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Summary. This paper studies a process involving competition of two types of 
particles (1 and 2) for the empty space (0). Each site of the lattice Z d is therefore 
in one of three possible states: 0, 1, or 2. Particles of each type die with rate 
1, while an empty site becomes occupied by a particle of type i with rate 
2i .(proportion of neighbors of type i). The set of neighbors of a site x is of 
the form {y: l lx -y lh  <=J}, for a positive integer J and a norm [I-I[. Assuming 
there are only 0's and l 's present at the beginning, the process reduces to the 
contact process, with the critical rate of survival of l 's being 2c. The basic 
problem we address is the existence of equilibria in which both types of particles 
coexist. Without loss of generality, one can restrict to the c a s e  J~2 >=21 > );c and 
in this case we show: 

(1) If 22 > 21, and the initial state is translation invariant and contains infini- 
tely many 2's, then the l's go away and the process approaches the invariant 
measure of the contact process with only 2's and O's present, 

(2) If 22 =21,  and d<2 ,  then clustering occurs: starting from a translation 
invariant initial measure with no mass on all O's, the process converges weakly 
to a convex combination of the two invariant measures obtained with only 
one type of particles present, and 

(3) If 2z=21,  and d>3 ,  then there is a one-parameter family of invariant 
measures including both types. 

1 Introduction 

The Multitype Contact Process is a Markov process in which the state at time 
t is ~t: Z d ~  {0, 1, 2}. We say that a site is vacant if ~(x)=0,  and it is occupied 
by a particle of type 1 (resp. 2) if ~(x)= 1 (resp. 2). We formulate the evolution 
as follows: 
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(i) l 's and 2's each die (i.e., become 0) at rate 1. 
(ii) l's (resp. 2's) give birth to l's (resp. 2's) at rate 21 (resp. 2z). 
(iii) If the birth occurs at x, the offspring is sent to a site chosen at random 
from { y : y - x ~ J V  ~} where Y is the set of neighbors of 0. We assume .At to 
be of the from .Ar={x: Irxl[ _-<J} for some positive integer J where [1"11 is some 
arbitrary norm. 
(iv) If ~t(Y)>0 then the birth is suppressed. 

We think of this process as a model for a biological population of two 
species where the species may compete only over vacant sites. 

We begin with some simple observations. First if only one type of particle 
is present, the system reduces to the basic d-dimensional contact process with 
neighborhood set X (see e.g., Liggett (1985) or Durret t  (1988)). Let 2~ be the 
critical value of the contact process, i.e., 

2~ = inf{2: P([4~ > 0 for all t) > O} 

where 14~ denotes the number of occupied sites in the contact process starting 
with a single particle at 0. Throughout  the paper we will assume 2 2 > 2 1 > 2  c. 
For  it is easy to see that if 21<2c, the l 's die out and we end up with the 
d-dimensional contact process for the 2's. 

The point of this paper is to prove ergodic theorems for this model. Since 
we have two types of particles, it is natural to ask whether there are equilibria 
where both types of particles can coexist. The answer is sometimes yes and 
sometimes no depending on the following three cases: (i) 22>21,  (ii) 22=21 
and d = l  or 2, and (iii) 22=21 and d>3 .  In the first two cases we obtain 
no interesting behavior, only one type can survive. The interesting behavior 
shows up in the third case where we obtain a one-parameter family of extremal, 
stationary and translation invariant measures where the parameter ranges con- 
tinuously from 0 to 1 and reflects the density of l 's in the limiting distribution. 

Our first result shows that the case 22 > 21 is not interesting: 

(1) Theorem. I f  21 <22, the "1 's die out "'. That is, if 4o is translation invariant 
and P(~o(0)=2)>0,  then ~t=~Iz2 the limit starting from all sites occupied by 
particles of type 2. 

Here ~ denotes weak convergence, which is in this setting just convergence 
of finite dimensional distributions. 

We will explain the intuition behind this result after we state our results 
for the case 21 = 2 2 and describe how they are proved. 

To state the next result let 5 ~ be the set of translation invariant measures 
and let #i be the limit starting from ~o(X)-i( i= 1, 2). We use 4r u to denote the 
multitype contact process with initial distribution #. 

(2) Theorem. I f  21 = 22 and d< 2, clustering occurs. More precisely, 

(i) /f ~o = # ~ J  has no mass on ~0(x ) -0  

Ct" =*- c~/~1 +(1 - c 0  #2 

as t ~ oo. 
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(ii) Furthermore, for any initial configuration 4o 

P(4t(x) = 1, 4t(Y) = 2) ~ 0 

as t-~ oo. This holds for any x, y e Z  e. 

We will say something about e below. The next result shows that the interest- 
ing behavior occurs if d > 3  and 21=22 . Let J denote the set of stationary 
measures. 

(3) Theorem. Suppose 21 = 22 and d > 3. 

(i) Let 4~ be the initial distribution in which the coordinates 4 ~ (x) are independent 
and = 1 (resp. 2) with probabilities 0 (resp. 1 - 0). As t ~ oo 

47~vo. 

(ii) I f  #eSe is ergodic 

4~t =~Vo for some 0e[-0, 1]. 

(iii) The extremal translation invariant stationary distributions are (Jc~5~)e 
={vo'O<__O<_l}. 

The answers in (2) and (3) are similar to those for the voter model (Holley 
and Liggett 1975). It approaches total consensus in d__<2. In d > 3  differences 
of opinion may persist. These results are proved by using "duality".  The duals 
in the voter model perform simple random walks. Two voters in this model 
have the same opinion if their duals hit, and may have different opinions if 
they do not hit. The difference in the behavior comes from the fact that random 
walks are recurrent in d__< 2, and transient in d_>_ 3. 

As in the voter model, the key to our proofs will be duality, but the duals 
for the multitype process are more complicated. If 21=22 we define the dual 
process starting from a single site x much as in the contact process. There 
is a set of sites ~ so that if any of these sites are occupied then x will be 
occupied at time t. However now there is a hierarchy. If we imagine that all 
the sites at time 0 are occupied by particles of different color then there is 
one site that will paint x its color. We will denote this site by ~t(1) to indicate 
that this is the first member in the hierarchy. We call this ancestor the distin- 
guished particle. Here and in what follows, italics indicate that we are giving 
a technical meaning to a phrase. If we make ~'~(1) vacant then the color will 
change to that of some site ~(2), the second member in the hierarchy, and 
so on. To determine the limiting behavior of the process starting from all sites 
occupied it is sufficient to keep track of the location of the distinguished particle 
~'(1). To follow the evolution of the distinguished particle we use an idea of 
Kuczek (1989) to break the evolution at certain points which we call renewal 
points. 

The good thing about  the renewal points is that they define an embedded 
random walk for the distinguished particle. More precisely, the spatial and tem- 
poral displacement between two consecutive renewals from an i.i.d, family. We 
will also obtain exponential bounds on the spatial and temporal displacement 
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which gives us control over the distinguished particle between consecutive renew- 
als. 

The picture of the dual we have in mind is now the following. The embedded 
random walk tells us where the distinguished particle is at the renewals. The 
exponential bound on the displacement gives us control over the location of 
the distinguished particle between consecutive renewals. It says that with high 
probability the distinguished particle will stay within a set linearly growing 
in time which we will call triangle for obvious reasons. Whenever a renewal 
occurs the next triangle starts at the bot tom of the preceding one. Hence we 
obtain the picture of a chain of connected triangles where we can find our 
distinguished particle with high probability. 

When we talk about  collision of triangles we mean that the triangles of 
two different duals overlap. Gluing two duals together means that the two distin- 
guished particles of two duals coalesced. 

The idea behind the proof  of (2) is the same as in the proof  for the voter 
model, namely we rely on the recurrence of 1 and 2 dimensional random walks. 
The main technical problem is that as soon as the triangles collide, the embedded 
random walks are no longer independent. To overcome this we show there 
is a probability 6 > 0 independent of the starting points so that with probability 
at least ~5 we can bring any two distinguished particles within a fixed finite 
distance K without a collision of their triangles. As soon as they are within 
distance K, it is easy to see that with positive probability we can glue the 
two duals together, i.e., make their distinguished particles coincide. Once this 
is done standard arguments take over to show the desired result. 

The existence of the stationary distributions in d > 3 is easier than the proof 
of (2). All we have to prove is that if the distance between x and y is large 
there is a positive probability that the two duals starting at x and y will not 
collide. 

Two main ingredients are needed to prove (3). The first one is what we 
will call "convergence of trees". By this we mean the following. We start the 
dual at a certain site and follow the path of its distinguished particle until 
time t. Then we go back a fixed number of renewals and look at the tree 
growing out of this renewal point. We will prove that the trees have a limiting 
distribution by showing that the joint distribution of (~'~(k)-~(1)) converges. 
This together with the continuous mapping theorem shows that the one dimen- 
sional distributions converge. 

For  the convergence of the higher dimensional distributions we need the 
other ingredient which basically says that two dual processes either coalesce 
or get separated and are asymptotically independent. 

We will find the extremal stationary and translation invariant measures by 
starting with any translation invariant and ergodic measure and proving that 
each one converges to a certain vo where 0~[0, 1]. The Vo'S will be shown to 
be mutually singular. This follows from the weak law of large numbers for 
the Cesaro average of the l's. By the multiparameter ergodic theorem, this 
quantity actually converges almost surely. An easy extension of this result will 
then show that they are ergodic. 0 characterizes the density of the l 's in the 
limit. 

It is fairly difficult to tell which v o the system converges to except in the 
two cases where we either start with a translation invariant and ergodic measure 
without 0's in which case 0 is the density of the l's; or with a Bernoulli measure 
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# in which case 0 is characterized by the 1-density # {~: r (0) = 11 ~ (0) > 0}. Like- 
wise we cannot say much about  the e in (2) except in the two cases just men- 
tioned. 

We want to note that the qualitative behavior of the system does not change 
if we have more than two species. If the birthrates are all the same, clustering 
will occur in d > 2. In d__> 3 we will obtain a k-parameter family of extremal, 
translation invariant stationary distributions where k is the number of species-1. 
If the birthrates are different, then only the species with the highest birthrates 
will survive (starting from infinitely many species in each class). The proofs 
of the theorems rely heavily on the fact that both species have the same death 
rates. If particles of type i die at rate ~ and give birth at rate 2 i, we conjecture 
that 

•1 - -  22 

81 ~2 

is the right hypothesis for coexistence to occur in d=> 3 and for clustering to 
occur in d < 2. In all other cases, the particle with the bigger quotient of 2~/3i 
will eventually dominate. But we do not know how to prove this. 

The paper is organized as follows: In Sect. 2 we give the graphical construc- 
tion for the process and study the dual process. In this section we will also 
prove Theorem 1. The proof of this Theorem follows easily from the graphical 
construction and duality. This will be done at the end of Sect. 2. What we 
will basically show is that if we wait long enough, the renewal points in the 
dual process will be closed for the l's. Section 3 is divided into three parts. 
In the first part we prove results that are also needed for the proof  of Theorem 3. 
The second part proves Theorem 2 in dimension 1, and the third part proves 
it in dimension 2. We will relegate some preliminary results for the proof  of 
Theorem 3 to Sect. 4. The proof  of Theorem 3 will be carried out in Sect. 5. 
Formulas are numbered (1), (2), ... in each section. When formula (6) from Sect. 2 
is referred to in a later section it is called (2.6). 

2 Construction. Duality. Proof of Theorem 1 

We begin by constructing the process from a collection of Poisson processes. 
The construction is basically the same as the one of the basic contact process 
(see e.g., Durrett  1988). We will first consider the case 21=22.  For  x,  y ~ Z  d 
with y - x e X ,  let {T,X'Y: n > l }  and {U,~: n >  1} be the arrival times of Poisson 
processes with rates ,~2/IJ~l and 1. At times T,  ~'r, we draw an arrow from x 
to y to indicate that if x is occupied then y will become occupied (if it is not 
already). At times U, ~, we put a 6 at x. The effect of a 6 is to kill a particle 
at x (if it is present). An idea of Harris (1972) allows us to construct the process 
starting from any r 1, 2} zd. We will first construct the process up to time 
z in such a way that Z a splits into a countable number of a.s. finite components. 
Iterating this allows us to construct the process for all time. 

We say that there is a path from (x, 0) to (y, t) if there is a sequence of 
times So = O  • s I  < S2 < . . .  < S n ' (  Sn+ l = t and spatial locations Xo = X, X l  , . . .  , x ,  
= y so that: 

(i) for i = 1, 2 . . . . .  n there is an arrow from xl-  1 to xi at time s~, and 
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(ii) the vertical segments {xi} x (si, si+ 1), i =  O, 1, . . . ,  n, do not contain any 6's. 

We can now define an equivalence relation on Z d x [-0, oe) that defines the com- 
ponents. (x, t) and (y, 0) belong to the same equivalence class if (x, t) can be 
reached from (y, 0) (or (y, t) from (x, 0)) by a path. By comparison with a branch- 
ing process we can show that if we choose z small enough such that the probabili- 
ty of a connection < 1/[X[, then all the components are a.s. finite. For  more 
details see the paper cited above. 

To take care of the case 22 > 22, we start with the above construction for 
22 and then toss a coin with success probability (22-21)/22 at each arrow. 
If there is a success, we label the arrow with a "2"  to indicate that only 2's 
can give birth through those arrows. 

After constructing the process from the graphical representation we can 
define its dual process. If 22>22,  we define the dual process only for the 2's. 
If the rates are equal, it works for both types of particles. For  the dual process 
we reverse the arrows and reverse time by mapping g= t - s .  Let ~t = {Y: there 
is a path from (x, 0) to (y, ~)}. Since it is in general easier to work with a forward 
process than with a backward process, we will replace this process by the dual 
~' that is constructed from a graphical representation that has arrows from 
x to y at rate 22 where y is again in the neighborhood set of x, and has 6's 
at rate 1. The construction can be done as before. We let 

~'~ = {y: there is a path from (x, 0) to (y, t)}. 

As in the basic contact process, ~' and ~' have the same distribution. We will 
call the elements of ~'~ ancestors and the first ancestor sometimes dist inguished 
particle. 

As in the basic contact process the dual process tells us whether or not 
a site is occupied just by checking if at least one of the ancestors lands on 
an occupied site (if the process survives). Since the process we consider here 
has two types of particles, we are also interested in the type of particle sitting 
at a certain site. To figure this out note that the dual process {~',0__<s<t} 
has a tree structure. We start the dual at (x, 0) and run it until time t where 
the ancestors land on the initial configuration. The tree structure defines an 
ancestor hierarchy in which the members are arranged according to the order 
they determine the type of the site (x, 0). We will describe the hierarchy now 
in greater detail by starting with the case 22 --22. Let ~'(n) be the nth member 
of the ordered ancestor set. If the first ancestor, ~(1), lands on a 1 (resp. 2), 
then the site (x, 0) will be of type 1 (resp. 2). If it lands on a 0, we look at 
the type the second ancestor lands on, and so on. The first ancestor in the 
hierarchy that does not land on a 0, determines the type of the particle at 
(x, 0). If 22 > 2,,  then a path that crosses an arrow labelled with a "2"  is forbidden 
for a 1-particle. If ~'~(1) does not cross any "2"-arrows and lands on an occupied 
site, then ~'t(1) and (x, 0) are of the same typel If the first ancestor in the dual 
process lands on an empty site or crosses a "2"-arrow and lands on a 1-particle, 
we look at the second ancestor. If ~t(2)= 1 and the path that connects this 
site with (x, 0) does not cross any "2"-arrows, then the site (x, 0) will be occupied 
by a 1-particle. If ~ (2 ) - -2  and ~'~'(1)=0, then the site (x, 0) will be occupied 
by a 2-particle. If ~ ' (2 )=2  and ~ ( 1 ) =  1, and if the first ancestor failed to paint 
(x, 0) its color, we check both particles for the first and second ancestor to 
determine whether or not the second ancestor can paint (x, 0) its color. For  



Ergodic theorems for the multitype contact process 473 

i (x, t) 1 

" 2 . 2 
2 . 

U 

D 

G @ @ @ | | 
1 2 1 0 1 2 

Fig. ] 

instance, the second ancestor will fail if the first ancestor can still "use the 
path",  i.e., has not crossed a 2-arrow by the time they both start using the 
same path. If the second ancestor fails too, we check the third ancestor in 
the 2-dual process, and so on. A picture is worth more than a hundred words, 
so we illustrate this at Fig. 1. The ordered set of the first six ancestors is 
( x -  3, x -  1, x + 1, x, x + 3, x + 2). If for instance, this ordered set is equal to (1, 
2, 0, 1, 2, 1), then (x, 0) will be of type 2 if ~ 2 > ~ 1  , and of type 1 if 22=21 
(then we ignore the "2 ' s"  at the arrows). In the first case, the fifth ancestor 
determines the type of (x, 0); in the second case, it is the first ancestor. 

Although the dual process looks more complicated than the one in the 
basic contact process, it has a nice property,  which is the key to all of our 
proofs: We can break up the tree of paths at certain points into i.i.d, pieces 
and define an embedded random walk. We will call these points renewal points. 
This, together with estimates on how the tree behaves between the renewal 
points, allows us to trace the history of the tree by looking at the location 
of the renewal point. 

For  proving the announced property of the dual process we need some 
notation. We start the dual process at (x, 0) and follow the path of the first 
ancestor. Whenever the first ancestor jumps to a site where it lives forever, 
we will call this site a renewal point. Since we are in the supercritical case, 
there is a positive probabil i ty that the dual process starting at x does not die 
out. We use a "restart  a rgument"  (see e.g., Durret t  1988, p. 72) to find a particle 
that lives forever: Pick a particle. If  it does not live forever, wait until its family 
dies out and then pick another  one. After at most  a geometrically distributed 
number  of trials we will find a family that  lives forever and we can define 
the renewal points. Let g?(~,o) be the event that  the dual process starting at 
x at time 0 lives forever. Most  of the time we will suppress the dependence 
on x and 0 since by translation invariance the probabili ty o f  this event does 
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not depend on (x, 0). We will then denote the event by ~2~o. Let the spatial 
displacement between consecutive renewal points be X~, and the corresponding 
temporal displacement be ~, then 

S . = x + ~ X ~  and T , = ~ z ~  
/=1 i=1 

will be the spatial and temporal location of the renewal point after the nth 
jump. This will also define the embedded random walk that jumps at random 
times T, to the site x + S,. 

All this is summarized in the following Proposition which is a statement 
about the contact process. Its proof uses an idea of Kuczek (1989). 

(1) Proposition. Conditioned on the event f2~, {(Xi, ~i)}i>l form an i.i.d, family 
of random vectors on Z a x R +. The tail distributions of Xiand zl have exponential 
bounds, i.e., there are constants C, 7~(0, o0) such that 

P([Xi l>t)<Ce -~t and P ( z i> t )<Ce  -~' 

holds. 

We denote constants whose value are of no interest, by C, 7 or alike. These 
values may change from line to line which will then be clear from the context. 

In the proof we will not condition on f2o~ but instead use the recipe above 
to find a particle that lives forever. We are going to prove Proposition 1 in 
several steps. First, we will show that z 1 can be bounded by a random variable 
with exponentially decaying tails. Let Xo=X and o-o=inf{s>0:  ~x'~ hits a 
6}. Let xa be the location of the distinguished particle after ~x'~ hits a 
6. (Recall that we called the first ancestor also distinguished particle.) For  k > 1 
we define a sequence of random variables {(Xk, cr k_ a)}k-> 1 in the following way. 
If o- k_ 1 < oo and ~j,_0~ ~: 0, let xk be the location of tlae distinguished particle 
at time O-k-I (the distinguished particle jumps at time o-k-~ to a new site if 
~,_o~ +0). If ~2,o~ =0,  we let Xk = X and start over again. If o-g_ 1=oo we are 
done and (Xk, ak-1) is the renewal point we seek. Let o-k =inf{s > o-k-1: ~x~.~k-~) 
= 0} for k > 1. a k is defined until it is equal to infinity. The superscript (Xk, o-k-1) 
indicates where the distinguished particle jumped after the tree starting at 
(Xk-1, o-k-a) died. Whenever we start with a new tree or at a point that lives 
forever, the first random time is defined in analogue to o-o- It is always the 
first time the dual process hits a 6 after starting from a site where either a 
new tree begins or the dual lives forever. Note that o- o is defined differently 
from {O-k}k~ 1 since (x, 0) is the starting point. We would like to point out that 
once we hit a renewal point, only this branch matters: We never need to look 
at other branches that started before the renewal point. For  an illustration 
see Fig. 2. 

Define Al={(xl ,o-o)  lives forever or ~(~o'~ and Ak=A]c~ 
�9 . .c~A~-I~{(Xk,  O-k-O lives forever or ~2_~ for k_>_2. Let N be the first 
k when Ak occurs. Then by the definition of N and {o-k}k_->o, on f2~o 

N-1 
TI~O-N-I~O-O~-  Z (O'k--O'k-1)" 

k=l  
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We now want to show that the death of a branch happens early in the life 
of the branch. Bezuidenhout and Grimmett  (1990) have shown for the basic 
contact process in d dimensions that if 22 >2c then when viewed on suitable 
length and time scales the system dominates oriented percolation. Combining 
this with the analogue result for oriented percolation in Durrett  (1984), Sect. 12, 
shows that there are constants C, ye(0, oo) so that 

P(t < ~k--ak-1 < (Z))  (~  C e - ~ t .  

The first in a series of lemmas that will show the announced property of z~ 
is 

(2) L e m m a .  On {ak< ~ }  

P(c~k + l --crk <=mlc&, k < N ) =  P(al--cro <=m ). 

Proof. The event  {ak+l-- f fk~m } is determined by parts of the graph that are 
after ~r k and do not use any parts of the graph that are before O-k; therefore 
{ak} and {O'k+ 1-~rk<rn} are independent. Since the graphical representation 
is translation invariant in time, the distribution of ak+ ~--~k is the same as 
the one of o - t - % .  []  

The next two lemmas will tell us that N and oN- 1 are a.s. finite. 

(3) Lemma. N is finite a.s. 

Proof Using the definition of A k and the formula for total probability we can 
write 

P ( N = n +  1)=P(A~ n . . .  h A n n A . + 1 )  

= P (A. + x I A~ n . . .  At)- P (A~I A~ c~... A~_ 1) ' ' '  P (A~ I A]) P (A~) 
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By (2) 

and 

Thus,  

P(A~IA] c~ ... A~_ 1)= P ( a l - - a o <  oe ; ~Jo' ~  0) 

P(A.+llA~lC'~. . .X.)=P(al  qo--Cc or ~o' ~ = 0). 

P ( N = n +  1) = P ( a  1 - a  o = oo or ~(2~o ~  0)" P ( ~  < ~ ; ~ '  ~ =I= 0)" 

f rom which it follows tha t  P ( N  < oo)= 1. [] 

N - - 1  

(4) L e m m a .  a N_ 1 = a0 + ~ ( a k -  ak-  1) is finite a.s. 
k = l  

Proof N is finite a.s. by L e m m a  (3), and given that  { N = n +  1}, a 1 - a  o . . . . .  o-, 
- - a  n_ ~ are finite with probabi l i ty  1. F r o m  the definition of  N it follows tha t  
a N - ,  is the first t ime after 0 tha t  the particle lives forever  or  that  the tree 
dies out. [ ]  

In  the next step we will show that  the {ak--ak_l}k= 1 ...... are i.i.d, on { N = n  
+ 1}. We begin with 

(5) Lemma. 

P ( a , - g , _  i = tn, . . . ,  61 -(70 = t l  I N = n +  1) 

k=l 

Proof  We write the left-hand side as 

P ( a , - - a ~ - i  = t , ,  . . . ,  cr 1 --ao =ta,  N =  n+ 1) 

P ( N = n +  1) 

The n u m e r a t o r  can be wri t ten as 

P ( a , +  1 - - o ' , =  oo or ~2' ~ = O] o - , -  o-,_ ~ =t , ,  ..., al - - ao  = tO 

�9 P ( a .  - -  a . _  1 = t n ,  "", al - -  a o  = tl) 

= x,O) ~ I  = P ( a l - - a o  ooor.~g o =0 )  P ( a l - - a o = t k ; ~ m * O )  
k=l 

by repeat ing the a rgumen t  used in the p roo f  of  (2). Combin ing  this with (3) 
proves  the Lemma .  [ ]  

We have  to show that  the dis t r ibut ion of z~ can be bounded  by a r a n d o m  
variable  tha t  has exponent ia l ly  decaying tails. Let  gN_l ( s )=Es  N-1 be the 
m o m e n t  generat ing funct ion of the geometr ical ly  dis t r ibuted r a n d o m  variable  
N - -  1. gN- ~ (S) can be extended beyond  s = 1. Let  r (0) be the m o m e n t  generat ing 
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function of a l - - a o  conditioned on a a - a o < O O .  Since the distribution of {ak 
-- 0"k- 1 } has exponentially bounded tails on k < N, we can find a 0o > 1 so that 

N - 1  

E (e  ~ ~_Z ( ~ -  ~ o I a 1 - a o  < o o )  = gN - 1 (q5 (0)) < oo 

for all 0<0o .  Hence Ee~ for all 0 < 0  o. This together with e ~  ) 
< E e  ~ shows that there are constants 0 < C ,  ? <  oo so that 

(6) P(z l  > t ) < C e  -~t. 

(6) and comparison with Richardson's model (see e.g., Durret t  1988, Sect. 1) 
tells us that the tree grows at most  linearly in space. We therefore obtain a 
similar estimate for the spatial displacement between two consecutive renewals 

(7) P(IXll  > t) < Ce -~t. 

Note that since P (. I f2co) <= P ( ' ) /P (f2 ~) and P (f2 ~) > 0, the exponential estimates 
also hold if we condition on survival. All that is left to show is that {(Xi, zi)}i>=l 
are independent and identically distributed on g2(0 ' m- Roughly speaking the 
family {(Xi, zi)}i>= 1 are independent since what happens before and after a certain 
renewal point uses disjoint parts of the graphical gadget and is therefore indepen- 
dent. Using translation invariance in time and space of the graphical gadget 
in time also shows that  the family {(Xi, zi)}i>=l are identically distributed. To 
make  the last two claims more precise, we will modify Kuczek's argument  for 
the continuous time setting. We will define two quantities that will enable us 
to locate the points where the distinguished particle jumped to another  branch 
of the tree. 

Let ~~176 be the position of the distinguished particle at time t starting 
at (0,0). Whenever ~~176 hits a "c5" it jumps to another  site if the tree is 
still alive or we restart the process. The two quantities we are going to define 
are {Uk(0'0)}kal and {yk(0'0)}k>=l. (We will suppress the superscript (0, 0) to save 
notat ion and define the quantities in the obvious way if we start at another  
location.) Let Uo = I7o =0.  The first time the distinguished particle hits a 6 and 
jumps to another  site we set U1 = YI = 1. The next time it jumps we set U1 = 2 
and I11 = 2 if we can connect the new location with the one where we defined 
U1 = Y1 = 1. This will be called jumping within a branch. If  not that is if we 
leave a branch we set U2 = 1 and Y2 = 2. We continue this way, i.e., whenever 
the distinguished particle jumps within a branch we increase U~ by 1 and set 
Y~= i +  1. If  the distinguished particle jumps to another  branch we set U~+ 1 = 1 
and Y~+ 1 = Y~- We increase the superscript of Y~ only if the distinguished particle 
jumps to another  branch of the tree. At the location of an (Xk, ak-1), Yk = k. 
The next time it jumps we set Y k = k +  1 if it jumps within the branch and 
leave it that value as long as it stays within this branch. As soon as it jumps 
to another  branch we set Yk + 1 = k + 1. With this algorithm Yk = k if (xk- 1, O-k- 2) 
cannot be connected to (Xk, a k - j  but any other location (x, t) to which the 
distinguished particle jumped in the meant ime can be connected to (Xk- 1, ak- 2)" 
Yk = k + 1 in all other cases. 
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Uk serves only as an auxiliary process to define the Yk'S. We use the Yk'S 
to locate the sites where the distinguished particle jumps to another branch. 
Now we can show 

(8) {(Xl, 'Cl)=(xk,  ak_t)}nQ(o.o)={Yk=k}n{~~176 ( . . . .  k-,)" 

To see this identity note that if (0, 0) is a renewal point, then (0, 0) can be 
connected by a path to (xk, ak-t). If (Xk, ak--1) is the first renewal point after 
time 0, then {Yk = k} and f2(~,~_,). (If there was another renewal point before 
that, Yk would be k +  1.) On the other hand if (Xk, ek-a) is a renewal point 
and if ~~176 then (0,0) can be connected to (Xk, ak_~) from which it 
follows that (0, 0) is a renewal point. Since {Yk = k}, (xk, ak-i)  has to be the 
first renewal point. Using (8) it follows that 

P(Yk =k ;  Y(~ ~ ,~k- 1 ,- ,  = Xk; (2(xk, ~ -  ~)) 
(9) P((Xa,Zl)=(Xk,  ak_l)l(2(o.o)) = p(O(o.o) ) 

= P(Yk =k ;  Y(~ ~ 

P (f2(o. o)) 

= P(Yk = k; ~~176 (1) = Xk). 

In the second step we used that {Yk=k}c~{~O) l(1)=Xk} only uses parts of 
the graph that are before (Xk, ak-1) whereas f2(~,~_,) uses parts that are after 
(xk, ak-~). Hence the two events are independent. In the last step we used that 
P(Q(o, o))=P(f2(~,,~_ ,))=P(f2oo). Whenever we jump to a renewal point we rela- 
bel all the auxiliary quantities. To keep track of where we are we put a superscript 
on the quantities. For instance, (X(k ~ a(l)_l) is the location of the embedded 
process when it jumped k times after the / th  renewal point. Then 

'-'k,- a) n ~2(o ' o) 
i 

o o ,  } = {Y~, = k , }  ~ ( ~ L I - ,  - x~ ,}  ~ e(~k,,ok,_,) ~ ,Q(X,,  ~,)= (x~i/, o(2-,) 

Using the same argument as before, 

{ ( x 2 ,  ~2) ...(2) (2) 

X k l , f f k  1 - = ( Yk(~ ~ ' '  ~ ' - ' ) =  k2} c~ {~(~_, ' ) (1 )  = Xk~} C~ ~2(~, ~ _  ,). 

Repeating the argument and using translation invariance shows: 

n (Xi,'C~)=(Xki,ak,-1) nf~(0,0) = IF[ n(Yki=kl;~~176 
i i = 1  

Hence, conditioned on D(o, o), {(Xi, zi)}i~= ~ are i.i.d. 
So far we haven't said anything about how the choice of the infection parame- 

ters 2t,22 affects the embedded random walk. In the case 2~=22 it is clear 
how to define the renewal points since all the arrows are unlabeled. If 22 > 21 
then we define the renewal points only for the 2's, i.e., starting the dual from 
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say (x, t) we make use of all arrows to find the renewal points. Since the renewal 
points break the process into independent pieces, it is clear from the construction 
that with probabil i ty 1 there is a first time T <  oe for which the renewal point 
is closed for the l 's  in the sense that the l ' s  cannot  pass through this renewal 
point. All the ancestors of this renewal point occupy positions in the ordered 
set of ancestors that are before the ancestors of earlier renewal points. Since 
the number  of ancestors of a renewal point is roughly growing linearly in size, 
there will eventually be an ancestor occupied by a 2 in the first part  of the 
ancestor vector that  will succeed in painting x its color. 

Proof of Theorem 1. Let 2 2 >21 . We will show that 

P(~t(x)= 1 ) ~ 0  

as t ~ oo starting from a translation invariant initial configuration 40. 
We will now use the dual process ~,t), ONsEt which we start at (x, t) 

and determine the ordered set of ancestors after t units of time by going back- 
wards in time on the graph. We will describe an algorithm that  will find candi- 
dates in the dual process for painting x the color 2. Note  that different ancestors 
can occupy the same site. But we can find arbitrarily many  different candidates 
since the tree growing out of (x, t) is linearly growing in time. We will check 
the ancestors inductively. 

In the first step we will find a subsequence in the set of ancestors that 
are candidates for painting x the color 2. In the second step we will extract 
a further subsequence so that all the candidates are different. 

The first member  of the subsequence is ~'~' t) (1). We follow the path the 
distinguished particle takes to paint (x, t) its color until we first cross an arrow 
labelled with a 2. (Note: we are now going forward on the graph starting at 
({~,t), 0).) Then we look backwards in time starting from the location where 
this particular arrow is attached. We discard all the offspring of this point. 
(Those are the next few members  in the ancestor vector.) The first ancestor 
that is left after discarding those ancestors is the second member  of the subse- 
quence. We repeat the steps for this ancestor. We continue this until we run 
out of ancestors. We then extract a further subsequence so that all the candidates 
are different: We start with {~'t)(1) and discard all members  that occupy the 
same site as ~}~'t)(1). Then we take the next ancestor that is left, and so on. 

We denote the set of members  of this subsequence by th. By choosing t 
large enough we can make the cardinality of tlt arNtrari ly large. Denote by 
~t the set of 2's in ~.  It suffices to show 

P(C n~/,_ 1 =0) - ,0  

as t --+ o0. 
This will show that at least one of the candidates is occupied by a 2. The 

first one that  is occupied by a 2 will paint x its color since by construction 
the l 's  cannot  go through. Given e > 0 and M > 0 we can find t > 0 so that  

P([th_,l < M ) ~ a  



480 C. Neuhauser 

To finish the proof  we will use Lemma 9.4 in Harris (1976) which in our context 
says that if ~o is translation invariant with P(~0 (0)= 2)>  0 then given e > 0 there 
is an M(e) so that if Iqt-11 >M(e)  then 

P(qt-  l r ~ l  =O)<=e. 

Therefore, if 22>21 and if the initial distribution is translation invariant, the 
l 's  die out. This proves Theorem 1. []  

3 Proof of Theorem 2 

We will first describe the intuition behind the proof  before we go into details. 
We will prove Theorem 2 in dimension 1 and 2 separately but the idea is basically 
the same for both dimensions. Only at one point we have to use a different 
method. F rom now on 21 =2z-=2.  

We will show that we can bring two different distinguished particles starting 
at x and y with positive probabil i ty within a finite distance K. We do this 
in several steps. We define a rapidly increasing sequence of constants a, where 
aNo=K for some No, and aN1= IIx-yrl  for some N 1. We start the two duals 
at distance an1 and bring them within distance ax~ _ 1, so that with high probabili-  
ty they behave independently throughout  this time span. By doing the same 
step from starting at aN~_ 1 and bringing them within distance aN~_2, and so 
on, we eventually get them within distance aNo. The estimates we obtain will 
hold uniformly in N1. This iterating procedure has the advantage that we can 
use independence of the two dual processes as long as their triangles do not 
collide. As soon as they are within a finite distance K, there is a positive probabil-  
ity that we can glue the two particles forever together. What  we do next is 
to show that both  dual processes have renewals at the same time infinitely 
often with probabil i ty one where " s am e"  is not to be taken too literally. This 
breaks the process down into independent pieces in the following way: We 
try to glue them together after they are brought  within distance K;  if we do 
not succeed, we wait until both of them have a renewal at the same time, 
then we start the whole iterating procedure again. By independence and Borel- 
Cantelli we will eventually succeed. 

The difference in the proof  for dimension 1 and 2 is in the part  where 
we construct the single step for the iterating procedure. In dimension 1 we 
use Skorohod embedding to obtain the necessary estimates, in dimension 2 
we use some potential theory for two dimensional random walks. 

This section is organized as follows: In part  a we will prove a series of 
lemmas that are valid in any dimension. Those lemmas are used to get the 
estimates for the iterating procedure. Part b is devoted to the proof  of Theorem 2 
in dimension 1, and part  c for the proof  in dimension 2. 

a Preliminaries on the dual process 

We will now state a series of lemmas that are needed in the proof  of Theorems 2 
and 3. Therefore we prove them in any dimension. Our first mission is to show 
that given two duals then the probabili ty " they have renewals together",  i.o. = 1. 
We will do this by showing that we can choose M such that in at least i/3 
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of the time both duals have less than M particles. By killing all but one particle 
in each of the duals within a small amount  of time, with positive probabil i ty 
both  duals have their renewals together. By independence and Borel-Cantelli 
our result follows. Our second mission is to show that with positive probabili ty 
we can glue two duals together that are within a finite distance K where we 
want one dual just being renewed and the other one having less than M particles. 
For  proving the first result we start showing that  the distribution of the number  
of particles in the tree since the last renewal has a limiting distribution. Let 
{ ( X i , ' c i ) } i > = l  be the i.i.d, r andom vectors in Z a x R  + defined in Sect. 2. Define 
the times and the spatial locations of the renewal points by To = 0, T, = T~ _ 1 + Z'n 
and So = 0, S, = S,_  1 + X , .  

(1) Lemma.  Let  v(s)=the number o f  particles in the tree at time s that have 
the last renewal point as an ancestor. Then there exist  nonnegative numbers p(k), 
k = 1, 2, ... that sum up to 1 such that 

almost surely. 

Proof. Let N(t)  be the 
time t. Then 

(2) 

t 

o, v s,:k ds p k, 

number  of jumps of the embedded random walk by 

i N(t) T 1 ) T  1 _ i 
~- ~ l{~(r,_, +,)=k} ds  

/ = 1  0 

1 t 
< 7  o ~ l{~(s)=k~ ds  

1 N(t)+l r , - r , _ l  

--<7Z, I 
l = l  0 

l(v(Tz l+s)=k} ds. 

a sum of i.i.d, r andom variables. Let m = E z  1. Since Note  that the sum is 

lim N(t)  1 - - - - + -  a.s. by the Renewal Theorem, we can apply the Strong Law 
t--, oa t m 

of Large Numbers  for a r andom number  of summands  (see e.g., Chung (1974), 
Chap. 5), and the left-hand side and the right-hand side of (2) converge a.s. 
to a constant we denote by p(k). This shows (1). []  

We can use (1) to show that we can choose M large enough such that 
in at least 1/3 of the time both duals have simultaneously less than M particles 
in the tree since the last renewal. We use the same notat ion as in (1) but put 
a subscript x on v:,(s) to indicate that this quantity refers to the dual starting 
at x. Then 

1 t 

(3) 7 o j" l{vx(s)-~M;v'(~)SM} ds  

- -  l(v:c(s) >M} d s - -  l { v , ( s ) > M  } ds 
= t o  

-~1-2 ~ p(O 
/ = M + I  
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where we used (1) and translation invariance in the last step. By choosing M 
M 

such that ~ p(l)> 2/3, the right-hand side of (3) is > 1/3. This proves our claim. 
1=1 

We will call the dual process good at time t if the distinguished particle 
lives at time t and did not get any offspring since the last renewal. In the 
next Lemma we will consider two duals starting at different points and show 
that infinitely often both processes are good at the same time. This will also 
finish our first mission. 

(4) Lemma.  P (both are good i.o.) = 1. 

Proof On the part  of the state space where they coalesced we are done. Since 
then we have to deal with only one dual process. Otherwise, by (3) we can 
pick an M so that at least 1/3 of the time both of them have less than M 
particles. Hence by killing all particles but two at the right time we get 

P(both  are good at the same time) 

>=e-l e-:~[(l_e-1) e-~j2M=__5>O. 

Note that whenever both of them had a renewal at the same time we can 
start afresh and everything that  happened after the renewals is independent 
from what happened before. The Borel-Cantelli Lemma now guarantees that  
both  being good at the same time happens infinitely often with probabil i ty 
1. Note  that in the proof  of this Lemma we do not assume that the duals 
are independent. []  

Now we can turn to our second mission. We will show that  there is a 
positive probabil i ty that both  processes are good one unit of time after one 
of them had a renewal. This will be done in the following Lemma where we 
want to prove that with positive probabili ty there is a time T where two dual 
processes that started at different sites and evolved independently until time 
T, are both  good by time T +  1. We will also assume that at time T one of 
the two processes has a renewal, and the other dual has less than M + 1 particles 
in its tree since the last renewal. We consider two copies of the dual process 
starting at x and y. Let I r = { ~  and ~t y evolve independently for all re[-0, T]}. 
Denote by Jr={(~. (1) ,  T) is a renewal point; v , (r )<M}.  With the sets just 
defined we can prove 

(5) Lemma.  

P (both processes are good by time T+ 1 l i t ,  Jr) 
e - ( , t +  1)(M+2) 

Proof. 

by replacing 1 - e -  1 by e -  1. 

P(both  processes are good by time T +  1 J/r ,  Jr) 
> P (all but one particle in ~ die within 

one time unit and do not give birth) 

�9 P(~'(1)  neither gives birth nor dies within IT, T +  1] ) 
> [(1 -- e -  1) e-a]M [e- 1 e-~.]2 > e-Ca+ I)(M+ Z) 

[]  
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We will see later (when we use this Lemma) that we are by construction 
in the situation we conditioned on. 

We will now show that as soon as the two distinguished particles are within 
distance K there is a positive probability that we can glue them together, i.e., 
they coalesce. 

(6) Lemma. Denote by A the event that two distinguished particles starting at 
distance K can be glued together on the set where both particles had a renewal 
at the beginning. Then there is a 6 > 0 so that 

P(A)~b. 

Proof We will find a lower bound for the Probability of the event A by estimating 
the following event. We require the particle located at y to survive for 3dK 
units of time wi thout  giving birth. Let [Ix-y][ < K .  Then it takes the particle 
located at x at most dK steps to reach y. We will estimate this by observing 
that the probability of having a birth between time 1 and 2, and a death between 
time 2 and 3, can be bounded from below by e - ~ ( 1 - e - X ) e - Z ( 1 - e - 1 ) .  Note 
that it takes the particle at x at most 3dK units  of time to hit the particle 
at y. The probability for the particle at y to survive until time 3dK without 
giving birth can be bounded from below by e -(1 +2)3dK. Hence 

P(A)>e-(l+~)3dK[e-~(1--e-Z)e-Z(1--e-1)JaK--6>O. [] 

b d = l  

In this part we will show that with positive probability we can bring two duals 
within a finite distance K such that their triangles do not collide and as soon 
as they are within distance K, both are good. We have seen (Lemma 6) that 
two duals within distance K can be glued together with positive probability. 
If we do not succeed, we wait until both of them are good at the same time 
and do this procedure again. By independence and the Borel-Cantelli Lemma, 
this shows that eventually they coalesce with probability 1. This proves that 
the probability that two sites are different at time t goes to zero as t ~  ~ .  
Hence, only one type can survive. Which type eventually survives depends on 
the initial measure. 

Let {(X~,zi)}i_l be the i.i.d, random vectors in Z x R + defined in Sect. 2 
and let T~ and S, be the times and the spatial locations of the renewal points 
as defined in Sect. 3a. We use Skorohod embedding (see e.g. Durrett  (1990) 
or Billingsley (1986)) to embed S n into a Brownian motion. S, is the position 
of the random walk after the nth jump and it stays there put for T~_<t< T~+I, 
and jumps at time T~+ 1 to the location of the new renewal point. For  the 
embedding define a Brownian motion B t on R. Let {U,},>=1 be a sequence of 
i.i.d, random variables with the same distribution as IX,l, and let {a,},>~ be 
a sequence of stopping times defined by a,=inf{t:lB~--Br, l=U,}. From this 
and the fact that the distribution of X~ is symmetric, it follows that B, .  has 
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the same distribution as S,. Furthermore, the 0-1, o-2-0-1, " ' "  are i.i.d, with E(0-, 
--o-n_ 1 ) = E X  2 and E(0-.-0-._O2<-_4EX41. 

All we need in the proof of Donsker's Theorem is that S. and B~. are defined 

on the same space and that 0-~" 
n 

gence, i.e., that 

.... , EX~ = 0 - 2  <~ O0 to obtain pathwise conver- 

(7) S(n.) 
0-1~ ~B('). 

We can certainly define S, and B~, on the same space; the second hypothesis 
follows from the fact that the tail distribution of X 1 has exponential bounds. 
Furthermore, by construction, we have 

d 

(8) IBt--Skl~lXk+ll=Uk+l for Tk--__t< Tk+ 1 . 

Next we will prove that starting two dual processes at distance L, we can 
bring the two distinguished particles with positive probability within a distance 
of order log L and this uses up less than L 3 units of time. 

In what follows we will make use of the fact that we can break up the 
dual process at the renewal points to obtain independent pieces. In between 
two consecutive renewal points the newborn particles stay with high probability 
within a set linearly growing in time. This was already shown by the exponential 
estimates in Sect. 2. If we start two dual processes at different sites, then they 
are independent as long as their triangles do not collide. This can be seen 
by defining the two dual processes ~' and ~ on two independent copies of 
the graphical representation G1, G2 (see Griffeath (1979), p. 21). We use G1 
for ~ and G2 for ~t y. We define the embedded random walk S~ 0, (i= l, 2) on 
G~ in continuous time where the particle stays put between consecutive renewals 
and jumps to the site where the new distinguished particle lands at the renewal. 
As long as their triangles do not collide we let them evolve separately on the 
two gadgets. After a collision occurred we use only one copy, say Gx, to define 
the evolution of both dual processes. 

We will now describe a single step in the iterative procedure that will bring 
the two distinguished particles close to each other. For  this we will define a 
real valued random variable that measures the time it takes the two random 

walks to come within a certain distance: Let ~L=infJt:[Sll)-s~2)l<=l~logL~ 

where S~ 1) and S~ 2) are the two embedded random walks corresponding to the 
dual processes ~t and ~t L, the one starting from (0, 0), the other from (L, 0). 

is the constant defined in (2.7). Note that in the proof of the following Lemma 
we do not use that (0, 0) or (L, 0) are renewal points. Recall that N(t) denotes 
the number of jumps of the embedded random walk by time t. Let m = E z l .  
We will show 

(9) Lemma. There is a constant 0 < C < oo so that 

P (  max [X~l<6-logLinbothprocesses;~L<L3)>l C 

holds. 7 is the constant defined in (2.7). 
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Proof We will prove (9) in two steps. First we will show that 

(10) P( max [Xil>61ogL]< A2 
\1 <=i<=N(L 3) ~ ] = mL 3 

holds. We decompose the left-hand side of (10) according to whether {N(L 3) 
< 2 L3/m} or {N (L 3) > 2 L3/m}. This gives the following bound 

( 6 
< P IX1[> log + P  

m 7 

We use (2.7) to get a bound on the first term" 

2L3 p ( ]X1]>  6 logZ)~2~Z3e  -~'61~ 
m ? mL 3" 

Since the z i form an i.i.d, sequence and have exponential bounds, we can use 
a large deviation estimate to obtain 

(11) > <=Ce -7t 

for some C, 7 positive. With this the second term can be bounded by 

P (N (L 3) > 2 L3/m) <= C e- ~L3. 

For the second part of the estimate note that by construction the two embedded 
f 

random walks are independent until time rL on ~ max [Xi[ =< t~ log L in both 
(1 _</_< N(L 3) Y 

processes~. We will show J 

( )A4 (12) P ~L>L3"~ l<=i<=N( IXil<6~logLinbothprocesses= 7 < ~ L  

We will be quite generous with this estimate. On the set where the triangles 
12 

are small the two distinguished particles certainly come within distance log L 
Y 

if the difference of the embedded random walk is sufficiently negative, that is 
if their difference is < - L for some t < L 3. We use the embedding of the random 
walk into Brownian motion to show (12). Let p+l=inf{t:B~t<x} where B~ 
is a Brownian motion starting in 1. Then 

P(gL> L3; 1 ~i~N(L 3)max [Xd__<6 l o g L i n  both processes) 

<P(p+~ >L)=P(p~ 1 - -2P(B~  2) 

= p  
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the third step coming from the reflection principle. This proves (12). Combining 
the two parts proves the Lemma. [] 

As we already mentioned in the introduction, the term collision of triangles 
denotes the event that the triangles of different duals overlap. Using the preced- 
ing lemmas we can prove 

(13) Proposition. Let two dual processes start within distance L. Then we can 
find a K < ~ and a 6 >0  so that the following event has probability at least 
6 for all L: {it takes less than 2L 3 time units to bring two duals within distance 
K. Their triangles do not collide and they are both good within one time unit 
after they came within distance K}. 
Proof We now define the rapidly increasing sequence: a o = l  and a.=e~ a" ~. 

Let A,=< ( max ]Xi[<6 log a, for both processes; ~a <a3}.  Fix ant /be tween 
[ l  <--i<--N(a~) ]~ 

0 and i. We can find a N o > 0 so that 

oo 1 
(14) C Z ~ < 1  

k= No l// ak -- --17 

where C is the constant in (9). Set K -  aNo. Then 

(15) i6 --<i--.. 

oV~ = 

Since aau1-1 + a ~  _ 2 + . - .  + a3o -1 =< (N1 - No + 2) a~1-1 =< exp (3 7 aN1 - 1/6) = aaN~ if 
N1 is large enough, we can also achieve that it takes up less than 2L 3 time 
units to bring them within distance K by choosing No sufficiently large. Note 
that as soon as they come within distance K, one of them has a renewal and 
the other process has less than M particles where M is of order K since the 
triangles in ANo are assumed to be of that size. We want both processes to 
be good within one time unit after they come within distance K, so we kill 
all but one particle in the process that did not have the renewal. (5) and (15) 
now give a bound on 

( ~No Ag; 
P both processes are good within one 

k 

time unit after they came within distance K) 

>t/e-(2+ 1)(M+2)~5>0 

since the two events are independent (they use nonoverlapping parts of the 
graphical gadget). This proves the Proposition. [] 

If we do not succeed in gluing the two duals together, we wait until both 
of them are good again and start the whole iterating procedure again. Everything 
is independent of what happened before and Borel-Cantelli shows that we can 
glue them eventually together with probability 1. 
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c d = 2  

So far we have proved Theorem 2 in dimension one. We turn now to the two 
dimensional case. It will turn out that the proof  is very similar to the one 
for d =  1. We will also use this iterating procedure in much the same way. 
Again, we need the exponential estimates proved in Sect. 2. 

The other ingredient we will use, is an estimate on random walks. Let S, 
be the position of the embedded random walk after the nth jump, as defined 
in Sect. 2. Again, the jumps take place at random times { T,}, >= o, and the displace- 
ments are given by {X,},>o. We need an estimate on how long it takes the 
random walk starting at x e Z  2 to hit a closed ball of radius r centered at 0. 
We denote the ball by/~, .  Let ~=inf{m:SmEBrlSo=x}. Since P(r~>t)<P(z~ 
> t), it is enough to find an estimate on the tail of the distribution of ~ .  By 
P"(x,O) we denote the probability that the random walk hits 0 in the ruth 
jump starting at x. In the following we understand that all the summations 
range over integers. 

n 

E x [ #  visits to 0 before nl = ~, Pro(x, O) 
m = 0  

m = O  k = O  

n - - k  

= P(z~=k) ~ pm(o,o) 
k = 0  m = 0  

Rearranging gives 

Hence 

= <P('c'~<n " 
\ m = 0  

• P"(x, O) 
P ( ~  < n ) >  m=O 

Z P'~(O, O) 
m = O  

n 

E IV(O, o)- P~(x, o)] 
(16) P(z~ > n)< ,,=o 

n 

Z P~(O, o) 
m = O  

We will first find an estimate on the denominator ~ Pro(0, 0): 
m = 0  

(17) ~ W(0,0)=>C1 ~ dS>Clogn 
S 

m ~ 0  n O 

where we used the Local Central Limit Theorem for m large (>  no). 
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/et  a (x)=  lim ~ [P'(O, O)- Pm(x, O) ]. This is just the numerator  of the 
t / ~  09 m =  0 

right-hand side of (16) when n=  oo. The limit a(x) exists (this is Theorem P l  
on page 121 in Spitzer (1976)), and is called the potential kernel. Since E0 ( #  visits 
to zero after Ix[3)~Ex(#visi ts  to zero after [xl3), we can use an estimate on 
a(x) to bound the numerator. Consulting page 124 in Spitzer (1976), we find 
Theorem P 3 which we will state as 

(18) Lemma. A random walk satisfying 

(a) P(x, y) is two dimensional and aperiodic, 
(b) ~xP(O, x)=0, 
(c) Q(O)=~,(x.O) z P(0, x)=cr21012< o0, 
(d) E [ X  2+~] < oo for some 3>0 ,  has the property that 

lim [ a ( x ) - - z ~ l  2 log x ] =  C. 
Ixl oo L no- J 

(a) clearly holds. For  (b) note that our random walk is a difference of two 
copies of the embedded random walk, (d) holds since the distribution of the 
displacement has exponential bounds on its tails. 

(c) is only true if the coordinates are i.i.d, which is not the case here. But 
looking again in Spitzer's book (Spitzer 1976) we can find on page 74 that 
for an irreducible, aperiodic random walk with mean vector 0 and second abso- 
lute moments finite, Q (0) is positive definite, hence we can replace (c) by 

(c') c110l 2 < Y,(x. o) z P(O, x)<__ cz  1012 

where O<CI<C 2 are the eigenvalues of the positive definite quadratic form 
Q(O). Then we can still show that 

~, [Pm(O, O)--Pm(x, 0)] =< C loglxl 
r n = O  

holds. The proof of the last statement can be easily adapted from Spitzer's 
book. So, we leave it to the reader. Returning to continuous time and combining 
(17) and (18) we get 

loglxl 
(19) P(z~>t)<C loglt[ " 

Now we can define the blocks for the iterating procedure. Since it takes the 
random walk quite long to hit zero, we take a large time scale compared to 

2 n + l  the space scale. As in part b, denote by %, the time it takes the random 
walk to get within distance 2" of the other random walk when they start within 
distance 2 n + 1. Let 

A, = { max [Xi[ =< �89 2" for both processes; 
1 N i N N ( 2 (  n+ 1) 3) 

.~.2n2 u + l  =< (2,+ 1)(,+ 1)2} 
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We will estimate P(X.) in the same way as in L e m m a  (9). F r o m  (19) we get 

(20) p ,  2n+ 1 
tz2. >(2"+ 1)("+1)2; max  IXil < �89 for bo th  processes) 

1 < i < N ( 2 ( n +  l)3 ) 

log 2" + 1 C 
< C log(2,+ 1)(,+ 1)2 - (n + 1) 2. 

We also need an estimate on 

p(N(2('+l?)> 2 2('ml)3)<C exp{-?2('+l? } 

where we used the large deviat ion estimate (11). This together  with the exponen-  
tial estimate (2.7) 

p(1xll>�89 -,2"-1 

can be used to estimate 

P(X,)<=2P( max [Xil > 1 2  ") 
1 <-- i~<N(2( n+ 1) 3) 

- - .  2 .+1  1)(n+ 1)2; + / ' ( % .  > (2  "+ max  IXil __< �89 for bo th  processes) 
l<_i<~N(2(n+ l) 3) 

(2"+i) ("+1)2 C C 
<2 m Ce_~2. 1+2C e x p { - 7 2  ("+ 1)3}_~ ( n + l )  2 = < ( n + l )  ~ 

N o w  

P A P(A~') (n + 1) 2. 
\ n = O  / n=  

The sum is finite. Again,  as in the one dimensional  case, pick No so that  

P - q  
\ n =  No / 

for a given t/ between 0 and 1. Then we can use the same technique as in 
the one dimensional  case to conclude that  

PQ~=OuoA,;botharegoodwhentheycomewithin2N~ 

Therefore we can bring them within distance K = 2 No without  collision of  the 
triangles. The rest works  as in the one dimensional  case and we get that  they 
coalesce with probabi l i ty  1 as t ---, oo. 
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4 Preliminary results 

In this section we will prove some preliminary results that we will need in 
Sect. 5 for the proof  of Theorem 3. We will give a convergence determining 
class for the system and prove an estimate for the position of the distinguished 
particle that follows from the Local Central Limit Theorem for the embedded 
random walk. In addition, we will give an upper bound on the probabili ty 
that two different distinguished particles will eventually coalesce. 

Since the dual process of our system has some similarities with the dual 
process of the voter model, we can use ideas that were helpful there, to prove 
our results here. As we already said in Sect. 2, the distinguished particle does 
not quite perform a r andom walk but we can embed a random walk that allows 
us to keep control over the location of the distinguished particle. As in the 
case of independent random walks we can show that there is a positive probabili-  
ty that two distinguished particles will not hit each other if they start sufficiently 
far away from each other. F rom this we can conclude as in the voter model 
that both  types of particles can survive. 

We start with a description of a convergence determining class. It can be 
proved by inclusion-exclusion that any finite dimensional distribution can be 
written in terms of 

{r = 1 for all x e A ;  ~t(x)= 2 for all x e B }  

where A and B are finite subsets of Z d. We omit the proof. 
Before we can prove the next Lemma we have to introduce some notation. 

Let R t be the location of the distinguished particle at time t and S, be the 
location of the embedded random walk after the nth jump. By N(t)  we denote 
the number  of jumps until time t. Let T ,=  T,_ 1 + z ,  be the time of the nth 
jump (as in Sect. 2) and set E r l  =-m< oe. Now we can prove 

(1) Lemma.  I f  Y~tt~Y as t ~  and e>O, then there is a constant C~(O,~)  

so that 

P (Rt  = Yt) <-- C t -  a/2 + ~. 

Proo f  We want to show that 

(2) td/2 -~ p (Rt = Yt) = ~ tall2 -~ P (Rt = y,; N (t) = n) 
n 

= ~ t~/2 -~ n -  (d + 1)/2 n(d + 1)/2 p (Rt  = Yt; N (t) = n) 
n 

is bounded by a constant Ce(0, oe). For  this we will first find an estimate for 
n(a+l) / zP(Rt=yt ;N( t )=n) .  We can restrict ourselves to the case n~[ t /m  
- t 1/2 +~; t/m + t 1/2 +"] for e > 0 since t d/2 -~P (N (t)(~ [ t /m--  t 1/a +~; t / m +  t 1/2 + ~]) ~ 0 
as t--*oo by Chebyshev's inequality. We will denote the set [t /m-- t l /2+~;t /m 
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+ t  1/2+8] by A~. We decompose  P ( R t = y t ; N ( t ) = n  ) according to the time of  
the last renewal and the locat ion of the last renewal:  

n(a+ 1)/2 P(Rr = yt; N(t) = n) 
t 

=n(a+ l ) / 2 Z  S d s P ( S . =  Yt + Z; r . = t - - s ;  
z o 

z.+ 1 > s ;  S,--R~ =z).  

Since T, is a renewal time, {% +1 > s; S . -  R, = z} and {S, = y, + z; T, = t -  s} are 
independent .  Hence  we can factor the probabili ty.  No te  that  {~,+1 > s ;  S , - R t  
= z} is independent  of n, so we obtain 

(3) =n(a+ 1)/2~ i dsP('Cl > s ;  Rs=z  ) 
z 0 

-P(S ,=y t+  z; T~=t--s). 

Let  At=(-c~  log t, c~ log t)ac~ Z a. We will split the sum and the integral in (3) 
into 

~ Z  /~logt ~logr i } 
(4) n,a+l)/2 I "'" + ~ ~ "'" + . . . .  

~-zeAt 0 zCAt 0 /~ logt 

The  second and the third term do not  contr ibute  in the limit. So we will estimate 
them first. T h r o u g h o u t  this and the next Section we denote  by I1" II the Eucl idean 
no rm for dimension d > 1 and by I" ] the Euclidean no rm for d- -1 .  The  second 
term in (4) can be bounded  by 

/~ logt 
<n (a+1)/2 ~ ~ dsP(R ,=z)  

zCAt 0 

_-< n (a+ ~)/2 fl(log t) P([[X 1 I1 > a log t). 

Using the exponent ia l  bound  (2.7) on the triangles we get 

(5) < n(a + a)/2/~ (log t) C e -  ~ ~ log t. 

(2.6) gives an estimate on the third term in (4) 

(6) <=n (a+1~/2 ; dsP(Zl>s)<n(a+i)/2 Ce-~al~ 
log t Y 

Summing (5) over  neAt  (the two addi t ional  terms coming from (2)) yields 

(5') <= ~ ta/Z-~n-(a+ l)/2n(a+ l)/Z ~(logt) Ce-~l~ 
n~At 

<= C ta/e-~ fl(log t) t - ~ 2 t l / 2  +~= 2 C f3(log t) t (a+ ~)/2-~ 
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The  r igh t -hand  side goes to 0 as t ~  Go i f e  is chosen so that  (d+  1 ) /2 -7c~=  - 1. 
Summing  (6) over  neAt yields to 

(6') E td/2-~n-(a+ 1)/2 n(a+ 1)/2 C e -  ~'6 logt 
neAt 

C '  

<='~ te/2 -e- ~'62tl/2 +e = ' ~  t(a+ 1)/2 -~'6 
Y Y 

which tends to 0 as t ~  oo if fi is chosen so tha t  (d+  1 ) / 2 - 7 f l =  - 1 .  This shows 
that  the last two terms do not  contr ibute  in the limit t ---} oo. 

The  limiting behav io r  is de termined by the first term. This t ime we have 
to es t imate  more  carefully. We  will a p p r o x i m a t e  the integral  over  s in the first 
t e rm in (4) by a sum in the following way:  D e c o m p o s e  the interval  [0, fi log t] 
into disjoint intervals of length h: [0, fi log t] = U(sk+ [-0, h i )  where sk=kh and 

k 

k runs over  those integers for which Ske[O, ~ log t], i.e., k = 0 ,  1, . . . ,  [(/~ log t)/h]. 
Note  that  {N( t )=n}  c U {T,~t--Sk--[0, hi ;  zn+l > Sk} where the union is over  

k 
the same k's as above.  Wi th  this we can es t imate  the first t e rm in (4) by 

(7) 
[('6 log t)/h] 

<=C Z Z P(zl>sk;Rs=z) 
zeAt k = 0  

.n (e+ 1)/2 p(Sn= yt + z; T , ~ t -  s k -  [0, h]). 

Since (Sn; T , )=  Xi; ~ zi and  the {(Xi; "Cl)}i> 1 are i.i.d., it follows f rom the 
i i = 1  / 

usual  Local  Centra l  Limit  T h e o r e m  with h > 0 (see Stone 1967) tha t  

(8) n (a+ 1)/2p(S,=u,; T , - n m ~ v , +  [0, h i )  -~ hg~(u, v) 

if Un v, v "  ~ -~u  and V~ ~ v .  ~ ( - , - ) i s  p ropor t iona l  to a density of a bivar ia te  no rma l  

distr ibution.  If  we let u~=yr+z and vn=t--nm--sk, then using (8) we see that  
(7) can be bounded  by 

[(/~ log t)/h] 

s c E  X 
zeAt k = 0 

P(zl > Sk; Rs=z) h~P(u, v). 

We still have  to sum over  n. We have to es t imate  

(9) 
[(6 log t)/h] 

E t a / 2 - e ~ - ( a + l ) / 2 C E  E P ( ' C l > S k ; R s = z )  htrL(" 'v)"  
neAt z k = 0  
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Using 7~(u, v) < C and that t is bounded by a constant on At (9) can be bounded 
B 

by 

(lO) 
t ) d / 2  [fl log t/h] 

<=C ~ t-~n-1/2~ ~" h.P(zl>Sk;Rs=z ) 
neA~ z k = 0 

[fl log t/h] 

~C Z t-~n-1/2 Z hP('Cl>Sk) 
n e A t  k = 0 

where we also carried out the summation over z in the last step. Note that 
the distance between consecutive Sk'S is h, hence we can approximate the sum 
over k by a Riemann integral and (10) can be bounded by 

oo 

<-<_C ~ t-~n -1/2 ~ d s P ( ' c l > s  ) 
nEAt 0 

< C m t-~ (t/m + t 1/2 + ~)- 1/1 2 t 1/2 + ~ 

at3 

where we used m =  ~ d s P ( z l  >s). But the right-hand side is bounded by a con- 
0 

stant Ce(0, oe). []  

The next result provides us with an upper estimate on the probability that 
two different distinguished particles might hit for some t. Let Axy(t ) be the 
event that the triangles of two duals starting at x and y collide at time t. (For 
the definition of collision of triangles see the introduction.) 

(11) Lemma. For d >  3 there is a constant C <  oe so that 

P(~'(1) = (~(1) for some t )<P(Axy( t ) for  some t) 

C < 
= Hx_ylld-5/2" 

Remark. A similar result is known for independent random walks (see e.g., Spitzer 
(1976)). Our estimate is slightly worse. We will replace the d - 2  in the exponent 
in the independent case by d - 5 / 2 .  This is due to the fact that our random 
walks are not quite independent. 

Proof  The first inequality clearly holds. To prove the other inequality, set y = 0 
without loss of generality. Fix x, and let Gx and Go be two independent copies 
of the graphical gadget for the dual process. Use Gx to define ~' and G o to 
define ~ (see e.g., Griffeath (1979), p. 21 or the construction used at the beginning 
of Sect. 3 b). We let the two dual processes evolve independently on G~ and 
G o, respectively, as long as their triangles do not collide. After a collision of 
the triangles occurred, we use only G~ for both dual processes. Let St be the 
position of the embedded random walk at time t, and Sn its position after 
the nth jump. We break things down according to t = [[x [] z-1/d and t >__ ][x [[ 2- lid. 

t "  

To simplify notation we introduce H=~larges t  triangle by time ilxll~-l/d ( 
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2 d  "1 
____2~ log]jxll? where 7 is the constant in (2.7). First, let t=< IIxlE 2- i/e. The idea 

behind the following estimate is that if the distinguished particles hit each other 
for some t<llxll 2-1/d, then one of them must have left the ball with radius 

-'2(llxl I _2~-- logHx],)" centered at the starting point of the corresponding dual 
x / 

process. Then 

(12) P(Axo(t) for some t) < 2 P (N ([[xl[ 2-1/a) > 2 [[xH 2-1/a) 

+ 2P ('[,~tl'->_1 (llx" --~d- log IrxO; 

N(,lx[]2-1/a)~2 l[xll2-1/a;H) 

4 ( > 2 d  ) § [Ixll2-t/~P I/gill ~- logl lxl l  . 

]]Xt H denotes again the size of a triangle. For the first term on the right-hand 
side we use a large deviation estimate 

(13) 2 t 

Hence 

2P(N(]IxHX-1/a)> 2 ][x]la-1/a)<C exp(--yl[xi]2-1/a). 

For estimating the second term on the right-hand side of (12) note that by 
the reflection principle (applied to each coordinate separately) 

(14) P (ISlk)[ > x for some t _< to) < 2 P (1~o)1 >= x) 

where ~k) denotes the kth coordinate of St. 
If a random walk wants to leave a ball of radius r, at least one of its coordi- 

r 
hates must be bigger than ~ .  This in mind we can estimate the second term 

v ~ 
on the right-hand side of (12) by 

< 2dP  (1~1)1 > ~  l(ux[I-2~d-l~ m 

2 
By (14) we can reduce the estimate to the case n =-- I I  x II 2- lid 

m 

 4dP/,s ,   (xj_2_ logjxj)) 
- \ m JJxJl~-'~ - 2 ] / d  y 
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We use Chebyshev's inequality to estimate this term 

(15) e~ P([S(,~) I >y)<Ee~ [~(0)]" 

where ~(0) is the moment generating function of X 1 . This gives for any 0 > 0 

_< 4 d e -~ + (llxll-~ log tkxll)e~ Ilxl[2-X/dl~ ~(0). 

1 1 
Taking 0 = 2 I1 x H~- we can estimate by this 

= 4 d e x p ~  [ Llx][~ 2~/dl[x[[ll~ 2 2 1 ] }  ~-[ -~ v IIxfl m ILxll - g C 4  [IxLI�89 -2 

where we used log ~(0)< CO 2 for 0 small. This follows from the fact that the 
first derivative of �9 (0)= 0 at 0 = 0 since the mean is, and the second derivative 
at 0 is finite since the variance is. Simplifying the exponent eventually gives 

=4d  exp{-[]xH1/2a[~dd -2]//d7 log ,[x][l[x[[ C []xl[-1/2a]}. 

If ][x[] is large the last expression is 

__<4d e x p { - ~  [Ix[I 1/2a}. 

Finally, the third term in (12) can be estimated 

~ C 4  11X112_1/d_l = C  1 
m Ijxll 2e llxll 2d-2+'/d 

by using the exponential estimates in Sect. 2. Putting things together the right- 
hand side of (12) is bounded by 

(16) <=C exp{--THxlla-a/e}+C e x p { - 2 ~  ]lXH1/Zd t 
1 +C ][xllNa-2+ i/a" 

To get an upper bound on P(Axo(t) for some t>  ]lxlL 2-i/d) we will use that 
the dual processes are independent as long as their triangles do not collide, 
and hence we can use (4.1) to estimate the difference of the two duals. We 
will first control the duals at integer times and then show that there cannot 
get much wrong in between. More precisely, we will estimate (i) the probability 
of two duals (including their triangles) being further apart then �89 i/4a2 at integer 
times n and (ii) the probability of the triangles overlapping in between. 
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To do (i) we need two estimates: The first one provides us with an upper bound 
o n  

(17) P(II ~ ( 1 ) -  ~(1)/I = n ai4a2 for some n ~ Ilxll 2- lid) 
< ~ V(ll ~.~(1)-~'~.(1)11 <__n'/4a~) 

n>- Ilxll2- ~l a 

We use (1) to estimate the summands. (The difference of ~(1)-~.r(1)  obeys 
the Local Central Limit Theorem since they evolve independently as long as 
their triangles do not overlap. We will estimate the case where the triangles 
are too big afterwards.) 

08) Z Cn-d/2+e+l/4d~C ~ s-d/2+e+l/4dds 
n~]lxN2 lid IIxH2 lid 

= C(llx II 2-lld)-dl2 +e+ li4a+ 1 5 C Ilxll 5i2-d. 

In the last step we chose ~= 1/4d. As can be seen from the bound, this term 
gives the major contribution to the estimate. The second estimate shows that 
the triangles in either process cannot be too big. 

(19) 2 ~ P(triangle at time n >�88 1/4d2) 
n>= IlxNE-11a 

__< 2 Z P (largest triangle up to time n > �88 n 1/4a~) 
n>__ I/xll2-x/u 

The summand can be estimated according as whether N(n), the number of 
jumps up to time n, is >2n/m or <2n/m. Using (13) for the first case and 
the exponential estimate (2.7) for the second case, (19) is 

. 2n ] <2 ~ Cze  -'~ + - - C 1  e-~qnl/4a2/4 
n> NxllZ- a/a lql 

Ca and 71 are the constants in (2.7) and C2, ~22 the constants in (13). Summing 
over n, this can be bounded by 

(20) < C e  -~ll:'llv 

for some constants C, 7, v~(0, oo). 
To see that not much can happen in between the integer times, observe 

that for the triangles to overlap in between, they have to grow fairly fast. At 
integer times n they are at least n a14e2/2 units apart. So, if neither of their triangles 
grows more than n114a2/4 within one unit of time, they cannot collide. Since 
the boundary of the triangles grows like the boundary of a contact process, 
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we estimate each coordinate separately by the right-edge process rt of a contact 
process. There are d coordinates with two directions each, hence 

(21) P(triangles overlap within [n, n + 1) for some n) 
<= ~ 2dP(r l  > n l /4dz /4 )  

n>= HxlL2-1/a 

< 2 d  ~ Ce-~"'4d2<Ce-lbxEl~ 
n> Ilx[12-1/a 

for some constants C, y, w(0 ,  oe). Putting the pieces (18), (20) and (21) together 
proves the Lemma. []  

5 Proof  of Theorem 3 

We will start with proving a result we call convergence of  trees. Denote by 
q~(Z~)" an ordered set of ancestors of size n shifted by the first ancestor so 
that ~'7 (1)= 0, regardless of the starting point and where the distinguished particle 
actually landed. We go back k renewals and look at the tree growing out of 
this renewal point. We will call sometimes this point the root. Trees also have 
a certain length: If the root of the tree is located at (x, s) and t units of time 
have elapsed since we started the dual, then the length of the tree is t - s .  We 
will show that we can find a countable partition of the sample space according 
to the length of the tree and where the distinguished particle lands so that 
the distribution of each atom has a limit. (This argument is similar to the one 
used in Durrett  et al. 1989). Once this is shown it is easy to see that the distribu- 
tion of the ancestor vector has a limit: each atom in the partition defines a 
certain ordered set of ancestors. Integrating over the length of the trees with 
a fixed ancestor vector finally proves the convergence of the distribution of 
the ordered set of ancestors. 

Let (O,  4 ,  P) be the probability space on which the graphical gadget is 
defined. Start the dual process at x and let it run until time t. The distinguished 
particle lands at ~'t(1). Breaking things down according to the length of the 
tree growing out of its root  and according to where the tree lands defines a 
countable partition of the sample space. More precisely: Denote by l}l)(co) the 
length of a tree with one renewal that was obtained by the above procedure 
on e)e~?~. Denote by [x] the integer part of x. Define the partition H r of O t 
by considering two outcomes e) 1 and (.o 2 to be in the same atom if and only 
if 

(a) [-1~1)(COl)] = [-I~I)((D2)] and 

(b) ~1 = t / 2  . 

This defines a countable partition of the sample space. The length of a tree 
has a density. It even has a limiting density as t ~ oo by the renewal theorem. 
(The length of a tree is the amount  of time since the last renewal, which has 
a limit (see e.g. Durrett  1990)). We will now show 

(1) Lemma. Let (k) z,,t(tl) be the atom of  the trees whose length is in ( n , n + l ]  
where n + 1 < t with k renewals and ancestor vector t 1 at time t. Then lim P(z~!,(q)) 

t ~ o ~  

exists. 
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P r o o f  We will start with k =  1. The measure of  the set of trees whose length 
is in (n, tJ where n = [t],  and with a fixed number  of renewals goes to zero 
as t ~  oe by the exponential  estimate (2.6). So we do not  bother  about  this 
bounda ry  effect. All trees in a certain a tom z(~al(tl) are of a fixed length s ~(n, n + 1]. 
This means that  the root  of  these trees are located at a site in Z a x I t - n -  1, t - n ) .  
Given a certain length of  the tree, the shape of the tree does no longer depend 
on where it is located because of  spatial and tempora l  t ranslat ion invariance 
of  the graphical  gadget, i.e., 

(2) P(~(~,~(r/)l Z~ (1) (x) = s) = P(Zn, t+h(q)l lt+h = s). 

As we ment ioned  above, the length of a tree has a limiting density as t -*  oo 
by the renewal theorem. Hence for t large we can find an ~ > 0 so that  

p z (1) p 5 (1) I ( . , t (q) ) - -  (.,t+h(~))[ 
n + l  

= f Ptz(1)('~l, ,,tv,,,/(1)-r - o ,  P ( I } I ) = s )  d s  
n 

n + l  

- ~ P (~) ' ( ~ ) - - s ) P ( l ~ p h = s ) d s  (~.,,+~(~)l'~+.-- 
n 

n + l  

j" p(z-(1)(.~,l l(1) = r (1) t .,t~.~, t ~j I P ( l } l ) = s ) - P ( l t + h = s ) l  ds<=~ 
n 

for all h > 0  where we used (2) in the next to last step. By making  t larger 
we can choose e as small as desired by the convergence of the density of  the 
length of  the trees. This proves (1) for k = 1. 

(k) To generalize this to the case of  k renewals, define the a toms z,,t(~/) now 
as containing those trees that  have ancestor  vector tl, l~ k)(co) ~ (n, n + 1], and exact- 
ly k renewals. The length of  those trees also has a limiting density since the 
length of a tree is noth ing  else than a sum of interarrival times defined in 
the beginning of Sect. 3 b and the amoun t  of  time since the last renewal. Both  
have a limit (see e.g. Durre t t  1990). Replacing (1) by (k) in z(1)(m above  shows n , t v I ]  

(1) for the general case. [ ]  
After establishing the convergence of  the trees it is now stra ightforward 

to prove the convergence of  the one-dimensional  distr ibution by start ing with 
any translat ion invariant  measure /~. Let Fk be the event that  at least one of 
the ancestors in the ancestor  vector ~ lands on an occupied site. The subscript  
k refers to the number  of  renewals we look back. Fo r  i =  1 or  2 

E E  ~ ( ~ )  l(u(~) = i; rk~ 

<= P ( ~ t ( x )  = i) = P(first nonzero  ancestor  is i) 
=< EE  ("~'~ (~) l(u (7): ~; r~ + P (Fk c) 

where we used the shor thand  nota t ion  {#(t/)=i} for the event that  the first 
nonzero  ancestor  in the ancestor  vector  q is i under  the measure #. The conver-  
gence of  the trees just proved can now be used to establish the convergence 

( k )  . . . .  
r t ( t / )  of EE  TM l(,<~)=~;r~. Fo r  a given ancestor vector t/, the probabi l i ty  that  {#(t/)= t} 

does not  depend on t. The a toms have a limit distribution. So we average 
with respect to a limit distr ibution as t--, oe. Since the number  of particles 
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in a tree is increasing in the number of renewals, it is clear that for every 
e > 0  we can find a K > 0  so that P(FkC)<e for all k > K .  Since e is arbitrary, 
this proves the convergence. 

For  the convergence of the n-dimensional distribution we need again (4.1). 
From this and from the estimates on the triangles we can conclude that if 
we start with n particles, after a sufficiently long time the remaining particles 
(some of the n particles might coalesce) get separated so that they can be treated 
independently, and the convergence of the n-dimensional distributions follows 
from the one of the 1-dimensional distributions. 

For  proving this we first need a result that excludes the following situation: 
Two distinguished particles meet infinitely often without coalescing. We denote 
this event by A and prove 

(3) Lemma. P (A) = 0. 

Proof. (3.5) and (3.6) show that (i) both duals are good infinitely often with 
probability one, and (ii) if the two distinguished particles are within a finite 
distance K, there is a positive probability that we can glue them together. It 
follows now from independence of what is going on before and after both duals 
were good, and the Borel-Cantelli Lemma that on the set where the two duals 
do not get separated, we can glue them together with probability 1. This proves 
that P(A)=0.  []  

The next result we need in proving the convergence of the n-dimensional 
distributions is the announced separation of the remaining distinguished parti- 
cles for large times. 

We will start two dual processes at x and y, respectively. We will prove 
in a series of Lemmas that on the set where they do not coalesce they get 
separated at least like t 1/1~ for large t. We will do this by first showing that 
there is a positive probability that their distance is bigger than a fixed constant 
K for some t. Then we will show that if they start at a distance bigger than 
K, there is a positive probability that their distance is bigger than t I/s for all 
t>0 .  Using that they are both good infinitely often with probability 1 on the 
set where they do not coalesce, we can conclude with Borel-Cantelli that they 
get eventually separated. We start with 

(4) Lemma. For every K > 0 we can f ind  a ~ 1 > 0 so that 

P(l[ ~'(1)-~tY(1)[[ > g for  some t )>81 

independently o f  x and y. 

Proof. We prove this by showing that the following event has positive probability. 
We require the particle located at x to survive for K units of time without 
giving birth. We enlarge the distance between x and y by giving birth in one 
coordinate direction. Then in at most K steps the distance is > K  and both 
are good at the end. This has obviously positive probability. []  

In the next step we are going to show 

(5) Lemma. There exists  a large enough K so that the fol lowing is true: Le t  
][x--yl] >=K. On the set H where the triangles at time t are smaller than C log t 
we can f ind a 32>0  so that 

P(II ~(1)-~'~(1)[I >=tl/S for  all t >=O; H)>=~S2 �9 
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Proof We use the same idea as in the proof  of (4.11). We split the proof into 
two parts. We start two independent copies at x and y and let them run until 
K 3/2. Since we consider everything on the set where the triangles are small, 
they will be independent until t = K  3/2. At this time we want the duals to be 
with high probability further away than K - 2 K  4/5. This will happen if both 
duals stay inside a ball of radius K 4/5 centered at their starting point. We 
will again use the reflection principle (4.14) and apply it to each coordinate 
separately. For  this we denote by St the position of the embedded random 
walk at time t, and by S, its position after the nth jump (we use the same 
notation as in the proof  of (4.11)). 

P([[ ~t ( 1 ) -  ~(1)[] N K  - -2K  4/5 for some OK tNK3/2; H) 

< 2 P (IlK II > �89 Kg/s for some 0 < t < K 3/2 ; H). 

Now we do the same calculation as in the proof  of (4.11). We break things 
down according to N ( K  3/2) > 2K3/2/m or N ( K  3/2) ~ 2K3/2/m. 

__<2P(]r~,H >=14/5/2 for some O~t~K3/2;  

H; N (K 3/2) <- 2 K 3/2/m) -+- 2 P (N (K 3/2) > 2 K 3/2/rn). 

For  the first term we use the reflection principle (4.14) (applied to each coordinate 
separately). (4.13) takes care of the second term. 

<= 4dP(IS(2~,/=/m[ > K4/S/2]/d) + 2dCe -~K3/=. 

(4.15) with 0 = m/8 C l /d K ~ yields to the estimate 

C e  - v K w m  

We omit the details since the calculations are exactly the same as in the proof 
of (4.11). Hence with high probability their distance at times < K  3/2 is bigger 
than K -- 2K 4/5. 

To estimate P(II~(I)-~Yt(1)]I<t i/s for some t>K3/2;H) we do the same 
as in the proof of (4.11). We first estimate what happens at integer times and 
then show that not much can go wrong in between. The analogue of (4.17) 
and (4.18) is 

P(II ~'~ (1) - ~,Y(1)II ~ n x/s for some n => K3/2; H) 

_-< F, P(ll~'~(ll-~.'(1)ll_-<nl/S;H) 
n > K3/2 

<= ~ cn-a/2+e+a/8<=C ; s-d/2+~+d/Sds<CK -3/a2. 
n>=K3/2 K3/2 
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We choose e =  1/16 in the last step. The estimate on the probability that the 
triangles overlap in between the integer times gives an additional term that 
is exponentially small in K. We omit the details. Hence 

P(II ~ ( 1 ) -  ~r(1)[I > tl/8 for all t__> 0) 

> I _ C K - m o _ 2 C K - 3 / a 2 .  

By choosing K large enough we get the Lemma. []  

Since both are good infinitely often with probability 1, they get eventually 
separated by the Borel-Cantelli Lemma on the set where they do not coalesce 
and where the triangles are not  too big. We can conclude from the exponential 
estimate (2.7) 

(6) P(triangles > C log t for some t > to) 
o9 

<=A1 ~ t-A2dt<-<_Cto 2 
to 

for arbitrary constants. Furthermore we proved that the distinguished particles 
hit only finitely many often. Let T be the last time they hit on the set where 
they do not coalesce, then 

(7) P ( T  > t) < e t 

where 8 t --* 0 as t ~ oo. 
The last two estimates together with Lemmas (4) and (5) prove that we have 

the following situation: They either coalesce early or they get separated at least 
like t 1/8. Since their triangles ___ C log t with high probability, they will not collide 
for large t and we can treat them as independent. We will make use of this 
fact by proving that the n-dimensional distributions converge. 

More precisely, we will define three "bad  events" and show that the probabil- 
ity of their union goes to zero as t tends to infinity. Furthermore,  on the comple- 
ment, where the "good  events" happen, everything will go well and the conver- 
gence will follow from the convergence of the 1-dimensional distributions as 
we will now explain. We start n dual processes. As we said the coalescing happens 
in the beginning. So, the first bad event will be B~ = {some pair of the dual 
coalesce after tl}. We also need that the triangles behave well, so B2=  {some 
triangle is bigger than C log t after t2} is the second bad event. Finally, B 3 
={some pair of the dual comes closer than t I n ~  for some t>t3} is the third 
bad event. We take t 1/1~ in B3 instead of t I/s as in (5) since we start counting 
time at 0 and we want those duals that meet finitely many times and get then 
separated, included into this set (note that t ~/~~ and ( t - c )  a/s intersect for some 
t>c). 

(5), (6), and (7) show that P ( B  I u B2 ~ B3)<= e where ~ can be made as small 
as desired by choosing t~ to t3 sufficiently large. On the complement we are 
left with L particles where L is a random number. But those L dual processes 
are now independent and the convergence follows from the convergence of the 
1-dimensional distributions. More precisely: Let T = m a x ( t l ,  t2, t3). Choose T 

3 

= V  ~, then P ( B I ~ B z u B 3 ) - - . O  as t--, oe. On the complement ~ B;, the duals 
k = l  
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that are left after ] ~  act independently. Their type is basically determined at 
t - O ( l o g  t)(O(log t) is the typical length of a tree with k renewals where k is 

fixed). Since O (log t) ~ t -  ]/t, the parts of the graphical gadget where the coalesc- 
ing happens and where the type of a certain site is determined are far apart, 
so that they do not overlap. The convergence of each independently acting 
dual process follows from the convergence of the one dimensional distribution. 
This finally proves the weak convergence result, and we can turn to see what 
the limit distributions look like. 

We now know that starting from any translation invariant measure the 
distribution of the system converges weakly to a limit. As we mentioned in 
the introduction the three and higher dimensional case contrasts the one and 
two dimensional case in the sense that we see coexistence of both types of 
particles in the limit. We will now characterize the limit distributions that arise 
if we start the system with a translation invariant and ergodic measure #. We 
will show that 

(8) ~Ut ~ v o for some O as t ~ oo 

where {Vo}o<_o<_ i forms a one-parameter family of invariant measures that are 
translation invariant and ergodic. 

We just proved the convergence of #. That the limit is translation invariant 
is also clear from the choice of # and since the dynamic is translation invariant. 
0 characterizes the density of l's in the limit: 

lira P(~2(0)= 1)= lira P ( ~ " ( ~ ) =  1) 
t --+ oo t --* oo 

= l i m  Z P ( ~ ( ~ - x ) = l ) P ( ~ ( 1 ) = x )  
t ~ oo x ~  Z a  

where {~u(~)= 1} is a short hand notation for the event that the first nonzero 
entry in the ancestor vector ~t lands on a 1. From the convergence of the 
trees and the continuous mapping theorem we can conclude that there is a 
0 < 0 _< 1 so that P(~ ( ~ t -  x )=  1 ) ~  0. Hence by translation invariance 

lira P(~t"(O) = 1 )=  0 lira P ( ~ ( 1 )  lands somewhere) = OP(f2o~). 
t --~ oO t --~ oO 

What is left to show is that {Vo}o_<0_< 1 are mutually singular and ergodic. F rom 
this it follows that 

(9) ( d  c~ 5~ = {Vo: 0-<0-< 1} 

where d denotes the set of invariant measures and 5 p the set of translation 
invariant measures since the translation invariant and ergodic measures are 
the extreme points of the set of translation invariant measures (Dynkin 1978). 
Following Sect. 1 l b in Durrett  (1988) we will first prove that 

(10) Lemma. {Vo}o_<o< 1 are mutually singular. 

Proof Let ~ -~o=Vo for some 0_<0__<1. Call ~(x)--l~e(x)=a~-P(~(x)=l), and 
St= ~ ((x) where A t = [ - t , t ]  a. We will first show by applying Chebyshev's 

x E A t  
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IStl --*0 in probability. For  this we need an estimate on Inequality that (2 t + 1) ~ 

the second moment  of St. The ergodic theorem will then show that the conver- 
gence actually occurs almost surely, which will prove the Lemma. We begin 
with an estimate on the second moment of St: 

x ~ A t  

= ~ E(r y~ E(r162 
x ~ A t  x , y ~ A t  

x:l:y 

can be estimated by using 

E ( f f ( x ) )  2 = P(~(x) = 1) 

- [ P ( ~ ( x ) =  1)]2< 1. 

With Axy(t) being the event that the triangles of two duals starting at x and 
y collide at time t, and with (4.11) 

E (~ (x) ~ (y)) < P (A xy for some t) =< 
C 

IIx-yHa-5/2' 

and 

C 2 t + l  1 

]lx_yl[e-5/2<(2t+l)a ~ 2 d ( 2 m + l )  d-1 - -  / ~ / d  - 5/2 
x,  y~ At rn = 1 

x ~ y  

=2dC(2t+l)a 2m+l <=2dC(2t+l)e3e ~ 2 
111=I m = l  

<_2dC(2t+ 1) a 3a}(2t + 1)3/2(2t + 1)< C ( 2 t +  1) a+5/2 

Using Chebyshev's Inequality and the estimates on the second moments now 
gives 

p(]s,i>e(2t+ l)a)< ES2 
= 82(2t + 1) 2a 

1 
=< e2(2t + 1)2d {(2t+ 1)a+C(2t+ 1) a+s/2} 

C 
< ~ 0  = (2 t+  1) a-s/2 

as t ~ oo if d > 3. This tell us that 

(11) ]St[ ~ 0 in probability. 
( 2 t+  1) d 
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Furthermore, the multiparameter ergodic theorem (see e.g., Dunford and 
Schwartz 1958) says that 

1 
(12) ( 2 t + l )  a ~ l{~,{x)=l}~E(l{,(O)=l}[SJ) vo-a.s. 

xaAt  

where d denotes the invariant ~-algebra. Comparing (11) with the conclusion 
of the ergodic theorem shows that 

1 
( 2 t + l )  a ~ 1~r vo-a.s., 

xEAt 

so the v o are mutually singular. [] 

By this method we can prove more: 

(13) Lemma. {Vo}o<_o<_ 1 are ergodic. 

Proof Let B(F 1, F2)={~(x)= 1 for all x~F1; ~(x)=2 for all xeF2} where F1 and 
F2 are finite subsets in Z e. As we mentioned in the beginning of Sect. 4, these 
sets form a convergence determining class. Let F=F~ uF2. As before we will 
first show that 

1 
(14) (2 t+  1) d y~ lme + x) --+ P (B (F)) 

xeAt  

in probability, where B(F + x) = B(F1 + x, F2 + x) and At is the set defined above. 
As before, let ~(F)=lmv)-P(B(F)) and St= ~ ((F+x). Following the proof 

xsA t  

where F consists only of two points, we need an estimate on E [((F + x) ((F + y)] 
where we will first assume that (x + F)c~ (y + F )=  0. Then we can bound 

E[((V+x)( (F+y)]  
<P(A.v(t): for some uex+F,  w y + F ,  and for some t>0)  

=<( 'FL] sup {P(A.v(t)for some t>0):  (u, v)~(x +F, y+F)}  
\ z /  

where IF[ denotes the cardinality of F. Using (4.11), the last quantity is 

.<([F[) sup {],U__v,Cd_5/2 "(U,V)e(x+F,y+F)} 

Then 
E I&] 2 

P(I&] ~ e(2 t + 1) a) ~ ez (2 t + 1) 2a 

- (2 t + 1) a -  s/2 -+ 0 

as t--+oo if d>3.  If (x+F)c~(y+F)=#O then we can use that E[~,(x+F)((y 
+ F ) ] < I .  For a fixed x there are a finite number of y's so that 
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(x + F ) n  (y + F ) ~  0. Let this number be K. K does not depend on t or x. The 
number of terms we get from this contribution in the summation is therefore 
of order O (At) and thus this term as well as the term coming from the estimate 
of E [~ (x + F) 2] vanishes in the Chebyshev estimate. The multiparameter ergodic 
theorem shows 

(15) ~ 1BW+x)~E(lmF)Id) vo-a.s. 
x e A t  

Hence by the same argument as above 

E(1B~)ld)=P(B(F)) vo-a.s. 

for finite F = (/71, F2). We will now show that ~ ,  the invariant a-algebra is trivial 
from which the Lemma follows. Using the monotone class theorem it suffices 
to take a sequence of finite dimensional sets A. where the A, are increasing 

and A = U A, and where each A, is of the form B(F~ "), F(2")), and Fi n) and F2 (") 
n = l  

are both increasing. The monotone convergence theorem gives 

lim P B A, 
N ~ ~  n 

Using this we can conclude 

E( lmA) ld )=  lim E(1 /,~', ~IN) 
,L vlAo) 

= lira P B = e (B (A)) 
N ~ ~ 1 7 6  l't 

where the middle equality follows from (15). Since P(B(A)) is not a random 
variable, d is trivial, and {V0}o_< 0_< 1 are therefore ergodic. []  
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