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Summary. For  two-dimensional Bernoulli percolation at density p above the 
critical point, there exists a natural norm g determined by the rate of decay 
of the connectivity function in every direction. If W is the region of unit area 
with boundary of minimum possible g-length, then it is known [4] that as 
N ~ o e ,  with probability approaching 1, conditionally on N<IC(0) [<  0% the 
cluster C (0) of the origin approximates W in shape to within a factor of 1 +_ q (N) 
for some t7 ( N ) ~  0. Here a bound is established for the size t/(N) of the fluctua- 
tions. Other types of conditioning which result in the formation of a shape 
approximating W are also considered. 

This is related to the quadratic stability of the variational minimum achieved 
by the Wulff curve 3 W: for some k>  0, if 7 is a curve enclosing a region of 
unit area such that the Hausdorff distance d~(7+v, d W)>6 for every translate 

+ v, then the g-length g(7) > g(~ W)+ k62, at least for 6 small. 

I Introduction 

Let us consider Bernoulli bond percolation on the square lattice. The sites are 
elements of Z 2 ; bonds (i.e. pairs of adjacent sites) are independently occupied 
with probability p and vacant with probability 1 - p .  pc  [0, 1] is called the den- 
sity. The cluster C(x) of site x consists of those sites y such that x is connected 
to y by a path of occupied bonds, an event denoted by "x+-*y ". As is standard, 
we let [AI denote the number of sites in a subset A of 7~2, and let Pp denote 
probability when the density is p. 

When p>pc=l/2, it is known that Poo(p)..=P;[LC(0)I= oo]>0 ,  and in fact 
there exists (a.s.) a unique infinite cluster Coo. Conversely for p < 1/2, all clusters 
are finite a.s. These results can be found in [2], [10], and [11]. 

Our interest here is in the percolating regime p >  1/2. This is the analog 
of the low temperature phase in other statistical mechanics models. Large finite 
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clusters can be thought of as (contained in) "bubbles" in Coo, separated from 
Coo by a skin of vacant bonds. The analogous feature for the Ising and other 
models is a droplet of one phase immersed in another, which arises in a particular 
microcanonical ensemble. The bubble or droplet tends to take on a certain 
characteristic shape when it is large, to minimize, subject to a fixed droplet 
volume, the surface energy of the interface between phases. See [1], [4], and 
[8] for more on the Ising-percolation analogy, and [7] for results on droplet 
shape for the lsing model. Our main result here is an in-probability bound, 
conditional on N<[C(0)]<oo,  on the fluctuations (in Hausdorff distance) of 
C(0) from this characteristic shape. 

For each bond B, thought of now as a unit-length line segment in ~2,  
there exists a dual bond B*, the unit-length perpendicular bisector of B. The 
dual sites are the corresponding endpoints x*:=(xl+i/2, x2+l/2 ) for x 
= ( x l , x 2 ) e Z  2. B* is defined to be vacant precisely when B is occupied. The 
dual lattice is isomorphic to the original lattice; when the density for the lattice 
is p, the dual lattice has density 1 - p .  We let [x**-*y*] denote the event that 
x* is connected to y* by a path of occupied dual bonds. (~g2), denotes the 
set of all dual sites. 

Let p > Pc ; there exists ([9]) a constant 0 < a = a(p) < oo such that 

Pp [0" ~ (n cO*] ~-- e-  ~" 

where el,=(1,0) and a,~b, means the ratio of the logarithms converges to 
1. In fact there is a norm g = gv on ]R 2 such that 

(1.1) Nxll~<=g(x)<=llxH1, g(eO= 1, 

Pp[0*~x*]  < e  -~(x) for all xelg 2, 

Pp [0*+--~(nx)*] .~e -~(x)" for all xell~ 2, 

where n ~oo  through values such that n x ~ ,  2. For these and further properties 
of g, see [4]. 

Let 7: [0, t]--+R 2 be a curve; when confusion is unlikely we will also let 
7 denote the image of this curve. Let g(7) denote the g-length of y and R(2) 
the closed region enclosed by y (i.e. the complement of the unbounded compo- 
nent of p2 \y . )  Let Y be the set of all rectifiable closed curves (not necessarily 
self-avoiding) in p 2  Let [A[ denote the Euclidean area of a region A in N. 2. 
If 0A is a rectifiable closed curve, we let ya denote this curve. The problem 

( 1 . 2 )  minimizeg(7) subject to JR(7)[ > 1 and 7eoU 

has a unique minimizer 7w where W is given by the Wulff construction [W]: 
for e0 :=(cos 0, sin 0), 

( 1 . 3 )  gV,=gV(p):={xelR2:x.eo<g(eo) for all 0el0,  2hi} 
W:= W(p).'= 17V/[ 17V[ 1/2, 

This was proved by Taylor ([13], [14]) for the minimum over piecewise C 1 
curves; see [4] for the elementary extension to d(. In convex-analysis terms 
17V is the polar set of the unit ball of g. The set G:={g(eo)eo:Oe[O, 2rc]} is 
the polar plot of g; if for each point x ~ G we draw a line through x perpendicular 
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to [0, x] and discard from R(G) any portion outside the line, the remainder 
is 17V. Let 

,=~(p):=g(Tw) 

denote the minimum in (1.2). 
As in [4] define the metric p on subsets of IR z by 

p (A, B).'= inf dH (A + v, B) 
v ~ 2  

where A + v denotes the translate of A by v and dH denotes Hausdorff distance: 

(1.4) dg (A, B)-- max {sup d (x, B), sup d (x, A)} 
x ~ A  x ~ B  

with d denoting Euclidean distance, p measures differences in shape, independent 
of location. Given a bounded set A c ;g2, the set of bonds 

0e A-'= {{X, y}: X adjacent to y, x~A, 
and there exists a lattice path from y to oo outside A} 

is called the external boundary of A; the corresponding dual bonds {B* : B~0 e A} 
form a circuit (i.e. a closed lattice path, self-avoiding except where the endpoints 
join) around A. Thus a large finite value of [C(0)[ implies the existence of a 
large circuit of occupied dual bonds enclosing the origin. 

Conversely, working only heuristically, suppose there exists a large occupied 
dual circuit y enclosing a region containing n sites including the origin. Bonds 
in R(7 ) are essentially unconditioned by the existence of 7, so R(7) should look 
like a broken-off piece of a typical configuration at density p. In particular, 
the "bubble"  R(7) should contain a single large cluster consisting of roughly 
a fraction P~(p) of the sites in R(7), i.e. a cluster of nP~ sites. A cluster of 
size N then occurs when [R(7)[ is of order N/Poo, which implies g(~) 
>(N/Poo)l/2g(Tw) where ~ is a "smoothed"  version of 7. If ~7 is not shaped like 
7w then this inequality becomes strict. From the definition of g, the probability 
of occurrence of a given smoothed occupied dual circuit ~7 is of order 
exp (-o-g(~).  These ideas underlie the following result from [4]. 

Theorem 1.1 For Bernoulli bond percolation on the square lattice at each fixed 
density pc(pc, 1), there exists t l (N)=q(N,p)~O such that conditionally on N 
__< [C(0)[ < o% with probability approaching 1 as N ~ 0% there exists an occupied 
dual loop 7 enclosing 0 with 

P (Yw, (P~/N) 1/z 7) < t/(N). 

Further, for some e(N) = e(N, p) with e(N) ~ O, and some d(N) = O (le(N)] 1/2), 

(1.5) PpEU<_[C(O)[<oo]:exp(--(l+e(N))~(p)~K(p)P~(p)-l/2N1/2) 

and 

(1.6) Pv [I C(0)I = N ]  = exp(--(1 +e'(N)) a(p) ~(p)P~o(P)-1/2N1/2) �9 
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The analog of g-length, in the Ising model as considered in [7], is the integral 
over the boundary of the surface tension in the normal direction. Of course 
the g-length of the boundary is the integral of the g-norm of the tangent vector, 
not the normal, but the analogy holds because g is invariant under rotation 
by 90 degrees. See [-4] for further discussion. 

Another context in which such bubbles in Coo arise is as follows. Let 
A L : = [ - L / 2 ,  L/2-] 2. As L--.oo, IC ~ALI / IALI  converges to its expected value 
Poo a.s. For 0 < 2 <  1 and L large we can consider the (rare) large-deviation 
event 

(1.7) EL(2),= El Coo c~ &I/IALI ~ (1 - 2) Pool. 

One way for FL(2) to occur is for an occupied dual circuit 7 enclosing a fraction 
2 of AL to occur, while in AL\R(7) the fraction of sites in Coo is near its typical 
value P~. As in Theorem 1.1 this is the overwhelmingly most common method 
of occurrence of FL(2 ), and circuits 7 shaped like 7w predominate, giving the 
following result from [4]. 

Theorem 1.2 For Bernoulli bond percolation on the square lattice, at each fixed 
density p > Pc and each 0 < 2 < (diam 7w)- 2, there exist ((L) = ((L, p) ~ 0 such that 
conditionally on FL(2), with probability approaching 1 as L - ~ ) ,  there exists an 
occupied dual circuit 7 in AL satisfying 

(1.8) P(7w, 7/L21/2) 6 ~ (L). 

Further, for some t) (L) = ~ (L, p) ~ O, 

(1.9) Pp (FL (2)) = exp ( -- (1 + ~ (L)) 21/2 a (p) ~ (p) L). 

Note that in (1.9), 21/2 ~/r is the g-length of the boundary of a Wulff shape 
covering a fraction 2 of AL. 

For the Ising model in AL at low temperatures with "plus" boundary condi- 
tions, the analog of FL(2) is the event F/(2) that the surplus fraction of "plus" 
in AL (i.e. the fraction of "plus" sites minus the fraction of "minus" sites) is 
(1- 2 2)m, where m is the magnetization (i.e. the expected surplus fraction). Con- 
ditioning on this event produces what is called a microcanonical ensemble. 
Dobrushin, Kotecky, and Schlosman showed in [7] that at each fixed very 
low temperature, conditionally on F~(2), with probability approaching 1 as L 
~oo,  there is a "droplet" of minus phase covering a fraction 2 of AL, with 
boundary 7 closely approximating a fixed curve 7w~ in shape. 

It is natural to ask how closely 7 approximates 7w in shape in Theorems 
1.1 and 1.2. In 1-7] it is shown that for the Ising model, the error in shape 
analogous to ~(L) is O(L -~) for some a > 0. Here we will establish the following. 

Theorem 1.3 In Theorems 1.1 and 1.2, we have 

(1.10) 

(1.11) 

(1.12) 

(1.13) 

Ir/(N)I = O ( N -  1/6 (log N) 1/3) 

l e(N)l = 0 (N- 1/3 (log N) 2/3) 

I((L)[ = O(L- 1/3 (log L) 1/3) 

[~ (L)l = 0 (L- 2/3 (log L)2/3). 
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Of course the rates in (1.10) and (1.11) differ from those in (1.12) and (1.13) 
because the scale of the Wulff shape in Theorem 1.1 is N 1/2 while in Theorem 
1.2 it is L. 

We suspect that the rates in Theorem 1.3 are not optimal. In fact one might 
speculate that the fluctuations of 7 about 7w are Gaussian, meaning ((L) should 
be of order L- 1/2. 

In very broad outline our proofs do not differ greatly from the proofs in 
[-4] of Theorems 1.1 and 1.2 above. Of course a number of new elements, along 
with greater care in the details, are needed to obtain the rates in Theorem 
1.3. Of particular note are (1) the use of Theorem 2.1, Lemma 2.5, Proposition 
4.2, and Lemma 4.3, which in effect give rates where in [-4] only the fact of 
convergence was used; (2) the improved method, following Theorem 3.2, for 
approximating a dual circuit by a polygonal path; (3) the sorting by size of 
dual circuits, and families of circuits, in the proofs of (1.11) and (1.13) - see 
the remarks after (5.3). 

II Stabil i ty  o f  the W u l f f  m i n i m u m  

It was shown in [-4] that the probability of occurrence of a given large occupied 
dual circuit (after appropriate smoothing) is essentially a function of its g-length. 
Among circuits enclosing a given area, then, those not shaped like 7w have 
lower probability due to greater g-length. For  our analysis we need to quantify 
the relationship between deviation from 7w and increase in g-length. 

T h e o r e m  2.1 Let 99 be a norm on ]R 2, and let Y be the corresponding unit-area 
Wulff shape. There exists a constant k=k(q~)>0 such that /f 7 ~ d ,  [~(7)l_->1 
and p (7, 7Y) = b > 0 then cp (Y) --> q~ (TY) + k (3/x 1) 2. 

A similar result was stated without proof  in the research announcement 
[-12]. 

Throughout  this section ~o is a norm on IR z, and Y and Y denote the corre- 
sponding Wulff set and unit-area Wulff shape (cf. (1.3).) [l" [I denotes the Euclidean 
norm, Cr denotes the norm with unit ball Y, d r denotes the distance associated 
to q0, and ka, k2 . . . .  are constants which depend only on ~o. 

For  the Euclidean norm on ]R 2, and 7 the boundary of a convex set, Theorem 
2.1 follows from an inequality of Bonnesen ([,6], Sect. 38). For  general norms, 
when 7 traces the boundary of a convex set, we will make use of a special 
case of a theorem of Wallen (E15]) which extends the inequality of Bonnesen. 
Let A + B : = { x + y : x e A ,  y e B )  denote the Minkowski sum of subsets A, B of 
IR 2. Given two convex sets A and B, there exists a constant SAB, the mixed 
volume of A and B, such that 

I x A + y B [ = x 2 [ A l + 2 x y S a B + y 2 l B ]  for all x , y > O ;  

see [6] for details. Note that SaA = ]AI. The following is standard - see [,13]. 

L e m m a  2.2 Let C be a bounded convex set in N~ 2. Then 

(P (7c) = lim(I C + e Y I - I C  I)/e = 2 Sct.  
e,L0 
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In particular, 

~o(~r)=21 ~'1 ~/z . 

Given a convex set C in IR 2, let 

Rc=Rc(qO,= inf sup ~Or(x ) 

denote the radius of the smallest ~r-ball  (centered anywhere) which contains 
C, and let 

rc=rc(~p):=su p inf ~r(x) 
w ~ 2  xr  +v 

be the radius of the largest ~gy-ball (centered anywhere) contained in C. The 
first half of the following is a special case of the theorem of Wallen [-15]; the 
second half follows from Lemma  2,2. 

Lemma 2.3 Let C be a bounded convex set in ]R 2 and S the mixed volume of 
C and Y. Then 

s 2 - I c I I  Y'I ->_1YI(Rc- rc)2/4. 

Consequently, if [ C[ >= 1, then 

q~ (Yc) >= q~ (Y r) (1 + (g c - rc)2/4) 1/2. 

Let d r denote the distance associated to the norm ~by, let d Y be the corre- 
sponding Hausdorff  distance (cf. (1.4)), and let py denote the corresponding 
translated Hausdorff  distance: 

pr(A, B),= inf dY(A + v, B). 

There exists a constant kl = kl (q~)> 0 such that 

k~ 1 d y ~ d ~ k  1 dy 
so that also 

(2.1) 

Lemma 2.4 

k l  1 P r < p < k i  Pr. 

There exists a constant k2=kz(~o)>O such that if C is a convex 
set in ]R 2 with [C[ = 1 then R c - r c >  k2 P(Yc, Yr). 

Proof. We may assume C is closed. Note  r c < l < R  c. Let v~]R 2 be such that 
C + v c R  c Y. Let x ~ C + v  be such that x + r c Y = C + v .  Then C r ( x ) < R c - r c ,  
and 7c + v lies between x + r c Y and YRcr, SO 

pY(~c, ~Y)--< d~(~c+v, ~ )  
< Y Y = d~(Tc+ v, ~Rcr) + dn(7~cy, ~y) 
< drn(x + rc Y, YRcY) + Rc--  1 

=< r (x) + d~(rc Y, ~R~y) + Rc--  rc 
< 3 ( R c -  rc). 

The lemma now follows from (2.1). []  
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A point x in A or B which achieves the maximum in the definition (1.4) 
of dn(A, B) will be called a most remote point for A and B. 

With Lemmas 2.3 and 2.4 it is easy to prove Theorem 2.1 when 7 is the 
boundary of a convex set. For  general curves 7 we use the next lemma. Let 
C(7) denote the convex hull of R(7), let E~ denote the set of extreme points 
of C(7), and let 7* denote 7c(~), which we assume traces 0C(7) in the direction 
of positive orientation. Note C(7)= R(7*), and 

(2.2) ~o(7 ) > cp(7* ) 

(see the Appendix of [4].) Let k 3 = k3 (~o) < 1 be such that 

d~> k3d. 

Let J denote the set of all self-avoiding curves in o~ff. 

Lemma 2.5 Let 7~3f" with 1C(7)] = 1 and dH(7, 7 * ) = 6 > 0 .  Then either 

(2.3) 

or  

(2.4) 

(2.4a) 

(2.4b) 

(2.4c) 

(2.4d) 

]R(7)[ < 1-- rck 2 62/288 

there exist u, veE~ and x,y, ze  7 such that 

[u, v] c 7 "  

d(y, 7*) = 6 

y passes through u, x, y, z and v in that order 

cp(v- z) + q~(z- y) + ~o(y-- x) + q~(x- u) > ~o(u- v) + k3 6. 

Further, there exists a constant k4= k4(~o)> 0 such that for 7~JY ~ with [C(7)[ = 1, 
if du(7, 7*) = 6 > 0 then 

(2.5) ~o(7)/IR(7)lX/2>~o(Tr)+kg(6A 1) 2. 

Proof. The idea is as follows: 7 traces a "den t"  of depth 6 in C(7). Since we 
do not assume ~o is strictly convex, we cannot be sure that this dent makes 
7 longer than 7*. However, if the area of the dent is at least zck 2 62/288 then 
(2.3) holds. Alternatively if the dent area is smaller than z~k~ 62/288 (so the 
dent is essentially a thin crevice), y is the bot tom of the crevice, and x and 
z are the rim points of the crevice, then the path formed from 7* by replacing 
the segment from u to v across the top of the dent with the "crevice pa th"  
u --* x ~ y ~ z ~ v has qMength at least k3 6 greater than that of 7*- 

Let y be a most remote point for 7 and 7*. Suppose first that Y~7*, so 
d(y, 7)= 6. Then half of the open ball B(y, 6) is in R(y*)\R(7), so 

(2.6) IR (7)l < IR(7*)[- 7~ c~2/2 

and (2.3) follows. 
Suppose then that YeT- Let u and v be the points of 7c~7 * most closely 

preceding and following y in 7, so that [u, v] c7" .  Now 

~o(v--y) + q~(y- u) > 2k36. 
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If ~o ( u - v ) <  k 3 6 then (2.4) follows, with x = u and z = v. Thus we suppose that 
~ o ( u - v ) > k 3 &  Let 

m .'= [-6 (p (u - v) /k  3 6] + 1 

and let U = U l , U 2  . . . . .  u , , = v  be m evenly spaced points in the line [-u,v], so 
that 

(p (ui + 1 - ui) = ~o (u - v)/(m - 1) > k3 6/6. 

Let B i be the open q~-ball of radius k3 6/12 centered at ul, and let y, ,  be the 
section of y from u to v. Let H~v be the closed half space with u, vEOH,~  
and R(7*) c H,v. 

Suppose first that 7,v c~ Bz = r for some i (necessarily 1 < i < m.) Then similarly 
to (2.6), 

IR(y)I =< I R ( y * ) I -  [B~I/2 < 1 - ,~k~ 62/288  

and (2.3) follows. 
Suppose alternatively that for all i <  m, Yuv ~ Bi q= dp. Let j be the largest index 

i < m  such that 7uv visits B~ before passing through y. Let x be the last point 
of y,v in the closure /3j before y, and let z be the first point of y,~ in B~+ 1 
after y. Then 

q, (v - z) + ~0 (~ - y) + q, (y - ~) + ~o (~ - u) 

> d~ (v, Bj +~) + d~ (y, B~ +~) + d~ (y, ~j) + d~ (u, B j) 
> (m--j - 1) qo (u --  v)/(m --  1) -- k3 6/12 + 2 k3 (6 - 6/12) 

+ ( j -  1) ~ ( u -  v ) / ( m -  1) - k 3 6/12 

= q o ( u - v ) - q o ( u - v ) / ( m -  1)+ 5k3 6/3 

> ( p ( u - v ) + k 3  6 

so (2.4) holds. 
Turning to (2.5), suppose first that y ~ .  Under  (2.3), (2.5) follows from 

Under (2.4), (2.5) follows from [R(y)[ < 1 and 

rp(y)-> ~o(y*) + k3 6 > ~p(yr)+k3(6/x 1) 2. 

For  general y e w  there exists a sequence of polygonal paths 7. (which may 
self-intersect) converging uniformly to y, with (p(y.)---,~o(y). For  each n there 
is another polygonal path c~. which traces 0R(y.) in the direction of positive 
orientation, so that qo(a.)__<q~(7~). Now ~. may also have points of self-intersec- 
tion, but no transversal ones, so by perturbing ct. by at most, say, 1/n we can 
obtain a polygonal path f i . e J ,  with ~o(fi.)__<qo(~.)+ 1/n. Then f l ~ y  uniformly 
and [C(fl,)[ ~ 1. Finally let ~:=f i , / [C( f l , ) [  t/2. Then (2.5) holds for (, ,  and 

lira sup ~o((,)< (p (y), lim sup [R((.)[ > [R(7)[, 
and 

d,~(~,, ~*) -~ 6 

which shows that (2.5) holds for y. []  
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Proof of Theorem 2.1 Let k5 be such that the Euclidean norm [I. [[ __< k5 go and 
let 0 < k  6 < rain(l, (2k~ a go(Tr))- 1). Let fl:--7/[C(7)l 1/2, s o  IR(fi*)l = 1. 

If ] C(7)] > 1 + k6(6 A 1) 2 then using (2.2), for some kv > 0, 

go (7)_-> go (/~)(1 + k6 (6 A 1)2) a/2 
_--_ go(fl*)(1 -t- k7(6 A 1) 2) 
> go(Tr)(1 + k7(6 A D2). 

If [C(7)1 < 1 +k6(5 A 1) 2 and dn(7, 7*)->_6/2 then dn(fl, fl*)>6/4 so by Lem- 
ma 2.5 applied to fl, 

go (7) = I R (7)1 a/2 go (/3)/[ R (fl)l 1/2 > 7 (Tr) + k4 ((6/4) A I)2. 

Suppose then that I C(~)l < 1 + k6(6 A 1) 2 and dn(7, 7")< 6/2. We may assume 
that go (7) < 2 go (Tr). Then p (7", 70 > 6/2 while 

P (7", fl*) < (] C (7)[ a/2 _ 1) diam (fl*) < (k 6 6/2)(k~ a go (fl*)/2) < 6/4. 

Therefore p (fl*, 7r)> 6/4. By Lemmas 2.4 and 2.3, 

go (7) > go (fi*) > go (7~,) (1 + (k2 6/4)2/4) 1/2 > go (Tr) + ks (6 A 1)2 

for some ks > 0. 
In all cases the theorem follows. [] 

III Upper bounds on the probabilities of dual circuits 

When a bond configuration gives rise to a large cluster, the bonds dual to 
the external boundary of the cluster form an occupied dual circuit enclosing 
the cluster. The results in [4] (cf. Theorem 1.1 above) show that the probability 
that the cluster C(0) is large and finite is essentially just the probability that 
an occupied dual circuit enclosing sufficient area surrounds the origin. For a 
cluster of size N, the area enclosed should be roughly NIP, o, since the cluster 
density is roughly P~. Thus we need some estimates for the probabilities of 
large occupied dual circuits. 

Throughout this section, Cl, c2, ... will denote constants which depend only 
on p. As p is fixed but arbitrary in each result, our notation will sometimes 
suppress the dependence on p of various constants. When circuits 7 are viewed 
as curves, we always assume they are traced in the direction of positive orienta- 
tion and parametrized by [0, 1], with 7(0) the leftmost point among those with 
minimal y-coordinate in 7. We will begin with upper bonds on circuit probabili- 
ties. 

Theorem 3.1 For each pc(pc, 1) there exists a constant ca =ca(p)>0 such that 
for all A > 2, 

Pp [there exists an occupied dual circuit 7 enclosing 0 with 
[N(7*)I > A] < e x p ( -  c ~ A  a/2 + ca A1/6 (log A)2/3). 
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Theorem 3.2 For each pe(p~, I) there exist constants c~=ci(p)>O ( i=2,  3, 4) and 
Ao (P) > 0 such that if A > Ao and 

(3.1) C 2 ~ 6 ~ C 3 A -  1/6 (log A) :/3 

then 

(3.2) Pv [-there exists an occupied dual circuit 7 enclosing 0 with 

11R(7)[ > A and P(Tw, 7~JR (7)[ 1/2) ~ 5] ~ exp(--  ~ / ' A  1/2 (1 + c4 ~2)). 

The lower bound on 6 in (3.1) ensures that the increased length that y must 
have because it is not shaped like 7w is not counterbalanced by other factors, 
including the reduction in length when 7 is replaced by a smoothed approxima- 
tion. 

A result similar to Theorem 3.1 was proved in [4] (Lemma 4.1), but with 
a larger error term. The proof used the notion of the m-skeleton of a dual 
circuit 7, defined (for 7 enclosing 0) as follows. Let So be the lowest dual site 
of Y on the positive (dual) y axis. Inductively define s,+ 1 to be the first site 
in 7 after s, for which g ( s , + l - s , ) > m .  If J is the largest value of n for which 
s, can be so defined, then the sequence (So, sl . . . .  , s j ,  So), abbreviated (s~), is 
called the m-skeleton of 7. Corresponding to this m-skeleton is a polygonal path, 
which must enclose almost as much area as 7 does; the maximum error in 
area is of order Jm 2. Therefore the g-length of the polygonal path is at least 
~r 1/2, a fact which can be used to bound the probability in 
Theorem 3.1. 

Here we introduce a modified type of skeleton which reduces the error in 
area to order m z. The basic idea is to construct the skeleton from the boundary 
of the convex hull of R(7), rather than from 7 itself. Let 7* be a curve which 
traces the boundary of the convex hull of R(7), and let E~ denote the set of 
extreme points of R(7*). Then 

E ~ 7 * ~ T n ( ~ 2 )  *. 

Let to .'=0 and So '=7* (0)= 7 (0). Note that So eEl .  Define inductively 

t',+ 1 ,=inf{t > t, : g(7* ( t ) -7*  (t ,))>m or t =  1} 

tnt+l ,=sup{t~t'n+ 1 : y*(t)eE,} 

t~'; 1 :=inf{t > t,, : g (7 . (0 - -7"  (t,)) > m, 7" (t)~E~} 

._ f t2  if t~'+ 1 ~= t, 
t, + 1 "-  (t,"'+ a if t," + a = t, 

S,+ l :=7*(t,+ O, 

stopping when we reach a value J for which ts+x= 1, so that Ss+l =So. In 
words, we go forward from s, along 7* until we reach the boundary of the 
g-ball of radius m about s. We then backtrack along 7* to find a point of 
E~. If this does not require going all the way back to s,, then this point of 
E~ is labeled s,+ 1. If the backtracking does take us all the way back to s,, 
we then go forward along 7* outside the radius-m g-ball, necessarily in a straight 
line from s,,, until we find a point of E~, which becomes S,+l. We continue 
until we return to So. The sequence (so, sl ,  ..., s j ,  so), abbreviated (s~), is then 
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called the m-hull skeleton of y. The corresponding polygonal path is called the 
m-hull skeletal path of 7 and will be denoted 7,,- Some important  observations: 
first, s, + 2 is always outside the radius-m g-ball about s,, i.e. 

(3.3) g( sn+2-s , )>m for all O<_n<_J-2. 

Second, 

(3.4) if g ( s , + l - S , ) > m  then [ s , , s , + l ] ~ y *  and 7 does not eross [s, , s, + l] 

And third, since the vertices of 7,, are a subsequence of the cyclically ordered 
vertices of the convex polygon 7*, 

(3.5) R (7,,) is convex. 

Lemma 3.3 There exists a constant c5 = c5 (p)> 0 such that for every dual circuit 
7 and every m__> 1, IR(7,,)I > [R(7*)l- c5 m 2. 

Proof. Let fl,~[0,~z] be the angle between the left and right derivatives of 7,. 
at s,. Then 

J 

(3.6) ~ f t ,=  2re. 
n = O  

Each point of R(y*)\R(7,,  ) lies, for some n, in the region Q, between [s,, S,+l] 
and the section of 7" from s, to s,+ 1 . If max(ft., ft,+ 1)< re/4 then by (3.4) either 
IQ, I=0  or IQ, l<c61lS,+l-S,  lJ2(fl,+fl,+l)<cTm2(fl,+fl.+O. By (3.6) there are 
at most 16 values of n for which max(f l , , f l ,+t)>rr /4;  for these n we have by 
(3.4) that either ]Q,[ = 0  or IQ,[ <c8 m 2. Thus by (3.6) 

J 

[R(y*)\R(Tm)l<=16csm2 + ~, CTmZ(fl.+fi,+l)<=c9 mz. [] 
n = O  

The following will be used several times, so we will isolate it as a lemma. 

Lernma 3.4 For all N > 2, n > 1, and 1 > O, 

Pp I there exist disjoint occupied dual paths Vo ~ v 1 +-+... +--~v j for some 

j-1 l] Vo, ..., vj~AN C~ (Z2) * with j<= n and ~ g(vi+ 1 - vl) >- 
i = 0  

N e x p ( - - a l +  15n log N). 

Proof. The number of possible choices for Vo, ..., vj is at most ( (N+ 1 ) 2 +  1) n + l  . 
For  each such choice, the van den Berg-Kesten inequality ([5]) and (1.1) tell 
us that 

Pp [there exist disjoint occupied dual paths v o +-> V l *-~ ... ~->vj] 
j - 1  

<= FI P,[Vi~V,+ I] 
i = 0  

=<exp(--][ag(vi+l--Vi)).= 
0 

< e x p ( - e r l )  

and the lemma follows. [] 
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Proof of Theorem 3.I Let No(A) denote the event in the statement of the theo- 
rem. Let m satisfy 

(3.7) c5 m 2 <A/2 ;  

m will be specified more precisely later. When N0(A) occurs we have 

IR G,)I _-_ IR(~,*)I- c5 m 2 

by Lemma 3.3, so 

(3.8) g(Tm) >= ~ (A -- cs m2) 1/2. 

Let n:=2[2Y~UA~/2/m]. The dual circuit ~ passes through the vertices of ~,~ in 
the order given by the skeleton (So, Sl . . . . .  s j, So). There therefore exist disjoint 
occupied dual paths So ~ sl ~-~ ... +--~sj ~ so and by (3.3) 

J A n  

L,= ~ g(si+l--sl)>=(d An)m/2. 
i = 0  

If J > n then this shows 

(3.9) L>=nm/2>=~A 1/2. 

I f J < n  then by (3.8) 

(3.10) L=g(Tm)>=~f A1/2(1-c5m2/A)U2>=TO/'A1/2-clom2/A a/z. 

If 7 is not contained in A4A then the event in Lemma 3.4 occurs with n = 2, 
N = 5 A, and l = 4 A. Thus from that lemma, 

(3.11) Pp [N0 (A) occurs with 7 r A4A] 
= < e x p ( - 4 a A  + 30 log 4A) 

< exp(--  a~KA ~/~ + 30 log 4A). 

(This uses the fact that ~r which follows from (1.1) and comparison of 
W to a unit square.) If y is contained in A4A then the event in Lemma 3.4 
occurs with N = 4 A  and (by (3.9) and (3.10)) I =  ~r 1/2 -ClomZ/A a/2 . Thus again 
from that lemma, 

(3.12) Pp [~o  (A) occurs with 7 c A4A] 

=< exp(- -  cr~tUA 1/2 + cl 1 m2/A1/2 + C12 A1/Z (l~ A)/m). 

Observe that the first error term c1~ m2/A 1/2 in (3.12) comes essentially from 
the error in area between ~ and Ym, and the second error term ca2 A~/2(log A)/m 
from the number  of possible m-hull skeletons in A4A. For  optimal tradeoff, 
the sum of the two error terms in the exponent in (3.12) is minimized, up to 
a constant, by taking m=(A logA) ~/3. Then together, (3.11) and (3.12) prove 
the theorem. []  
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Proof of Theorem 3.2 Let N~(A, 6) denote the event in the statement of the 
theorem. Let us first handle the following three special cases: 

Case 1 : IR(y*)[ >A(1 -[-c13 62). 

Case 2: g(7,.)>2~/CrA ~/2 (but not Case 1). 

Case 3: dn(7, 7*) > At/2 6/4 (but not Case 1 or 2). 

Here m and c13 < 1 are constants (depending on p) to be specified later. Briefly, 
in Case 1, 7" encloses more area than necessary, hence is longer than necessary. 
In Case 2, 7 is far longer than it need be to enclose area A. In Case 3, 
traces a deep dent in R(7*) hence again is longer than it need be to enclose 
area A. Outside of these three cases, when ~ ( A ,  6) occurs we will show that 
7,. is not shaped like Yw, so Theorem 2.1 can be applied. 

For  Case 1 we can apply Theorem 3.1: if c3(p) is large enough and e2(p) 
is small enough (depending on our choice of c13 - cf. Case 3 a below) then 

(3.13) P [N~(A, 6) occurs under Case 1] 
=< exp( - ff'f~A 1/2 - -  C 13 a~UA1/2 62/3 + 2cl A 1/6 (log A) 2/3) 

< exp ( a ~ A  1/2 -- A 1/2 62 (cl 3 a~K/3 -- 2q/c2)) 

< exp(--  a~UA1/2(1 + c13 62/4)). 

Consider then Case 2: g(~;m)~2"I//ZA 1/2, but not Case 1. Let (So, sl . . . . .  sj, So) 
be the vertices of ~m and let sM be the first vertex such that the g-length of 
the polygonal path So ~ S l  -+ ... ~SM is at least 2~#/'A 1/2. Then by (3.3), 

so that 

M - 2  
m(M--2 ) /2<  ~ g(sj+l--sj)<2~#/A 1/2 

j=0  

M < 4 ~g/'A1/2/m -b 2 < 8 "f~Al/2/m 

provided m < A  1/2. Thus the event in Lemma 3.4 occurs with n=8~KA1/Z/m, 
l = 2 ~ A  1/2, and N = 2 A ,  the latter because we are not in Case 1. Thus from 
that Lemma, 

(3.14) P [N~ (A, 6) occurs under Case 23 
=< exp ( - 2 a ~/UA t/2 + 120 ~g'A 1/2 (lo g 2 A)/m) 

< exp(--  a~KA 1/2 (2-- 240 (log A)/am)) 

=< exp(--  ~r~fUA 1/z (1 + 62)) 

provided c 2 (and hence 6) is small enough and m->_ c 14 log A. 
Turning to Case 3, dn(7,7*)>A1/26/4 but not Case 1 or 2, after rescaling 

7 and 7" by a factor of [R(y*)[ 1/2, we  get two subcases, according to whether 
(2.3) or (2.4) holds for the cu rve  y / [ R ( ' y * ) [  1 /2  in Lemma 2.5. Suppose first that 
we have 

Case 3 a: ]R(T)I/IR(7*)I ~ 1 -(7rk2/288) A(6/4)2/IR(7*)I. 
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Then 

[n (7")[ => [R (V)[ + 0 z k2/288) A (6/4) 2 > A (1 + c 13 62) 

provided c13 is chosen sufficiently small. But this violates the assumption that 
we are not in Case 1, so Case 3 a never occurs. This leaves us with the following. 

Case 3b: For  some u, v, x, y, z, (2.4) holds. 

Since each vertex s, is in the set E~ of extreme points, from (2.4a) we see that 
u and v are between the same pair s~, S,+l of adjacent vertices of V,,. Consider 
the polygonal path fl which runs 

S O - ' ~ S  1 ~ . . .  -..+Sn---+U--). X - - + y - - - + Z - - + V - - - e S n + l  ~ . . .  - -~S j - - -+S  o . 

By Lemma 3.3, [R(~m)[ > A - c s  m 2, so from (2.4d), 

g(fl)>g(ym)+c,5 A*/2,5 
=> ~ (A - c 5 m2) 1/2 ~- c 15 A 1/2 (~ 

~I/" A 1/ 2 -Jr- Cl6 A 1/2 (~ 

provided m<=c~v (~1/2A1/2. Analogously to the reasoning in Case 2, since we 
are not in Case 1 or 2 the number of vertices in 7m is at most 8~lFA1/2/rn, 
provided c2 is small enough and m < A  */2. Thus the event in Lemma 3.4 occurs 
with n = 8 "~A1/2/m, 1 = " # / ' A  1/2 "-[- C 16 A1/2 6, and N = 2A. Therefore 

(3.15) P IN;  (A, 6) occurs under Case 3 b] 
< e x p ( -  aCUA 1/2 _ ci6 aA i/26 + 120 r 1/2 (log 2A)/m) 

=< exp(--  crCt/'A 1/2 (1 + ei s 6)) 
_--- exp(--  a"tUA */2 (1 + 62)) 

provided that c 2 is small enough and m>=ci9 6-1 log A. 
Now suppose that N{~(A, 6) occurs but not under Case 1, 2, or 3. We wish 

to show that, like 7, Ym is not shaped like Yw. From (1.1), 

diam (~m) < g (7,,) < 2 "~UA 1/2. 

Further, both [R(7)[ and IR(ym)l are between A - c  s m 2 and A(1 +c l3  62). There- 
fore 

(3.16) P (Tm/I R (7)11/2 7~] R (]/rn)l 1/2 ) 

< [ ]R(7)]- ,/2 _ ] R (7,,)1-1/2[ diam (ym) 

< 2 ~/U((1 - c  5 m2/A)-* /2- (1  +eia 62) -i/2) 

~___C20 m Z / A _ . } _ c 2 1  (~2 

< a/4 

provided again that c2 is small enough and m<Cz2a*/ZA */2. In addition, as 
we are not in Case 3, 

(3.17) p(y/IR(7)I*/2,~,,/]R(?)I*/2)<A-*/2(p(7,7*)+p(?*,7,,)) 
<=6/4+A-i/2m<=6/2, 
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provided m < 6AI/2/4. Combining (3.16) and (3.17) with the definition of ~{3 (A, 3) 
we see that, as desired, 

P (7 w, 7,JI R (7,,)11/2) __> 3/4. 

From Theorem 2.1, then, 

g(~m) > IR (Y,.)l ~/2 ("W + k 32/16) 
> (A - c5 m2) 1/2 ("/'//" + k 32/16) 

f f ,~A 1/2 (1 -}- c23 32) 

provided that m<c246A  1/2 and, as usual, that c2 is sufficiently small. As in 
Case 2, this implies that the event in Lemma 3.4 occurs with n=8"~A1/Z/m, 
t = ~ A 1 / 2 ( 1  +c23 32), and N = 2 A ,  so that 

(3.18) P IN;  (A, 3) occurs but not under Case 1, 2, or 3] 
=< exp(--~'gC/'Aa/2(1 +c23 62)+ 120 ~/r 1/2 (log 2A)/rn) 

< exp(-- ~r~IKA 1/2 (1 + c25 62)) 

provided that m>c26 3 -2 log 2A. 
All the provisions we have made on m can be simultaneously satisfied (if 

A 0 and c 3 are sufficiently large) by taking m = ( A  logA) 1/3. Thus (3.13), (3.14), 
(3.15), and (3.18) prove the theorem. [] 

IV Lower bounds for the probabilities of dual circuits 

The main result of this section is the following counterpart of Theorem 3.1. 

Theorem4.1 For each pc(pc, l) and A >  2 there exists a convex polygon Q 
= Q (A, p) containing 0, and a constant c27 = c2 v (P)> 0, such that ]Q I= A and 

Pp [there exists an occupied dual circuit enclosing Q] 
>= exp(--~r~l/A1/2 --c27 A1/6 (log A)2/3). 

Further, as A --+ 0% p (7w, A-  1/2 yQ) __+ 0. 
The idea, similar to Theorem 1.B of [4], is to construct a polygon which 

approximates A1/ZR(Vw) from inside, rescale it slightly so that it has area A, 
and calculate a lower bound for the probability that each adjacent pair of 
vertices of this polygon is connected by a path of occupied dual bonds, entirely 
outside the polygon. We will need the following result from [3]. 

Proposition 4.2 There exists r > 0 such that for each p ~(pc, 1) there is a constant 
c28 = c28 (P)> 0 with the property that for every x, y ~ (7/,,2) :t:, 

Pp [x+-~y by a path of occupied dual bonds] 

>_-c28 II y - x  II-re- ~('-x~. 

To keep our dual circuit outside the polygon, we will need to refine Proposi- 
tion 4.2. First some definitions" for C c N  2 let 

~* C:={xe(Z2)* \C:  x is adjacent to (292) * n C}. 
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Let Ixy denote the line through x and y, and H~y the closed halfspace to the 
right of l,y as one moves from x to y. Let u~y be the inward unit normal 
to H~y. Let Ug denote the unit ball of g. 

Lemma 4.3 For each P~(Pc, 1) there exists a constant c29=c29(P)>0 such that 
for every x4:ye(7Z2) *, 

Pv Ix ~--~y in H~ r] ~c29 I I x - y H -  2Pp [x+'-~y]. 

Proof. It is sufficient to prove the result for llx-Yll large. Suppose x~-~y via 
a self-avoiding occupied dual path c~. Let V be a vertex of c~ which minimizes 
the Euclidean inner product ( . ,  uxy) over e. Then Hv, v+y-~ is a parallel translate 
of H~y with V in its boundary, so that e breaks down into two segments, x+-~ V 
and V~--~y both in H v v+y-~. We wish to interchange these two segments�9 More 
precisely, given any v~(Z2) *, we have by the Harris-FKG inequality ([10]): 

Pp[x,,--~v in Hv, v+y_ j Pp [v+-*y in Hv,~+y-x] 

= Pp[w-~y in H~,v+ r-  x] Pp [Y~--'Y + v - - x  in Hv,v +y- ~] 
<Pp[v~--~v+ y - x i n H v , v + y _ j  

= Pp Ix +-~ y in H~y]. 

From this, the van den Berg-Kesten inequality ([5]), Proposition 4.2, and (1.I), 
if IIx-y[I is large, 

Pv[x,~-~ y] < Pp[x+--~ y, V~x + Z g ( y - x )  Ug] 
+ P v [ x ~ z  for some z~8*(x + 2 g ( y -  x) Ug)] 

=< ~ Pp [3 disjoint paths x*-~ v and v ~ y both in H~, o + y- J 
v ~ x  + 2g(y -- x) Ug 

+ [8* (x + 2 g (y - x) U~)[ e- 2 ~,(y- ~) 
<C3ollY-xH 2 sup Pp[x~--~vinH~,~+y_~] 

ve(Z2)* 

�9 Pe[w--*yinH~,~+y_~]+c31 [[y--x][ e -2~*(y-~) 
<c3o [L y- -  x L[2 ~ [x +--~ y in H~y] + Pp[x ~-~ y]/2 

and the lemma follows easily. [] 

Proof of Theorem 4.1 It is sufficient to prove the result for large A. Let m 
:=(A log A) 1/3, let tim denote the m-hull skeletal path of AUZyw, and let 

Q :=(A/lR(flm)[) ~/2 R(fl,,,). 

Let qo, q~, .-., q J, qs+ ~ = qo be the vertices of (2, cyclically ordered in the direc- 
tion of positive orientation around the boundary of Q. It is easy to see that 
there exist So,  . . . ,  S s+  ~ s(Z2) * such that 

g (si - -  qi) < 2 

and such that the polygonal path So ~ ... ~ s j +  1 =So lies outside Q. Note that 
by (3.3), ( J - 1 ) m / 2  N g(flm)N W"A ~/2, so that 

(4.1) (J + 1) log A < 3 ~#/-A 1/6 ( l o g  A )  2/3 . 
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F r o m  the H a r r i s - F K G  inequali ty ([10]), L e m m a  3.3, Propos i t ion4 .2 ,  
ma  4.3, (4.1), and L e m m a  3.3, then, for r as in Propos i t ion  4.2 and A large, 

Pp [-there exists an occupied dual  circuit enclosing Q] 

> Pp [si*-~ si + 1 in H~, . . . .  for all i _<__ J ]  
J 

>= I] Pp[s~--~si+l i n H  . . . . . .  ] 
i=O 

J 
I ~  C32 [ I s i+ l - s iH- ( r+2)e -ag ( s~+l - s ' )  
i=0 

J  xp( ) 
> exp ( - c 33 A ~/6 (log A) 2/3 ) exp ( -- a g ((A/I R (fl~)[)~/2 fl~)) 
>=exp(-a~C/'A1/2-c27 A1/6(log A)2/3). [] 
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V Error terms for large finite cluster probabilities 

In this section we will prove the error  estimates (1.10) and (1.11) for the probabil i-  
ties in Theo rem  1.1. Wi thou t  explicitly saying so each time, we will make  state- 
ments which are actually only valid for sufficiently large N. Given a region, 
or set of sites, A, let 

f<o(A):=l (xeA ~ Z  2 : IC(x)l_-<n}l/IA ~Z21. 

We will need the following result f rom [4]. 

Lemma 5.1 For each n>=2, each finite A c Z  2, each pe(O, 1) and each e~(0, 1), 

Pp [I f~  n(A) - E f=< n(a)] > ~] __< 18 e x p ( -  ~2 I A 1/324 n2). 

Proof of (I.11). Suppose N=<[C(0)[ < oo and let 7 denote  the outermost  occupied 
dual circuit sur rounding  0. Let  lc N satisfy 

N -  s/12 (log N) 7/3 <~ 1Qv ~ N -  1/3 (log N) 2/3 . 

F r o m  Theorem 3.1 and the upper  bound  on ~c N, 

(5.1) Pp IN  =< [ C(0)[ < oo, [R (7)[ _-__ (1 - K s )  N/Poo] 
=< exp ( -  a ~ P ~ -  1/2 N1/2 + c3 4 N1/6 (log N)2/3). 

Suppose then that  ]R(y)I < ( 1 - ~ : u )  N/P~. Let  C~Nj denote  the class of all dual  
circuits ~ satisfying 

0 ~ R (a) and (1 - 2 j + 1 ~cN) N/P~ <_ [R (a)l < (1 -- 2 j ~cN) N/Poo. 

For  s o m e j ~ 0  and some c~cdNi, the following two events occur:  

(i) y = ~  

(ii) the bond  configurat ion inside R(~) includes a cluster of  size N or more. 
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The key is that these two events are independent, since (i) depends only on 
bonds outside R(c 0. For small values of j, neither of the events (i) (summed 
over ~gNj) or (ii) is by itself unlikely enough to provide the bound we need, 
but we will show the product of the two probabilities is small enough. 

Fix j > 0, let n.-= [(log N)2/o "2 W2], define A,.-=Pp [n < [C (0)l < oo], and define 
I<~(2j~cN, 2j+ 1 tONI by 

By (1.5), 
IR(c0l  = (1 - ~:) N/Poo. 

A .  < ~CN/2 (1 - -  ~CU) =< ~C/2 (1 - -  ~C). 

Therefore by the Corollary to Lemma 4.2 of [4], the probability, denoted 
P_->ul g(~), of (ii) satisfies 

(5.2) P>=NIn(~) <= 18 exp( -c35  n- 2K2 N) 

< exp(-- C36 2zJ~c~ N/(log N)4). 

On the other hand, by Theorem 3.1, 

(5.3) Pp [7 e c~uj] < exp(-- a ~ P ~  1/2 N1/2 q._ C3 7 2j~cN Na/2 
-~- c38 N1/6(1og N)2/3). 

Notice that shrinking [R(7)[ by a factor of roughly I -2J•N from its "natural"  
size N/Poo (i.e. assuming 7ecgNj) shortens 7 and thereby increases the probability 
that 7 forms. Hence the second term in the exponent in (5.3), which is of the 
same order as the reduction in length. But (due to the lower bound on teN) 
this and the third term in the exponent in (5.3) are more than compensated 
for by the reduced probability in (5.2) that a size-N cluster forms, which has 
roughly the square of the length reduction in the exponent. This compensation 
occurs for each fixed size range (i.e. each j) but not when all sizes are lumped 
together, which is what requires that we sort the possible curves 7 by size. 

Thus we obtain 

(5.4) Pp EN ~ I C(0)l < oo, [R (7)1 < (1 - ~CN) N/Boo] 
oo 

j = O ~ e ( ~ N j  

=< L e~ETe~gNJ] sup P'-NIR(,) 
j =  0 ~ e ~ l V j  

< L exp(-- a~#rP~ - 1/2 N~/Z _ C3 9 22J/r N/(10g N) 4) 
j = 0  

=< exp( - -  utr"ct/ 'o-,v �9 ~ 1 /2  *AT1/2' - -  ~4o~ ,~N'~2 N/(log N)4). 

Together (5.1) and (5.4) provide the desired upper bound" 

(5.5) Pp[N<[C(O)[< ~]<exp(--a~g/P~l/2 NZ/2+c41N1/6(logN)2/3). 
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We turn next to a lower bound on this same probability. Let ON satisfy 

N -  1/2 (log N) 2 <~ O N ~ N - 1/3 (log N) 2/3 . 

Define polygons 

QN:=(1 + 208) Q(N/Po~, p), Q~v :=(1 + ON) Q(U/Poo, p) 

as in Theorem 4.1. Let n:=[c42(log N) 2] (with c42 t o  be specified later) and let 

B u.'= {x ~ Q} n ~2 : i C (x)l > n}. 

Then 

E]BN[ > [Q'u~Za[ Po~ >=(1 + 08)2N--c43 N 1/2 >=N + ON N 

so that, using Lemma 5.1 and the lower bound on ON, 

(5.6) P~ [IBNI __<N] < Pp [IBul-EIBNI <= - O u  N]  

< exp ( - c44 02 N /n  2) -~ 0 

as N-~ o0. Further, if not all sites in BN are connected together within QN then 
there must be an occupied dual path within QN either connecting the interior 
of Q~ to the boundary of QN or surrounding a large cluster within QN. Either 
way (part of) this path has endpoints separated by g-distance of order ~42"*/2 log N 
or more, since 

dr~(?e,~, ?Q~) > c~5 ON N 1/2 >~ log N. 

As there are only of order N 2 possible pairs of endpoints for such a path, 
its existence is unlikely if c42 is large, by (1.1). More precisely, 

P; [BN intersects two distinct dusters] ~ 0 as N-~ o0. 

Thus from (5.6), 

(5.7) Pp [there exists a cluster of size N or more in the configuration inside QN] -~ 1. 

The event in (5.7) is independent of the event that there exists an occupied 
dual circuit enclosing QN, and is positively correlated (by the Harris-FKG in- 
equality, [10]) with the event [0~BNI which has probability at least Poo. All 
three events together ensure N____]C(0)]< o0. Therefore we obtain the desired 
lower bound, using Theorem 4.1 and the upper bound on ON : 

(5.8) Pp IN < I C(0)l < o03 ->_ eoo exp( - rr'IC/Po~ 1/2 N1/2 (1 + 0N)-- C46 N 1/6 (log N) 2/3) 
> exp (-- rr ~KP~- 1/2 N 1/2 _ cr N 1/6 (log N)2/3), 

and (1.11) follows. [] 

Proof  of  (1.10). Suppose N<lC(0) l<  o0 and let ? denote innermost occupied 
dual circuit enclosing 0. We must show that the total probability of those config- 
urations in which p (Tw, (P~/N) 1/2 7) exceeds (const.) N -  1/6 (log N) 1/a is small rela- 
tive to the lower bound in (5.8). 



526 K.S. Alexander 

First, f rom (1.11), (5.4), and (5.8) we see that, for KN defined in the proof  
of  (1.11). 

Pp[N < IC(O)I < o~, IR(y)[ <(1-~cN) N/Po~] =o(Pp[N <]C(O)] < og]). 

Let 6N: c48 N-1/6(log N) ~/3, with c4s to be specified later. Second, from Theo-  
rem 3.1, (1.11), and (5.8) we obtain 

(5.9) Pp IN < I C(0)] < o% Ie(y)l > (1 + 62) N/P~] 
< exp( - a~gPf  1/2 N1/2 _ _  a~g/.pf 1/2 N1/262/3 + C4 9 N1/6 (log N) 2/3) 
= o(Pp [N__< I c(o)l  < oo3), 

provided c4s is chosen sufficiently large. And  third, from Theorem 3.2, (1.11), 
and (5.8) we get 

(5.10) Ppfg<lC(O)l<oo, le(y)l>(1--~cN)g/P~,p(?w,?/le(7)]l/2)>6N] 
<exp( -c r~ /P f  l/2 N1/2 + Cso ~cu N1/2-c51 N1/2 62) 
= o (Pp IN  < I c(0)l  < oo]). 

again provided c48 is chosen sufficiently large. 

On the other  hand, if bo th  

p(yw, 7/I e ('/)1 l/2) < 6N 

then 

and (1 - ~cN) N/P~ N IR(~)I ~ (1 + 62) N/P~ 

P(Tw, (Poo/X)I/27) ~ P(Tw, Y/Ie (Y)ll/Z) + P(7/li (7)l l/z, (ro~/X)l/aY) 
_-< 6N + 11 e (7)1 - ~/2 _ (po~/g) l/21 d i a m  (~/) 
< 6N + 2 I(x/r~le (~/)1) 1/2 - i I d iam (Tw) 

< 6N + 3 (to N + 62) diam(Tw) 
= O(N- 1/6 (log N) 1/3) 

and (1.10) follows. [ ]  

VI Error terms for large deviation probabilities 

In this section we will prove the error  estimates (1.12) and (1.13) for the probabil i-  
ties in Theorem 1.2. Our  approach  is similar to that  of the previous section: 
we first prove the estimate (1.13) for the error  term in the probabi l i ty  (1.9) 
of the large deviat ion event Fr(2), then show that  the probabi l i ty  that  the shape 
approx imat ion  (1.8) fails, for ~(L) as in (1.12), is much  smaller than the probabi l i ty  
in (1.9). We will tacitly assume in this section that  L is large, where " l a rge"  
may depend on 2 and p. Fo r  this section we allow the constants  ci to depend 
on 2 in addit ion to p. 

If 7 is the outermost  occupied dual circuit sur rounding  some point  of ;gz, 
let us call R(7) a bubble. Fix L (the scale of the square At); we will call a 
bubble large if I R(7)[ > c52(log L) 2, and small otherwise. Here  c52 is a constant  
to be specified later. Notice  that  by Theorems 3.1 and 4.1 (log L) 2 is the order  
of magni tude  of the area of the largest bubble which " typ ica l ly"  appears  in 
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AL. The idea of Theorem 1.2 is that when [ALc~ Cool is smaller than its typical 
value by a fraction 2, it is usually because there is a single large bubble shaped 
like W occupying a fraction 2 of A L. 

Let us first prove an extension of Theorem 3.1. Let 

u ( A ) : = c r ~ # / ' A  1/2 C 1 A I / 6 ( I o g A )  2/3 

denote the negative of the exponent in that theorem. 

Theorem 6.1 For each Pe(Pc, 1) there exists a constant c53=c53(p)>0 such that 
for every L, A, and a with L > 2  and A>a>c53(log L) 2, 
(6.1) Pv [there exists a set F of occupied dual circuits 7 with disjoint regions 

R (7), with ]R (7) c~ ALl > a for each 7 e F, and with ~" ]R (7) c~ ALl > A] 
7EF 

< IALI 4 e x p ( -  u(A)). 

Proof. We decompose the event in (6.1) according to the number k = l F  [ of 
circuits, their total area N in AL, their individual areas a, . . . . .  ak, and a site 
xi inside each circuit. Using the van den Berg-Kesten inequality ([5]) and Theo- 
rem 3.1, the left side of (6.1) is thereby bounded above by 

(6.2) 
k 

Z Z Z Z 1~ e x p ( -  u(a,)) 
k <=min([Agl,A/a) A < N < lALl al +... + ak =N,ai> axl ..... xk~A E l -  1 

<= Z Z N k l A L f e x p -  rain 2 u(a~)]. 
k<=min(IAL[,A/a)A<N<[AL[ al+...+ak=N,ai>--ai= i ] 

Now for x > s o m e  cs4 we have u(x) concave and xu'(x)<3u(x)/4. As in the 
proof  of Theorem 6.1 of [4], this concavity implies that if we fix k and N = a  1 

k 

+ ... + ak, and fix all but two of the ai's, the minimum of ~ u(ai) is obtained 
i = 1  

by taking one of the two remaining a[s as large as possible and the other 
as small as possible (i.e. equal to a). It follows that the minimum on the right 
side of (6.2) is equal to ( k - 1 ) u ( a ) + u ( N - ( k - - 1 ) a ) .  This can be interpreted as 
meaning that the most likely configuration of k bubbles, of minimum area a 
and total area N, consists of k - 1  bubbles of area a and one large bubble 
with all of the remaining area. The right side of (6.2) is now bounded by 

(6.3) Y, I/El 2k+l e x p ( - ( k - - 1 ) u ( a ) - u ( A - ( k - 1 ) a ) ) .  
k <= min([ALI,A/a) 

Using monotonicity of u' and the above bound on xu'(x) it is easily seen that 
(the logarithm of) the summand in (6.3) is a decreasing function of k > 1, provided 
a > c53(log L) 2. Replacing each term with the k = 1 term gives (6.1). [] 

We need to establish some notation and terminology for the proof of (1.13). 
Let B L denote the union of the (necessarily large) bubbles R(7 ) for which 

IR(7) c~ ALl > c52(log L) 2 ; 
let 

SL ::={xEAL : d(x, OAL)<2cs2(log L) 2} 
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denote the boundary strip, and define the foam region 

GL (BL) ,= AL\(BL ~ SL); 

GL(BL) consists of small bubbles and (a neighborhood of) part of Co.  
There are two modes of occurrence for the large-deviation event FL(; O. One 

is for large bubbles to enclose a fraction at least approximately 2 of A z, leaving 
a fraction at most approximately 1 - 2  for the foam region. Then typically a 
fraction Po~ of the sites in the foam region, and of course none of the sites 
in the large bubbles, will be in Coo, for an overall fraction of at most ( 1 - ) j  P~o- 
The other mode is for the large bubbles (if any) to occupy a fraction less than 
2 of AL, while the foam in the foam region is fluffier that typical; a fraction 
significantly greater than 1 - P ~  of the sites in Gc must be in (necessarily small) 
bubbles, hence also in small clusters. This second mode, as we shall see, is 
far less likely than the first, while the first is dominated, analogously to Theorem 
1.1, by configurations in which there is only one large bubble shaped like the 
Wulff set W. 

Proof of (1.13). Let B denote a possible value of the set BE of large bubbles. 
Let H= H (B )  denote the set of all sites which are in small bubbles contained 
entirely in B c. If Fr(2 ) occurs with BE=B, then for the corresponding value 
GL(B ) of the foam region, we have 

] GL(B)~ H (B)I + IsL u (B  C~ AL)I ~ IALI(1 --P~ + AP~), 

as these are upper and lower bounds for the number of sites in Ar in finite 
clusters. 

Define OL = OL(B) by 

(1-- P~ + OL)IGL(B)I + ISL ~(B  c~ AL)I=IALI(1-- P~o + )~P~o). 

0 L is defined so that if FL(2) occurs with BE=B, then 

[GL(B) c~ H(B)[ > (1 - P~ + OL)[GL(B)I, 

i.e. the fraction of GL(B) in small bubbles is too big by at least OL. 
The event that B r = B tells us two things: 

(i) every dual bond in 0B is occupied; 

(ii) every site in the corresponding foam region GL(B) either is connected to 
oo in B c or is in a small bubble contained entirely in B c. 

In (ii) we use GL(B) and not A r \ B  because sites in the boundary strip S but 
outside B could be in large bubbles. Notice that events (i) and (ii) are indepen- 
dent; this can be used, just as in the proof of Theorem 6.1 in [-4], in showing 
that 

(6.4) Pv(FL(2)) < ~Pp(Bc = B) Pp [I GL(B) c~ H(B)[ > (1 -- P. + OL(B))IGL(B)I] 
B 

where the sum is over all possible values B of B r. (In the earlier paper values 
of B are specified by a subscript j;  (6.4) here corresponds to (6.14) there.) 
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Let n:=[Csz(logL)Z]; then the last event in (6.4) implies that the fraction 
f<=,(GL(B)) of the sites in GL(B) which are in clusters of size n or less satisfies 
f< ,  (GL (B)) -- E f=<,(GL (B)) > 0L (B). By Lemma 5.1 the probability therefore sat- 
isfies 

(6.5) Pv [[ GL (B) c~ H (B)I_-__ (1 - Po~ + OL (B))IGL (B)IJ 
< 18 exp(-- c55 OL(S)21GL(n)l/(log L)4), 

provided OL(B) > O. 
Analogously to }c N of the proof of (1.11), let ZL satisfy 

L- 5/6 (log L) 7/3 ~ z L ~ L- 2/3 (log L) 2/3 . 

Consider first the class ~ ' (L)  consisting of those B with 

]Bc~ ALl > ( 1  -- ZL) 2[AL]. 

These correspond to the first mode of occurrence mentioned above for FL(2). 
From Theorem 6.1 and the upper bound on ZL, 

(6.6) ~ [BLeN'(L)] < IALI 4 exp(-- u((1 -- ZL) ,~ I/LI)) 
< exp (-- o- ~ff/~ 21/2 L + C56 L 1/3 (log L)2/3). 

Next for j > 0  consider the class ~j(L) of those B for which 

( 1 -  2 ~+ 1 ~L) )~IALI < [B ~AL[ <=(1-- 2JZL) 21ALl. 

These correspond to the second mode of occurrence for FL(2 ). Using Theorem 
6.1 again, 

(6.7) Pp[BLE~j(L)] <=exp(--a"lU')~1/2 L +c57 2JzL L-t-C5s L1/3 (log L)2/3). 

Now (6.7) and (6.5) can be used to bound the right side of (6.4), if we can 
obtain lower bounds for I GL(B)I and OL(B). Let B~Nj(L).  Note that necessarily 
UzL< 1. The first bound is easy: 

(6 .8 )  IGL(B)I>=IAL]--IBcaALI--ISLI>(1--2)IAcI+'cL 2[ALI--ISLI 
_>_(1 --2)IALI. 

For the second bound, if P~ < 0L then the probability in (6.5) is 0 so we may 
assume P~o > 0L. Then 

(1 - -  P~ + 2P~)] ALl = (1 -- P~ + OL) ] GL(B)[-I-IS L k..) (B ~ AL) [ 

=(1--  P~ +OL)IAcI +(Po~--OOISL u(Bc~AL)I 
__< (1 -- Po~ + OL)IALI + (Po~ -- OL)(I SLI + (1 -- 2~ZL) R I ALl ) 
__<(1 - e ~  +OL)IALI +(P~ -- 0L)(1 - -2  j-1ZL) "~lALI. 

Solving for 0L gives 

(6.9) OL(B)>=2Po~ 2J-I"CL for all B ~ j ( L ) .  
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Combining (6.4), (6.5), (6.7), (6.8), and (6.9) we obtain, analogously to (5.3): 

(6.10) Pp (FL (2), BLr 
< ~ 18 e x p ( - c r Y Y 2 1 / 2 L + c s 7  2 S r L L + c s s  L1/3(log L) 2/3 

j_>o 

-- c59 22 S'c~ L2/(log L) 4) 

< ~, exp(--  r162 22JzaL L2/(log L) 4) 
j>=o 

G exp (-- cr ~ 21/2 L -- c61 z~ L2/(log L)4) �9 

Now we turn to lower bounds on Pp(FL(2)). The condition 2 < (diam(yw))- 2 
ensures that the curve ).~/2L'/w is entirely inside Ac; hence (for large L) so 
is ?;Q, where Q = Q ( I + z L ) 2 ] A L I ,  p) is the polygon from Theorem 4.1 which 
approximates 21/2LTw . If there exists an occupied dual circuit enclosing Q, 
let ?x denote the innermost such circuit. Given any dual circuit e, let C~o denote 
the set of those sites connected to c~ by a path of occupied bonds entirely 
outside R (c~). If for some dual circuit ~, both 

(i) 7 ,  = c~, 

and 

(ii) I CG c~ ( A L \ R  (c0) [ < (1 -- Z) Poo [ALl 

then FL(2 ) occurs. Now (i) and (ii) are independent, and we will show (ii) is 
a very likely event. In fact it is easily checked that (ii) will occur provided 

(6.11) f<=, ( A t \ Q )  - E f< ,  ( A t \ Q )  > - c 62 zc 

where n=[-c63(logL)2]; here c63 is chosen (using Theorem 1.1) so that P i n  
<1c(0)1<c~3 is much smaller than zL. From Lemma 5.1 the probability of 
(6.11) approaches one as L---, oo. Thus from Theorem 4.1, 

(6.12) Pv(FL(2))>~,Pv[71 =~]  Pv[tC~ c~ (AL\R(c~)) 1 < ( 1 - 2 )  P~o I/LI] 
Gr 

> Pp [-there exists an occupied dual circuit enclosing Q]/2 
> exp(--  cr~/f'2U2 L c64 L~/3/(log L)2/3). 

Together (6.6), (6.10), and (6.12) prove (1.13). [] 

Proof  of  (1.12). Suppose Fc()o) occurs and let 7~, .-., 7k denote those occupied 
dual circuits, if any, which bound a (necessarily large) bubble for which 

I R (~ c~ ALl ~ C 52 (log L) z ; 

of course K is random. We may assume 71 maximizes ]R(7~)c~AL[ over i 
= 1 . . . . .  K. As in the proof of (1.10) we must show that the total probability 
of those configurations in which P(Yw, 3;1/21/2L) exceeds (const.)L-1/3(10g L) ~/3 
is small relative to the lower bound 

(6.13) exp ( -- c rUZ ~/2 L - -  c 6 4  L1/3/(log L) 2/3) 

in (6.12). 
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Let 
6~ ,=c65 L- i/3 (log L) 1/3 

with c65 to be specified. Let z L be as in the proof of (1.13). If the desired event 

p (yw, ~ ~/,~ '/21~) <= 6;. 

(which says that the one largest bubble is of the right size and shape to account 
for FL(2 ) and (1.8)) does not occur, there are four possibilities: 

K 

(i) [BL[= ~ IR(Ti)c~AL] <(1--zL)21ALI, 
i = 1  

i.e. there is not enough volume in all the large bubbles together; 

(ii) IR(y~) c~ AL] < (1 -- 3 vL) R[ALI, 

but not (i), i.e. there is more than one bubble of significant size; 

(iii) [R (70 ~ ALl > (1 + (6~) 2) 2 ]AL 1, 

i.e. there is too much volume in the largest bubble; 

(iv) both IR(71)c~ALI>(1-B~L)2[Ar] and p(?w,)h/21/2L)>c~'L, 

i.e. the largest bubble is big enough but of the wrong shape. 
From (6.10) we see that the probability of (i) is much less than (6.13). From 

the proof of (1.10) (compare (5.9) and (5.10)) we see that the probabilities of 
(iii) and (iv) are much less than (6.13), provided %5 is sufficiently large. 

Under (ii) let M be the least index such that 

M 

]R(Tz)~ALI>=rL z]AL[ . 
i = 1  

Then for some 1 =<j<J . .=[z[  1] - 2 ,  both 

M 

(6.14) jzz 2[AL] < ~ [R(7I)c~ALI < ( j +  1) r L 2[ALl 
i = l  

and 
K 

(6.15) (J--j)rLRIAL[<= ~ [R(7~)c~ALI 
i = M + I  

with the occupied dual circuits in these two events occurring disjointly. By 
Theorem 6.1 the probabilities of (6.14) and (6.15) are bounded above by 

IALJ 4 exp(--u(jT:L21ALI)) and ]ALl 4 exp(--u((J--j)zL21ALI)) 
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respect ively.  U s i n g  the  v a n  d en  B e r g - K e s t e n  i n e q u a l i t y  ([51) it fol lows tha t  the  
p r o b a b i l i t y  of (ii) is b o u n d e d  ab o v e  by  

J - 1  

(6.16) ~ ]A•I 8 exp(-- [u(jz r AIALI)+u((J- j )  vc s 
j = l  

From the property of u(.) mentioned after (6.2), the maximum term in this 
sum occurs for j =  1 ( o r j = J - 1 ) ,  so that (6.16) is bounded above by 

J IArl 8 e x p ( -  I-u ((1-4zL) )~ IALI) + u('cL .~ IALI)3) 
< exp ( - -  ~72g/'~1/ZL -}- C66 "C L L + C67 L 1/3 (log L) 2/3 - -  C68 "eL 1/2 L) 

< e x p ( -  a'r162 21/2 L - c 6 9  "C 1/2 L) 

which is much less than (6.13). [~ 
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