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Summary. Upper and lower bounds are obtained for the transition densities
p(t, x, y) of Brownian motion on the Sierpinski carpet. These are of the same form
as those which hold for the Sierpinski gasket. In addition, the joint continuity of
p(t, x, y) is proved, the existence of the spectral dimension is established, and the
Einstein relation, connecting the spectral dimension, the Hausdorff dimension and
the resistance exponent, is shown to hold.

1 Introduction

Let X, be a Brownian motion whose state space is the Sierpinski carpet F: this is
a strong Markov process which has continuous paths and state space F and which
is invariant under an appropriate class of transformations. The construction of
such processes was one of the principle results of {BB1].

We are naturally interested in the properties of this process, and some results,
such as point recurrence and point regularity, were obtained in [BB2]. However to
get further information one would really like reasonable estimates for the transition
densities (cf. [BP]). The main purpose of this paper is to get good upper and lower
bounds for the transition densities p(t, x, y) of X, and to show continuity in each
variable.

There is another way of looking at this problem. Our Brownian motions are
constructed as the limit of time-changed reflecting Brownian motions on approx-
imations to the Sierpinski carpet. It is natural to call the infinitesimal generator of
the limiting process a Laplacian on F (at present it is not known if there is only one
limiting process or several). Estimates on the transition densities of X, are then just
estimates on the fundamental solution to the heat equation on the Sierpinski carpet.

It will be convenient to extend X to the unbounded Sierpinski carpet
F=1{)jz03"F. Let d; = log 8/log 3 be the Hausdorff dimension of F, and let y be
the multiple of the Hausdorff x%/-measure on F which assigns mass 1 to F.

Our main result is
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Theorem 1.1 There is a function p(t, x,y), 0 <t < ©, X, yeF, such that

(@) pl(t, x, y) is the transition density of X with respect to i,

(b) p(t, x, y) = p(t, y, x) for all x, y, t. -

() (t, x, y) = p(t, x, y) is jointly continuous on (0, 00 )x F x F,

(d) There exist constants ¢, ¢z, C3, s > 0, and d,, such that, writing d, = 2d;/d,,,

(1.1) c1t~ds/2 exp(_cz(|x _ y|dw/t)1/(dw~1)) < p(t, X, y)
é C3t_d5/2 exp(—c4(|x _ y]dw/t)ll(dw_l)) .

(e) p(t, x,y) is Holder continuous of order d,, —d,; in x and y and C* in t on
(0, ) x F x F. More precisely, there exists a constant cs such that

(¢, %, ¥) — p(t, X, y)] S est™Hx — X' |™%, fort>0, x,x,yeF,

and for each k = 1, d*p(t, x, y)/0t* is Holder continuous of order d,, — d; in each
space variable.

This is exactly the same form as the estimates obtained in [BP] for the
transition density of Brownian motion on the Sierpinski gasket. The only difference
is that in the present case the exact value of the constant d,, is unkown—we just
have a definition in terms of the limiting resistances of the Sierpinski carpet (see
[BBS, BB3]). We show in Sect. 8 that d, is the ‘density of states’ for the carpet, or
what mathematical physicists call the spectral dimension—see [RT], [W]. We also
establish the Einstein relation d,, = d, + {, which connects the Hausdorff and
spectral dimensions with the resistance exponent {. We may compare the estimate
(1.1) with the results in [O] for standard Brownian motion with normal reflection
on the ‘pre-Sierpinski carpet’.

In fact we will consider not just the standard Sierpinski carpet, but also the
other ‘carpet like’ fractals defined in [BB1]. The techniques of this paper may also
be applicable to the study of transition densities on some other classes of fractals,
such as the nested fractals defined in [L], but we will not pursue that here.

After some definitions in Sect. 2, we start in Sect. 3 by refining a few results of
[BB1, BB2]. We show the Hélder continuity of A-resolvents in Sect. 4 and then see
what information can be obtained from eigenvalue expansions in Sect. 5. In Sect.
6 we prove the upper bound for p(z, x, y), both on and off the diagonal, while the
same is done in Sect. 7 for the lower bound. Section 8 contains some further
remarks concerning the process: we will see that in many respects our knowledge is
as complete as in the case of the Brownian motion on the Sierpinski gasket. The
letter ¢ will denote positive, finite constants whose value is unimportant and which
may change from one appearance to another. ¢; will denote a constant whose value
remains fixed within each section of the paper, and depends only on the Sierpinski
carpet in question, while ¢, ; denotes the constant c; of Section n. Given sequences
(ay), (b,) we will say a, = b, if there exists a constant ¢ such that ¢~ 'a, < b, < ca,.

Some of the results of this paper were announced in [BBS].

2 Notation

We begin by setting up our notation. Let F, = [0, 1]%, and let ] = 3 be fixed. Let %,
be the collection of closed squares of side I ™" with corners in [~"Z?. Given a set
A < R?, set

F(A)={S:Sc A, SeS,} .
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For Se %, let Y5 be the orientation preserving linear map which maps F, onto S.
We now define a decreasing sequence (F,) of closed subsets of F,. Let R > 1,
and let F; be the union of /* — R distinct elements of #,(F,). We impose the
following conditions on F;:
(2.1) (H1) (Symmetry) F, is preserved by all the isometries which preserve the unit
square Fy.
(H2) (Connectedness) Int(F;) is connected, and contains a path connecting
the lines {x; = 0} and {x; = 1}.
(H3) (Non-diagonality) The boundary éF; of F; consists of a finite number of
disjoint Jordan curves.
(H4) (Borders included) F;, contains every square in %, adjacent to the
boundary of F,.

Remark. These conditions are the ones used in [BB1]. (The list given in (1.1)(iv) of
[BB1] should be replaced by the present (H1).) The hypothesis (H4), which was not
essential in our previous work, will be used here. (See Sect. 8 for some remarks on
how the results of this paper may be modified to cover Sierpinski carpets not
satisfying (H4)).

We think of F; as being derived from F, by removing the interiors of R squares
in & (F,). Given F,, F, is obtained by removing the same pattern from each of the
squares in % {(Fy). Iterating, we obtain a sequence (F,), where F, is the union of
(I — R)" squares in %,(F,). Formally, we define

Forr = U Y’s(F1)— U Ps(F).

S e S(F, Se S (F))

The set F= nF,is a generahzed Sierpinski carpet. Let F, = U 2 ol'F,,,, and
F=N2oF, Letalso 0,F = {(x;,x;) [0, 1]%:x; = 1 or x, = 1}. Let

pnldx) = (I2/(1% — R)Y'1z(x)dx

and let u be the weak limit of the u,:p is a constant multiple of the Hausdorff
4/_measure on F. - N
Write W7 for Brownian motion on F, with normal reflection on éF,, and set

o, = sup E*t,,

xekFy

where 1, = inf{t: W} € 3,F,}.

Let 2 be the collection of continuous paths in [0, <o )?, and X, be the canonical
coordinate process. Let P; be the law of W"(x,t) starting at x, and let
t = inf{t: X, € d,F}. One of the main results of [BB1] is the existence of sub-
sequences n; - oo such that for each x e F, the law of W™ (otn,(t A 7)) starting at
x converges weakly, say to Q% and the process (Q%, X,) is a continuous strong
Markov processes on F. N

We wish to study processes on the unbounded carpet F. We say that a strong
Markov process (P*, X,) is a Brownian motion with state space F if there exists
a subsequence n; » co such that for each x e F the laws P73 converge weakly to P*.

The existence of such processes follows easily from the results of [BB1]. By
Proposition 4.4 of [BB1],

sup Pi(t<s)—>0 ass—0,
xe[0, 412N Fp
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uniformly in n. With this fact, the strong Markov character of W", and a diagonal-
ization procedure, it is not hard to show that there exists a subsequence n; —» o
such that for all xe F, P converges weakly, say to P, and (P, X,) forms a strong
Markov process on F w1th continuous paths As the processes (Pj, X,) are
U~symmetric, the limiting process (P*, X,) is p-symmetric. The details of the
piecing together argument we leave to the reader.

Remark. One of the main questions left open by our previous work is that of the
uniqueness of the Brownian motions (P*, X,). While it seems very probable that
this process is unique, in principle it is possible that {P}, n = 1} could have more
than one cluster point. However this lack of uniqueness will not prevent us from
being able to say a great deal about the behavior of the Brownian motions on F.
Let

following [L] we will refer to [ and my as the length and mass scale factors of F. By
Theorem 5.1 of [BB3], there exists a constant pp > 1 (the resistance scale factor of
F) such that

22) 1pF SR, <4pk,
where R, is the resistance of F,, defined by
R;'= inf{ [ 1Vul*(x)dx: u is a function on F, with u(0, x,) = 0, u(1, x,) = 1} .
Fn
We define the time scale factor of F by
(2.3) Lp = myp" PF »
and the ‘dimensions’ d;, d,,, d; by
(2.4) d; =logmg/logl,
d,, = log tp/log | = log(mgpr)/log !,
d; =2ds/d,, = 2logmg/log tf .
Of these d is the Hausdorff dimension of F, and we will see in Sect. 8 that d; is the
spectral dimension of the Sierpinski carpet. Although exact values of d, and d,, are
not known, the numerical calculations in [BBS] indicate that for the standard
Sierpinski carpet pp ~ 1.2515, tp ~ 10.012, d,, >~ 2.097, and d, ~ 1.805.
Proposition 5.2 of [BB3] implies that #;/1* = 1. In fact strict inequality holds,

as is clear on inspecting the last but one line of the proof. Therefore we have
mp < 12 < tp, so that

(2.5) d,<d; <2<d,.

In [BB2] we restricted our attention to the standard Sierpinski carpet. However
the results there extend without difficulty to general carpets satisfying (H1)-(H4),
and the formulae there remain valid if one replaces the length and mass scale
factors of the standard SC (3 and 8 respectively) by [ and mg. In particular, from
(2.2), the definition of y,, and (2.11) and Propositions 2.2 and 2.3 of [BB2], we have

(2.6) er Hep/ 1Y S oy S eq(t/17)"
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Let

2.7) Br = ol e, ;
then by (2.6)

(2.3) i Pty S B S citf

Let B(x, a) = {y:|x — y| < a}, and for x = (x4, x;), define

1 1 i1 i 1 ‘ S 1 . 1
D,(x) = [1 ,“lrr >><[J LT > R VL i

Ir I

i, j integers.

Note that mz" < u(D,(x)) £ 4my" if x € F, and that

(2.9 B(x,317") = D,(x) = B(y,3"") for any yeD,(x).
Define
{2.10) 0,(x) = 0¥ (x) = inf{t: X, ¢ D,(x)}

=inf{r > 0:X, = x} .

3 Preliminary estimates

Unlike the processes on finitely ramified fractals studies in [BP], [L], we do not
have an exact scaling property for X. The following ‘weak scaling’ result will,
however, prove very useful.

Lemma 3.1 There is a constant ¢y, independent of r, and constants B, e
[ei2th, citvl, r € Z, such that if Q% is equal to the P"™ law of 7" X (tB,), then (0%, X,)
is also a Brownian motion on F.

Remark. Tt seems very likely that Q* = P*, that is, that X has an exact scaling
property. This would follow immediately if we knew that (P*, X,) was unique.

Proof. There exists a sequence n; — oo such that for each x e F, P* is the weak
limit of P7 . Using (2.8), we may take a further subsequence, also denoted n;, such
that B, , converges; call the limit f,. Take n; +r 2 0.

By the contlnulty of the paths of X and the choice of the subsequence n;, the law
of I 7" W™"i(ta,, By, + ) starting at I"x converges to the P> law of | 7" X (¢t8,), which we
are calling 0. But the law starting at I"x of [ 7" W (ta,, By =17TWM( 2'oc,, +,) 18
equal, by Brownian scaling, to the law of W"J*’(rx,, +,t) starting at x. So Q% 1 is the
weak limit of the law of W™ (a,, t) starting at x, where ¢ m; = n; + ris independent of
x. By our definition, Q¥ is a Brownian motion on F. [

Lemma 3.2 Let (P*, X,) be a Brownian motion on F, and let (n;) be a subsequence
such that P* = lim; Py .

(@) The laws P} (o,(y) € .) converge weakly to P*(c,(y)e .),re Z.

(b) lim, o, E3,0,(3) = E*a,(3), r = L.
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(c) There exists a constant ¢, such that
G.1) c;'trm S E*o,(x) S optp”, 1z L.

Proof. (a) Using the Skorohod theorem, we may set up a single probability space
(Q, #, P) carrying processes X/ and X with laws P3., and P*, and with X i X as.
and uniformly on compacts. Writing ¢/ = ¢}(y), we have o, < lim inf; of. Using
the strong Markov property of X at o,, and the invariance of X under local
isometries of F, it follows that X hits both int(D,(y)) and int(D{(y)) immediately
after o,; and hence that ¢, = lim; a,

(b) By the homogeneity of F and equations (4.2), (4.9), and (4.10) of [BB1] we
have for any x € D,(y)

EZci(y) € ty_,/onl? = 1/B5 < cit”

Thus P*(ci(y) > 2¢3t7") < %, and hence by an elementary iteration argument
P*(ai(y) > 2nc?tz™) £ 27" So (0}) is bounded in L?, and hence converges in L' as
well as a.s.

{c) The upper bound is immediate from (b), while the lower bound follows from
(b) and equations (4.2), (4.9) and (4.10) of [BB1]. O

Remark. This lemma helps to explain the meaning of the time scale factor tz: the
mean time to cross ["F is approximately t% times the mean time to cross F.

Propesition 3.3 There exist c3 and cq > 0 such that
P*(0o(x) £ 5) S caexp(—cas H@V) xeF.

Proof. Look at the proof of Proposition 44 of [BB1], and note that, by the
homogeneity of F this applies to o4(x) as well as to 7. Starting in the middle of
p. 243 of [BB1] we have

er 1/2
Piog(x) < s5) < exp<2<ﬂ> — m,logcgl> ,
Un—rCe
where k =l and m, = 31" — 2. By (2.6)

Pioo(x) £ 5) S explc,((tpys)' /> —csl), 3=5r=n.
Let
r = [log(ci/4c?s)/log(ts/1)]

Since tp > I, we can find ¢, sufficiently small so that whenever s < ¢5, then
r = r(s) = 3. With this choice of r, we get

(3.2) Pi(oo(x) £ s) Sexp(—csl'/2),
<exp(—cys YD) n>r, s<co.

Letting n — oo along the subsequence and using Lemma 3.2(a), we obtain (3.2) for
P*, Since we always have P*(cq(x) < 5} < 1, we can find ¢; such that

P*(65(x) £ 5) S caexp(—cgs M), 520,
which is our result. U

Remark. The exponent in this bound is the correct one: see Corollary 3.3 of [BP]
for the corresponding result for Brownian motion on the Sierpinski gasket. That
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bound was obtained from a detailed study of a branching process associated with
the diffusion, and it is, at first, surprising that the apparently crude argument of
Proposition 4.4 of [BB1] yields essentially as good a result. The explanation is that
the small tail in the distribution of o is due to those paths which move directly
from x to the boundary, so that (in the proof of Proposition 4.4) replacing N by % k"
gives away very little. In fact the methods of [BB1] have been used in [H] to obtain
estimates on the lower tail of the limiting random variable of a branching process in
a random environment.

Theorem 3.4 (a) There exist ¢z and ¢4 > O such that for any reZ
P*(0,(x) £ 1) < caexp( — catht)” /D).
(b) For any A >0
P"<sup | X5 — Xo| > /1) < czexp(—cy  (AM)HE@D)
s=Zt
Proof. (a) By Lemma 3.1, and writing y = x[",
P¥o,(x) 2 1) = @(oo(¥) S t/B-1)

where Q- is another Brownian motion of F. Now use Proposition 3.3 and the
bounds on g, from (2.8).

(b) Choose r = [—log A/log!]. By (2.9) D,(x) < B(x, c¢,04) for a constant c,.
Hence

P"(sup | X5 — Xo| > C1ol> S PYo(x)=1).

s=Et
Using the bound from (a) and then replacing A by cig 4 completes the proof. [J

Remark. Using weak scaling just as in the proof of Theorem 3.4(a), we see (3.1) is
valid for r < 0 as well.

Let R, be an independent negative exponential random variable with
mean 471,

Corollary 3.5 There exist ¢{5, c13 > 0 such that

(@) P¥Ryz 0, (x)) S5 for k= ciyth,

(b) P*R;S0,(x)) =3 for A = ciath.

Proof. (a) By Theorem 3.4,
P*(R; 2 0,(x))

@

| e=#P*(0,(x) < t)ds
o

3 | de™Mexp(—cy(tth) O V)dr
0

IIA

=c;3 | e exp(—cq(sth/A)~ @) ds
4]

= I(u) say,
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where u = (A/t5)Y/“ D, Clearly I{(u) | 0 as u —» ¢, so there exists ¢;4 such that
I(u) < % for u = cy4, and thus P*(R; = 0,(x)) < 3 for 1 = thedy L.
The proof of (b) is very similar. As P*(c,(x) = 1) St 1E¥0,(x) St lcytr ', we

have
o

PR, £ 0,(x)) = [ Je “P*(0,(x) 2 s
0

&M A (t teptpn))dt

A
Oy 8

e 51 A (s Yep Atp"))ds.

I
O ey 8

This last integral decreases to 0 as (¢, At ") | 0, so it follows that there exists ¢;3 > 0
such that P*(R; < o,(x)) 3 for A< cq5th. O

Let L} denote the local time of X, at the point y. In [BB2] this was constructed
for the process X . , ;, but we may extend it to the process X, by a straightforward
patching argument. We have that (¢, y) — L} is jointly continuous, and that L satis-
fies the density of occupation time formula

t

(33) [f(X)ds = [ f(y) LY u(dy) -

Proposition 3.6 Let x € F. Then

E*Ly, 9 S g7 2,y e Dy(x) .

am(x)
Proof. Suppose first that m = 5, and let r = m. They by [BB2], Eq. (3.10), iff n = r,

0,(x)
Ey | 1(X)ds < cysl™ %o, o, 1P p(A),
[ 1E))
where p = r — 3. In [BB2] this is proved when D,(x) = [0,/7""")?, but just as in
the remarks following (3.11) of [BB2] we can use the local homogeneity of F to

remove this restriction.
From (2.7) we deduce

o,(x)
(3.4) E; j Ly(X)ds < c16(B7) ™I u(A) £ cq7(mp/te) u(A) .

Gr11(X)
We let n — co along the subsequence n; and obtain

o,(x)
B [ (Lo — L op(d2) = B | 14(X))ds
4

G 1(X)
< cyq(myp/tp) u(4) .

Since L? is jointly continuous in ¢ and z, setting A = B(x, &) n F, dividing both
sides by u(A4), and letting ¢ | O gives

E°Ly oy — EYL3 5 = cy7(mg/te) .
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Since mp < [? < tg, summing over r gives

0

E'L: 9 S Y ciqlmp/teY = ciglme/te)" = cig(I™™) 7%,

r=m

This takes care of the case m = 5. A weak scaling argument as in the proof of
Theorem 3.4(a) gives the case m < 5. [

4 Resolvents

Since we are working with F instead of F, we will need to work with A-resolvents
rather than Green functions. The next set of results concerns the continuity of
A-resolvents.

Define for A < R?,

R,=inf{t 20:X,e A},

and set for A = 0

R4
ub(x,y)=E* [ e »dL} = E*L}, \x,
0

U109 = B [ e ), f20.
0

By the density of occupation time formula (3.3) we have

ULfx) = [ ulile »)f(n)udy) .
A

Write

UA(X, y) = u.?l(xa y): ul(xa y) = u?‘.'(xa y) H
and define U,, U* similarly. As (P*, X,)is u-symmetric we have u%(x, y) = u4(y, x)
for all x, y € F. Note that
(4.1) ui(x, y) = PX(T, < Ry A R)ui(y,y) S uily,y) .
Lemma 4.1 For xe F,reZ,

e Mmp/tp) £ up (%, X) £ c1(me/te)

Proof. The upper bound is immediate from Proposition 3.6. For the lower bound,
writing A = D,(x), we have by Lemma 3.2(c) and the remark following the proof of
Theorem 3.4,

¢y 7" £ Eo,(x) = E* | LY o u(dy) = [ ua(x, y)u(dy)
A A

é _f UA(X, x):u(dy) é cmFTruA(x: X) . U
A

Approximating B(x, a) inside and outside by sets of the form D,(x) we deduce
Corollary 4.2 Let xe F, and a > 0. Then

dy—d dy—d
C3a™ Y < ugy, g(x, X) S caa™
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Lemma 4.3 Suppose A € B < F, A is bounded, and sup, uh(x, y) < «.Forx,ye F
we have

42)  uqlx,y) = uﬁ(x, y)+ Ex(l(RéRA)uA(XRp V) — E*(lg, > RA)ué(XRAs )
Proof. From the definition of u,, and as R, < Ry,
us(x, y) = EX(LE,; Ry £ Ry) + E*(Li s R, > Ry)
= E*(L}, » r RA S Ry) + E¥(1g, < g yE*™L%,)
+ E*(Lk, » rys Ri > Rg) — E*(Lk, n g, — Lk,; Ri > Ry)
= up(x, y) + E*(Lg, s ro#a (X ) = E* (L, > rgt3(X o ¥). O
Proposition 4.4 There exists ¢cs > O such that for all 1 > 0,x, ye F,

cs AFET S suput(x, y) = wix, %) S es AT
y

Proof. The middle equality is immediate from (4.1). For the upper bound, let x € F
and 4 > 0 be fixed. Choose r so that ¢3 ;515" > 4 > ¢5 12t Let 4 = D,(x), and let
B = D,,(x) for some m < r. Note first that, by Lemma 4.1,

up(x, x) < up(x, x) < ¢ (mp/tp)" < 0.
By Lemma 4.3
u(x, x) < ug(x, X) + E*(Lg, > ryU5(Xz,, X))
< uulx, x) + PX(R; > R)uj(x, x) .
As R, = ¢,(x) using Corollary 3.5 we deduce that
ub(x, X) < 2uy(x, x) < 21 (mp/tp) < csAFETT.

Letting m | — oo concludes the proof.
The proof of the lower bound is very similar. Let » be chosen so that
Cs.13t% 1 < A < c3q3th, and let 4 = D,(x). By Lemma 4.3 with B=F

ug(x, x) £ vt(x, x) + PX(R; < Ry)uq(x, x)
S (X, x) + 3 ualx, x)
and the result now follows from Lemma 4.1. [
Forx,ye F set
qi(x.7) = PX(T,> Ry A Ry), ph(x,y) = P(T, S R4 A Ry)

and note that h
uh(x, y) = phx, »ui(y, y) .

As in the case of u we write p4, g4 for p9, q9.

Lemma 4.5 Let ye F, n>r, D,(y) " F < A, and x € D,—(y) — D,(y). Then there
exists cg > ¢1 * such that

qa(x, y) < cglmp/te)'/ua(y, y) .
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Proof. Write B = D, _{(y) — D,(y), and note that (H4) implies that B is connected.
As g4(-,y) is harmonic on A4 — {y} it follows from the Harnack inequality
(Theorem 3.1 of [BB1]) that there exists cg, independent of y, r and n such that

cel £ 22— 942, y) <c¢g forz z ecl(B),
q4(2', y)

where cl(B) is the closure of B. Now writing T = Rp, ),
us(y,y) = E'Ly + E"E L,
=up,;»n( V) + E'(1 — qu(X7, »)ua(y, y) .

S0 up, (¥, ¥) = us(y, Y)Eq4(Xr, y), and hence

qa(%, y) = ¢ E*q4(X1, )

= cG”D"(y)(y: Wuay, y) .
Applying Lemma 4.1, the result follows. O
Write 0 =d,, — d,.

Lemma 4.6 Let x, y € F. Then

colx —y° < E*L3, S cpalx — yl°.

Proof. The lower bound is immediate from Corollary 4.2 since T, 2 Rp, |x_ . For
the upper bound choose n such that x e D,_((y}) — D,(y), and as cycg = 1 we can
choose a negative integer p such that c;cgl®? <2 < c;cgl®@™ V. Let r =n + p, let
m<r <nand set 4 = D,(y), B= D,,(y). Then

ExLJTC'y/\ Ry = Ex( JTC'y’ T < RA) + Ex(LTy /\R57 T > RA)
S ETLg, + Ex(l(Ty>RA)E *LF, A R,)
é MA(X, X) + QA(xs Y)Ex(L’i A Rg) .

Now by Lemmas 4.1 and 4.5, q4(y, x) < c1¢c5l% ™™ <4, As 7" < ¢i0|x — y|, and
A < B(y, cr1lx — yl)

E*LF . g, £ 2uy(x, x) £ c1]x — yI°

Letting m— — oo concludes the proof. O

Corollary 4.7 Let x € A, AGF. Then writing b = dist(x, A° n F),
cidb® Luylx, x) < cpab? .

Proof Let ze A°n F with [x — z| < 2b. Then R, < T}, s0 uy(x, x) < E*LT,
¢122°b%, proving the upper bound. On the other hand B(x, b/2) N Fe A s0
Us(X, X) 2 Up(x,p2)(X, X) = €327 % O

Proposition 4.8 Let x, ye F, A F. Then

us(y, y) — ua(x, y) £ ciglx — yI° .
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Proof. Choose n so that x e D, 1(y) — D,(y); thus et < x — yl £ 14l 7™ Set
B = (D,_,(y}) — D,(y)) n F. If B < A then the result follows from Lemma 4.5 and
the equation

ua(y, y) — ualx, y) = qalx; y)uay, y) -

Otherwise we must have dist(y, 4° N F) < 15X — |, 50 u,(p, y) — uq(x, y) <
ug(y,y) S ersclslx —yl. O

Theorem 4.9 (a) Let A 20, A < F and suppose that either 1. >0 or A+ F. Then
for x, %',y € F, and fe L*(F)

(4.3) luh(x, y) — wh(x, p) < cualx — X174,

4.4) UGS = UAfO) £ easlx — X% ) f 14l
(b) For A>0, Ac F, x, x' e F,fe L*(F),

4.5 UAS(x) = UL £ cropd™#4x — X ™74 fo,

Proof. (a) Assume for the moment that 4 =+ F. As the process X is symmetric with
respect to p, we have

uh(x, y) — uh(x', y) = uh(y, x) — uh(y, x)
= (ph(y, x) — pa(y, XNuk(x, x') + pa(y, Muh(x, x) — ui(x, x')).
However

Ph(y, %) = ph(y, x) S P (T, < Ry A Ry < Ty) £ pl(y, ¥)qhlx, x') .
So,

(4.6)  udi(x, y) — whlx, y) £ pA(y, ) (@hlx, X )ua(x, X) + uhx, x) — ui(x, X))
= ph(y, X)(uh(x, x) — uklx, x).
Setting A = 0 and using Proposition 4.8 we deduce
ug(x, y) — ua(x', y) £ uglx, x) — uy(x, X') £ cr6lx — x|
Interchanging x and x’ gives (4.3) in the case 4 = 0. Integrating we have,

4.7) IUAf(x) = Unf ()] < § Tualx, ) = ua, Y0 wldy)

Sepslx =X 1™ f1ally s

which establishes (4.4) for A = 0.
To obtain estimates for 1 > 0 we apply the resolvent equation in the form

uﬁ(x, y) = MA(X, y) - ﬂUAg(X),
where g(x) = uf(x, y). Thus
luk(x, y) — ufd(x's Y| < Jualx, y) — uax, P) + A Usg(x) — Uag(x)]

S cyelx — X 4 degelx — X[ gl
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Now as
Il = [l Dutd) < (e pid) = 4~

this implies (4.3), and exactly as in the case 4 = 0, (4.4) follows on integrating (4.3).
Finally the case 4 = F, A > 0 follows on letting 4 7 F.
{b) Note first that

Pi(y, %) = P(T, = Ry A Ry) £ PY(T £ R;) = u*(y, x)/u*(x, X) .
So by Proposition 4.4
(4.8) § A @) S 11 fllot*Ce, )70 § 4y, x)u(dy)
A

A
= || flot*(x, )7 A7}
Sesllfllod™te
Combining (4.3) and (4.6) we have

(4.9) i (x, y) — wh(x', y)| < eas(ph(y, x) + pa(y, X Nix ~ x|,
and the proof of (4.5) is completed by integrating (4.9) and using (4.8). O

5 Eigenvalue expansions

Our next set of results concerns eigenvalue expansions. Fix x, € F and r € Z, write
A = D,(x¢) N F and for this section only write @#*(x, y) for u}, .)(x, y), and similarly
for U*f. Write (f, g) for the inner product on L?(4, p).

Fix for the moment A > 0. In view of Proposition 4.4 and Theorem 4.9, we may
use the Mercer expansion theorem (see, ¢.g., [Y] p. 136) to obtain a nonincreasing
sequence of reals y; > 0 and an orthonormal sequence of function @; in L*(4, u)
such that

6.1 ) = 3 1ue0e0),
(52) T(x) = i Vi 0)ox). fe L2 (A, p).

The sums in (5.1) and (5.2) converge uniformly as well as in L% Set 4;=y; ! — 4,50
that y; = (1 + 4;)~*. Define

(5.3) X, y) =Y e p;(x)o;(y), x yeD,(xo)n F.
j=1

Proposition 5.1 The A; are strictly positive, and the @; are Holder continuous on A.
For f > 0 we have

(5.4) ix, y) = Z (B + 2)" () 0;(y) -

ji=1
The series in (5.3) and (5.4) converge absolutely and uniformly on A. p(t, x, y) is
a version of the transition denszty for (Px X;) killed on exiting A, and is jointly
continuous in (t, x, y) on (0, oo )x Fx F.
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Proof. As the @; are orthonormal, (A + 4;)”*¢; = U%¢;, and Theorem 4.9 implies
that @; is bounded and Holder continuous of order d,, — d,. Next, as AU* is
a contraction on L*(4, u), Cauchy-Schwarz gives

(A+A) t=y= (Ute5, 0) = Utojlallosll, £ 471,

Hence each 4; = 0. Further, by Lemma 3.2(c) and the remark following Theorem
3.4, sup, E¥0,(x¢) < o0, and thus

sup E*(1 — exp(— Ao, (x0))) < 1.

Therefore

_ ar(x0)
sup AU%g;(x) =sup E* | le ™ Mi(X)dt < ¢;lw
x 0

X

which implies that 4; > 0.
For f>0 write #°(x,y) for the right hand side of (54). Since
(B+A) ' Sc(d+4;) Y thenfor 1 £n<mZ oo, by Cauchy-Schwarz,

(5.5) ‘_[, B+ 4) lo0e;(y)| = <‘Z(ﬁ + /1,-)‘1<p§(X)> (i(ﬂ + lj)lqof(y)>

= <Ci(i + lj)”w?(X)> (0 i (+ lj)‘lfp?(y)) -

Thus #%(x, y)* < cu*(x, x)u*(y, y) < cA* ~%/2, and the series (5.4) converges abso-
lutely. Further, as the convergence in (5.4) is uniform, the estimate (5.5) shows that
the series in (5.4) converges uniformly, so that ##(x, y) is continuous on A4 x A.
For 0 < f < 24 we have

s

(A= YA+ 4) D =(B+4)7",

0

I3

and hence using (5.2)

(A— BUN*Y, fel* (A p, 0<p<2i.

s

(5.6) Ulf=

i=0

The resolvent equation implies that U also satisfies (5.6), so U? = U” for fe
(0, 24), and hence for § € (0, oo ). Finally, as 4 and #* are both continuous, 4* = @”.

Since exp (—4;1) < c(t)(A + 4;)7', a similar argument shows that the series
defining p(t, x, y) converges uniformly, and absolutely for each x and y, and is
therefore continuous in {t, x, y). As

e7Pp(t, x, )dt = Y (B+ 4) " 0(x)9,(0) = @’ (x, y)

for B close to A, we see that j(t, x, y) is a version of the transition density for X,
killed on leaving A. [

Remark. By using the Krein-Rutman theorem [KR] one can actually show
A,l < }42 and (3] > Q.
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Lemma 5.2 (a) p(t, x, y) is nonincreasing in t.
(b) Bt x, y) < B(t, x, x)' 2 p(t, y, y)*/? for t > 0,x, y € A.
(c) There exists ¢, > 0 (independent of r) such that

sup ﬁ(t9 X, y) é clt-dS/z .
X, ¥

Proof. (a) is immediate from the definition of p, while (b) follows immediately from
(5.3) by Cauchy-Schwarz. By (b} it is enough to prove {c) in the case x = y. Since
pals, x, x) is decreasing in s,

ua(x, )C) é uﬁ(-x: X) = j‘ e—aspA(s’ X5 x)dS g pA(ta X, X)(X—l(l - e—zzl) .
0

Setting o = ¢t~ 1, and using Proposition 4.4, we have
palt, x, x) < crou®(x, X) £ cycq.5t” %2 O
Theorem 5.3 p(t, x, y) is Holder continuous: there exists c3 independent of v such that
(5.7) |5t x, ) — p(t, X', )| S est ™ Hx — x|,
with a similar bound for p(t, x, ¥) — p(t, x, y').
Proof. Fix t and y, and set
R = Y G+ e 0,)p,00)

i=1

Note that

(5.8) sup(A+ae *<iv2at.

az0

So by Cauchy-Schwarz and Lemma 5.2

/2 1/2
|R(x)| = (Z(l + A)e M o} (X)> (Z (4 + lj)e"l"’@f(y))

<0 arnzesgm) (0 v amnze o)
= (A v 2t7)p(t/2, x, %) p(t/2, y, y)'1?
S Al v 2(An) " %2
On the other hand,
U*R(x) =} (2 + 4)e MU p,(x)9,(y) = Bt %, 3) ,
so0 by Theorem 4.9 we deduce that
1p(t, %, y) — B(t, X, Y| S calx — X[ (A% A1 v 22071

Setting 4 = ¢~ ! gives (5.7), while the Hélder continuity in y is immediate from the
symmetry of p(t, x, y). O
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Proposition 5.4 (a) For k = 1, 3*p(t, x, y)/0t* is Holder continuous in x and y with
modulus of continuity independent of r. In particular, p(t, x, y) is C* in t.
(b) For k = 1 there exist constants ¢y, depending only on k, such that

(5.9) |0*p(t, x, y)/Ot*| S cpt™*7%/2, >0, x,yeA.
(c) For x,ye A, s, t >0,
|6*D(t, x, y)/0t° — 8*B(s, x, y)/0t*] < ¢t — s|(s A £)7F7 %2,
Proof. (a) Note that if
Si(x) = Y= 4) 0 + A)e M p,(x)p,() ,

then

(5.10) OB, x, y)/0t* = Y (=)' e ™ @,(x)p,(y) = U*S,(x) .

i

Since sup,d*(A + a)e™*'* = ¢(k, t) < oo, an argument similar to Theorem 5.3
shows that 8*p(t, x, y)/0t* is Holder continuous in x and y.

(b) It is easy to check that a*e™*/% < (2k)*¢t™*. The bound (5.9) now follows
from (5.10) and Lemma 5.2.

(¢) This is immediate from (5.9). O

Upper bounds

Let p, 4(t, x, y) denote the transition density for (P*, X,) killed on exiting A. Fix
Xo € F. From Lemma 5.2 and Theorem 5.3, we see that {pp (¢, x, y); r < 0} is
equicontinuous in x and y on F. Clearly Pp, o)L, X, V) increases as r decreases. Let
us define

p(t, X, y) = lim pD,(xQ)(ta X, y) .

r—>—w

We then have

Theorem 6.1 (a) For each x, p(t, x, x) is decreasing in t.
(b) p(t, x, y) = (p(t x. X)) 2(p(t, y, y)) /2.

(©) p(t, x, y) is symmetric in x and y.

(d) p(t, x, y) < cyt7 %2,

(e) p(t, x, y) is jointly continuous in (x, y, t), and

(&, X, y) = p(t, X', Y)| S eat™Hx — X/ [T
}p(ta X, J’) - p(S, X, y)| é C3(S A t)‘l_ds/z )
(f) p(t, x, y) is a version of the transition density of (P, X,) with respect to p.

(8) p(t,x,y)is C* int and &*p(t, x, y)/0t* is Holder continuous of order d,, — d in
each space variable.
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Proof. (a)—(e) follow immediately from the corresponding results for pp ., (Z, X, )
on letting r— — o0 . For (f) we have, by monotone convergence

P*(X,eB(y,&)) = lim P*(X,e€ B(y, &), Rp, x, > 1)

m—+— o

I

lim j po(xo) (ta X, Z),u(dZ)

m-—>— oo B(y,¢)

[ (e x, 2)pdsz) .

B(y, ¢)

Now divide by u(B(y, ¢)), let e —» 0, and use (e).

Write q,(k, t, x, y) for &*pp x,)(t, x, y)/3t". By Proposition 5.4, for each k the
g-(k, t, x, y) are equicontinuous on compact subsets of (0, o0 ) x F x F. So to prove
(g) it suffices to show lim,_, _ . q,(k, t, x, y) = 0*p(t, x, y)/6t*. We do this by induc-
tion on k. Fix x, y. The case k = 0 is just the definition of p(z, x, y). If g”(k, t, x, y) is
the limit along any subsequence r{,i = 1, 2, then by the induction hypothesis

b b
(6.1) §aOCk +1,t,x,p)dt = Tim [ qo(k+ 1,t,x, y)dt

o —oo @

= lim [qry')(ka ba X, y) - qr}")(k9 a, x, J))]

o — o
= q(k7 ba X, y) - q(ka a, X, y)
for any 0 <a < b,i=1,2. This shows ¢V (k + 1,1, x,y) = ¢?P(k + 1,t,x, y) for
each t. So g.(k + 1, ¢, x, y) converges as ¥r— — o0, and (6.1) shows that the limit must
be gk + 1,t,x,). O
We now want to get a better bound on p(t, x, y) when x =+ y.
Theorem 6.2 There exist ¢4, ¢5 such that

Pt %, y) £ cat™ P exp(—cs(|x — y|*y) @), x yeF .

Proof. Fix x+ y and t and let ¢ < %|x — y|, C, = B(x, e F, C,=B(y,gn
Vx=.U|cx=Vy=.U|cyaA1={Z5|Z—x|§2|Z—Y|}mF Az—-AlﬂF and

>

=inf{t:|X, — Xo| > %Ix —y|}.
Then
P*(X,eC,)=P*(X,eC,, X; € A1)+ P*(X,€C,, X;2 € 45)
= Il + 12 .
For z e C,, by Theorem 3.4(b)
P*(X 3 € Ay) £ P*(S < t/2) £ coexp(—cq(|z — x|r)/ 1) |
while if g(z) = P(X, € C,|X,, = z) then by Theorem 6.1(d)
q(2) = | p(t/2, z wu(dw) < ¢yt~ u(C,) .

Cy



324 M.T. Barlow and R.F. Bass
Hence
I = E™(q(X2); Xip2 € A3)
< cgpu(Cu(C)t "2 exp(—cs(lz — x|™/)t/ 1)
To handle I,, note that by the symmetry of p(z, x, ¥),
P*(X,eCy, Xyze A1) = P»(X,e Cy, X,p € 44),

which may be bounded in exactly the same way as I,.
Adding the bounds for I, and I,,

P*(X € C;) S cap(Cu(Cy)t ™" 2 exp(—cs(lx — y|ynHeD).

Dividing both sides by u(C,)u(C,), letting ¢ — 0, and using the continuity of
p(t, x, y) in each variable proves the theorem. [

7 Lower bounds

Lemma 7.1 There exists ¢, > 0 such that
p(t, X, X) = ¢yt ™%/
Proof. Recall that by Theorem 3.4(a)
P¥(0,(x) £ 1) = cpexp(—c3(tpt) /D).

-
Fix s and pick a so that cyexp(—cia™ /@) <L, Let r = [log(a/s)/log tr].
Then

(7.1) P¥(X,e D,(x)) 2 P¥*(0,(x) >5) 2 3 .
Moreover,
(7.2) u(D,(x)) £ dmp" < css™?

Using Cauchy-Schwarz,

2
LS IP(X e D) =( [ s, y)u(dy)>

Dr(x)

< u(D,(x)) . J( ) p(s, x, y)* u(dy)

< w(D,(x))p(2s, x, X) .
Hence, p(2s, x, x) = (4u(D,(x))) ", and this with (7.2) completes the proof. [
Proposition 7.2 There exist c1o and ¢y such that
p(t,x, y) Z ¢y t™ ™% for [x — y| < ¢yt

Proof. Set cio = (3cicg.3)V/ @99, Then a < cyot!/* implies that ¢ ¢t~ a® % <
1cit™%/2. So by Theorem 6.1, if |x — y| < cqot*/* then

p(ta X, y) g p(ta X, X) - |p(t’ X, y) - p(ta X, X)l
2 ¢t 7% — coatTHx — p|PTY

2 de 2, u
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We now use a chaining argument (cf. [FaS]) to_obtain the lower bound. First
however we need a geometrical result. For x, ye F let d(x, y) be the length of the
shortest path in F connecting x and y.

Lemma 7.3 There exists a constant ¢, depending only on F, such that for x, y € F
|x =yl S d(x, y) = ci7lx —yl.

Proof. For x € F let ¢a(x) denote the lower left hand corner of one of the squares
S in &, containing x, where we adopt some procedure for breaking ties. Set

H,=){65:5¢%,,ScF},

and note that (2.1)(H4) implies that H, = F. For x, y € H, write d,(x, y) for the
length of the shortest path in H, connecting x and y. Let

c16 =sup{d;(0,y):ye Fn H,} .

Let x € F. By the scaling symmetry of F it is clear that d,(¢,+1(x), ¢.(x)) £ I "c;6.
Hence

A0S Y dldyer(s) 6,(3) < 2ese.

n=0
Similarly we have
(7.4) d(Pn(x), x) < 2¢16l 7" .

Now let x,ye F, and choose m such that yeD,(x) — D,,+(x). Then |x — y|
=cl™™ Let z be the center of D,(x), so that z is one of the corners
of a square S € %, _; containing x. By (7.4) we have d(x, y) < d(x, z) + d(z, y) <
4cy617™, and after rearranging, the result follows. O

Theorem 7.4 There exist cqg, ¢1o such that
Pt X, y) 2 cigt ™% exp(—cio(lx — y|™D) 4V, x,yeF.

Proof. Write D =cy,|x —y|. The theorem 1is immediate for the case
D < ¢yq¢10t"® by Proposition 7.2, so suppose that D > ¢y0t!/® where
€10 = C10C17-

We may find ¢,; depending only on ¢,4 and d,, such that if we let n be the largest
integer less than or equal to cyyt™ V@~ Dp™/@w=D then n >4 and 3D/n <
ciolt/mt . Let xo=x,x,=y, and pick X{,X,,...,%_;€F such that
d{Xi+1,x;) £2D/n. Let ¢ = D/n and B; = B(x;, &) n F. Note that if z € B,

Ixi-y —z| £2D/n 4 & < 3D/n < cyo(t/n)t ™,
so that p(t/n, x;—1, 2) Z ¢1.(t/n)~%/2 Then

pt,x,y) =

t t t
f p(—,x,yl)---p<—,yn—z,yn-1>p<—,yn-l,y)u(dyl)-.-u(dyn—l)
B, Br-1 n n n

= ﬁuwﬂdmm*wz

2 (DD ey~ 12
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Since dy/2 = d;/d,, and by our choice of n, (D/n)/(t/n)!/*~is bounded above and
below by positive constants, independent of D and t,

Pt X, y) Z chycaa(t/m) =0l
= chicaat ®/?
(7.5) = cy3t %/ 2exp(—nloges),
where ¢;; < 1. Substituting our choice of » in (7.5) completes the proof. O

Combining Theorems 6.1, 6.2 and 7.4 we have Theorem 1.1.

8 Further results
1 Properties of the process X

Given Theorem 1.1 and the various estimates used in its proof, we can derive
a number of properties of the process X. As the proofs are essentially the same as
those in [BP] for the Sierpinski gasket, we just state the results.

Theorem 8.1 (a) There are constants ¢y, ¢, such that
et < EX| X, — x|P £ eyt

(b) X has a modulus of continuity given by

c3 Slim  sup X = Xl <c
3= . =C .
510 ogsgzgr|5—t|1/dw(10g1/|5“tl)(dw Didw
Is—t=é

() If T =inf{t > 0:X, = x} then P*(T} =0)=1, so that for all xeF, x is
regular for {x}.  _

(d) For each x,ye F, P*(I, < )= 1.

(e) {t:X,=x} is P*-as. perfect and unbounded, so that X is point recurrent.

2 Local time

While it was proved in [BB2] that the local time Ly of X exists and is jointly
continuous, we did not obtain the best modulus of continuity. Applying the
techniques of [MR] and [B] we have

Theorem 8.2 There exists a jointly continuous version L7 of the local time of X which
satisfies the density of occupation formula (3.3) and has modulus of continuity given
by:

Lx_— Iy 1/2
8.1 lim su 1Ls = L3l <c¢s| sup L? ,
( P
510 [0§s§15¢(|‘x—y|) zeF
x—yl=

where (1) = w4 (log 1/u)¥/? .
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3 Infinitesimal generator of X

Let Co(F) be the set of continuous functions on F vanishing at oo. For fe Co(F)
set

P fx) = EXf(Xy);

the estimate (1.1) shows that P,: CO(F )= Co(F), and by Theorem 1. 1(e) (P, is
a strong Feller semigroup on Co(F ). Let (&, 2(#)) be the infinitesimal generator
of (P,). We call & a Laplacian on F.

Theorem 8.3 Every function in 2(£) is Hélder continuous of order d,, — d,.

Proof. This is immediate from Theorem 4.9(b) and the fact that 2(¥)
={U*f:fe Co(F)}. O

The following result is proved in just the same way as [BP, Theorem 7.10]:

Theorem 8.4 For y, € F the function p(-, -, yo) is a solution of the heat equation on F:

5, ~
5t (t X, yo)— xp(taxayo)a t>07XEF-

4 Absorbing Brownian motion and spectral dimension

Let X be the process X, killed on exiting F and let p(t, x, y) be the corresponding
transition density. Just as in [BP, Theorem 7.11], p(z, x, y) is jointly continuous on
(0, 0)x FxF, p(t,x, y) < p{t, x, y), and if 6 € (0, 1), £, > 0, then

(8.2) Dt X, y) Z cs(8)t ™ exp(—c()(|x — y[™/1) /)

for te 0,101, x, e F ~ [0, §)2

For large t, p(t, x, y) tends to O exponentially fast. This is clear from the
eigenvalue expansion (5.3).

As X is continuous the Laplacian Z is a local operator, and the infinitesimal
generator (L, Z(Z)) of the semigroup of X Fis Just £ acting on the domain
D(Lr)={fe2(£):f=0o0n F°n F}. Thus the 4; in (5.3) are the eigenvalues
of — %r.

Set N{A) = # {4;:4; < 1}. The spectral dimension of F is defined to be

log N(4)

(8.3) [im Tog 4

A=

if this limit exists. (See [RT], [W]). Using the estimate (8.2) it follows, just as in [ BP,
pp. 618-619] that

(8.4) ced®™2 < N(J) < cod®™2, 422, .

Thus the spectral dimension of F does exist, and equals the number d, defined in
(2.4). Tt seems very likely that, as in the case of the Sierpinski gasket (see [FS]),

(8.5) liminf A~%/2N(4) < limsup A~ %/2N(}) .

A= o A~
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5 Reflecting Brownian motion

Suppose we change d,F to a reflecting boundary and let p*(t, x, y) be the corres-
ponding transition densities Clearly p®(z, x, y) = p(t, x, y) so we get a lower bound
on pR(t,x,y) for x, ye F n [0, 6%t < t,.
It is not hard to show, using an argument similar to that of Theorem 6.2, that
pR(5 %, y) £ c10(8)t %P exp(—cy1(0) (| x — |/ Y)

for 0 <t <ty, x,yeF n[0,08)
Ast— oo, pR(t, x, y) = u(F)~* = 1 uniformly and exponentially fast. This may
be proved by using an eigenvalue expansion for p¥; cf. [BH], Theorem 2.4.

6 Einstein relation

Recall from (2.2) that
F0F SR, S 4p% .

The mathematical physics literature calls

{ = log pr/logl
the resistance exponent of the Sierpinski carpet. From our definitions of d; and d,,,
it is immediate that
(8.6) 2d,/d, =d; +

which is known as the Einstein relation.

7 Sierpinski carpets not satisfying (H4)

The only place in this paper where the hypothesis (2.1)(H4) is used is in Lemma 7.3,
where it ensures that the intrinsic distance d(x, y) is comparable with the Euclidean
distance {x — y|. We now summarize briefly how the results of this paper have to be
modified in the case when (H4) does not hold. _

First, some more work on the geometry of F is necessary —see [BS] for similar
results on nested fractals. Let b, be the smallest number of squares in ,(F,)
required to form a strip connecting two opposite sides of F,. (It is clear that b, = I",
and that if (H4) holds then b, = ["). Let d,(x, y), x, y € F,, be the length of the
shortest path in F, connecting x and y. The (b,) satisfy

%bnbm é bn+m é bnbm 3

and so, as in [BB3, Theorem 5.1] there exists a constant I;F 21 such that
b% < b, < 8b% for all n = 0. Define the chemical exponent of F by

(8.7 d. = loghp/logl .
One then has
(8.8) da(x, y) = |x — y|*(bg/1)" ,
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and taking limits, possibly along a subsequence, one obtains a metric d(x, y) on
F (the ‘chemical distance’ — see [HBA]) which satisfies

(8.9) dix, )~ |x —yl*, x,yeF.

The upper bound in Proposition 3.3 is still valid if d, > 1, but is no longer the best
possible result. One can take m, = b, — 2 in the proof, which leads to the bound

P(0o(x) < 5) < crpexp(—cp3s~ %/@79)

The proof of the upper bound on p(t, x, y) then proceeds exactly as before, but with
an exponent of d./(d,, — d,) instead of 1/(d,, — 1) in the exponential, to give

(8.10)  plt, x, y) < crat™ Y/ *exp(—cys(|x — y|™/o)fld)) x ye F.

For the lower bound the chaining argument Theorem 7.4 requires only minor
modification. Two points x and y in F with |[x — y| = D are connected by a strip of
at most chsD% squares in F,. Thus cD%g ™% balls of Euclidean radius & are required
to link x and y. Choosing & = (¢/n)*/*, and n = cD%¢ ™% gives the lower bound

(811) p(t5 X, y) .% C16t_df/dwexp(—cl7({x - yldw/t)dC/(dw_dC))z X,y € F .

While at first sight (8.10) and (8.11) appear to be a considerable generalisation of
(1.1), if these bounds are rewritten using the chemical distance d(x, y), then they
assume very much the same form. Set

(8.12) d; = logmpg/logby, d., =logtp/loghy ;

then d'; is the Hausdorff dimension of F with respect to the chemical metric d. Since
dy =d;/d,, and d', = d,,/d,, using (8.8) one obtains

(8.13)  plt, x,y) S ciat Y exp (—cro(d(x, YY), x ye F,

and a corresponding lower bound.
We remark that Kumagai and Hambly have obtained similar estimates for the
transition density of Brownian motion on nested fractals.
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