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Summary. We investigate when an upper bound on expected lifetimes of condi- 
tioned diffusions associated with elliptic operators in divergence and non-diver- 
gence form can be found. The critical value of the parameter is found for each 
of the following classes of domains: /Y-domains (p=n-1), uniformly regular 
twisted/Y-domains (p = n - 1 ) ,  and twisted H61der domains (e = 1/3). A related 
parabolic boundary Harnack principle is proved. 

1 Introduction and main results 

Suppose that D is a domain in 1t", n > 2 ;  let E~ denote the expectation corre- 
sponding to Brownian motion in D starting from x and conditioned by a positive 
harmonic function h in D (i.e., Doob's  h-process); and let R be the lifetime 
of this process. Several authors have addressed the problem of characterizing 
those domains D for which there exists a constant c(D)< oe such that 

(1.1) E~ R < c(D) 

for all positive harmonic h and a l lx~D.  
Cranston and McConnell (1983) proved that (1.1) is true for planar domains 

D with bounded area (see Chung (1984) for an alternative proof); they also 
gave an example of a bounded 3-dimensional domain where (1.1) fails. Cranston 
(1985) extended (1.1) to bounded Lipschitz domains in IR", n > 2. Bafiuelos (1987) 
showed that (1.1) holds in uniform domains; he also generalized the result to 
some other diffusions besides Brownian motion. Some very recent results are 
discussed at the end of the introduction. 

It is clear from the known results that the domains where (1.1) fails should 
have long and thin canals and, on the other hand, a reasonably regular boundary 
for D assures validity of (1.1). In this paper, we will give a precise meaning 
to the idea of " long and thin canals" and use it to formulate theorems which 
give sharp sufficient conditions of a geometric nature for (1.1) to hold. 

We discuss three families of domains. The definitions will be given in Sect. 2 
and 3. Here we content ourselves with an intuitive description. 
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The first family consists of E-domains. Roughly speaking, the boundary 
of an E-domain  is given (locally) by the graph of an/f-funct ion.  (Note, however, 
that Definition 2.1 excludes the half-space from this family). 

The second class of domains is the class of twisted/f-domains.  The boundary 
of a twisted / f -domain does not have to be representable as the graph of a 
function anywhere. But we require, by definition, that if such a domain contains 
a canal of width r, then its length does not exceed r(l-n)/P; this property is 
clearly true of/Y-domains. 

Finally, we discuss twisted H61der domains. A bounded domain D is called 
a H61der domain of order e if every point x~SD has a neighborhood U such 
that U c~ 8D is the graph, in a suitable coordinate system depending on x, of 
a H61der function with exponent e. The boundary of a twisted H61der domain 
need not be locally representable as the graph of any function; the canals in 
a twisted H61der domain of order ~ are, by definition, no longer and no thinner 
than those in a H61der domain of order ~; there is also a mild condition on 
the regularity of the boundary, less restrictive than uniform regularity. We would 
like to emphasize that although some H61der domains are not regular (in the 
sense of the Dirichlet problem), every H61der domain satisfies the aforemen- 
tioned condition. 

Recall that a domain D is called uniformly regular if for some c > 0  and 
all x~?D, r > 0 ,  

(1.2) Cap](X'2r)(B (x, r) c~ D c) > cCap](X'z~)(B(x, r)) 

where B(x, r )=  {yMR"" Ix-Yl < r} and CapA B(:''2r) is the capacity associated with 
the Laplacian A relative to B(x, 2r). We can replace Cap~ (x'2r) by Cap~" in 
condition (1.2) for n > 3. 
We will also use a "strong uniform regularity" condition, where (1.2) is replaced 
by 

(1.3) Vol(B (x, r) c~ D c) > cVol(B(x, r)) 

for all x~SD, r >0 .  
Our results hold not only for Brownian motion which is, of course, associated 

with one half the Laplacian A, but for diffusions associated with some other 
operators L as well. 

Recall that L is a uniformly elliptic operator in divergence from (Le2 )  if 

Lf(x)= ~ ~@~(aij(X)~xj)(x) 
i.j= 1 

where the a u are symmetric and for some Cc< o% 

(1.4) 
j=l i,j=l j=l 
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for all x, yeN".  Similarly, L is called a uniformly elliptic operator in non- 
divergence form (Le JV~) if (1.4) holds and 

L f  (x)= ~ ~2 f 
i,J =1 alj(x) ~ ( x ) .  

We will assume smoothness of the coefficients ai~ to ensure the existence of 
h-transforms, associated strong Markov processes, etc. Our estimates, however, 
depend only on c L and do not depend on the smoothness of the coefficients. 

From now on px and E x will refer to the probabilities and expectations 
corresponding to the diffusion associated with the operator L and "harmonic" 
will mean "L-harmonic".  See Stroock and Varadhan (1979) for the definition 
and discussion of such diffusions. Similarly, Ph x and E~ will correspond to the 
diffusion conditioned by a positive harmonic function h (see Doob (1984), Sect. 
2VI13 and Chap. 2X). 

Theorem 1.1 (i) Suppose that either 

(a) L is a uniformly elliptic operator in divergence form or 
(b) L is a uniformly elliptic operator in non-divergence form and D is strongly 
uniformly regular (i.e., D satisfies (1.3)). 

Now make one of the following assumptions about D: 

(A) D is an E-domain for some p > n -  1; or 
(B) D is a uniformly regular twisted E-domain for some p > n -  1; or 
(C) D is a twisted Hiilder domain of order c~ for some e~(1/3, 1]. 

Then there exists c(D)< oo such that 

E~ R < c (D) 

for all x~D and all positive L-harmonic functions h in D. 

(ii) For every p < n - - 1  and c~e(0, 1/3) there exist 

(A) an E-domain DI, 
(B) a uniformly regular twisted E-domain D2, and 
(C) a twisted H61der domain D 3 of order ~; 

and functions hk that are positive and A-harmonic in D k such that 

R = o e  Phi-- a.s. 

for all XEDk, k = 1, 2, 3, where Ph~ stands for the distribution of Brownian motion 
conditioned by hk. 

Theorem 1.1 (i) holds, in particular, for every bounded domain which may be 
locally represented as the region above the graph of a function, with no assump- 
tions on regularity in the sense of the Dirichlet problem. 

If we consider a domain above the graph of a H61der function, then Theo- 
rem 1.1 (i) (b) (C) holds without the assumption of strong uniform regularity, 
in view of Remark 3.3 (i) below. In this case e-- 1/3 is the critical exponent. 
(The counterexample to show this is too long and complicated to include in 
this paper; it may be constructed along the lines of Sect. 4). 
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It is very likely that the techniques of this paper may be used to show 
that Theorem 1.1 (i) also holds for positive superharmonic functions h. 

From Theorem 1.1 it follows immediately that 

Corollary 1.1 Under the hypotheses o.1 Theorem 1.1 (i), there exists ca (D)> 0 such 
that 

limt_.~inf(\ _ l t  log PhX(R > t)) > c 1 (D) 

for all x and all positive L-harmonic functions h. 

A more precise version of Corollary 1.1 has been proved for Lipschitz domains 
by DeBlassie 1987, 1988 and Kenig and Pipher (1989) (see also Bafiuelos (1991) 
for more general domains). 

Xu (1991) and Davis (1991) have examples of simply connected planar 
domains with infinite area where (1.1) holds. In Sect. 2, we will describe some 
simple uniformly regular twisted/Y-domains with p > n - 1  and infinite volume, 
hence providing a new class of examples of the same type. 

The condition of uniform regularity in Theorem 1.1 (i) (B) is essential, as 
easy examples show. 

The next result may be called a "parabolic boundary Harnack principle" 
for operators in divergence form. Let pt~ y) denote the transition density for 
the L-diffusion killed on exiting D, L~N. 

Theorem 1.2 Suppose that L e N  and D satisfies one of the assumptions (A)-(C) 
of Theorem 1.1 (i). Then for each u>0  there exists c=c(D, L, u)>0 such that 

pp (x, y) > p (v, y) 

for all s, t >__u and all v, x, y, z~D. 

Related theorems for the case D a Lipschitz domain can be found in Fabes 
et al. (1986). 

We do not know what happens at the critical values p = n -  1 and c~ = 1/3. 
The proof of the parabolic boundary Harnack principle uses an idea which 

was also utilized to prove its elliptic counterpart. We have proved that the 
(elliptic) boundary Harnack principle holds in twisted H61der domains of order 
~, ~e(1/2, 1], but counterexamples exist for c~(0, 1/2) (Bass and Burdzy 1991a). 
The elliptic boundary Harnack principle holds in every domain which lies above 
the graph of a H61der function with exponent eE(0, i] provided Ls@ (see 
Bafiuelos, et al. 1991), while the same is true for operators L s J # ~  if c~(1/2, 
1]; here ~ = 1/2 is the critical exponent (Bass and Burdzy 1991 e). 

In a related paper, Bass and Burdzy (1991b), we address the question of 
equality of the Martin and the Euclidean boundaries, known to hold in bounded 
Lipschitz domains. The two boundaries coincide in domains whose Euclidean 
boundary can be represented locally by functions less regular than Lipschitz. 
The critical modulus of continuity lies between cx log log(1/x)/log log log(l/x) 
and cx log log(I/x). 

Very recently we have seen three papers related to lifetimes of conditioned 
diffusions. Xu (1991) has an example of a simply connected planar domain 
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with infinite area for which (1.1) holds. We learned from R. Bafiuelos and B. 
Davis about the concept of intrinsic ultracontractivity; see Davies and Simon 
(1984) for the original definition. Davis (1991) proves that intrinsic ultracontrac- 
tivity is equivalent to what we call the parabolic boundary Harnack principle. 
He also proves intrinsic ultracontractivity for a family of planar domains of 
infinite area and for domains above the graph of a single bounded function; 
this last result inspired our Theorem 1.2. After writing this article we learned 
that Bafiuelos (1991) had previously proved intrinsic ultracontractivity for a 
class of domains which he calls "uniformly H61der domains;" these uniformly 
regular domains are very close to but slightly more general than our uniformly 
regular twisted/Y-domains. (Our proofs extend easily to his class of domains). 
We remark that in our present paper we prove in Theorem 1.1 (ii) that our 
results are sharp. 

It is perhaps worth discussing the relationship between intrinsic ultraeontrac- 
tivity and (1.1). Intrinsic ultracontractivity implies (1.1) (see Bafiuelos (1991); 
Bafiuelos and Davis (1989); Davis (1991) and Kenig and Pipher (1989)), and 
in fact is a strictly stronger property (Bafiuelos and Davis (1989)). But proving 
intrinsic ultracontractivity is no more difficult than proving (1.1). Indeed, the 
only currently known widely applicable method of proving (1.1) is based on 
a method of Chung (1984). Our proof of Theorem 1.2, which is fairly simple, 
shows that whenever Chung's method works, then the parabolic boundary Har- 
nack principle also holds. 

Section 2 contains some estimates for /Y-domains and uniformly regular 
/Y-domains. Section 3 introduces twisted H61der domains and also includes the 
proofs of Theorem 1.1 (i) and Corollary 1.1. Section 4 contains the proof of 
Theorem 1.1 (ii), while Theorem 1.2 is proved in Sect. 5. 

The letters cl, c2, etc. denote constants whose values may change from one 
proof to another but do not change within a proof. 

2 LP-domains 

We start with some general notation and a review of potential theoretic and 
probabilistic properties for operators L~@ w ~Ar~. 

For xeN" we will write x=(2, x,), i.e., 2=(xa,x2,  ..., x,-a). Parths of sto- 
chastic processes will be denoted X and 

TA= T(A) el= inf{t>0: Xt~A}. 

If Le@ and K is a compact subset of a domain D then, by Littman et al. 
(1963), 

(2.1) ca G~(x,y)<=G~(x,y)<=c; 1 G~(x,y) for all x, yEK, 

where c a ]>0 depends only on cL, K and D and G~ is the Green function for 
L in the domain D. Their proof derives this from 

(2.2) c2 < Cap~ (A)/Cap~ (A) < c; a 
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where c a > 0  depends only on %. Here Cap~ is the capacity in the domain 
D associated with L. (They only prove (2.1) and (2.2) for D a ball, but their 
proof goes through for arbitrary domains). Recall that 

Cap~ (A) = sup {#(A): # is a measure supported on A ~ D with G~ # < 1 }. 

For  L E ~ u Y ~  we have the following Harnack principle (Moser (1961) for 
9 ,  Krylov and Safonov (1981) for Y ~ ) .  If A is a compact subset of an open 
set D and h is positive and L-harmonic on D, then 

h (x)/h (y) > c > 0 

for all x, y e A ,  where c depends only on D, A and %. 
By a "chain of balls" connecting points x and y in D, we will mean a 

sequence of open balls contained in D, with centers z l = x ,  z 2, z 3, . . . ,  z k = y  
and radii rj =< dist(z J, 0D), such that 

[z J -  z J + 11 < min (r j, rj + 1)/2. 

If x and y may be connected by a chain of balls of length k then, by the 
Harnack principle, 

h (x)/h (y) > c k 

for every positive harmonic function h in D, where c = c (%) > 0. 
We will often use "' scaling" of L-diffusions analogous to the space-time scal- 

ing of Brownian motion. The resulting diffusion corresponds to a different opera- 
tor than L, say L, but the bound cL in (1.4) remains valid for L. 

Lemma 2.1 (i) Suppose that Le@,  A 1 is a compact subset o f  a domain D, O e D \ A 1 ,  
and for  r > O, 

A] ={x:  x / r e A 1 }  

Dr= {x: / r eD} .  

Then, for  A ~ A~I , r > O, 

Cap(A) 
(2.3) Cl Cap (A]) < po (T(A)  < T(ODr)) < Cl ~ Cap(A) 

-- Cap(A]) '  

where C a p =  CapA or and ca > 0  depends only on CL, D and A 1 . 
(ii) Suppose that L ~ @ u J V ~  and for  some A ~ A ] ,  r>0 ,  

Vol(A)/Vol (A])__> ez. 

Then 
pO (T(A)  < T(OD~)) > c3 

where c3>0  depends only on cL, Ca, D and A t .  

Proof. We will give a proof only for D=B(0 ,  3) and A 1 =B(0, 2)\B(0, 1). Other 
cases may be treated analogously. 

(i) We will follow Lemma 4.2 of Bass and Burdzy (1991 a) closely. By scaling, 
we may assume that r = 1. 
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Let # be the capacitory measure for A in B(0, 3). Then, using (2.1), 

L GB(O,3) #(0)= S L Gu(o,3)(0 , y) #(dy) 
A 

__> # (A) inf L Gmo, 3)(0, y) 
yEA1 

_->#(A) c4 inf G~(o,3)(0, y) 
yEA1 

__> c s #(A) = c5 Cap~ (~ 3)(A) > c 6 Cap~ (~ 3)(A). 

By the strong Markov property, 

GL(0,3) ~(0)= S GL(0, 3) #(Y) P~ < T(aB(O, 3)), X(TA)~dy ) 
A 

L < sup Gmo ' 3) # (Y) pO (T(A) < T(~B (0, 3))) 
yeA 

<= po (T (A) < T (8B (0, 3))). 

This and the previous inequality prove the first inequality in (2.3). 
The function 

x ~ PX(T(A) < T(SB(O, 3))) 

is a potential corresponding to a measure v supported on A with mass less 
than or equal to Cap~(~ since the function is bounded by 1. Thus 

P~ T(SB(O, 3)))= S GL(o,3)( 0, Y) v(dy) 
A 

< sup G~(o, 3)(0, y) v (A) 
y~A 

< c 7 sup G~(o, 3) (0, y) Cap~ (~ 3)(A) 
y~A 

< c s Capam~ 

and (2.3) is proved. 
(ii) For  the case L~JV'@, see Krylov and Safonov (1979). 

In the case L ~ ,  the estimate follows from part (i) of the lemma and the 
following lower bound on capacity in terms of volume (see the remark following 
Lemma 4.2 in Bass and Burdzy (1991 a)): Capa(A)> c(Vol(A)) ~. Sidney Port (pri- 
vate communication) pointed out that we can take f l=(n-2) /n  for n > 3  and 
/3 >1/2 for n = 2. [] 

Lemma 2.2 I f  L ~  ~ ~/U~ then 

E ~ T(SB(O, r))<cl  r 2 

for r>0 ,  where cl > 0  depends only on %. 
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Proof. If L E ~  then 

E ~ T(aB(O,r))< ~ L GB(0,2~)(O , X) d x  
B(0,r) 

~C2 ~ G~(o,2r)(O,x)dx=c3 r2. 
B(O,r) 

The case LEJf f~  is discussed in Lemma 5.1 of Bass and Pardoux (1987). 

Lemma 2.3 Suppose that LE~,  

D={xER~:  1971<1, Ixol<l}, 

M={xec?D: 1971<1/2, x~=l}.  

Then, for xE B(O, 1/2), 

[]  

P~(T(M) <= T(aD)) > c 1 > 0 

where el depends only on CL. 

Proof. Let M I = { x E M :  I971<1/4}, DI={xEIRn: I)71<1/2, - l < x n < 2 } .  Since 
Cap~ 1 (M~) > 0, Lemma 2.1 shows that 

po (T(M~) < T(~D 1)) > c2 > O, 

and, by the Harnack principle, 

PX( T(M1) < T(OD1) ) > c 3 > 0 

for all xEB(O, 1/2). To complete the proof, observe that the last probability 
is less than or equal to PX(T(M)< T(~D)). [] 

Now we introduce/Y-domains and twisted/Y-domains. 

Definition 2.1 An open connected set D = ~  n will be called an LP-domain if 
there exist a constant a>0 ,  a finite family of orthonormal coordinate systems 
CS1, CS2, ..., CSk, reals rl, r2 . . . .  , r k, and functions 

f l , f 2 , - - . , f k  : ]R~- ~ "-*(-- c~, O] 

with the following three properties. 

(i) fjE/Y for every j ;  
df 

(ii) Uj = {xED: [97[ <r j ,  x , < a  in CSj} = {xEIR": 197[ <r~,fj(97)<x,<a in CSj}; 
k 

(iii) D = U Uj. 
j = l  

The length of a rectifiable curve ? will be denoted l(y). 

Definition 2.2 An open connected set DEIR" will be called a twis ted/y-domain 
if for some base point zED, some constants Ca, c2E(0, oe), and every xED there 
exists a Jordan arc y with endpoints x and z such that 

(i) dist(?, 0D) > c1 dist(x, OD), and 
(ii) l(?) ,< c2(dist(x, 8D)) (1-")Iv. 

It is elementary to see that every LP-domain is a twisted LP-domain, although 
not, in general, a uniformly regular one. 
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Example 2.1 Let re(k)= [k p/("- 1)+ 1] and consider the following domain. 

ov re(k) 

D={x~Nf:I~I<I, x~>0}\ (.9 I) {x:lYcl>kP/(1-'), xn=k+jkP/(1-")}. 
k = l j = l  

It is easy to check that D is a uniformly regular twisted/f-domain.  According 
to Theorem 1.1, i f L e N  and we choose p >  n - 1 ,  the expected lifetime of condi- 
tioned L-diffusions in D is bounded by a finite constant, despite the fact that 
D has infinite volume. 

We turn to probabilistic estimates of harmonic functions in LV-domains. 

Lemma 2.4 Suppose that Le~ ,  f: N"-1 ~ N is upper semi-continuous, 

Dk={X~lR":[2]<l , m a x ( - 1 , f ( ~ ) ) < x , < k } ,  k > l ,  

/Sk={xeR":l~l<l,-l<x,<k}, k > l ,  

and 

Mk = {XeR':  12[ < 1/2, x,=k},  

There exists Po < 1 such that if p > Po and 

pO (T(OD4) = T((~/54)) _-> p (2.4) 

then 

k>=l. 

pO (T(~Dk) = T(Mk)) >= e-ck 

for k > 4, where c~(O, oo) depends on c L and on Po but does not otherwise depend 
on f. 

Proof. Let 

Dk={X~N~n:]2]<3/4, -- 1 < x , < k } ,  k>0 ,  

l/V~={XeDk'Xn>k-5}, k>4, 

Vk={XeDkC~D~:x~>k--2}, k>3. 

By Lemma 2.1 we have 

Cap~4(V3) < cl Cap~4 (V3) 

~ C  1 C 2 P ~  T(•W4)) 

~_ Cl C2 pO (r(c~D4) < r(O/)4)) 

<c3(1-p). 

By our assumptions on Dk and translation invariance of Capa, 

Cap wk § (Vk) < C3 (1 -- p) 

for all k>3.  Lemma 2.1 yields 

(2.5) W(T(Vk) < T(~Wk + 1)) < c4 Cap~ wk§ (Vk) < CS (1 --p) 
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for x = (0 . . . . .  0, k--3), The inequality also holds for all x ~ Mk-3, by the Harnack 
principle (we may have to change the constant cs). 
Let 0 denote the usual shift operator for Markov processes. 

k df 
& = 0 {T(~D,,)= T(M,,), r((?Dm-1)~ r ( ~ k ) } .  

m=l  

We will prove inductively that 

pO (Ak + 1) > c6 pO (Ak) 

for some c 6 > 0 and all k > 2, provided p > Po. 
We start with k = 2  and 2. By Lemma 2.3, and the strong Markov property 

applied at T(M,,), 

P~ (m~= I { T(~Dm)= T(Mm), T(ODm- I ~ > T(OD4)})> c7 �9 

It follows that if 1 - p  < cv/2, then in view of (2.4), 

pO (A k + 1) > c7/2 > (c7/2) pO (Ak) 

for k=2 ,  3. 
By the strong Markov property applied at T(Mk+ 1) and Lemma 2.3, 

pO (Ak + 1 c~ { T(ODk + 2) = T(Mk + 2)} c~ { T(ODk) O OT(M~+ ,) > T(ODk + 2)}) 

> Cs pO (A k + 1). 

First choose c6r c7/2) small and then Po < 1 large so that for P>Po we have 

C 8 - c  5 ( l  - - p )  C 6 2  > C6 " 

Now suppose that k > 3  and P~ 6 P~ for all m < k .  By (2.5), 

po (Ak + 2) >= pO (Ak +1 ("3 { T(OD k + 2) = T(Mk + 2)} c~ { T(ODk) O OT(M~+ 1) > T(aDk + 2)}) 

_ po (Ak- i ~ { T(Vk + 2) ~ Or(u~_ 1) < T(VVk + a) ~ OT(M~_ 1)}) 

>___ CS pO (Ak + 1)-- Cs (1 -- p) po (Ak- 1) 

Cs P~ 0 - c 5 (  1 - P )  c6 z P~ 1) 

= pO (Ak + 1) [-C8 -- C5 (1 -- p) C 6 21. 

Then P~ 6 P~ which finishes the inductive argument. We con- 
clude that 

po (T(t?Dk) = T(Mk)) >= pO (Ak) > ck6 - 2 pO (A2) 

and the proof is complete. []  
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L e m m a  2.5 Suppose that L ~ , f :  IR"- 1 ~ I R  is upper semi-continuous, 

and 

z k = (0, 0 . . . .  , k -  1/2), k > 1, 

D k = {x e lR": [2[ < 1, m a x ( - -  4, rain (f(2), k -  1)) < x,  < k}, 

D k = { x ~ l R " : [ 2 ] < l , - 4 < x , < k } ,  k > l ,  

Mk=x~lR":]2l<l /2 ,  x ,=k} ,  k> l, 

k > l ,  

N c m  1 , 

For each q > 0 there is Po < i such that if  p > Po, 

pO (T(OD4) _- T(~/54)) > p 

and 

then 

pO (T(N) = T(OD ~ w OD_ 1)) > q, 

PZ~(T(N) < T(aDk)) > e-Ok 

for all k >= 4 where c~(O, co) depends only on CL, q and Po but does not otherwise 
depend on f 

Proof. Let 

Wk={X~Dk:x ,>k- -5} ,  k>=--l, 

Vk={XeDknD~:xn>=k--2}, k>=--l. 

We can show as in the previous p roo f  that  

Cap wl (V_ 1) --< CapW~ ( V- 1) --< c~ (1 - p )  

and, therefore, 

(2.6) CapW3 (V1) < cl (1 - p )  

and CapWk+l(Vk)__<Cl(1--p) for k_>-- 1. As in the p roof  of L e m m a  2.4, we may  
show that  

PZk(T(M2) < r(Mo) < r(C3Dk), T(~D3) o OT(M2) > r(Mo) ) >= e -cak. 

By the Ha rnack  principle, 

PX(T(N)= T(OD1 w 0D_ 1))_->c3 q 

for all x E M  o. Let  

Bk = { T(M2) < T(Mo) < T(N) = T(ODI ~ ~?D_ 1) ~ Or(Mo) < T(aDk)} 

c~ { T(aD3) o Or(Ms) > T(M0)}- 
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Then the strong Markov property applied at T(Mo) yields 

PZk(Bk)>= ~ PX(T(N)= T(~D1 uOD_I)) 
Mo 

�9 W~(T(M2) < T(Mo) < T(~Dk), 
T(t?D3)oOT(M2)> T(Mo), X(T(Mo))~dx) 

>= ~ c3 qW~(T(M2)< T(Mo)< T(~Dk), 
Mo 

T(~D3)o OT(M2 ) > T(Mo), X(T(Mo))~dx) 

> e-C~k C3 q. 

Lemma 2.1 and (2.6) imply that 

W(T(V~) < T(0 W3)) _-< c,  (1 - p) 

for all x~M2. Then 

W~(T(N) < T(~D~)) 

> W~(Bk)-- Wk({ T(V1)~ OT(M~)< T(OW3)o OT(U:) } ~ Bk) 

>e-~k(c3q--c4(1--p)). 

NOW it remains to choose q, Po and c in an appropriate way. [] 

Lemma 2.6 Suppose that 
(i) Le ~ and D is an If-domain; or 

(ii) L ~  and D is a uniformly regular twisted If-domain; or 
(iii) L~ Jff ~ and D is a strongly uniformly regular twisted If-domain. 

Let h be a positive harmonic function in D and 

Uk= {X~D: h(x)~[2k, 2k + l]}, ke2g. 

For some e > 0  let r=(1-z )p / (n - - l  +p). Then there exist c > 0  and ko>0  such 
that 

(2.7) pX(T(OUk) < T(B(x, ]k[- r))) > c 

for all [kl>ko and all x~U~. 

Proof. (i) Consider the following special /Y-domain. Suppose that f is an 
/Y-function, f <  0, and 

D = {x ~N~n: 121 < 1,f(2) < xn < 1}. 

Assume that yeD, y, < 0, and let 

D1 = { x e ~ ' :  12-371 < Iki-r/8,f(~2)<x,< 1}, 
D2 = {x~  jR-n: I-'~--Yl < Ikl-78,  Ix~-y~l < Ikl-72}, 

D3=DlnD2,  

M--- {x eP-' :  12--;I < Ikl-716, x , =  1/2}. 
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Suppose that 

(2.8) W(T(aD) < T(n(y, Ikl-9))< 1 -po.  

Then 

(2.9) W(T(QD2) = T(c3D3)) > Po 

and, by Lemma 2.4 and scaling, 

(2.10) PY(T(M) < T(~DO) > e x p ( -  c 1 (1 -- y,)/(lk[- r/S)). 

It follows from (2.9) and Lemma 2.1 (ii) that 

Vol(D ~ n D2) < c2(IkI-T, 

where by taking Po sufficiently close to 1 we may suppose c2 is small. Let 
us choose poe(O, 1) large enough so that 

and, therefore, 

Vol(D c c~ D2) "< C 3 [kl-r, dy= Vol(D2)/2 

Vol(D n D2) > c 3 [kl- rn/2. 

This and the fact that the lower boundary of D is the graph of a function 
imply that the ( n -  1)-dimensional volume of the set 

{x~OO2 :x,, =y,, + Ikl-'/2,f (~)< y, + Ikl-~/2} 

is greater than or equal to 

(c3 [kl-"/2)/Ikl- ~. 

Since the function f belongs to L p, 

Ii-f(Yc)+lkl-~/2lP d~ < c ,  < ~ ,  
I~-Yl < Ikl-r/8 

where c 4 does not depend on y. It follows that 

(1 - y.)P [(c3 Ik[-~"/2) /Ikl-q < c 4 , 

SO 

and thus 

1 - y .  < c5 Ik[ r~"- 1)/~, 

(2.11) (1-y . ) / lk l - r~c5  Ikl '("-')/plkl r=cs [kl ~-~ 

A standard application of the Harnack principle shows that h(x)> c 6 ]k[-CTr for 
all xeM,  since such points x may be connected with (0 . . . . .  0, 1/2) by a chain 
of balls in D of length c8 log[k] -r. 
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The strong Markov  property,  (2.10) and (2.11) yield 

h (y) _> c 6 [k[- c7r  PY (T(M) < T(~D 1)) 
=> c6 [kl -cTr e x p ( - c a  Ik] 1 -~) 
>2-1k1+1 

if Ikl is sufficiently large. It follows that  y(~U-k, for large k > 0 .  Thus, if we 
assume that  yeU-k for large k > 0 ,  then (2.8) must  fail and (2.7) holds with 
c = (1 - po)/2. 
N o w  suppose that  

(2.12) PrKZ(c3gk) < r(B(y, Ikl-r))) < 1 - P o  ; 

(this is a slight modif icat ion of (2.8)). Then  again we have (2.9), i.e., 

pr  (T((3D2) = T(0D3) ) > P0. 

By L e m m a  2.3 and scaling, we have 

pr  (T(M1) = T(~D2) ) > c9 > 0 

where 

Ml = {xet?D2:1:2--Yl < Ik l - r /16 ,  x .  = y .  + Ikl-~/2}, 

and c9 depends only on %. Given poe(0, 1) sufficiently large, 

PY(T(M1) = T(OD3)) > c9/2 = Clo. 

If we had 

P~'(h(X(T(MI))) < 2 Ikl, T(M1) = T(0D3) ) > Clo/2 

then we would have 

PY (T(0 Uk) < T(B (y, I kl - r))) > C l 0/2. 

If P0 is chosen so that  1--po<Clo/2, then, by (2.12), the last inequali ty would 
be impossible. Therefore  we must  have had 

P"(h(X(T(MI))) > 2 I~l, T(MI)  = T(aD3)) > Cto/2. 

In other  words, if M2 = {xeMl:h(x)>=21kl}, then 

Pr(T(M2) = T(0D3) ) > Clo/2. 

Let yl  be defined by ~=37 l, y l  = 1/2. By L e m m a  2.5, scaling, and (2.11), 

PY~ (T(M2) < r(t?D 1)) _-> exp(- -  Cll (1 - y.)/(Ikl- ~/8)) 

>exp( -c12[k[1-~) .  

We obtain 

(2.13) h(y 1) > 2 N PY(T(M2) < T(c?D1)) 
>__ 2 N exp(- -  cl2 ]k] 1 -~). 
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However, h (y l )<  cl 3 [k[ c~4r, by the chain of balls argument. This contradicts (2.13) 
for large Ikl. Therefore, if y~U k and k > 0  is large then (2.7) holds with 
c= (1 -p0 ) /2 .  

Points y~D with y , > 0  may be treated analogously. The proof  extends to 
general /y-domains by a localization argument. 

(ii) Now we turn our attention to uniformly regular twisted /Y-domains and 
L ~ .  We will consider two cases. 

First, suppose that x~D and dist(x, 0D)<lkl-r/3. Then there exists a point 
y~OD with Ix-yl = Ik1-72 and we have, by uniform regularity, 

Cap~(y, Ikl- r/2)(B (y, I kl- ~/6) ~ O ~) > c15 > 0. 

It follows easily that 

Cap~ (~'lkl-~)(B(y, Ikl-~/6) r D0 > Cl 6 = C16(C15 ) > 0 

and, by Lemma 2.1 (i), 

P~(T(~ Uk) < T(n(x, Ikl- 9)) > pX(T(D~) < T(B (x, Ikl-r))) > c~ 7 > 0. 

It remains to consider the case when dist(x, OD)a___: d>lkl-r/3. Let zsD be a 

base point. There exists a Jordan arc 7 connecting x and z in D such that 
dist (7, aD) > cl 8 d and I(7 (x, z)) < c 19 d(l -")/P. 

Let j be the largest integer not greater than l(7(x,z))/(qsd ). Then j 
< c2 ~ d(1 - n)/p- 1. 

Let y~ yl .... ,y;, yJ+~=z be the points on 7 such that l(7(x, ym)) 
=mqsd/2. The balls with centers y"  and radii c~sd form a "chain of balls 
connecting x and z" and, therefore, 

h (x) < h (z) c�89 < h (z) c ~  Ikl~ ~ < 2 Ikl 

for large ]kl. Thus, x6 Uk for large k >  0 and similarly, x6 U-k. This completes 
the proof  of part (ii) of the lemma. 

(iii) Part (iii) may be proved exactly like part (ii) except that we have to use 
volumes rather than capacities and Lemma 2.1 (ii) instead of Lemma 2.1 (i). [] 

Remark 2.1. We will need in Sect. 5 the following extension of Lemma 2.6. Let 
Uk = {xeD: h(x)< 2 k+ 1}. Then the above proof  shows that Lemma 2.6 holds for 
Uk replaced with Ok and all k < - k o .  

3 Twisted Hiflder domains 

We start with a number of completely elementary results on twisted H61der 
domains which are needed in this paper and its companion - Bass and Burdzy 
(1991a). We introduce the class of twisted H61der domains as a natural general- 
ization of H61der domains. 

Twisted H61der domains have, by definition, canals no longer and no thinner 
than H61der domains, but do not have to have their boundaries representable 
as graphs of functions. 
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A bounded domain D c ~ "  is called a H61der domain of order ~ if every 
point xeOD has a neighborhood U such that Uc~OD may be represented in 
some orthonormal coordinate system (depending on x) as the graph of a H61der 
function with exponent ~. 

For a rectifiable Jordan arc 7 and x, Y~7, we denote the length of the piece 
of 7 between x and y by l(7(x,y)). 

Definition 3.1 A bounded d o m a i n D c N  n, n>2,will be called a twisted H61der 
domain of order e, c~e(0, 1], if there exist constants el . . . . .  css(0, oo), a point 
z sD  and a continuous function 6: D - .  (0, oo) with the following properties. 

(i) 6(x) =< Cl(dist(x, 8D)) ~ for all x~D; 
(ii) for every xeD there exists a rectifiable Jordan arc7 connecting x and z 

in D and such that 

6 (y) > c2 (1 (7 (x, y)) + 6 (x)) 

for all Ye7; 
(iii) Cap(B(x, c3a)nFf)/Cap(B(x,  c3a))>c4 for all xeFa and a<=c5, where F, 
= {yeD: 6(y) < a} and Cap = Cap~ (x'2c3"). 

Remarks 3.1 (i) The term "H61der domains" has been used to denote related 
but different classes of domains (Smith and Stegenga 1990; Bafiuelos 1991). 
(ii) Condition (iii) of Definition 3.1 is a very mild version of uniform regularity. 
The main theorems on twisted H61der domains of this article and Bass and 
Burdzy (1991 a) seem to be false without this assumption. The counterexamples 
are complicated and will be omitted. 

Our first result is a rigorous counterpart of the heuristic idea that "twisted 
H61der domains have canals no longer and no thinner than H61der domains." 

Proposition 3.1 Suppose that D c ~  ~, n > 2, is a bounded domain and there exist 
~ ( 0 ,  1], cl, c2, c3, c4~(0, ~ )  and z~D with the following properties. 
(i) For each x~D there exist b > 0  and a rectifiable Jordan arc7 connecting x 
and z in D and such that for all yET 

(3.1) dist (y, 8D) > c~ (b + I(7 (x, y)))l/L 

Let 6 (x) be the supremum of b's which satisfy (3.1) and let F~ = {y~D: 6(y)< a). 
(ii) 

Cap(B(x, c2 a)c~ Ff)/Cap(B(x, c2 a)) > c a 

for all xcF~,  a<c4, where Cap = Cap~ ~x'2~). 
Then the domain D is a twisted H61der domain of order ~ and 6 satisfies 

Definition 3.1. 

Remark 3.2. If (3.1) is satisfied only by b = 0  for some x~D, then replace c~ 
by c~/2. As a result, the corresponding ~ will be always strictly positive. 

Proof. It will suffice to show that ~ is a continuous function satisfying conditions 
(i) and (ii) of Definition 3.1. Condition (iii) holds by assumption. 

For a fixed xED, the lengths of 7's satisfying (3.1) are bounded away from 
0 and ~ and, therefore, by compactness, there is a Jordan arc 70 connecting 
x and z in D and such that 

(3.2) dist (y, 8D) > c~ (6(x) + l(7o (x, y)))~/~ 
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for all Y~7o. Now let YeTo and let v be a point on 70 between y and z. By 
(3.2), 

dist (v, OD) > cl (6(x) +/(7o (x, v))) TM 

= cl (6(x) +/(7o (x, Y)) + 1(7o (Y, v))) 1/~. 

It follows that (3.1) is satisfied for y in place of x if 7=7o(yz)  and b=6(x )  
+ l(7o(X, y)). Hence, 

(3.3) 6 (y) > 6 (x) + 1(7o (x, y)) 

and condition (ii) of Definition 3.1 is verified. 
By taking y = x in (3.2) we have 

dist (x, QD) > c 1 (3 (x)) TM 

which implies condition (i) of Definition 3.1. 
It remains to show that 6 is continuous. 
Fix some x e D  and let 7o be the curve satisfying (3.2) for x. For  y e D  with 

Ix--y] < dist (x, ~D) let 

bl = (6(x) 1/~- I x -  yl/cl) ~ -  I x -  yl. 

Let 71 consist of 70 and 72, the latter being the line segment joining y and 
x. Since 6(x )>bl  + l x - y t ,  we have for VeTo, by (3.2), 

(3.4) dist (v, aD) > cl (6 (x) + I(70 (x, v))) 1/~ 

> ci (bl + Ix -y l  + I(7o (x, v))) TM 

C1 (b l  -~- 1(71 (Y, /)))) 1/~t. 

Since dist(x, 3D)_-> cl (6(x)) TM and by our choice of bl,  we have for veT2, 

dist (v, 0D) > dist (x, 8D) - Ix -- Yt 

Cl (6 (X)) 1/e - - I x - y l  

- -  C 1 (b l  + I X - -  yl)l/~ 
> cl (bl + 1(71 (y,/.))))l/e. 

This and (3.4) show that (3.1) is satisfied for y if we take 7=71 and b = b  1. 
Thus 

6 (y) > b l = (6 (x) TM - I x  - yl/cl) ~ - I x -  Yl. (3.5) 

As a result we have 

lim inf (3 (y) - 6 (x)) => 0 
Ix-y[~O 

I x --y] <dist(x, OD) 

which clearly implies the continuity of 3. []  
There are several types of domains in the literature which are candidates 

for the name of twisted Lipschitz domain. We recall now their names and defini- 
tions, following Bafiuelos (1987) and Smith and Stegenga (1990). 
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A bounded  doma in  D is called a John domain prov ided  there exist zED 
and c > 0  such tha t  for every x~D there is an a rc7  connect ing x and  z in 
D and satisfying 

dist(y, ~D)>cl(7(x, y)) for all Y~7. 

A bounded  doma in  D is called a uniform domain if there exist Cl, cz < oo such 
tha t  every pair  of points  x, y~D m a y  be joined by an arc 7 in D with 

l(7(x, y)) < c, lx-- Yl, 

min(l(7(x, z)), l(7(z, y)))=<c2 dist(z, 0D) for all zeT. 

A b o u n d e d  d o m a i n  is called a non-tangentially accessible (NTA)  doma in  
if there exist M > 1 and r0 > 0 such that  

(i) for every xEaD and r < r o  there is y~D such tha t  Ix-y[ < M r  and 

B(x, r /M)cD; 

(ii) p rope r ty  (i) holds for D c in place of  D; 
(iii) for every c > 0  there is an N such tha t  if 0 < e < r o ,  x 1, x2~D with 
dist(xk, OD)>e for k = l ,  2 and [xl-x2[<ce, then there exists a sequence of 
N points  z 1 = x  I, z 2, z a . . . .  , zN=x 2 such tha t  IzJ-z j+ 11 < e / M  and B(z j, 2e /M)cD 
for all j. 

I t  is well known  (and quite e lementary  to prove) tha t  every N T A  d o m a i n  
and every uni form doma in  is a John  domain .  We are going to show tha t  John  
domains  are the same as twisted H61der doma ins  of  order  1. This  means  tha t  
all results on twisted H61der domains  of  order  1, e.g., Theo rems  1.1 (i) (C) 
and  1.2 au tomat ica l ly  hold for uniform, N T A  and John  domains .  

Proposi t ion 3.2 The classes of John domains and twisted H61der domains of order 
1 are identical. 

Proof If  D is a twisted H61der doma in  of order  1 then by Defini t ion 3.1, for 
each x e D we have an arc 7 connect ing x and z with 

dist(y, OD)>=c~ ~ 3(y) 

>__ c ~ ~ c2 (l(~ (x, y)) + ~ (x)) 

> c ?  1 c2 l (~(x,  y)) 

for yeT, which shows tha t  D is a John  domain .  
N o w  assume tha t  D is a John  domain .  Then  there is a cons tan t  c3 > 0 and  

for each x ~ D there is an arc 7 connect ing  x and z with 

dist (y, ~D) > c3 I(7 (x, y)) 

for all Y~7. This implies that  

dist (y, 3D) > (c 3/2) (b + t (;; (x, y))) for all y E 7, 

for some b > 0  and, therefore, condi t ion (i) of  Propos i t ion  3.1 is satisfied. It  
remains  to verify hypothes is  (ii) of  Propos i t ion  3.1. 
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Fix some x~D, a > 0, and let ~o be defined as in the proof  of the last proposi- 
tion. Let YeT0 n ~B(x, 2a). Then, by (3.3), 

6 (y) => 6 (x) + l(?0 (x, y)) => 6 (x) + 2 a. 

For  Iv -y l  < dist (y, 8D) we have by (3.5) 

6(v)>=a(y)-c21v-yl 

for some c 2 > 0. It follows that 

6(v)>=2a-czlv-yl 

and B (y, a/2 c2) ~ F. = lb. Hence 

Cap(B(x, 2a) n F~)/Cap(B(x, 2a)) > Cap(B(x, 2a) ~ B(y, a/2c2))/Cap(B(x, 2a)). 

It is easy to see that the last expression is greater than some c 3 > 0  and this 
completes the proof. []  

Twisted H61der domains have to satisfy condition (iii) of Definition 3.1, which 
does not have a counterpart  in the definition of a H61der domain. For  this 
reason, the next result is not completely obvious. 

Proposition 3.3 Every HSlder domain of order ~ is a twisted HOlder domain of 
order ~. 

Proof We will leave some of the elementary details of this proof to the reader. 
Suppose that D is a H61der domain of order e. By compactness, 0D may 

be covered by a finite number of open cylinders such that 3D can be represented 
as the graph of a H61der function in each of them. It will suffice to consider 
only one of these cylinders, say U. Assume without loss of generality that in 
some orthonormal  coordinate system 

U ~ D =  {x sIR": [21 < c l  , f (2)<x.<c2} 

and f (2)< c 3 < c2 for [~l < c I for some H61der function f with exponent e. 
For  xeUc~D, let 8(x)=x,--f(2). Fix some z e D \ U  and for each xeUr~D 

let 7 be a curve connecting x and z in D such that the portion of 7 lying 
in U consists of a vertical line segment and such that dist(~c~ U c, 6 D ) > c 4 > 0  
for every x~Ur~D. With such a choice of ?, (3.1) is satisfied for every x~Uc~D 
provided we take b = 8(x) and the constant c~ in (3.1) is sufficiently small. This 
is, of course, a consequence of the H61der character of the function f .  

Now let 6 be defined as in Proposition 3.1. We will show that condition 
(ii) of that proposition is satisfied. Note that 6(x)> 8(x) for x e  U c~ D. Let 

f fa={x6UnD: ~'(x) =< a}, 

S (x)= { y~ U c~ D : t.~-- 21< 5 a/ 4, !y.-- x.l < 5 a/4 }. 
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Then S(x )cB(x ,  2a). Let 2(37) be the 1-dimensional Lebesgue measure of 
F,~ c~ S(x)n (37 x IR). Note that, for a less than some c5 >0,  2(37)> 3a/2. Hence 

Vol(B(x, 2a) n ff.~) > Vol (S(x.) ~ F c) 

= ~ 2(y) d37 
{yeU c~DnS(x)} 

_-> ~ (3 a/2)d37>c 5 a". 
{yeU c~ DnS(x)} 

This implies 

Vol(B(x, 2a) n ff~)/Vol(B(x, 2a)) > C 6 > 0 

and, consequently, 

(3.6) Cap(B(x, 2a) n ff~)/Cap(B(x, 2a)) > c7 > 0. 

Since 8(x)< 6 (x) and F, is defined in terms of 3 in the same way as F a is defined 
in terms of 6, (3.6) implies condition (ii) of Proposition 3.1. According to the 
proposition, D is a twisted H61der domain of order 7. [] 

Lemma 3.1 Suppose that D is a twisted H61der domain of order ~, ~ ( 0 ,  13, 
and 6 satisfies Definition 3.1. Fix some z~D and a>0 .  Then there exists c 1 
= c 1 (D, 6, z, a) < oo such that for every x~D there is a "'chain of balls" connecting 
x and z (see Sect. 2) of length k < c l  cS(x) 1-1/~. 

Proof. Recall the definition of "chain of balls" given in Sect. 2. Suppose that 
7 is an arc connecting x and z and satisfying Definition 3.1. Find an integer 
r such that 6(x)E E2 -r, 2 - '+  1). Let y l =  x and define y2 y 3 ,  . . .  inductively. Given 
ym- t pick j so that 

(3.7) l(~ (x, ym- 1)) + 6 (X)~ [-2-~, 2-J+ 1) 

and then pick the point ym lying on 7 between y " -  1 and z so that 

l(y(ym, ym- 1)) = �89 rain (a, 2-J/~(c2/cl)1/~ ). 

Here c I and c z are the constants in Definition 3.1. At some point the inductive 
procedure will have to stop because y has a finite length (a consequence of 
Definition 3.1). More specifically, for some y" 1 we have 

I(7 (z, ym- 1)) < 1 rain (a, 2 --J/~(C2/Cl)l/a). 

Then let ym= Z, k = m. 
By Definition 3.1, for Y~7, 

dist (y, ~D) > (6 (y)/c 1)1/~ 

> ((l(7 (x, y)) + 6(x)) c2/cl) 1/~. 

So, using (3.7), 

17 - ym- 11-5_ l(7 (ym, ym- i)) ___ �89 c2/c01/~ 
�89 (l (~ (x, y m - 1)) + 6 (x)) c 2/c 1)1/~ 

=< �89 dist (ym- 1, OD). 
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A similar inequality holds with y~-  ~ replaced by ym o n  the right hand side. 
Thus, if we choose the balls to have centers ym and radii dist(y", 8D), then 
they will satisfy the definition of a "chain of balls". 

Now we will estimate k. It follows from Definition 3.1 that the length of 
is bounded by (diam D) ~ cl/c 2, so the number of m's with l(7(y m, y~- l ) )=a/2  

is not greater than (diam D) ~ 2cl/ac 2 d.=y kl .  

There are no more than 

points y " -  1 with 

and 

(3.8) 

2.2-J/(2-~/~(c2/cl) 1/~) 

l(7(x, ym- 1)) + 6(X)~ [2 -J, 2 -j+ 1) 

l(7(y,, ' y, ,-  1))= �89176 

Find an integer i such that ~(z)< 2 -i and recall the definition of r. The total 
number k2 of points ym-1 satisfying (3.8) is less or equal to 

r r 

y~ 2. e -J/(2 -~/~(c2/cl )  1/~) = y ,  c3 2 ~1/~ - l~j <= c~(e  - , )1  - ~/~ <= c4 a (x) 1 - 1< 
j= i  j= i  

Since 6 is bounded on D, 

k<=kl+k2<=kl+c46(x)1-x/~<=c56(x) 1-1/~. [] 

Lemma 3.2 Suppose that D is a twisted H6lder domain of order e, c~e(0, 1], 
and h is a positive harmonic function in D. Assume that 
(i) L e ~ ,  or 

(ii) L~ ~A/~@ and D is strongly uniformly regular. 
For some e > 0  let r=(1  - -e ) / (1-  l/a) and 

Uk={x~D:h(x)~[2 k,2k+l]), k~Z. 

Then there exists k o > 0 such that 

PX(T(OUk) < T(OB(x, Ikl~))) > c I > 0 

for all ]kl > ko and all x. 

Proof. Find a chain of points yl  =x ,  y2 . . . .  , yk=z as in Lemma 3.1. By the Har- 
nack principle, for some c~ E(0, 1), 

h (x) > h (z) c~ 

= h(z) exp(k log Cl)  

> h(z) exp(c2 ~ (x) 1-1/~ log cl) 

= h(z) e x p ( -  c3 6(x) 1 - 1/~) 

> exp ( -  c4 c5 (x) 1 - 1/~). 



426 

The  following inequal i ty  holds for similar reasons:  

h(x) < exp(c5 6(x) 1 - 1/~). 

If  x e Uk and k > 0 then, 

and so 

2 k < h(x) < exp (c s 6(x) 1 - 1/~), 

Fo r  k < 0 ,  
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6 (x) < (k log 2/c5) 1/(1 - 1/~) < C6 kl/(1 - 1/~) 

2k+ 1 > h(x) >= e x p ( -  c3 8(x) x - 1/~), 

for  all x. 

Proo f  We have E~(T(SB(x ,  r)))< c3 r 2 by L e m m a  2.2. Suppose  we had  tha t  

(3.9) P~(T(U  ~) > c4 r z) > cs, 

where c~ = 1 - c f f 2 .  Then  we would  have  

P~(T(OB(x,  r)) > T ( U  ~) > c4 r 2 ) > cl - (1 -- c5) 

E~(T(U~)) <= c2 r 2 

and 

6 (x) < (--  (k + 1) log 2/c3)1/(t - 1/~) ~ c7 Ikl 1/(1 - -  1/a) 

I t  follows that  Uk c G with 

a < c s Ikl 1/(1 - 1/~) 

Condi t ion  (iii) of  Defini t ion 3.1 and  L e m m a  2.1 (i) imply, for L ~ ,  tha t  

PX(T(SG) < T(SB(x ,  c9 a))) > c lO > 0 

for all x. Thus,  for a o = c s  Ik[ 1/(1-1/~) and large Ik[, 

ex(T(aUk) < r (aB (x ,  Iklr))) > PX(T(SUk) < T(SB(x ,  c 9 ao))) 

>_ P~(r(SFao) < r ( S B ( x ,  c9 ao))) > cl o > 0. 

The  case L e Y @  m a y  be t reated in an ana logous  way, using L e m m a  2.1 
(ii). [ ]  

Remarks 3.3. (i) By the p roof  of  Propos i t ion  3.3, we m a y  omi t  " D  is s t rongly 
unformly  regu la r"  for L e Y ~  if D is a H61der domain .  
(ii) As in the case of  L e m m a  2.6 we have  the following var ia t ion  of L e m m a  3.2. 
Suppose  that  Ok = {xeD:h(x )<_2  k+ 1}. L e m m a  3.2 then holds with U~ replaced 
by O k and  k < - k o .  The  p roo f  does not  require any  changes.  

L e m m a  3.3 Suppose that L e @  u Y @  and for  some set U and all x we have 

px(  T(  g c) < T(S B(x,  r))) > c 1 > O. 

Then 
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and, therefore, 

c 3 r 2 > EX(T(OB(x, r))) > c 4 r 2 (cl + c5 - 1), 

where  c4 = 4 c3/cl, a contradict ion.  Therefore  (3.9) mus t  be false, i.e., 

PX(T(UC) > C a r 2) ~_ c 5 ( 1. 

By the M a r k o v  p rope r ty  appl ied at c4r 2 we have PX(T(UC)>2care)<c~ and, 
by induct ion,  Px (T(U c) > k c4 r 2) < c~. This clearly implies E x (T(UC)) < c2 r 2. [ ]  

Proof of Theorem 1.1 (i). Recall  tha t  

Uk={X~D:h(x)e[2  k,2k+*]}, keTZ, 

for a posit ive ha rmon ic  funct ion h in D. Chung  (1984) (see also Crans ton  (1985) 
and Bafiuelos (1987)) showed tha t  

E~R<__c~ ~ sup EXr(ul) .  
k =  - c~ x s U k  

If D is a n / y - d o m a i n  or a uniformly regular  ~y-domain and p > n -  1 then let 

/ 3=2p / (n -  1 + p ) -  1, 

e = 1 - ( 1  + / 3 / 2 ) ( n -  1 +p)/Zp, 

r = ( 1  - e )  p / ( n -  1 +p). 

Note  that/3,  e > 0 .  By L e m m a s  2.6 and 3.3 we have for L e ~ w  Jff@, 

EX(T(U[,))<e2lkl-2r=c21k1-1-p/2, Ikl>ko- 

If D is a twisted H61der doma in  of order  c~e(1/3, 11 then let 

/3 = - 1 - 2 / ( 1  - 1/~), 

e =  1 +(1  +/3/2)(1 -- 1/~)/2, 

r = (1 -- e)/(1 -- 1/~). 

In this case we also have/3,  e > 0. L e m m a s  3.2 and  3.3 imply tha t  

E~(T(U[,))<=c3lkl2r=c31k1-1-p/2, Ik l>ko.  

Thus,  under  each of the assumpt ions  (a)-(b), (A)-(C) of  T h e o r e m  1.1 (i), we 
have 

E~(T(f[,))<c4[k1-1-a/2, Ik l>ko ,  

for some/3  > 0. 
We  need a similar es t imate  for Ikl < ko. First  assume that  D is a n / Y - d o m a i n  

or a twisted H61der d o m a i n  of order  e. I t  follows easily f rom the definitions 
tha t  D has a finite vo lume for p >  1 and any  e, say V o l ( D ) < c  5. Choose  c 6 <  oo 
so tha t  VolB(x,  c6) > 2c5. Then  

Vol(D ~ n B(x, C6) ) > (7 5 
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for all x and, according to Lemma 2.1 (ii), 

px ( T(D c) < T(~B (x, 2 c6))) > c7 > O. 

Lemma 3.3 implies that, for all k and x, 

EX( T(Ud)) >- E~( T(DC)) ~ c s c~ = c 9 <2 00. 

Now suppose that D is a uniformly regular twisted /~-domain. Then there is 
Cao< oo such that dist(x, DC)<Cao for all x. In other words, for each x~D, there 
is y~OD with I x - y l  < C~o. By uniform regularity, we have for L ~ ,  

CapLB(Y' 2~~ (B (Y, Clo) c~ D e) => C 11 Cap](Y' 2c'~ (B (Y, Clo) c~ D r _> c12 > 0. 

This easily implies that, for Le@ and xeD, 

Cap~(X' 3~*~ (x, 2Clo) c~ D ~) > c13 > 0. 

An application of Lemmas 2.1 (i) and 3.3 gives for L e ~ ,  all k and all x, 

E~(T(U~)) <= E~(T(DC)) <= c14 < co. 

The case of a strongly uniformly regular twisted LP-domain and L e J V ~  may 
be handled in a similar manner using Lemmas 2.1 (ii) and 3.3. 
In each case we have 

E~(T(U~)) < C15 ~ C16 Ikl- 1 - i l l 2  

for some C16 < ~ and all x, Ik[ < ko. 
It follows that 

E~R<cl  ~ sup EXT(Uf,) 
k = - oo x ~ U k  

" ~ C l  ~ c171k1-1-~/2<oo. [ ]  

k= -oo 

Remark 3.4. Let 0 be defined as in Remarks 2.1 and 3.3. These two remarks 
and the argument of the last proof  show that 

ko 
sup E x T(O;) < oo. 

k = - oo xe Ok 

Proof of Corollary 1.1. Let ~ = a { X ~ ,  s<-t}. Theorem 1.1 (i) and the Markov 
property imply that, for all x, 

E~(max(0, R--  t) l ~ )  -- E x~ R < c2 < oo PhX-a.s. 

Then by Dellacherie and Meyer (1980), p 193, there are c3>0  and c4< oo such 
that 

E~ exp(c3 R) < c 4 
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for all x. Chebyshev's inequality yields 

PhX(R > t) = Phx(exp (C3 R) > exp(c 3 t)) =< c 4 exp(--  C 3 t), 

SO 

1 
- -  log Ph~(R > t) => -- (log c4)/t + c3, 

t 

which completes the proof. []  

4 Counterexamples 

The counterexamples for Theorem 1.1 (ii) (A)-(B) are trivial. Let D be the interior 
of 

~) {xeP,": 121 < l/k, - k < x , <  - k +  1}. 
k = l  

It is evident that D is a strongly uniformly regular LV-domain for every p < n -  1. 
Let h be the positive harmonic function in D with boundary values 0 everywhere 
on the Euclidean boundary OD and such that h((0,0 . . . . .  0, a ) ) ~ o e  when 
a - - * -  oe. Brownian motion conditioned by h escapes to minus infinity along 
the thin canal constituting D. The lifetime of this process is infinite a.s., which 
may be proved as in Step 4 below. 

One can also verify that the domains constructed in the next proof  are 
uniformly regular twisted /_g-domains and p takes values arbitrarily close to 
n-- 1 when c~ --* 1/3. 

The counterexample announced in Theorem 1.1 (ii) (C) is fairly complicated 
and the rest of this section is devoted to it. For  a given e~(0, 1/3), we will 
construct a twisted H61der domain of order e, a positive harmonic function 
h in D and x~D such that R =  o% PhX-a.s. (in fact, x is i r r e l evan t - the  lifetime 
is infinite either for all x s D  or no xsD). Our example is based on an idea 
similar to that of Cranston and McConnell (1983) but requires a more refined 
construction and careful estimates. For  simplicity, we will discuss the 3-dimen- 
sional case only. It is routine to extend the result to higher dimensions. 

Step 1. Fist, we construct D. We will have to define several objects, starting 
with a planar curve ft. We will apply a method of Koch (see Mandelbrot  1982). 

Take the line segment jointing (0, 0) and (2, 0), remove the piece between 
(1, 0) and (1 + 1/k, 0), and replace it with a polygonal line with consecutive vertices 
(1, 0), (1, 1/k), (1 + 1/k, 1/k) and (1 + 1/k, 0). Here k is a (large) integer which will 
be specified later. The resulting line - which we call F 1 - may be written as 
the union of 2 k +  2 line segments Jm of length 1/k and endpoints in the lattice 
292 / k. 

Now we will construct Fe, F3, etc. inductively. In order to obtain F2, replace 
each of the k + 1 line segments J,,  closest to (2, 0) with a copy F 2 of F~ shrunk 
k times; F 2 is translated, and rotated by the angle re/2 if necessary, so that 
its endpoints coincide with the endpoints of the replaced line segment. Note 
that F2, consists of k +  1 line segments of length 1/k and 2(k+ 1) z line segments 
of length 1/k 2. 
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Suppose that Fm has been constructed; it contains, among others, 2(k+ 1) m 
line segments of length 1/k m with endpoints in 292/k ". To obtain F,,+I, replace 
the half of them (i.e., the (k + 1)" line segments) closest to (2, 0), each with a 
copy of F1 shrunk k" times, translated and possibly rotated. 

The sequence {Fro},,>__ ~ of curves converges to a set ft. It is easy to see that 
/~ is a Jordan arc connecting (0, 0) and (2, 0) and lying above {x :x2=-1 /2} .  
It is the union in order, starting from (0, 0), of k + 1 line segments of length 
1/k, (k+ l )  2 line segments of length 1/k 2, etc. These constituent line segments 
will be called 11 , 12 . . . .  and the length of I,, will be denoted d 1 (m). 
For d>0 ,  let A(d) be a planar set defined by 

A(d)=([0, 3d) x (0, d))\([d, 2d] x [(100d) ~/~, d)). 

Let C be the open bounded set enclosed by ff and the polygonal line with 
consecutive vertices (0, 0), (0, - 1), (2, - 1), and (2, 0). 

c ~ C  • (o, 1). 

a f  
For a line segment I m in ~ let 11 be its middle part of length d 1 (m)/8 = d = d(m). 
Let (0,, be a composition of translation and rotation which maps 7t(d(m)) onto 
a set /?,, so that {x~87t(d(m)): Xa=0} is mapped onto I~ and, moreover ,~, ,  
lies outside C. It is easy to see that such a mapping exists and that the Bra's 
are disjoint for distinct m's. Let 

Bm=/~mX ~ ((2j-1)d(m),2jd(m)); 
jeag 
j>_l 

2jd<= 1 

F ~ (a)= {x~A(a): x 1 > 2a} 

= ~om(F 1 (d(m))), 
F,, =/~m x (-2d(m),  1 + 2d(m)), 

fall =P~ x (-a(m), 0), 
Fff Z=Fmx(-2d(m), -d(m)), 
Fff 1 = / ~  x (1, 1 + d(m)), 
Fm 2 =/~rn X (1 +d(m), 1 + 2d(m)). 

Let Km be the convex hull of F,7 2u Fff+21 (Fff 2vo F++21) for m odd (even). Finally, 
let 

D = C ~  U (BmVOFmVOKm). 
m>=l 

The set D consists in part of an infinite winding canal which is composed of 
tubes Fm whose ends are connected by relatively short Kffs. 

Step 2. Clearly, D is an open bounded connected set. We start analyzing it 
by sketching an argument showing that it is a twisted HOlder domain of order 
0{. 
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Consider a point x E Fm w K,,.  The set 

D ~ [~Om({Xe.4(d(m)): d(m)<xl  < 2d(m)}) x (0, 1)] 

consists of thin parallelepipeds. The one closest to x will be called Q. 
Let z = ( 1 , - 1 / 2 ,  1/2)~D be our base point. We will connect x with z by 

a curve 7 consisting of three parts:  ?t ,  72 and 73. 
The middle part  72 sits inside Q at an equal distance from its sides. The 

arc 7t joins x with an endpoint xl  of 72. Since there is plenty of room inside 
FmWK,, (as compared to Q), 71 may be chosen so that 1(71(x, x l ) )<100d  and 
dist(y, OD)>cl l(?l(X, y)) for Y~71. The width of Q, as a result of the definition 
of A(d), is such that it is possible to have 

af 
dist(y, OD)>=ll(y4(x, y))U~ for yff74=71 W72. 

It is elementary to show that C is a uniform domain. In particular, each point 
w C  may be connected with z by a curve 75 such that 

dist(y, 3D)>__c 2 l(?5(v,y)) for Y~75. 

One can find a curve 73 connecting the other endpoint X 2 of Y2 with z with 
properties similar to those of 7s. It is now clear that for some e 3 > 0, 

dist(y, c3 D) > c 3 l(?(y, x)) ~/~ 
af 

for y ~ ? = y ~ u y 2 w y  3. 

Other points x e D  may be treated in a similar way. Thus, assumption (i) of 
Proposit ion 3.1 is satisfied. 

As for the second assumption of Proposit ion 3.1, it is not hard to show 
that it holds for 6(x)=c4dist(x,  OD) in place of 6(x). Then one uses the fact 
that 6(x)>3(x) for some c 4, to prove that the assumption holds for 6 as well. 
We leave the details to the reader. According to Proposit ion 3.1, this completes 
the proof  that D is a twisted H61der domain of order ~. 

Step 3. In this step, we will define a harmonic function in D and prove that 
it is bounded on C. 

F rom m >  1, let x m be the center of the cube F~ -1 .  A subsequence {xmk}~>l 
converges in the Mart in  topology to x | which corresponds to a positive har- 
monic function h in D. In other words, the sequence of functions 
Gn(', xmk)/GD(z, x mk) converges to h ( - )  uniformly on compact  subsets of D as 
k - +  oo .  

Let 

P,, = {x e.3 (d (m)): x ,  = d (m)/2}, 

v~= E~o,.(~,.) • (0, 1)3 riD. 

The event that the path hits F,, and goes through B,, will be denoted H m. 

More precisely, 

H,~ = { T(V,,) < T( U (Fj w K3)) < T(O Bin) o OT(Vm)} 
j ~ l  

where 0 denotes the usual shift operator.  
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Let VV~, VV2 , ..., VV~ be the vertical line segments of length (100d)1/% each 
one dividing A(d) into two subdomains, lying in order on the lines {x t=d} ,  
{xt = d + (100d)X/'}, {x~ = d + 2(100 d) ~/~} etc. We have 

(4.1) s > d(100 d)- 1/~/2. 

d f  
Wk= [q),~(Wk) x (0, 1)] c~D. 

By scaling, the chance of hitting We+ 1 or W~_ 1 before hitting 0D for Brownian 
motion starting from y ~ W  k is less than p < l ,  where p does not depend on 
m or k. Repeated applications of the strong Markov property at the T(Wk)'s 
give for x~ Vm, PX(Hm) <=pS-1. 
Hence, in view of (4.1), there exists c,  > 0 independent of d such that 

(4.2) PX(H,,) < e x p ( -  c 4 d(m) (~- t)/~), 

for x s  V,, and small d (i.e. large m). 
Let Z,, consist of the three squares obtained by intersecting Fm with the 

planes {xa=--d/4} ,  { X a = - 3 d / 4 }  and {x3=l+d/4}. Next we will estimate 
PX(T(Z,,)< T(OD)) for x~V,,. Suppose that x is the center of one of the squares 
which constitute V,,. Then x may be linked with our base point z=(1,  - 1 / 2 ,  
1/2)eC by a chain of balls of length less than c 5 logd(m), c5<0.  This follows 
from the fact that C is a uniform domain. 

Recall that x"  is the center of F,71 and, therefore, belongs to F,,. We have 
d(m)=k-'/8 for some integer t=t(m). Let us find a chain of balls connecting 
z and x"  and going through the F/s and K / s  for all r<m.  Choose a so that 
d(r)=k-"/8. Note that we need c6 k ~ balls in F, wK, and there are (k+ 1) ~ sets 
F~wK, corresponding to a given a, so the total number of balls needed to 
connect z and x"  is less than 

~ c 6  kS(k + 1) s = c6  [(k(k + 1)) t+ - 1]/[k(k + 1 ) -  1] 1 

j = l  

<= cv (k(k + 1)) t, 

for large t. Hence, there is a chain of balls connecting x and x"  of length 
less than 

c5 log d + c7 (k(k + 1)) t __< c8 (k(k + 1))' 

for large t. The function y~PY(T(Z,,)<T(OD)) is harmonic in D\Zm so the 
Harnack principle yields 

(4.3) ex(T(Zm) < T(~ D)) _>- exp ( -- c 9 (k (k + 1)) t) 

where x is the center of a square in Vm, provided we choose c9 >0  sufficiently 
large. 

Now we will find a large Jo so that the PX-probability that the process 
hits Z,, before hitting ~D and goes through one of the B]s, J>Jo, is relatively 
small when compared to (4.3). 
Suppose that k is large enough so that 

(k(k+ 1)) < k2+2P < k O -~)/~ 
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for some fi > 0. This is possible since we have assumed that e < 1/3 and, conse- 
quently, ( 1 -  c0/c~ > 2. Recall that d(m)= k-t~8, and use (4.2) and (4.3) to see that 

(4.4) PX(H,,,)/W(T(Z,,,) < T(O D)) < exp( - Clo k -t~'- 1)/=)/exp ( - c9 (k(k + 1)y) 
< exp ( -  c 11 k~t), 

where x is the center of a square in Vm, and c11>0 is large. In fact, (4.4) holds 
for all x e Vm, by the boundary Harnack principle (the constant Cll may need 
to be changed). 

The Green function GD(x",. ) is bounded below and above by q and c12 q 

d f  m 
on U,,= OB(x , d/8), by the Harnack principle. It follows that 

(4.5) GD(x", x) ~ qW(T(Um) < T(O D)) 

and 

(4.6) GD(x m, x) <= c12 qP~(T(U,.) < T(O D)) 

for all x ~ C. 
Note that the sphere U,. is cut off from C by Zm. 
Let Z~ consist of 6 squares in D obtained by translation up or down by 

d/8 from the 3 squares comprising Zm. By the boundary Harnack principle 

n"(X ( T(Zm))~d y, T(Z,.) < T(O D)) 
n"(X (T(Zm))~dv, T(Z,,) < T(O D)) 

Pw(X (T(Zm))adv, T(Zm) < T(O D)) 
nw (X ( T(Z,.))~d y, T(Zm) < T(O D)) 

is bounded away from 0 and oo for all u, w~Z~, y, vEZ,., and, by scaling, 
the bounds do not depend on m. Then 

Px(X ( T(Z,.))~d y, T(Zm) < T(~ D), H,.) 
nx(X (T(Z,.))~d y, T(Z,.) < T(O D)) 

P=(X ( T(Z~))ed u, T(Z~) < T(O D), H,.) 
z'.. 

n~(x  (r(z,.))adw, T(Z~) < T(O D)) 
z~ 
P" (X (T(Z,.)) ~ d y, T(Z,.) < T(O D)) 
P~'(X (W(Zm)) ~ d y, T(Zm) < W(O D)) 

< W(X(T(Zm))~dy, T(Z,.)< T(OD)) 
= P"(X(T(Z,.))adv, T(Zm)< T(~D)) 

nw(X (T(Zm))~dv, T(Zm) < T(Q D)) 
P~'(X (T(Z,,,))~d y, T(Z,.) < T(O D)) 

Px(X ( T(Z~))adu, T(Z~)< T(~D), H,.) 
z'.. 

W ( x  (r(Zm))edw, T(Z~) < T(O D)) 
z~ 

pu(X (T(Zm))~dv, T(Z,.) < T(O D)) 
P~(X(T(Z,.))edv, T(Z,.) < T(OD)) 

P~(X(T(Zm))adv, T(Z,.)< T(OD), H,.) 
~___C13 P~ (X ( r(z,.)) e d v, T(Zm) < r(c3 D)) 
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for all x~C, y, v~Z m. This is equivalent to 

px(x  ( T(Zm))adv, T(Z,.) < T(O D)) 
n~'(X (T(Zm))~d y, T(Z,.) < T(O D)) 

nx(X ( T(Zm))adv, T(Zm) < T(O D), Hm) 
c13 px(x(T(Zm))ady ' T(Zm)< T(OD), H,~)" 

By integrating both sides with respect to dv we obtain 

pX( T(Z~) < T(S D)) 
(4.7) 

nx(x  ( r(z~.))ed y, T(Z~.) < T(O D)) 

W(T(Zm) < T(OD), Hm) 
=< c13 nx(X (T(Zm))~d y ' W(Zm) < T(S D). Hm) " 

It follows that, for xeC, 

px(X ( T(Zm))Ed y, T(Zm) < T(~ D), Hm) 
Px(X (T(Z,.))~dy, T(Zm) < T(O D)) 
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pX( T(Zm) < T(~? D), Hm) 
~C13 px (T(Zm) < T(O D)) 

P~'(Hm) 
< c l 3 px (T(Zm) < T(t? D))" 

By the strong Markov property applied at T(Zj), 

W(T(U,,) < Y(t? D), Hi) 
= S PY(T(Um) < T(OD)) Px(X(Y(Zj))ady, T(Zj) < Y(t?D), H j) 

Zj 

<= ~ PY(T(U,,,)< T((?D)) px(X(T(Zj))ady, T(Zj)< Y(t?D)) 
Zj 

�9 c13 pX(Hj)/px(T(Zi) < T(~D)) 
< c13 W(T(Um)< T((?D)) pX(H;)/PX(T(Zj)< T(~D)) 

for m, j>__l and xaC. Let k-t/8=d(]). The strong Markov property applied 
at Vj and (4.4) show that 

Px(Y(Um) < 7(OD), Hi) ~ PX(T(U,,) < T(O D)) c14 exp(-- Cll k ~*) 

for x e C. Since there are (k + 1) t indices j with d(j) = k - i  

pX(T(U,,,) < 7(~ D), H j for somej_>_jo) 

<= ~ px(y(um) < T(~D), Hi) 
J=Jo 

<= ~ PX(T(U,,,)< T(SD))c~4 exp(--c1~ d(j) -p) 
J=Jo 

<=px(T(Um)< T(O D)) x c14 ~ exp(--cl l  kt~)(k + 1) ~ 
t=to 
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where k-to~8 =dUo ), x~C. Let jo  and t o be sufficiently large so that 

W(T(Um) < r(cgD), Hj for somej  <Jo) < W(T(Um) < T(0 D))/2, 

and therefore 

W ( T(Um) < T(c~ D)) < 2 W ( T(Um) < T(ct D), H} for allj  >Jo) 

for xeC. 
An argument similar to the one that leads to (4.7) gives 

W ( X  (T(Zjo))Ed y, T(Zjo) < T(O D)) 
P~(T(Zio ) < T(a D)) 

< cl 5 Pz(X(T(Z~~ T(Zjo) < T(OD)) 
PZ(T(Z~o) < T(~ D)) 

for our base point z and all x~C. The probability PZ(T(Zjo)< T(OD)) is a con- 
stant and PX(T(Zjo ) < T(OD)) = 1, so 

Px(X (T(Zjo))Ed y, T(Zjo ) < T(O D)) 

<= c~5 W(X(T(Zio))~dy, T(Zjo) < T(~ D)) 

(we may have to change c15). This implies, for xeC and m>jo, 

P~(T(Um) < T(t?D)) 

<_ 2 PX( T(U~,) < T(~ D), H~ for allj  >Jo) 

<=2 ~ PY(T(Um)< T(OD)) P~(X(T(Z~o))~dy , T(Z~o)< T(OD)) 
Zj  o 

<=2c15 ~ PY(T(Um)< T(SD)) W(X(T(Zjo))edy, T(Z3o)< T(OD)) 
Zjc) 

<= 2c~s W(T(Um) < T(O D)). 

The last formula, (4.5) and (4.6) imply that 

Go (x ~, x) < c ~ 6 G~ (x m, z) 

for all x sC and large m. Hence, the function h( ' ) ,  being the limit of 
GD(xm~, " )/Go(x ~, z), is bounded by c16< oo on C. 

Step 4. We will prove that every h-process has infinite lifetime a.s. We start 
with a few remarks on the function h and h-processes. The remarks are standard 
but we could not find a reference. 
First we will show that the function h has boundary values 0 except at 

c~,D ~f {x~cgD: x~ =2, x~ =0}. 

To see this, take any xectD\c?,D and let r > 0  be such that B(x, 3r )c~0 ,D=0 .  
Fix some y~ r) and let N be a compact subset of D containing yO and 
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z. For  large m, say re>m1, xmq~NwB(x, 2r). use the Harnack principle in N 
and then use the boundary Harnack principle in B(x, r) to obtain 

y) y) _< G,,(x'% y) 
GD(X", z) < cl 7 GD(X m, yU) -- GD(X,,1, y0) 

for m > m l ,  y~B(x,  r)c~D. The right hand side has zero limit when y ~ x .  The 
same is true for h(y) since it is the limit of the left hand side when m-~ oo 
through a subsequence {ink}. 

Since ~, D is a polar set, the function h has 0 boundary values almost every- 
where on the boundary with respect to the harmonic measure. A bounded har- 
monic function with this property would have to be identically zero, so h takes 
arbitrarily large values. 

Note that h (z)= 1. 
The process 1/h(X~) is a positive supermartingale under Ph ~ with the conven- 

tion that for t larger than the lifetime R we let h(Xt)=limh(X~) (see Doob 
s~R  

(1984), Sect. 2X8). This process converges Ph~-a.s. at t--* 0% possibly to oo. It 
follows that h(Xr) converges Ph~-a.s. as t -*  0% and we will show that the limit 
is infinite Ph~-a.s. Let 

IXt={xeD:h(x)<=e } for e < l ,  

E~ = {xeD: h(x) >= m}, 

TI = T(L , u 

Since fi has 0 boundary values almost everywhere, 

Then 

T1 _-< T( /20< ~ P~-a.s. 

PhZ(X(Zl)G/~l)  : f [h(x ) /h (z ) ]  P z ( X ( T O e d x )  
g~ 

= e, Pz(X(T1)eI~l) <= ~. 

As e ~ 0  we have Ph~(X(T1)eL~2)~ 1 and it follows that Ph~(T(L'~) < oo)= 1. Since 
m is arbitrary, h(X~) ~ o% Ph~-a.s. 

The last observation has two consequences. The first one is that, since h 
has 0 boundary values away from O,D, the process Xt converges Ph~-a.s. to 
O,D, 

lim dis t (X.  3,D)=O Ph~-a.s. 
t--+ R 

The second one is that the last visit to C will occur strictly before the lifetime 
R as the function h is bounded on C. If L(C) is the last exit time from C 
then {X(L(C)+t), t>0}  under Ph z is an hi-process in D\C,  converging to O,D. 
It will suffice to show that such a process must have infinite lifetime. 
The set 

[ U U Bm 
m=>l m>__l 
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consists of a sequence of cubes Q1, Q 2 ,  "'" arranged in order along U (F,, w K,,). 
m > l  

The hi-process will have to pass through all cubes Q_.j, J>Jl, where Jl depends 
on the starting point of the hi-process. 

We make a digression concerning the lifetime of a conditioned Brownian 
motion in a cube. First consider a Brownian motion starting from the center 
of a sphere and conditioned to hit a fixed point x on the sphere at the time 
of exiting it. By symmetry, the lifetime of this process has the same distribution 
for each point x. Every Brownian motion conditioned by a harmonic function 
in the sphere and starting from its center is a mixture of such processes, so 
its lifetime has the same distribution. Let s denote this distribution in the 
case when the sphere has radius 1/8. 

Now suppose that Q = [ - 1 ,  1] a, (~= {x~Q: xl--0} and g is a positive har- 
monic function in Q vanishing on {xeOQ: x l E ( - 1 ,  1)}. By the boundary Har- 
nack principle, 

P~( T(B(O, 1/8)) < T(O Q))/g(x) > c19 > 0 

for x e Q with Ix[ > 1/2. Note  that g(y)> C20 > 0 for y ~B(0, 1/8). Thus 

Pg~ (T(B(0, 1/8)) < T(0 O)) 

g(Y) nx(T(S(O, 1/8))< T(aQ), X(T(B(O, 1/8)))~dy) 
B(0, 1/8) 

> c2~ W(T(B(O, 1/8))< T(OQ))>C2o c19>0, 
= g ( x )  

for all xEQ with Ix[>1/2. It is easy to see that a similar inequality holds for 
all x~(~. The time spent between T(B(O, 1/8)) (assuming it is finite) and the 
hitting time of B(X(T(B(O, 1/8))), 1/8) is independent of x~(2 and g and has 
distribution ~ under pgx. As a result, we can find a bounded random variable 
Y such that EY>O and the time spent in Q by the g-process starting from 
x is stochastically larger than Y, for every x EQ and g. If ~ is a cube with 
side length b then the analogous statement is true with Y replaces by (b/2) 2 Y 

Let us go back to our hi-process. Define squares (~j relative to Qj in the 
same way as Q was defined relative to Q; moreover, orient them so that the 
hi-process has to pass through each of the Qi's. 

Let Sj be the time elapsed between the first hit of (2j and the first exit 
from Qj afterwards. Suppose that p(Qj) is the side length of Qj and that Yj 
is a sequence of independent copies of Y The distribution of Sj is stochastically 
larger then (p(Qj)/2)2yj and, by the strong Markov property applied at the 
hitting times of QSs, the distribution of 

Sjl +SjI+I + ... +Sm 

is stochastically greater than the distribution of 

(4.8) (P (Q j,)/2) 2 Y~, + (p (Q j, + 1)/2) 2 ~ +1 +...  + (p (Qm)12) 2 Ym" 
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Note that there are at least k'~(k+ 1)m/4 cubes Q~ with p(Qj)=k-".  It follows 
that the sum of expectations of the terms in (4.8) is divergent: 

E(p(Qy2) 2 Yj=EY/4 ~, p(Qj)Z 
J = J t  J = J l  

c~ 

>EY/4 ~ (k-ml2U"(k+l)m/4=oo. 
m = r n l  

Since the Yi's are independent and bounded, the three series theorem shows 
that the series in (4.8) converges a.s. to infinity as m ~ oo. Since (4.8) is stochasti- 

cally smaller than the sum of the Sj's, we have ~ Sj= oo a.s. Of course, the 
J = J l  

lifetime of the hi-process is larger than ~S j ,  so it is also infinite a.s. This com- 
pletes the proof that h-processes in D have infinite lifetime and finishes the 
proof of Theorem 1.1 (ii) (C). []  

5 A parabolic boundary Harnack principle 

Lemma 5.1 Under the assumptions of Theorem 1.2, :for every u > 0 there exist 
a non-degenerate closed ball M ~ C and c > 0 such that for all xaD, 

W ( X .  aM, T(D ~) > u) > cpx(T(D ~) > u). 

Proof Let 

A = A (fl) = {x aD: dist (x, 0 D) > fi}. 

It is easy to see that A is a bounded and closed set, hence, a compact set. 
Fix some zaD and find r io>0 and a closed ball M such that McA(fio).  

The domain D 1 ~ D \ M  satisfies the same assumptions (A)-(C) as D. Let 

h (x) ~ G L (x, z), 

D2 = D2(fi)aS D\A(fl), 

Uk ~ {xaD1 : h(x)a [2 k, 2 k + 2] }, 

Ok ~ {xaDa : h(x) < 2 ~+ 1}, 

[.~k d---f {xaD2 : h(x)a [2 k, 2 k+ 1] }. 

We have Ok=Uk\A(fl) for fl<fio. Note that U k is bounded, so it has finite 
volume and, therefore, Vo l (0k )~0  as f l ~ 0 .  For  any open set N and any x 
we have, by Lemma 1 of Bafiuelos (1987), 

E ~ (T (Nr < Cl (Vol (N)) 1/n. 



Lifetimes of conditioned diffusions 

It follows that 

(5.1) lira EX(T(UI))  = O. 
/ ~ 0  

439 

The function h is bounded in D 1 by 2 k~ for some ko< oo. According to the 
proof of Theorem 1.1 (i), we have 

ko  

(5.2) ~ sup EX(T(U{))< oe. 
k =  - oo x e U k  

Since Uk ~ Uk, 

E x (T ((~)) __< E~(T(U[)). 

This, (5.1) and (5.2) show that for any constant c 2 < oo there is fi > 0 with 

C2 
ko 

Z sup EX(T(~?i))<u/8. 
k =  - o e  xe [ Jk  

For  suitable Ca, the expression on the left hand side is an upper bound for 
E~(T(D~z)). It follows that 

(5.3) P~(T(D3)) < u/4) > 1/2. 

Before we proceed with the proof, we introduce some notation. Let the lR"-valued 
process be denoted as usual by X and let Y stand for the space-time process. 
More precisely, if X has law px, then the law of the space-time diffusion 

a f  
{ r ( o  = ( x ( o ,  s -  t), t >= 0} 

will be denoted px, s. The distribution of space-time diffusion conditioned by 
a parabolic function g will be denoted pgx, s. See Doob (1984) for the discussion 
of these processes and their properties in the case L =  A. By abuse of notation, 
T(A) will denote the first hitting time of A for Y as well as for X. The function 

a f  x (x, t)~--~g(x, t)=P (T(c~D)>t) 

is parabolic in D x [0, oo) with boundary values 1 on D x {0} and 0 otherwise; 
more precisely, it is zero at (y, t) provided t > 0  and y is a regular point of 
0D. 

Let gl be a parabolic function in D x [0, oo) which has the same boundary 
values as g except that gl(x, 0 )=e  for x ~ D \ M ,  where ee(0, 1) will be chosen 
later. Now we will estimate ga on D x [u/2, u]. 
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Lemma 5.1 of Fabes and Stroock (1986) implies that gl (x, S)> C 3 for all x ~ M  
df 

and se[u/4, u]. We also have h(y)<c4 for all y~c~D 2. Let h(x, s)=h(x). For 

x s D  2 and s >  1/2 we have, by (5.3), 

gt (x, s)>= ~ ga (Y, t) P~'S(T(D~2)Edt, X(T(D~2))edy) 

Let 

te[u/4, u] 
y~OD2 

h (x, s) h (y, t) 
= ~ h (y, t) h (x, s) t~[ul4 u] 

y ~ D 2  

h(x, s) 
= ~ h(y, t~-~ g'(y' t)Ph~'~(T(D~z)Edt, X(T(D~2))~dy) 

te[u/4, ul 
yEOD2 

>= I h(x, s) c41 Ca Ph~'~(T(D~)ed t, X(T(D~2))edy) 
t~[u/4, u] 

y~OD2 

= h (x, s) c41 Ca Ph x' S(T(D~2)e [u/4, s-I) 

>h(x, s) c2 ~ cJ2 

=c5 h(x, s)=c5 h(x). 

gl (Y, t) P~'~(T(D~2)edt, X (T(D~2))~d y) 

W~ = {(x, s):g, (x, s)~ [2 k, 2 k + 1], s e [u/2, u] }, 
kl  

w= U w~, 
k = - c o  

where k l < 0  will be chosen later. If 2-m<c5 then Wk c ~+m•  [U/2, U]. Using 
the estimate of Chung (1984) and Remark 3.4 we obtain for small kl 

kl  

E~;U(T(WC))<=c6 2 sup E y's T(Wk c) 
k = -- co (Y, s)~ W~ 

k t  

<c6 ~ sup EY's r(0{+m) < o0. 
k = - m  ( y , s ) ~ O k  +,,, 

Choose k 1 so small that 

(5.4) 

Let 

E~;" T(W ~) < u/8. 

V= {(x, s): gl(x, s)>2 k', s~[u/2, u]}. 

Since the ga-process cannot exit D • [0, oe) through QD x [0, oo), (5.4) implies 

(5.5) Pg~,"(T(V) > u/4) < 1/2. 

Now let e = 2  k~-l. Since 0 < g l  _-< 1, the process gl(Yt) is a martingale under W 's, 
and gl(x, s)>2 < for (x, s)eV, we see that there is at least 2kI-~/2 chance that 
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Y under px, s will hit M x {0} before hitting any other part of O(D x [-0, oe)). 
Thus we have for (x, s)e V, 

Pg~'s(Y~eM x {0}) = ~ (gl (Y, O)/gl (x, s)) W'~(Y~edy, T(c3(D x [-0, co)))= s) 
M 

=> ~ W'~(Ysedy, T(~(D x [0, ~ ) ) )=s )  
M 

> 2kl - 1/2 . 

This and (5.5) yield, by the strong Markov property, for all xeD, 

Pg~'"(Y,~M x {0})>Clo>0.  

The ratio of g and gl is bounded away from 0 and oe on the boundary of 
D x [0, ~) ,  so 

Pgx'"(Y,~M x { 0 } ) ~ C l l  > 0  

for all xeD. This is equivalent to the statement in the lemma. []  

Proof of Theorem 1.2. First we will show that p~ y) is comparable to 

(x) ~k (y) where ~ (x)a--=: W(T(D c) > u/3). To simplify the notation, let us take u = 3. 
o v Note  that piP( . , - ) < c  by Fabes and Stroock (1986) and P l ( ,  z)=p~(z, v) 

for all v, zeD (see Fukushima 1980). We have 

p~ (z, y )=  ~ pO (z, v) p~ (v, y) d v 
D 

<= ~ cp~(v, y) dr-= ~ cp~ v) dv 
D D 

=c~(y). 

It follows that 

D X p~ ( ,  y)= S pf(~, z) p~'(~, y) dz 
D 

< I P~ (x, z) c 0 (Y) d z 
D 

= c ~,(x) 0 (y). 

In order to obtain the opposite inequality, first observe that Lemma 5.1 of Fabes 
and Stroock (1986) implies immediately that p~(z, v)>cl for all z, v~M, where 
M is a compact ball in D. For  z~M, we obtain, using our Lemma 5.1, 

pO (z, y) > ~ pZ] (z, v) p~ (v, y) d v 
M 

> S c~p~(~,y)dv 
M 

= I c~ p O(y, 0 dv 
M 

= e l  Pr(XI~M, T(DC)> 1) 
>cl cz Pr(T(D~)> 1)=cl  c2 ~(y). 
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Hence, for all x, y a D, 

p~ix, y)>= S 
M 

>f 
M 

~ C  1 

>cl  

~ C  1 

p? ix, z) p~ iz, y) d z 

p~(x, z) ca c2 O(Y) dz  

c2 P ~ ( X a ~ M ,  T(D~) > 1) ~(y) 
c~ P~(T(D ~) > 1) ~(y) 

c~ 0 ix) 0 iY). 

Thus, for some c 3 > 0  and  all x, y~D, 

C 3 < pD i x  ' y)/l~t (X)  ~ (y)  < C 3 1 . 

This implies that  

p. (v, z) > (5.6) p~(x,y)  D c3O(x)$(y )  c3O(v) O(z) =c~ 
D p.(v,y) c; a~ix)oiz)  c; 1 Pu (x, z) o ~9 (v) ~ (y) 

which is Theorem 1.2 for s = t = u. 
In  order  to extend the last formula  to times greater than  u we use the 

M a r k o v  proper ty  as follows. Let a = c 4 1) p, (v, y)/pD,(v, z). Then, according to (5.6), 

D p, (w, y)>=ap~(w, z) 

for all w, y, z~D. Then,  for s>u,  x, y, z6D, 

o x o X Pu(W,y) dv Ps ( , Y)= ~ Ps-u( , w) D 
D 

>= a ~ pLu(X, w) p~. iw, z) d v 
D 

= a pD s (x, z) 
4 D D = c3(p. iv, y)/pu iv, z)) p~ z), 

and  so 

p~ix, y />  c~ pg(v, y) 
pO (x, z) = O �9 p. (v, z) 

A n  ana logous  a rgument  may  be used to replace 
an arb i t ra ry  t > u and  we ob ta in  

u in the right hand  side with 

p~ix, y) > 4 p oiv, y) 
p D ( x , z  ) ~-C3 D IJ - pt ( , z) 

for all v, x, y, zED, s, t>u.  [] 
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