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Summary. Burkholder's martingale transforms are especially useful in studying 
"predictable" martingale Hardy spaces. "Characterizations" of such spaces via 
martingale transforms are provided. In particular, it is shown that for 0 < p < 0% 
a martingale in h p, defined by the conditioned square function, is the martingale 
transform of a bmo2 martingale with a multiplier sequence whose maximal 
function is in L p. 

1 Introduction and preliminaries 

Let (X, ~ ,  #) be a probability space and let {~},::_ 1 be a nondecreasing sequence 
of sub-a-fields of ~ such that ~ = v ~ , .  We consider martingales f =  {f,},>=l 
relative to {Y,},__>I and use the convention that fo=0 .  The maximal function, 
the square function and the conditioned square function of f are given, respec- 

tively, by f*=sup [ f , I ,  S ( f ) =  ~ [dkflz] 1/2 and s ( f ) =  ~ E([dkf[2[~_l) 
n k = l  k = l  

where dk f=fk --fk- 1, k = 1, 2, 3 . . . . .  We consider the following martingale Hardy 
spaces defined by these functions, 0 < p < oo : 

H~ = {f: ][NIIHg = IIf*llp < oo}; 

n ~ =  {/: I I / [ l~=  HS(f)lrv < oo}; 
h"-- {2 I[fl[h. = I[s(f)[Ip< oo}. 

It is well-known that H~ ~ H~ for 1 =<p < 0% and in this case they are denoted 
by H p. We also note that H~ ~ hV when 2 =<p < o% and hPc H~ when 0 < p =< 2. 
The spaces of martingales with bounded mean oscillation are defined by, for 
l____p< oo, 

p ~ 1/p 
BMOv:{f : ] I f l lBMop:SUp [E(~= dkf ~,) ]  o < o o } ;  

{ [ ( ~n+ dkfP )] lip } bmov=  f: Ilfl[bmop=SUp. g k 1 ~ oo< ~ " 
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All BMOv spaces for 1 __< p < oo are equivalent and are denoted by BMO, with 
the norm I[. I[,. However bmov form a decreasing family as the index p increases. 
Fefferman's duality theorem gives that (H1)'~ BMO and Herz [5] showed that 
(ht) '~bmo2. In addition, we consider the following "predictable" subspaces 
of H~ : 

~ "  = { f e H ~  : 3 nonnegative, nondecreasing adapted y = {7,}._> 1, 

such that ILl-<_~.- ~, Vn__> 1, and [If [l~p =inf  [17~ [].< oo}. 
7 

These martingale spaces have been studied by Garsia [4], Herz [5] and most 
recently by Weisz [6]. 

Burkholder's martingale transforms [1] are especially useful in studying "pre- 
dictable" Hardy spaces such as ~P and h p. Denote, for 0 < p < o %  the classes 
of adapted processes v = {vn},> 1, 

V P :  (v:/IvL/vP : [Iv*lip < o @  

The martingale transform T~ for a given v is defined by Tv = ~ v,_ 1 d , f  The 
n = l  

following boundedness results were obtained by Chao-Long [-3] : 

1 1 1 
Theorem A Let 0 < p <  o% v ~ V  p and - = - + - .  

r p q 

H q (i) T~ is of  types ( s, H~s) and (h q, h r) where 0 < q < oo. 
(ii) T~ is of type (H q, H~,) where 1 < q < oo. 

In the case that q = oo, the spaces Hq, and H q could be (and are) replaced 
by BMO, and h q by bmo 2 : 

Theorem B Let 0 < p < ~  and vsVP. Then Tv is of types (BMO, H~), (BMO, 
H~) and (bmo2, hP). 

Other related results are found in [3]. In the next section, we shall derive 
a boundedness result of T~ on ~q and use these boundedness properties to 
characterize the predictable spaces ~P and h p via martingale transform T~. When 
both v and f are martingales, T(v, f )  = T~ f is one version of paraproducts on 
martingales. We shall discuss various properties of the bilinear operator T in 
a sequel to this paper. 

2 Martingale transforms and the spaces 9 ~ and h p 

We first note that the boundedness result of T~ on the maximal Hardy spaces 
H~ as stated in Theorem A(ii) is not completely satisfactory because of the 
restriction 1 __< q < ~ .  Nevertheless, we have the following result of Tv on the 
subspace ~q of Hq, : 

Theorem 1 Let 0 < p _ = ~ ,  0 < q < ~  and v ~ V  p. Then Tv is of type (~q, ~r) with 
1 1 1 

the bound C livllvp where - = - - + - .  
r p q 
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Proof  For f e ~  q, let 7= {7.}.=>~ be the (nondecreasing)least majorant o f f  We 
have 

(*) Id=f l~2y=- , ,  Id.(T~f)l<=2v*~-xT.-,=~p.-a, 

and 

I(r~ f)l < (T~ f)*-  1 + P, -  x. 

As in Burkholder [2], the pairs (S( f ) , f*+~oo)  and ((T~g)*, S(T~g)+po~) satisfy 
the good-2 inequality. Hence 

IIS(N)II~ < C(llf*l[q + I[?~o I1~) < C IIf I1~,, 
and 

I](T~f)*II=~C(IIS(T~f)II,+ llPoo ll,-) 
C l[vllv~(llS(f)lJ~ + l]'Y~o llq) 

_-<C llvllv, , l lf l l~.  

Therefore, using ( . )  again, we have 

]l T~ fl ier < C(H(T~ f)* I[r+ IIp~o lit) 

< C llvllvp ll f ll~q. 

This proves Theorem 1. 
We note here that the case q =  ~ (i.e., Tv with v ~ V  p is of type (BMO, ~P) 

for 0 < p <  ~),  is contained in Theorem 3 below. This is a stronger result than 
Theorem B since ~P c h p c H~ when 0 < p < 2, so that ~v c HP. c~ H~ for 0 < p < ~ .  

As indicated by A. Garsia I-4], martingale transforms can be used to study 
the relations amongst the spaces ~P, as well as amongst the spaces h p. He 
pointed out that for any given p and q, the elements in ~P (or h p) are martingale 
transforms of those in ~q (or h q, respectively). When one of the indices is more 
convenient to study certain problems (e.g. q=2), such representations would 
be very useful. However, Garsia's discussion was incomplete in several respects. 
For instance, in the endpoint case (i.e. q=  ~) ,  his argument failed to work 
for p < l .  We shall extend Garsia's results to a sort of "characterization" of 
the spaces ~P and h v, and provide such a characterization for the endpoint 
case. 

Theorem 2 Let 0 < p < q < ~  and ~ = p q 
q - -p  

(i) For f e ~  p, there exists a g ~ q  such that f = T v g = X v . _ l  d.g where v is an 
P adapted process in V ~, with [[viii-=< [[f[]~p, and 

Ilgl] e,q =< Cp, q IJfll~g. 

Conversely, for any w V  ~ and g ~ q , f =  Tvg is in ~ v  and Ilflle.~<=C Ilvllv= llgll~. 
(ii) Same statement as in (i) when ~ is replaced by h. 

Proof The first parts of statements (i) and (ii) are both due to Garsia I-4] by 
constructing the process v. (In fact, v is constructed as a nondecreasing process.) 
The converse parts of (i) and (ii) follow from Theorem 1 and Theorem A. 
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Now for the endpoint case, q =  o% ~ c L  ~ and h ~ are replaced as usual 
by BMO and bmo2, respectively. 

Theorem 3 Let 0 < p <  c~. Given f E ~  p, there exist g~BMO and a (nonnegative, 
nondecreasing) v~V p with [IglIBMOl~4 and [IVl[v,<f[[f[[e,, such that f=T~g. 
Conversely, each f=Tog, with v~V p and geBMO,  must be in ~P and Ilfl[~o 
_-< c llvllv, llgll,. 

Proof For  the converse assertion, we know from Theorem B that Ilr~gllLr,; 
< C  Ilvllv, Ilgll,. It remains to show that f =  T~g is actually in ~P. In fact, since 

we have 
+V,-lllg[I, ,  

11 Y ~ g [ l ~  C [l(T~g)* lip + C IIv* lip I[gll, 
_-<Cllvl[v. Ilgll,. 

Now suppose f e N  p. Choose 0 <P0 <P  and define Vo = 1 and 

1 

Vk = sup E (7~ I~,,) ~o k __> 1, 
m < k  

where 7 = {7.}, =>1 is the nondecreasing least majorant o f f  Consider 

We have 

So 

g,= ~ v;l~dkf, n>l. 
k = l  

N 

- - 1  gN- -g , - i=~Vk-1  dk f  
n 

N - - 1  

=v?~!i(fN-L-~)+ ~ (k-L-i)(v;21-v;1). 
n 

N - 1  

IgN-g,-il~2v~7-*l 7N-1 + 2  Z Yk-l(Vk -11-v;1) 
n 

N - 1  

=2v2217, 1+2 ~ V;l(Tk--Tk-O. 
n 

From Jensen's inequality, we get 

i 

vk -~ ~ E(7~ 1O%)-~ ~ E(7oo I IO%), 

Thus 

k > l .  

E(IgN-g._ ~llo~.)<2 + 2E O% o% <4. 
\ 7~o 



Martingale transforms and Hardy spaces 403 

Hence gCBMO with ]IgIIBMol ~ 4. Moreover, 
, P  

Hvllf,, = [Iv*llf~=g((~) Vo) 

< C E ( ~ ) =  C II f l i t , .  

This completes the proof of the theorem. 

Theorem 4 Let 0 < p <  oe. Given f r  p, there exist gebm02 with ]]gllbmo2_--< 1, and 
a (nonnegative, nondecreasing) v e V v with II v II v,--< C II f I lhp such that f =  Tvg. Con- 
versely, each f=T~g,  with v~V  p and g~bmo2, must be in h p and l l f l lhp< 
C[IVilv, llgllbmo=. 

Proof. The converse assertion follows from Theorem B. Given f e h  p. Choose 
Po with O<po<p, and define Vo = 1 and for n >  1, 

1 

v, = sup e ( s ( f )  p~ [ ~-,,)po ; 
m~=n 

n 

1 

Thus f =  Tvg. Moreover, we have 

Since 

N 

E (Igzv- g=121~) = 
k = n + l  

E(v~-2~ E(Id, f l 2 l ~ _  1) I ~=). 

2 

v~-2~ < E(s ( f )  p~ I ~ -  ~)-To 

we get 
< E ( s ( f ) - 2 1 ~ _ O ,  k>=l, 

N 

E(IgN--g~121~)~ 
k = n + l  

< 1 .  

E ( s ( f ) -  2 E(ldk f121 ~ _  x ) l~ )  

Hence g e b m o  2 and [Igllbmo2< 1. 

In addition, since Po < P, we have 
p 1 

II v II vp <= g ((s (f)po)*po)~ 

C IIs(f)llp = C I/f  I[hp. 

This completes the proof. 
Finally, we remark that a similar " 'characterization" for the spaces H p is 

not obtainable. The reason is as follows. For  any v~ V p (i __<p< oe) and g~BMO, 
we have T~ge~ p. Since ~P is a proper subspace of H" in general, we know 
f ~ H "  could not be represented as f =  Tvg. Likewise, the s ta tement :"  Given f ~ h  r, 

1 1 1 
there exist v ~ V  p and g ~ q  with - =  +-- ,  such that f =  T~g" is false, because, 

r p q 
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from Theorem 1, we know that  such a T~g is in ~ r  and ~"  is a proper  subspace 
of  h '  in general. 

The a rgument  used here has been extended by F. Weisz to treat two-parame-  
ter mart ingale spaces I-7]. 
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