5.9), ~?-a.s. as t ---+ c~: 

(5.13) so max(T2~+l, Z~,+I) ~ so 2n _< ~o (log 2n) -3 . 
t b,t v 

Therefore (5.10) will follow if we show, with c = 2O~o/u: 

lim lim P[A(In,-k0) > A(In,0)+ c(log 2n) -3] = 1 . 
ko --+ ~ 1 7 6  t ---~ (x) 

If  we now use (5.5) on A(In,-ko) and (5.4) on ),(In,o), it suffices to show 

(5.14) l im lim P (M2n-ko+K) -2 > - -  (M2.-2a)fZ+c(log 2n) -3 = 1 . 
k o - - ~  t --+c~ 2 

Now M2 m is distributed as the maximum of 2 m+l independent exponential vari- 
ables with parameter v, for m _> 0, and 

(5.15) lim lim P1-1 log 2 m - g < M2,o 1 log 2 m + g] 1 .  
g--+ zx~ m-- -+~  k ~  / /  d 

Using the inequality (1 - x)+  2 > 1 + 2x for x _> 0, (5.14) will follow from 

[ ~  7r2 ( c ( M z , - 2 a ) 3 ~  -2] 
lim lira P (Mz"-k~ + K ) - 2  > 2 M2~ - 2a - ~ (-Mog 2 ~  / I = 1 .  

k0 '-~ c~ t - -~c~ 

(5.16) 

Then (5.15) easily implies 

[3/1 c (M2, - 2a) 3 1 
lim lim P 2, - 2a 71-2 (log 2n) 3 > Mz"-k~ + K = 1 . 

ko ---+ OG t --+ ~<3 

Our claim (5.16) and therefore (5.10) follows. 
Let us prove (5.11). Observe now that when k0 _~ 1, the inequalities 

s O  
A(In,o) + 7-a~ max(T~.+ 1' T2~+1) _< A(In,k+l) + --2t min(Tz~§ T~,,+k), for all k > k0 , 
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imply that S�89 (t) < O~o max(T2o-+k o , T~+,+~0 ). With the help of (5.7), (5.9), our claim 
(5.11) will therefore follow if we show that for c > 0: 

lira lim IP[ ~]  {k(l,,0) _< k(l,,k+l)+c2k(1og 2~+1)-3}] = 1, 
ko ---~ oo t ---~ OO 

k>ko 

Using once more (5.4), (5.5) and the inequality (1 +x) -2 _> 1 - 2x for x _> 0, it 
suffices to prove that: 

[ { ~  ( rc 22k (M2n-2a)3 )  2 ( l o g z ' ~ ' )  ~ lim lira lP A / M 2 ~  - -  2a + c =.--rrv.~ 
~0 ---~ O~ t---+ OO k_>ko 

< 2/(M2,+k+~ + K) 2 = 1 , 

and thanks to (5.15), it is enough to prove that for Cl, c2 > 0 

lim lim ~[  N {M2~ _< a~,k}] = 1, 
kO ---+ c~ t-+oo k_>ko 

log 2 n 2k 
where an,k -- + Cl -- c2. To this end, notice that 

/2 

- 2n+k+2 
Z ~[M2"+k+J -> a~,k] = ~ 1 -- (1 -- exp{ - -uan ,k} )  
kZko k_>ko 

Z 2n+k+2 l og [ (1 -  e - ~ a " ' k ) - l ] .  

k_>ko 

Finally when n( t )  is large 

_< 2 Z 2n+k+2 e-~'a"'e = 2 ~ 2 k+2 e -z'(cl 2k-c2) , 

k >_ko k >_ko 

which is as small as desired if we pick k0 large. Notice by the way that n( t )  does 
not appear in the final expression. This shows (5.11). 

Let us finally prove (5.12). Thanks to (5.15) it suffices to prove that for 
ko~ 1 an d A > 0:  

(5.18) lim lim F[Dt < 2 ~-k~, &o] = 0 , provided 
kl --+oo t- +o<) 

(5.19) N{max{T~+~0+l  , T27,+,0+1 } % 2 n+k~ 
A {  log 2n l o g 2  n } 

- -  - A  <M2,+ko < +A . /2 /] 

Observe that when (#t + S�89 ( t ) ) / t  is small enough, on the event ~ ,  if x E 

B~o(O, S~(t))  is such that A(x) ~f A((x - t l / 3 , x  + tl/3)) _ (#t + S�89 then 

by Lemma 5.l of [7], (x - t l / 3 , x  + t 1/3) intersects some interval determined by 
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consecutive points of the cloud with length g = g~, or gk- or go with 1 < k < 2 ~+k~ 
such that 

7r 2 lr 2 log_ 2 n ) -2 
- -  ( g + K )  - 2 < - ( # t + S l ( t ) ) / t  <_ 2 ( - A - 2 a  + 
2 \ u 

( 2 )--2 
2-ot max(T~,+k0+l, T2~-+k0+ 1) < 2 .l~ -- a - 2a 

71-2 ) --2 + C~02~+ko+2/u t < __ (log 2 ~ - A  -- 2a + 2c(log 2n) -3 
- - 2 \  v 

where c = 2 k~ C~o/u. Using (1 - x )  -2 >_ l + 2 x ,  x ~ (0, 1), for large t the above 
last expression is smaller than: 

*r 2 (log2~ _ A _ 2 a  2C ( } l ~  3) 

2 - v 7 log 2 ~ 
re2 ( l o g 2  n 2c ) - 2  

< - -  - A  - 2a 
- - 2  ~ v rrT~3v 3 

--2 

Consequently we see that 

(5.20) ~ ~ log 2 n ct 2 k~ 
- - - c ' , v  with =A+2a+-77~4C~o+K. 

It is straightforward to argue that the labels corresponding to intervals g~, g0 
satisfying (5.20) are well separated, in the sense that: 

lim lim P[Mz',-~2 > l ~  ] _ - - - c '  = 0 ,  and 
k2 ---~ oo t ---~ oc /~ 

lim lira P [ 3 k , U  1 < k  < U < 2  ~+k~ U - k  < 2  ~-k~ and 
k2 --~ o ~  t "--+ OG 

g~ A/~, > log 2 n ] 
- -  - -  - - C  t = 0  

together with a similar estimate on g~- g~. 
Finally observe that "well separated labels" correspond to "well separated 

points of the cloud", in the sense that for given k2 >_ 1: 

U 
l_<k<kr <2'~+t0 
k I _k>2n- -k2  

{ r ; ,  - r;++l < - 5 7 - .  JJ = 0 ,  

as well as a similar estimate on the T - .  
It follows from the above discussion that our claim (5.18) will be proven if 

for any k2 _> 1 

l im l i r a  •[{Dt <2n-kl}["l~Ul{Dt > - - - -  
kl --~o~ t --+ e<~ 

2n-~2 }] 
4t 1/3 = 0 ,  

2u 

but this last point is immediate and this finishes the proof of (5.12) and therefore 
of  our claim (5.6). [] 
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