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Summary. Upper  and lower bounds are obtained for the transition densities 
p(t, x, y) of Brownian motion on the Sierpinski carpet. These are of the same form 
as those which hold for the Sierpinski gasket. In addition, the joint continuity of 
p(t, x, y) is proved, the existence of the spectral dimension is established, and the 
Einstein relation, connecting the spectral dimension, the Hausdorff  dimension and 
the resistance exponent, is shown to hold. 

1 Introduction 

Let X~ be a Brownian motion whose state space is the Sierpinski carpet F: this is 
a strong Markov process which has continuous paths and state space F and which 
is invariant under an appropriate class of transformations. The construction of 
such processes was one of the principle results of [BB1]. 

We are naturally interested in the properties of this process, and some results, 
such as point recurrence and point regularity, were obtained in [BB2]. However to 
get further information one would really like reasonable estimates for the transition 
densities (cf. [BP]). The main purpose of this paper is to get good upper and lower 
bounds for the transition densities p(t, x, y) of X~ and to show continuity in each 
variable. 

There is another way of looking at this problem. Our Brownian motions are 
constructed as the limit of time-changed reflecting Brownian motions on approx- 
imations to the Sierpinski carpet. It is natural to call the infinitesimal generator of 
the limiting process a Laplacian on F (at present it is not known if there is only one 
limiting process or several). Estimates on the transition densities of Xt are then just 
estimates on the fundamental solution to the heat equation on the Sierpinski carpet. 

It will be convenient to extend X to the unbounded Sierpinski carpet 
= ~)Z=o 3 kF. Let df = log 8/log 3 be the Hausdorff  dimension ofF ,  and let # be 

the multiple of the Hausdorff  xdf-measure on F which assigns mass 1 to F. 
Our main result is 
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Theorem 1.1 There is a function p ( t , x , y ) ,  0 < t < oe, x, y ~ f f ,  such that 
(a) p(t, x, y) is the transition density o f  X with respect to #, 
(b) p(t, x, y) = p(t, y, x) for  all x, y, t. 
(c) (t, x, y) ~ p(t, x, y) is jointly continuous on (0, oo ) x F x F. 
(d) There exist constants cl ,  e2, Ca, c ,  > O, and dw such that, writing ds = 2dz/dw, 

(1.1) Cl t -d~ /2exp( -cz ( [X  - y[dW/t)l/(dw-1)) < p(t, X, y) 

< C3 t-ds/2 exp(-- c4([ x -- y]d~/t)l/(dw- 1)). 

(e) p(t, x, y) is HDlder continuous of  order d w -  dy in x and y and C a in t on 

(0, oe ) x F x F. More  precisely, there exists a constant c5 such that 

Ip(t, x, y) - p(t, x', Y)I < c5 t -1  Ix - x't a~-af, for  t > O, x, x', y e f f  , 

and for  each k > 1, Okp(t, x, y) /&k is I-Ii~lder continuous of  order d~ - d I in each 
space variable. 

This is exactly the same form as the estimates obtained in [BP] for the 
transition density of Brownian motion on the Sierpinski gasket. The only difference 
is that in the present case the exact value of the constant dw is unkown--we just 
have a definition in terms of the limiting resistances of the Sierpinski carpet (see 
[BBS, BB3]). We show in Sect. 8 that d~ is the 'density of states' for the carpet, or 
what mathematical physicists call the spectral dimension--see [RT], [W]. We also 
establish the Einstein relation dw -- d I + ~, which connects the Hausdorff and 
spectral dimensions with the resistance exponent ~. We may compare the estimate 
(1.1) with the results in [O] for standard Brownian motion with normal reflection 
on the 'pre-Sierpinski carpet'. 

In fact we will consider not just the standard Sierpinski carpet, but also the 
other 'carpet like' fractals defined in [BB1]. The techniques of this paper may also 
be applicable to the study of transition densities on some other classes of fractals, 
such as the nested fractals defined in I-L], but we will not pursue that here. 

After some definitions in Sect. 2, we start in Sect. 3 by refining a few results of 
[-BB1, BB2]. We show the H61der continuity of 2-resolvents in Sect. 4 and then see 
what information can be obtained from eigenvalue expansions in Sect. 5. In Sect. 
6 we prove the upper bound for p(t, x, y), both on and off the diagonal, while the 
same is done in Sect. 7 for the lower bound. Section 8 contains some further 
remarks concerning the process: we will see that in many respects our knowledge is 
as complete as in the case of the Brownian motion on the Sierpinski gasket. The 
letter c will denote positive, finite constants whose value is unimportant and which 
may change from one appearance to another, c~ will denote a constant whose value 
remains fixed within each section of the paper, and depends only on the Sierpinski 
carpet in question, while c,.~ denotes the constant c~ of Section n. Given sequences 
(a~), (b~) we will say a~ ~ b, if there exists a constant c such that c -  ~ a, < b~ < ca~. 

Some of the results of this paper were announced in [BBS]. 

2 Notation 

We begin by setting up our notation. Let Fo = [0, 1] 2, and let 1 __> 3 be fixed. Let 5~ 
be the collection of closed squares of side l -"  with corners in 1-"2g 2. Given a set 
A _c IR 2, set 

J . ( A )  = {S :S  ~ A, S ~ . }  . 
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For  S E 5P,, let 7is be the orientation preserving linear map which maps Fo onto S. 
We now define a decreasing sequence (F,) of closed subsets of Fo. Let R __> 1, 

and let F1 be the union of 12 - R distinct elements of ~l(Fo). We impose the 
following conditions on FI:  
(2.1) (H1) (Symmetry) F1 is preserved by all the isometrics which preserve the unit 

square Fo. 
(H2) (Connectedness) Int(Ft) is connected, and contains a path connecting 

the lines {x~ = 0} and {x~ = 1}. 
(H3) (Non-diagonality) The boundary 8F1 of F1 consists of a finite number of 

disjoint Jordan curves. 
(H4) (Borders included) F1 contains every square in 5el adjacent to the 

boundary of Fo. 

Remark. These conditions are the ones used in [BB1]. (The list given in (1.1)(iv) of 
[BB1] should be replaced by the present (HI).) The hypothesis (H4), which was not 
essential in our previous work, will be used here. (See Sect. 8 for some remarks on 
how the results of this paper may be modified to cover Sierpinski carpets not 
satisfying (H4)). 

We think of F~ as being derived from Fo by removing the interiors of R squares 
in 5el (Fo). Given F1, Fz is obtained by removing the same pattern from each of the 
squares in 5~l(F1). Iterating, we obtain a sequence (F,), where F, is the union of 
(/2 _ R)" squares in 5~ Formally, we define 

F . + I =  [,.J ~"s(r~)= U ~Ps(F,). 
S E S~ S ~ ~I(FI) 

The set F = ~ F, is a generalized Sierpinski carpet. Let t7 = Ur%olrF,+r, and 
ff = ~=o/Y, .  Let also a , r  = {(xl, x2 ) �9  [0, 112:xl = 1 or x2 = 1}. Let 

#.(dx) = (12/(l 2 -- R))" lro(x)dx , 

and let # be the weak limit of the #. : # is a constant multiple of the Hausdorff 
xdS-measure on ~. 

Write W~' for Brownian motion on ft. with normal reflection on 8F., and set 

e. = sup EX'cn , 
x ~ F n  

where z, = inf{t : W~ �9 OAF,}. 
Let O be the collection of continuous paths in [0, ~ )2, and Xt be the canonical 

coordinate process. Let P~ be the law of W"(7,t) starting at x, and let 
= i n f { t :X t � 9  (?,F}. One of the main results of [BB1] is the existence of sub- 

sequences n~ --* oo such that for each x �9 F, the law of W"J(a,j(t A Z)) starting at 
x converges weakly, say to Q~, and the process (Q~, X,) is a continuous strong 
Markov processes on F. 

We wish to study processes on the unbounded carpet F. We say that a strong 
Markov process (P~, Xt) is a Brownian motion with state space ff if there exists 
a subsequence nj ~ oo such that for each x �9 F the  laws P~s converge weakly to P~. 

The existence of such processes follows easily from the results of [BB1]. By 
Proposition 4.4 of [BB1], 

sup P , ~ ( z < s ) - , 0  a s s ~ 0 ,  
xe[O, ~]2 N F~ 
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uniformly in n. With this fact, the strong Markov character of W", and a diagonal- 
ization procedure, it is not hard to show that there exists a subsequence nj ~ oe 
such that for all x ~ F, P~  converges weakly, say to px, and (PX, Xt)  forms a strong 

J 

Markov process on F with continuous paths. As the processes (P~,Xt) are 
p,-symmetric, the limiting process (px, X~) is /~-symmetric. The details of the 
piecing together argument we leave to the reader. 

Remark.  One of the main questions left open by our previous work is that of the 
uniqueness of the Brownian motions (P~, Xt). While it seems very probable that 
this process is unique, in principle it is possible that {P~, n > 1} could have more 
than one cluster point. However this lack of uniqueness will not prevent us from 
being able to say a great deal about the behavior of the Brownian motions on b ~. 
Let 

rnF = l 2 - R ; 

following [L] we will refer to I and rn F as the length and mass scale factors  o f F .  By 
Theorem 5.1 of [BB3], there exists a constant Pv > 1 (the resistance scale fac tor  o f  
F)  such that 

(2.2) �88 p~ __< R~ =< 4p~,  

where R, is the resistance of F,,  defined by 

inf I ~ l Vut2( x)dx: u is a function on F, with u(0, x2) - 0, u(1, x 2 ) -  1 t "  R~ -1 
Fn ) 

We define the time scale fac tor  of F by 

(2.3) tF = m t ' p f  , 

and the 'dimensions' d~, dw, d~ by 

(2.4) d I = log mF/log I ,  

dw = log t v / log  l = log(mFpF)/ log l ,  

d~ = 2d f /dw  = 2log m f / l o g  t~ . 

Of these dz is the Hausdorff dimension of F, and we will see in Sect. 8 that d~ is the 
spectral dimension of the Sierpinski carpet. Although exact values of d~ and dw are 
not known, the numerical calculations in [-BBS] indicate that for the standard 
Sierpinski carpet Pe ~- 1.2515, te - 10.012, dw ~- 2.097, and d~ -~ 1.805. 

Proposition 5.2 of [BB3] implies that te/12 > 1. In fact strict inequality holds, 
as is clear on inspecting the last but one line of the proof. Therefore we have 
rnF < l z < t f ,  SO that 

(2.5) d~ < d s < 2 < d~. 

In [BB2] we restricted our attention to the standard Sierpinski carpet. However 
the results there extend without difficulty to general carpets satisfying (H1)-(H4), 
and the formulae there remain valid if one replaces the length and mass scale 
factors of the standard SC (3 and 8 respectively) by l and inF. In particular, from 
(2.2), the definition of #,, and (2.11) and Propositions 2.2 and 2.3 of [BB2], we have 

(2.6) c~l( te /12)  n <= ~x, <= c~(te/12)" . 
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Let 

(2.7) fl~ = O~,,12r/O~n_r ; 

then by (2.6) 

(2.8) c i- 2 t~ =< fir, =< cite2 ~ . 

Let B(x, a) -= {y: Ix - Y] < a}, and for x = (xl, x2), define 

1 j+l)  ,fi  Dr(~)= F ,  lr ~ l- ~ l~ __<x~< ? , 

j - - � 8 9  j + � 8 9  
~7 < x 2 <  I'm' 

Note that m-i ~ < #(Dr(x)) < 4m~ r if x s/7, and that 

(2.9) 

Define 

(2.10) 

B(x,  �89 -~) c D,(x) c B(y,  3I -~) for any y~D~(x). 

a~(x)=a~(x)  = i n f { t ' X t ~ D r ( x ) }  

T~= inf{t > 0"X~ = x}.  
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i, j integers. 

3 Preliminary estimates 

Unlike the processes on finitely ramified fractals studies in [BP], [L], we do not 
have an exact scaling property for X. The following 'weak scaling' result will, 
however, prove very useful. 

Lemma 3.1 There is a constant c~, independent of  r, and constants fl,~ 
[ci-2 t}, c2 t~ ], r ~ 77, such that if  Q ~ is equal to the pl.x law of  l -r  X (tfi~), then (Q~, Xt) 
is also a Brownian motion on F. 

Remark. It seems very likely that Q~ = W, that is, that X has an exact scaling 
property. This would follow immediately if we knew that (P~, Xt) was unique. 

Proof. There exists a sequence n; ~ oo such that for each x ~ if, p x  is the weak 
limit of px, j. Using (2.8), we may take a further subsequence, also denoted nj, such 
that fl~j+, converges; call the limit fir. Take nl + r > 0. 

By the continuity of the paths of X and the choice of the subsequence n j, the law 
o f / - r  V~'J(te,~fl~j+,) starting at Vx converges to the pZ~x law of l-~X(tflr), which we 
are calling Q~. But the law starting at l~x o f / - "  W"J(tC~njfl~j +~) = 1 -~ W"J(tl2rc~,j +~) is 
equal, by Brownian scaling, to the law of W"~+~(e,j+rt) starting at x. So Q~ is the 
weak limit of the law of wmJ(a,,jt) starting at x, where mj = nj + r is independent of 
x. By our definition, Q~ is a Brownian motion on F. [] 

Lemma 3.2 Let (px, Xt)  be a Brownian motion on F, and let (nj) be a subsequence 
such that PX = limjP,~. 
(a) The laws P~j(~r~(y) e .) converge weakly to P~(a,.(y) ~.  ), r e 77. 
(b) l im j~E:~ jar (y )  = E~ar(y), r >= 1. 
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(c) There exists  a constant e2 such that 

(3.1) c ~ l t ~  T < E:~aT(x) <= c2tF r, r > 1. 

P r o o f  (a) Using the Skorohod theorem, we may set up a single probability space 
(O, ~ ,  P) carrying processes X J and X with laws P,~j, and px, and with X j --+ X a.s. 
and uniformly on compacts. Writing aj = aXJ(y), we have o'T < lira infj aj. Using 
the strong Markov property of X at aT, and the invariance of X under local 
isometries of if, it follows that X hits both int(D,(y)) and int(D,~(y)) immediately 
after aT; and hence that aT = limy~. 

(b) By the homogeneity of F and equations (4.2), (4.9), and (4.10) of [BB1] we 
have for any x E D, (y)  

x j E,oT(y )  < ~ , - r / , , l  zT = 1/fl~ < cZt~ T . 

Thus P X ( o [ ( y ) >  2c2t~ r) < �89 and hence by an elementary iteration argument 
PX(a~(y) > 2nc~ t i  T) < 2-". So (o-j) is bounded in L 2, and hence converges in L 1 as 
well as a.s. 

(c) The upper bound is immediate from (b), while the lower bound follows from 
(b) and equations (4.2), (4.9) and (4.10) of [BB1]. [] 

Remark,  This lemma helps to explain the meaning of the time scale factor tv: the 
mean time to cross l"F is approximately t} times the mean time to cross F. 

Proposition 3.3 There exist  c3 and Ca > 0 such that 

PX(ao(X) < s) < c3exp(--C4S-1/(dw-1)) ,  x c F . 

P r o o f  Look at the proof of Proposition 4.4 of [BB1], and note that, by the 
homogeneity of ff this applies to Oo(X) as well as to z. Starting in the middle of 
p. 243 of [-BB1] we have 

/ / k Z ~ m ~ , s \  ~/2 ) 
P,~(-o(X) < s )<  exp~2~ ~ ) - mTlogc61 , 

where k = l and mT= �89 l T - 2. By (2.6) 

P~,(Oo(X) < s) < exp(cT((ltv)Ts) 1/2 -- CsIT), 3 <<- r <_ n . 
Let 

r = [log(c~/4c 2 s ) / log( tF/ / )]  . 

Since te > l, we can find c9 sufficiently small so that whenever s < c9, then 
r = r(s) > 3. With this choice of r, we get 

(3.2) P ~(~ro (x) < s) < exp ( -  c8 l r/2) , 

< exp(--C~,S-1/(a~-I)), n ~ ~', s ~ c 9 . 

Letting n ~ ~ along the subsequence and using Lemma 3.2(a), we obtain (3.2) for 
PX. Since we always have P~(oo(X) < s) < 1, we can find ca such that 

P~(ao(x)  < s) < c 3 e x p ( - c 4 s - 1 / ( d ~ - * ) ) ,  s > O,  

which is our result. [] 

Remark.  The exponent in this bound is the correct one: see Corollary 3.3 of [BP] 
for the corresponding result for Brownian motion on the Sierpinski gasket. That 
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bound was obtained from a detailed study of a branching process associated with 
the diffusion, and it is, at first, surprising that the apparently crude argument of 
Proposition 4.4 of [BB1] yields essentially as good a result. The explanation is that 
the small tail in the distribution of O'o is due to those paths which move directly 
from x to the boundary, so that (in the proof of Proposition 4.4) replacing N by �89 k r 
gives away very little. In fact the methods of [BB1] have been used in [H] to obtain 
estimates on the lower tail of the limiting random variable of a branching process in 
a random environment. 

Theorem 3.4 (a) There exist c3 and c4 > 0 such that for any r ~ Z 

PX(ar(x) = t) =< c3 e x p ( -  c4(t'Ft)-1/(~w-1~). 

(b) For any 2 > 0 

P X ( s u p  I X s -  Xol > 2 )  <=c3exp(-cll(2~/t)l/(ew-1)). 
s<=t 

Proof. (a) By Lemma 3.1, and writing y = xF, 

PX(ar(x) < t) = Q'(ao(y) < t/fl-r) , 

where Q. is another Brownian motion of F. Now use Proposition 3.3 and the 
bounds on fir from (2.8). 

(b) Choose r = [ - l o g  2/log l]. By (2.9) Dr(x) ~_ B(x, c102) for a constant Clo. 
Hence 

/ N 

P (sup Ixs-  Xol > clo ) =< P ( r(x)s t )  
\ s < t  / 

Using the bound from (a) and then replacing 2 by c i-0 ~ ;~ completes the proof. [] 

Remark. Using weak scaling just as in the proof of Theorem 3.4(a), we see (3.1) is 
valid for r < 0 as well. 

Let R~ be an independent negative exponential random variable with 
mean 2-1. 

Corollary 3.5 There exist q2 ,  c13 > 0 such that 

(a) P*(Rz >= at(x)) < �89 for 2 > c12t~, 

(b) P~(Rz <= 6,(x)) <= �89 for ), <__ ca3t•. 

Proof. (a) By Theorem 3.4, 

PX(Rz >= at(x)) = ~ ).e-aP~(ar(x) <= t)dt 
0 

< c3 ~ 2e-Ztexp ( -  C4(WF)- 1/{d~- ~))dt 
0 

= c3 ~ e-S e x p ( -  c4 (sty~2)- 1/(d~- 1))ds 
0 

= I ( u )  say, 
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where u = ()~/ t~)  1 / (a~-1) .  Clearly I(u) $ 0 as u---, o0, so there exists c14 such that  
I(u) < �89 for u > c14, and thus pX(R~ > at(x)) < �89 for 2 > ,r :ew- 1 ~ ~ ~ ~ F t - 1 4  . 

The proof  of (b) is very similar. As P~(ar(x) _~ t) <-_ t-1E~or(x) <= t - lc2tF",  we 
have 

P~(Rx N ~(x) )  = ~ 2e-XtP~(ar(x) > t)dt 
0 

< ~ 2e-~'(1 A ( t -ac2t ir) )dt  
0 

= S e-S(1 A (s-lc22t~"))ds. 
0 

This last integral decreases to 0 as (c22t; ~) $ O, so it follows that  there exists cz3 > 0 
such that  px(Rx N or(x)) N �89 for 2 N c13t~. [] 

Let L~ denote the local t ime of Xt at the point  y. In  [BB2] this was constructed 
for the process X. ~ ~, but  we may  extend it to the process X~ by a s t ra ightforward 
patching argument .  We have that  (t, y) -~ Lf  is joint ly continuous,  and that  L satis- 
fies the density of occupat ion  time formula  

t 

(3.3) ~ f(X~)ds = ~ f(y)LYt #(dy) . 
0 F 

Proposit ion 3.6 Let x ~ ft. Then 

Y < (l-m)(a~-a:) z, y ~ D, . (x)  E La,,(x) = c18 

Proof Suppose first that  m > 5, and let r > m. They by [BB2], Eq. (3.10), i fn  > r, 

~,(x) 

E~ ~ 1A(X~)ds < c15l-2Vc% po~2XlPd:#(A), 
, , ,+~(x) 

where p = r - 3. In  [BB2] this is p roved  when Dr(x) ~_ [0, 1 ,+~)2, but  just as in 
the remarks  following (3.11) of [BB2] we can use the local homogenei ty  of f to 
remove  this restriction. 

F r o m  (2.7) we deduce 

r 
(3.4) E~ 5 1a(X,)ds < c16(fi~)-lFe:#(A) < clv(mv/tv)r#(A).  

~+~(x) 

We let n ~ oc along the subsequence nj and obta in  

E y j (L~(~) -- Lw = E y ~ 1A(X~)ds 
A ~,+ dx)  

< e ~ ~ (m~/t~) ~ # (A) .  

Since L~ is jointly cont inuous in t and z, setting A = B(x, ~) c~/7, dividing both  
sides by #(A), and letting e ,L 0 gives 

Y x y x E L~(~) -- E L . . . .  ~ < cw(rnF/tr) ~ . 
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Since mF < l a < tF, summing over r gives 

ErL~,,(~)x =< ~, c17(mr/tF)~ = qs(mv/tF)~ = Cls(t-~)(d~,-e:) 
r=m 

This takes care of the case m > 5. A weak scaling argument as in the proof of 
Theorem 3.4(a) gives the case m < 5. [] 

4 Resolvents 

Since we are working with F instead of F, we will need to work with 2-resolvents 
rather than Green functions. The next set of results concerns the continuity of 
2-resolvents. 

Define for A _~ ]R 2, 

and set for 2 > 0 

RA = inf{t__> O:Xt e X }  , 

RA 
u~(x, y) = E x ~ e-  ~SdL~ = EXL~A A R~ , 

0 

Ra 

U ] f ( x )  = E ~' ~ e-~sf(Xs)ds, f >  O. 
0 

By the density of occupation time formula (3.3) we have 

V~4f(x) = ~ u~(x, y)f(y)#(dy) . 
a 

Write 
us(x, y) = u~ y), u~(x, y) = u}(x, y ) ,  

and define UA, U ~ similarly. As (P~, Xt) is/~-symmetric we have /~(x ,  y) = u~(y, x) 
for all x, y E F. Note that 

(4.1) u~(x, y) = PX(Ty < Ra A Rz)u~(y, y) < u~(y, y) . 

Lemma 4.1 For x ~ F, r ~ T., 

c 11 (mr~ tF)" < uD~(x)(x, x) < c 1 (mr~ tv) ' .  

Proof. The upper bound is immediate from Proposition 3.6. For  the lower bound, 
writing A = D,(x), we have by Lemma 3.2(c) and the remark following the proof  of 
Theorem 3.4, 

C 2 1 t F r  ~ EXO'r(X) = EX I L~(x)#(dy) = 5 UA(X, y)t~(dy) 
A A 

<-_ ~ UA(X, x)#(dy) < cm['ua(x,  x) . [] 
A 

Approximating B(x, a) inside and outside by sets of the form D,(x) we deduce 

Corollary 4.2 Let x ~ F, and a > O. Then 

c3 aa''-a: <= UB(x,a)(X, x) ~ c4a a~-a: . 
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Lemma 4.3 Suppose A ~_ B ~_ if, A is bounded, and sup~ u~(x, y) < ~ . For x, y ~ f f  
we have 

(4.2) UA(X, y) = U~(X, y) + E~(I(R~ Z RA)uA(XR~, y)) -- E~(I(R~ > R, Iu~(XR,, y)). 

Proof  F r o m  the definition of ua, and as RA < RB, 

uA(x, y) = E~(L~;  Rz  <= Ra) + E~(LYe~; R~ > Ra) 

= E~(L~, ~ R,; Ra <= RA) "b" Ex(I(R~R,)EX"~LYe,) 

+ E~(LYR~ i, R.; Rz  > RA) -- E~(LYR~, ̂  R. -- LYe,; Rz  > RA) 

= u~(x, y) + E~(I(R, =< R~)ua(XR~, y)) -- E~(I(R~ > R,)u~(XR~, y)). [] 

Proposition 4.4 There exists c5 > 0 such that for  all 2 > O, x, y ~ /7, 

c~12 ~a~-I < sup u~(x, y) = u~(x, x) < c52 ~as-1 
Y 

Proof  The middle equality is immediate from (4.1). For  the upper  bound,  let x ~ ff 
and 2 > 0 be fixed. Choose r so that  c3.12t~ +1 > 2 > c3.12t~. Let A = Dr(x), and let 
B = Din(x) for some m < r. Note  first that, by Lemma 4.1, 

u~(x, x) <__ uB(x, x) <= cl (mv/tv) m < oo. 

By Lemma 4.3 

x 1 u~(x, x) <= UA(X, x) + e ( r X)) 

<-_ ua(x, x) + PX(R~ > Ra)u~(x,  x) . 

As RA = cr,(x) using Corol lary 3.5 we deduce that 

u~(x, x) < 2ua(x, x) < 2cx(rnF/tF) r <= c52 ~ - 1  . 

Letting m $ - c~ concludes the proof. 
The proof  of  the lower bound  is very similar. Let r be chosen so that  

c3.13t~ -1 < 2 < c3.13t~, and let A = Dr(x). By Lemma 4.3 with B = ff 

u,dx, x) <= uZ(x, x) + PX(R z <= RA)UA(X, X) 

<= u~(x, x) + i uAx ,  x) , 

and the result now follows from Lemma 4.1. [] 

For  x, y s / 7  set 

qZA(X, y) = P*(ry > RA /x R~), p~(x, y) = P*(T,  <= RA /x R~) 

and note that  
u~(x, y )  = p~(x, y)u~(y, y) . 

As in the case of u we write PA, qA for pO, qO. 

Lemma 4.5 Let  y ~ f f  , n > r, D,(y) c~ /7 ~ A, and x e D , -  l (y) - D,(y). Then there 
exists c8 > c~ 1 such that 

qa(x, y) < c8(rne/tv)"/ua(y, y) . 
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P r o o f  Write B = D , _  1 (Y) - D,(y) ,  and note that  (H4) implies that B is connected. 
As qA(', Y) is harmonic  on A -  {y} it follows from the Harnack  inequality 
(Theorem 3.1 of  [BB1])  that there exists c6, independent  of  y, r and n such that 

c 6 1 <  qA(Z,y) <C6 fo rz ,  z ' ~e l (B)  
= qa(Z '  ' y) = 

where el(B) is the closure of  B. N o w  writing T = RD.(y), 

UA(y, y) = ErLrT + EYEXTLyR A 

= uo~ y) + E ' ( 1  - qa(XT, y))uA(y, y).  

So uo.(r)(y, y )  = ua(y,  y )EYqA(XT,  y), and hence 

qa(X, y) < c6E'qA(Xr, y) 

= C6UD.(y)(y, y)/UA(y, y) �9 

Applying Lemma 4.1, the result follows. [] 

Write 0 = dw - d f .  

Lemma 4.6 Le t  x, y ~ ft. Then 

C9[N - -  yl ~ < E X L } ,  <= c t2 l x  - yl ~ �9 

P r o o f  The lower bound  is immediate f rom Corol lary 4.2 since Ty >= RB(x, lx ;I). Fo r  
the upper  bound  choose n such that  x ~ D , - I ( y )  - D,(y) ,  and as clcs  > 1 we can 
choose a negative integer p such that  c~csl ~ < ~ < ClCa l~ Let r = n + p, let 
m < r < n and set A = Dr(y), B = D,,(y). Then 

E ~ r  x = E * t L  ~ �9 E ~ t L  x R A )  ~r,  AR, t T ~ , T y < R A ) +  t T~^RB;Ty> 

< E ~ L  ~ = RA + E~(I~T~>R,)EX"~L~'~ ^ R,) 

= , ~E~IL ~ . < UA(X , X) + qA(X, y) t r,. ^ R~) 

NOW by Lemmas  4.1 and 4.5, qA(Y, X) < ClC81 ~ < �89 AS 1 -r < q o l x  -- y], and 
A = B(y ,  c l l l x -  y[), 

E ~rx  < 2ua(x, x) < e l 2 l X  - y]O. X~Ty ^ RB = = 

Letting m ~  - co concludes the proof. [] 

Corollary 4.7 Le t  x ~ A, A ~ f f .  Then writing b = dist(x, A ~ c~ if), 

c ; r  ~ < UA(X, X) < c13 bO . 

P r o o f  Let z ~ A ~ c~/7 with Ix - zl < 2b. Then RA <= Tz, so UA(X, X) < E ~ L } ~  < 
C~a2~ ~ Proving the upper  bound.  On  the other  hand  B(x,  b / 2 ) ~  F ~ A, so 
UA(X, X) > Un(~,b/2)(X, X) > c32 -~  ~ [] 

Proposition 4.8 Le t  x, y e if, A ~ ft. Then 

UA(y, y) -- UA(X, y) <= C161X -- yl ~ �9 
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P r o o f  Choose  n so that  x ~ O . - l ( y )  - O.(y); thus e14~1 -"  < ix  - Yl < C l j - ' .  Set 
B = (D._ ~ (y) - D . (y ) )  c~ ft. If B _ A then the result follows f rom L e m m a  4.5 and 
the equat ion 

UA(y ,  y)  - -  UA(X, y) = qA(X, y)UA(y, y) �9 

Otherwise we must  have dist(y,  A c c~/~) < c l s l x  - y[, so UA(y, y) -- UA(X, y) < 
UA(y, y) < c l 3 c ~  -- yl ~ [] 

Theorem 4.9 (a) L e t  ~ >= 0, A c_ f f  and suppose that either 2 > 0 or A =t= ft, Then 

fo r  x,  x', y ~ if, and f e L i ( f f )  

(4.3) lu~4(x, y) - u~(x' ,  y)[ _<_ Cls[X -- x'[ a~-al, 

(4.4) ] U ~ f ( x )  - U ~ f (x ' ) l  <-_ e l s l x  - x'] e'~-df ]l f l A [[i �9 

(b) For  2 > 0, A ___ F, x, x'  ~ / 7 , f ~  L~(f f ) ,  

(4.5) [ U ~ f ( x )  - U ~ f ( x ' ) l  < c i 9 # 2 - } a * t x  - x'l &~-ds [Iflloo �9 

P r o o f  (a) Assume for the m o m e n t  that  A =~ ft. As the process X is symmetr ic  with 
respect to #, we have 

u~(x ,  y )  - u~,(x', y)  = u ~ ( y ,  x)  - u ~ ( y ,  x ' )  

= (Pza(Y, x) - p~(y,  x '))u~(x' ,  x') + p~(y,  X)(u~(x, x) -- u~(x', x ')) .  

However  

p~(y ,  x) - pZA(y, X') < PY(T:, < RA /X Ra < T~,) <= p~(y,  x )q~(x ,  x ' ) .  
S o ,  

(4.6) - = u A ( x ,  x )) u ~ ( x , y )  * ' u ~ ( x , x ) -  ~ ' ' uA(x,  y) < p~(y,  x)(q~(x ,  ' ~" ' x ) u A x ,  x ')  + 

= p~(y,  x)(u~(x, x) - u~(~, x')). 

Setting )~ = 0 and using Propos i t ion  4.8 we deduce 

UA(X , y )  - -  UA(X' , y)  "< UA(X , X) - -  LIA(X, X')  ~ C16[X - -  X'] 0 . 

In terchanging x and x'  gives (4.3) in the case ;. = O. In tegra t ing we have, 

(4.7) ]UAf(x )  - UAf(X')] < ~ ]UA(X, y ) -  UA(X', Y)I I f ( y ) l# (dY)  
A 

~_~ C161X - -  X ' ] a ~ - g S H f l A I ] I  , 

which establishes (4.4) for 2 = 0. 
To  obtain  est imates for 2 > 0 we apply the resolvent equat ion in the form 

u~(x,  y) = UA(X, y) -- ,~VA~(X), 

where g(x) = u~(x,  y). Thus  

lug(x,  y) - u~(x' ,  y)l = lua(x,  y) - u A x ' ,  y)l + ,~1 U~o(x)  - UAg(X')I 

"( Cl61X - -  Xtldw-d.f  -1- 2C16[.X, - -  x' tdwd,t ' l t~]tl  1 . 
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Now as 
II g II1 = ~ u~(x, y)#(dx) < ~ uZ(x, y)#(dx) = ,~-1, 

this implies (4.3), and exactly as in the case 2 = 0, (4.4)follows on integrating (4.3). 
Finally the case A = F, 2 > 0 follows on letting A ~ F. 
(b) Note first that 

p~(y, x) = PY(Tx <= R a A Rz) <-_ Pr(T~ <= R:.) = uZ(y, x)/uZ(x, x) . 

So by Proposition 4.4 

(4.8) ~ p~(y, x ) l f (y ) l#(dy)  <= I[fll o~uZ( x, x) -~ ~ uZ(Y, x)#(dy) 
A A 

= Ilfll~uX(x, X)-I /~ -1  

_-< c5 Ilfll~o2 -~d~. 

Combining (4.3) and (4.6) we have 

(4.9) lug(x, y) - uA(x', Y)l < cla(pA(y, x) + p~(y, x'))lx - x'] ~ , 

and the proof of (4.5) is completed by integrating (4.9) and using (4.8). [] 

5 Eigenvalue expansions 

Our next set of results concerns eigenvalue expansions. Fix Xo �9  and r �9 ~, write 
A = Dr(xo) c~/7 and for this section only write ~iX(x, y) for u~r(xo)(X, y), and similarly 
for ~Tzf Write ( f  g) for the inner product on L2(A, #). 

Fix for the moment 2 > 0. In view of Proposition 4.4 and Theorem 4.9, we may 
use the Mercer expansion theorem (see, e.g., [Y] p. 136) to obtain a nonincreasing 
sequence of reals 7j > 0 and an orthonormal sequence of function ~oj in L2(A, #) 
such that 

(5.1) ~i~(x, y) = ~ ,/jq,~(x)~oj(y), 
j = l  

(5.2) UXf(x) = ~ 7 j ( f  qoj)(pj(x), f � 9  LZ(A, # ) .  
j=l 

The sums in (5.1) and (5.2) converge uniformly as well as in L e. Set 2j = 7 ;  1 _ 2, so 
that 7j = (2 + 2j)-1. Define 

(5.3) /3(t, x, y) = ~ e-ZJtq)j(x)q)j(y), x, y �9 Ur(xo) ~ /7 . 
j = l  

Proposition 5.1 The 2j are strictly positive, and the (pj are H6lder continuous on A. 
For fl > 0 we have 

(5.4) (tP(x, y) = ~ (fl + 2j)-lcpj(x)~pj(y) . 
j = l  

The series in (5.3) and (5.4) converge absolutely and uniformly on A. p(t, x, y) is 
a version of  the transition density for (px, XO killed on exiting A, and is jointly 
continuous in (t, x, y) on (0, oe ) x F x F. 
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Proof As the (#j are or thonormal ,  (2 + 2j)-  1 (p.j = U*epj, and Theorem 4.9 implies 
that cp i is bounded  and H61der cont inuous of order  d~ - d I.  Next, as )~t.7 ~ is 
a contract ion on LZ(A, #), Cauchy-Schwarz gives 

Hence each Zj > 0. Further ,  by Lemma 3.2(c) and the remark following Theorem 
3.4, sup~E~a,(Xo) < oo, and thus 

Therefore 

sup E~(1 - exp(-Zo-,(Xo))) < 1 . 
x 

ar(XO) 
sup 2[2acpj(x) = supE  ~' 

x x 0 
~e-~oj (g~)d t  < II ~gjl l~,  

which implies that  2j > 0. 
For  # > 0  write Re(x,y) for the right hand side of (5.4). Since 

(# + Zj)-1 < c(2 + ~.j) 1, then for 1 < n _< m < oo, by Cauchy-Schwarz,  

j~=n 2 ) 1~ 02 (5.5) (# + < (# + 2j)-icpZ(x) (fl + 2j j(y) ,= 

< c (,~ + ,~)-1~o~(x) c (;~ + ,~ j ) -~q~(y)  . 

Thus Re(x, y)2 < cua(x, x)u~(y, y) < c21 - d . / 2  and the series (5.4) converges abso- 
lutely. Further ,  as the convergence in (5.4) is uniform, the estimate (5.5) shows that 
the series in (5.4) converges uniformly, so that  Re(x, y) is cont inuous on A x A. 
For  0 < fl < 22 we have 

• ( , t  - #)~(;o + ,tj) -~+1~  = ( #  + ,tj) - 1 ,  
i = 0  

and hence using (5.2) 

(5.6) Oaf= ~ (2-#)i(U~)i+if feL2(A,#), 0 < # < 2 2 .  
i=O 

The resolvent equat ion implies that t_T# also satisfies (5.6), so L7# = De for # 
(0, 2,~), and hence for # ~ (0, oo ). Finally, as R e and ti e are both  continuous,  R e = tie. 

Since e x p ( - 2 j t ) <  c(t)(2 + Zj) -1, a similar argument  shows that  the series 
defining i0(t, x, y) converges uniformly, and absolutely for each x and y, and is 
therefore continuous in (t, x, y). As 

e-e'~(t,  x, y)& = F, (# + ,tj)- l ~oj(x)q~j(y) = tie(x, y) 
o j 

for # close to 2, we see that/3(t,  x, y) is a version of the transition density for Xt 
killed on leaving A. [] 

Remark. By using the Kre in-Rutman theorem [KR]  one can actually show 
21 < 22 and q)l > 0. 
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Lemma 5.2 (a) ~(t, x, y) is nonincreasin 9 in t. 
(b) p(t, x, y) <= p(t, x, x)l/2p(t, y, y)i/Z for t > O, x, y ~ A. 
(c) There exists cl > 0 (independent of r) such that 

sup/5(t, x, y) < c l t  -ds/2 . 

Proof (a) is immediate from the definition of iO, while (b) follows immediately from 
(5.3) by Cauchy-Schwarz. By (b) it is enough to prove (c) in the case x = y. Since 
pa(s, x, x) is decreasing in s, 

u~(x, x) => U~A(X, X) = ~ e -~spats," x, x)ds => pA(t, X, X)C~-I(1 -- e-~t) . 
0 

Setting ~ = t-1,  and using Proposit ion 4.4, we have 

pa(t, X, X) <= C20~U~(X, X) ~ C 2 C 4 . 5 t  - d s / 2  . [ ]  

Theorem 5.3 ~(t, x, y) is HiSlder continuous: there exists Ca independent of  r such that 

(5.7) I/5(t, x, y) - /5( t ,  x', Y)I < c3t- 1Ix - x'l a~-as , 

with a similar bound for if(t, x, y) - fi(t, x, y'). 

Proof Fix t and y, and set 

R(x) = ~, (2 + 2~)e-a~t~oj(x)(pj(y). 
j = l  

Note that 

(5.8) sup (2 + a)e-at/2 < 2 v 2 t -  1 . 
a > 0  

So by Cauchy-Schwarz and Lemma 5.2 

Ie(x)l < 2 (  4 + 2J)e-ZJtq~2(x) 2 (4 + 2fle-ZJtqo2(y)) 

"k112/ "~1/2 

= (4 v 2t-1)p(t /2,  x, x)l/2p(t/2, y, y)l/z 

< c12(1 v 2(2t ) - l ) t  -a'/2 . 

On the other hand, 

U~R(x) = ~ (2 + b)e-aJt(Ua~oj(x))q)~(y) = p(t, x, y) , 

so by Theorem 4.9 we deduce that 

IP(t, x, y) - ~(t, x', Y)I < CaiX - x'[a~-aI(2t)-a~/22(1 v 2(2t)-~) .  

Setting 2 = t -  ~ gives (5.7), while the H61der continuity in y is immediate from the 
symmetry of/~(t, x, y). [] 
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Proposition 5.4 (a) For k > 1, Okf(t, x, y)/&k is Hblder continuous in x and y with 
modulus of continuity independent o f t .  In particular, ~(t, x, y) is C ~~ in t. 
(b) For k > 1 there exist constants ck, depending only on k, such that 

(5.9) 10~f(t, x, y)/&kl <= Ckt -k-a'/2, t > O, X, y ~ A .  

(C) F o r x ,  y e A ,  s , t > O ,  

I ~ f ( t ,  x, y)/&k _ 8kf(s, X, y ) / ~ ? l  <= c~lt - sl(s a t ) - ~ - ~ / L  

Proof. (a) Note  that if 

Sk(x) = ~ (--2j)k(2 + 2j)e-XJ'cp~(x)cpj(y), 

then 

(5.1o) 8k~(t, X, y)/&k = ~ ( _  )v)ke- ~J~ ~oj(X)~oj(y) = 12 zSk(X) . 
J 

Since SUpa~_oak(2 + a)e -at/2 = c(k, t) < oo, an argument  similar to Theorem 5.3 
shows that c3k~(t, X, y)/&k is H61der cont inuous in x and y. 

(b) It is easy to check that ake -"t/z < (2k)kt -k. The bound  (5.9) now follows 
from (5.10) and Lemma 5.2. 

(c) This is immediate from (5.9). [] 

Upper bounds 

Let pA(t, x, y) denote the transition density for (P~, X~) killed on exiting A. Fix 
x0 e ft. F rom  Lemma 5.2 and Theorem 5.3, we see that {pDr(~o)(t, x, y); r < 0} is 
equicontinuous in x and y on F. Clearly pD,(~o)(t, x, y) increases as r decreases. Let 
us define 

p(t, x, y) = lira pDr(~o)(t, X, y ) .  
r ~  - -  o o  

We then have 

Theorem 6.1 (a) For each x, p(t, x, x) is decreasing in t. 
(b) p(t, x, y) < (p(t, x, x))l/Z(p(t, y, y))l/z.  
(c) p(t, x, y) is symmetric in x and y. 
(d) p(t, x, y) < cl t  -~'/2. 
(e) p(t, x, y) is jointly continuous in (x, y, t), and 

Ip(t, x, y) - p(t, x', Y)I ~ c 2 t - l l  x -- x' l  aw-a~ , 

lp(t, x,  y) - p(s, x,  y)l < c3(s A t) - 1 - ~ / 2  . 

(f) p(t, x, y) is a version of the transition density of (P ~, Xt) with respect to #. 
(g) p(t, x, y) is C ~ in t and 8kp(t, X, y)/&k is HSlder continuous of order dw - dy in 
each space variable. 
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Proof  (a)-(e) follow immediately from the corresponding results for pD,(xo)(t, X, y) 
on letting r ~  -- oo. For  (f) we have, by mono tone  convergence 

P~(X, e B(y, e)) = lim P~(Xt e B(y, e), RD~(~o) > t) 
m ~  - -  oo  

= lim ~ po,,(xo)(t, x, z)#(dz) 
r n ~  - ao  B ( y ,  e )  

= ~ p ( t , x , z ) # ( d z ) .  
B ( y ,  e)  

N o w  divide by #(B(y,  e)), let e --* 0, and use (e). 
Write q,(k, t, x, y) for ~kpD~(~o)(t, X, y)/&k. By Proposi t ion 5.4, for each k the 

q,(k, t, x, y) are equicont inuous on compact  subsets of (0, oo ) x F x F. So to prove 
(g) it suffices to show lim~_+_ ~q~(k, t, x, y) = Okp(t, x, y)/&k. We do this by induc- 
tion on k. Fix x, y. The case k = 0 is just the definition ofp(t,  x, y). If  q(~ t, x, y) is 
the limit along any subsequence r} ~ i = 1, 2, then by the induct ion hypothesis 

b b 

(6.1) ~ q(~ + 1, t, x, y)dt = lira S qr?(k + 1, t, x, y)dt 
a r} ~) ~ - -  0(3 a 

= lim [q~?(k, b, x, y) - qr}~ ( k ,  a, x, y)] 
r~ i) "-> -- O0 

= q(k, b, x,  y)  - q(k, a, x, y)  

for any 0 < a < b, i = 1, 2. This shows q(~)(k + 1, t, x, y) = q(2)(k + 1, t, x, y) for 
each t. So q~(k + 1, t, x, y) converges as r--, - oo, and (6.1) shows that the limit must  
be q(k + l, t, x, y). [] 

We now want  to get a better bound  on p(t, x, y) when x ~ y. 

Theorem 6.2 There exist c4, c5 such that 

p(t, X, y) <= C4t -a*/2 exp( - - c s ( [x  -- y[d~/t)l/(e'~-l)), x, y ~ F .  

Proof. Fix x :# y and t and let e < ~lx - Yl, Cx = B(x,  e) c~ ( ,  Cy~= B(y, e) c~ .f, 
v~ =/~lcx, Vy = #lc,,  A1 = {z' Iz - xl < �89 - Yl} c~ F, A2 = A~ c~ F, and 

S - -  i n f { t : [ X , -  Xo[ > � 8 9  y ]} .  
Then 

Pvx(X, E Cy) = Pvx(xt  ~ Cy, Xt/2 ~ A1) -~- P~'(Xt ~ Cy, Xt/2 ~ A2) 

= I~ + 1 2 .  

For  z ~ Cx, by Theorem 3.4(b) 

W(Xt/2 e A2) < W ( S  < t/2) < c e e x p ( - c T ( [ z  - XldW/t)t/(d~-l)) , 

while if q(z) = P(Xt  ~ CylXt/2 = z) then by Theorem 6.1(d) 

q(z) = S p(t/2, z, w)#(dw) < clt-e~/Z#(cy) . 
C y  
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Hence 
12 = E V ~ ( q ( X t / 2 ) ;  X t / 2  ~ A2) 

<-_ cs#(Cx)#(Cy)t-ad2 exp( -  c5 (] z - x ]aw/t)l/(a'~- 1)) . 

To handle I1, note that by the symmetry of p(t, x, y), 

W~(Xt  s Cy, Xt/2 ~ A1) --- W ' ( X t  e Cx, X~/2 e A~) , 

which may be bounded in exactly the same way as 12. 
Adding the bounds for I1 and 12, 

W*(Xt  e Cy) <__ c4#(Cx)#(Cy) t -a ' /2exp( -cs (]x  - y]aw/t)l/(a~-1)) . 

Dividing both sides by #(C~)#(Cy), letting e ~ 0, and using the continuity of 
p(t, x, y) in each variable proves the theorem. [] 

7 Lower bounds 

Lemma 7.1 There exists cl > 0 such that 

p(t, x, x) >= Cl t - a s / 2  . 

Proof. Recall that by Theorem 3.4(a) 

PX(~r(x) <= t) <__ c2exp (-c3(trvt)-  l/(a'~ l)) . 

Fix s and pick a so that c 2 e x p ( - c 3 a  -1/(ew-1)) <= �89 Let r = [log(a/s) / log tr]. 
Then 

(7.1) p x ( x s  e Dr(X)) >= PX(ar(x) > s) > �89 

Moreover, 

(7.2) #(Dr(x)) < 4mF r <--_ CsS as/2 . 

Using Cauehy-Schwarz, 

1 
7, <= [ w ( x s  e Dr(X))] 2 = p(s, x, y)#(dy) 

D x) 

<= #(Dr(x)) j p(s, x ,y)2#(dy) 
D~(x) 

< #(Dr(x))p(2s, x, x ) .  

Hence, p(2s, x, x) > (4#(Dr(x)))- 1, and this with (7.2) completes the proof. [] 

Proposition 7.2 There exist c10 and Cll such that 

p(t, x, y) >= c l l t  -a*/2 for [x -- y[ <= Clo tl/aw. 

Proof. Set Clo = (�89 1/(aw-dD. Then a < Clotl/awimplies that c6.2t - la  aw-a~ 
�89 -as/2. So by Theorem 6.1, if ix - Yl < clo ?/aWthen 

p(t, x, y) > p(t, x, x) -- Ip(t, x, y) -- p(t, x, x)l 

C l t - d s / 2  __ C 6 . 2 t - l l x  __ y i d ~ - d $  

> �89 cl t -a~/2 . [] 
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We now use a chaining argument (cf. [FaS])  to obtain the lower bound. First 
however we need a geometrical result. For  x, y e/7 let d(x, y) be the length of the 
shortest path in /7  connecting x and y. 

Lemma 7.3 There exists a constant c17, depending only on F1, such that for x, y e /7  

Ix - yl 5 d(x,  y) __< c17 Ix - Yl �9 

Proof. For x �9 t7 let r denote the lower left hand corner of one of the squares 
S in 5#, containing x, where we adopt  some procedure for breaking ties. Set 

H . =  ~){OS'S �9  ~ /7} , 

and note that (2.1)(H4) implies that H, c /7 .  For x, y �9 H, write d,(x, y) for the 
length of the shortest path in /4 ,  connecting x and y. Let 

c16 = sup{dl(0, y ) : y � 9  c~ H1} �9 

Let x �9 F. By the scaling symmetry of F it is clear that d,(qS, + l(X), r =< l-"c16. 
Hence 

d(x, 0) < ~ d,(r  r < 2c16. 
n=0  

Similarly we have 

(7.4) d(~b,(x), x) < 2c161-". 

Now let x, ye /7 ,  and choose m such that y e D m ( x ) -  Dm+l(x). Then { x -  y[ 
> c t  -m. Let z be the center of Din(x), so that z is one of the corners 

of a square S �9 ~ , , -1  containing x. By (7.4) we have d(x, y) < d(x, z) + d(z, y) < 
4c161 -m, and after rearranging, the result follows. [] 

Theorem 7.4 There exist c~8, c~9 such that 

p(t, x, y) >= Clst-a~/Zexp(-c19(lx - yla'~/t)l/(aw-1)), x, y �9 

Proof. Write D - = C l T l x - y  1. The theorem is immediate for the case 
D<=c17clo ta/aw by Proposition 7.2, so suppose that D>C2o t l /a .  where 
Clo = C10C17. 

We may find c21 depending only on C2o and dw such that if we let n be the largest 
integer less than or equal to c21t-~/(a~-~)D ew/(e'~-t), then n > 4 and 3Din < 
clo(t/n) ~/d'~. Let x o = x , x , = y ,  and pick x l , x 2  . . . . .  x , _ l e / 7  such that 
d(xi+ l, x~) < 2D/n. Let e = D/n and Bi = B(xl, e) ~ /7. Note that if z �9 Bi, 

]xi-1 -- zl < 2D/n + ~ < 3O/n < Clo(t/n) 1law, 

so that p(t/n, xi-1,  z) > cal(t/n) -a~/2. Then 

p(t, x, y) > 

~- (nfll ]A(Bi)) 
> c]9(D/n)e~( "- 1)(t/n)-e~"/z. 
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Since d j 2  = d:/dw and by our choice of n, (O/n)/(t/n) x/d~ is bounded above and 
below by positive constants, independent of D and t, 

p(t, x, y) >= c~i c22(t/n) - ' I : /~  

cn21c23 t - G ~ 2  

= C23t  - G / 2  exp ( - n log c21 l) (7.5) 

where c2~ < 1. Substituting our choice of n in (7.5) completes the proof. 

Combining Theorems 6.1, 6.2 and 7.4 we have Theorem 1.1. 

8 Further results 

1 Properties of  the process X 

Given Theorem 1.1 and the various estimates used in its proof, we can derive 
a number of properties of the process X. As the proofs are essentially the same as 
those in [-BP] for the Sierpinski gasket, we just state the results. 

Theorem 8.1 (a) There are constants cl ,  c2 such that 

cltp/a~< E~IXt  - xl p < c2:/a~" 

(b) X has a modulus of  continuity 9iven by 

I X ~ -  Xsl 
< C 4 c3 < lim sup Is - tll/aw(log 1~Is - tl) (aw-~)/a'~ = . 

6~0 0<_s<~tK_ T 
is tl <= 6 

( c ) / f  r 2 = inf{t > 0 : x t  = x} then P~(T+~ = O) = 1, so that for all x ~ F ,  x is 
regular for {x}. 
(d) For each x, y e F, px(Ty < oo ) = 1. 
(e) {t:Xt = x} is PY-a.s. perfect and unbounded, so that X is point recurrent. 

2 Local time 

While it was proved in EBB2] that the local time L~ of X exists and is jointly 
continuous, we did not obtain the best modulus of continuity. Applying the 
techniques of [-MR] and [B] we have 

Theorem 8.2 There exists a jointly continuous version L~[ of  the local time o f  X which 
satisfies the density of  occupation formula (3.3) and has modulus of  continuity 9iven 
by: 

x y ( z ) l /2  
(8.1) lim sup ILs - L~I 

~;o o~s~  ~ ] x - - - y i )  --< cs ,,SUpz~: L, , 
Ix Yl ~ 

where cp(u) = u~(a~-d:)(log 1/u) 1/2 . 
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3 Infinitesimal generator of X 

Let Co(F) be the set of continuous functions on _F vanishing at oe. F o r f E  Co(#) 
s e t  

Ptf(x)  = Exf(Xt)  ; 

the estimate (1.1) shows that Pt:Co(/y) ~ Co(_F), and by Theorem 1.1(e) (Pt) is 
a strong Feller semigroup on Co(F): Let (~ ,  N(S) )  be the infinitesimal generator 
of (P~). We call 5~ a Laplacian on F. 

Theorem 8.3 Every function in ~ ( ~ )  is HSlder continuous of order dw - d r .  

Proof. This is immediate from Theorem 4.9(b) and the fact that ~ ( 5  ~ 
= { U a f : f e  Co(F)}. [] 

The following result is proved in just the same way as [BP, Theorem 7.10]: 

Theorem 8.4 For Yo ~ K the function p(.,., Yo) is a solution of the heat equation on F: 

& p ( t , x ,  y o ) = ~ p ( t , x ,  yo), t>O,  x a F .  

4 Absorbing Brownian motion and spectral dimension 

Let X e be the process Xt killed on exiting F and let/~(t, x, y) be the corresponding 
transition density. Just as in [BP, Theorem 7.11],/5(t, x, y) is jointly continuous on 
(0, oo ) x F x F, ~(t, x, y) < p(t, x, y), and if 6 s (0, 1), to > 0, then 

(8.2) fi(t, x, y) > c6(6)t -as~2 exp(-- c7 (6)(Ix - y [aw/t)l/(a~- 1)) 

for t ~ [0, to], x, y ~ F c~ [0, 6) 2. 
For large t, i6(t, x, y) tends to 0 exponentially fast. This is clear from the 

eigenvalue expansion (5.3). 
As X is continuous the Laplacian 5e is a local operator, and the infinitesimal 

generator (•v, N(5~e)) of the semigroup of X v is just ~ acting on the domain 
~ ( ~ e )  = { f~  2(2~c~ : f =  0 on F c c~ F }. Thus the 2j in (5.3) are the eigenvalues 
of - 2~e. 

Set N(2)=  # {2j:2j _<_ 2}. The spectral dimension of/~ is defined to be 

(8.3) lim log N(2) 
~_.~ log2 

if this limit exists. (See [RT], [W]). Using the estimate (8.2) it follows, just as in [BP, 
pp. 618-619] that 

(8.4) csd, ds/2 < N(2) __< C91~ ds/2, "~ ~ •1 " 

Thus the spectral dimension of F does exist, and equals the number ds defined in 
(2.4). It seems very likely that, as in the case of the Sierpinski gasket (see [FS]), 

(8.5) lim inf ;t- d~/2 N(2) < lim sup 2- ds/2 N(2). 
X--+ oo ,t ,~ co 
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5 Reflecting Brownian motion 

Suppose we change ~3,F to a reflecting boundary and let pR(t, X, y) be the corres- 
ponding transition densities Clearly pR(t, X, y) > ~(t, X, y) SO we get a lower bound 
on pR(t, x, y) for x, y ~ F c~ [0, 6)2, t < to. 

It is not hard to show, using an argument similar to that of Theorem 6.2, that 

pR(t, X, y) <= C10(~$)t -asl2 exp(--c11(f) ( Ix  -- yldw/t)ll(dw-1)) , 

for 0 < t < to, x, y ~ F c~ [-0, ~)2. 
As t ~ oo, pR(t, X, y) ~ # (F) -  x = 1 uniformly and exponentially fast. This may 

be proved by using an eigenvalue expansion for pR; cf. [BH], Theorem 2.4. 

6 Einstein relation 

Recall from (2.2) that 

1 n PF < R, < 4p~.  

The mathematical physics literature calls 

(" = log pF/log l 

the resistance exponent of the Sierpinski carpet. From our definitions of ds and dw, 
it is immediate that 

(8.6) 2dl/ds = dy + 

which is known as the Einstein relation, 

7 Sierpinski carpets not satisfying (H4) 

The only place in this paper where the hypothesis (2.1)(H4) is used is in Lemma 7.3, 
where it ensures that the intrinsic distance d(x, y) is comparable with the Euclidean 
distance I x - y I. We now summarize briefly how the results of this paper have to be 
modified in the case when (H4) does not hold. 

First, some more work on the geometry of ff is necessary - see [BS] for similar 
results on nested fractals. Let bn be the smallest number of squares in 5~n(Fn) 
required to form a strip connecting two opposite sides ofF, .  (It is clear that b, > l ", 
and that if (H4) holds then b, = l"). Let d,(x, y), x, y ~ F,, be the length of the 
shortest path in F, connecting x and y. The (b,) satisfy 

b,b,, < b,+,, <-_ b, bm, 

and so, as in [BB3, Theorem 5.1] there exists a constant b-F > l  such that 
b} __< b, __< 8b} for all n > 0. Define the chemical exponent of ff by 

(8.7) dc = log be/log l .  

One then has 

(8.8) d . (x ,  y) ~ Ix - y l d ~  , 
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and taking limits, possibly along a subsequence, one obtains a metric d(x, y) on 
ff (the 'chemical distance' - see [HBA]) which satisfies 

(8.9) d(x ,  y) ~ Ix - yl d~ x,  y e _~ . 

The upper bound in Proposition 3.3 is still valid if dc > 1, but is no longer the best 
possible result. One can take mr = lbr  - 2 in the proof, which leads to the bound 

PX(ao(X) < s) <__ c12 exp(--C13S-dC/(e'v-d~ . 

The proof Of the upper bound on p(t, x, y) then proceeds exactly as before, but with 
an exponent of dd(dw -dc )  instead of 1/(dw - 1) in the exponential, to give 

(8.10) p(t,x,y)<--_ClJ-aJ/a'~exp(--Cls(lx--yld~/t)a~176 X, y e K  

For the lower bound the chaining argument Theorem 7.4 requires only minor 
modification. Two points x and y in F with I x - y] = D are connected by a strip of 
at most cb}D ac squares in ft,. Thus cDa~ -a~ balls of Euclidean radius e are required 
to link x and y. Choosing e = (t/n) 1/a. and n = cDa~ -d~ gives the lower bound 

(8.11) p(t, x , y )  >= c l6 t -ds /dwexp( - -ClT( lX  -- y]dw/t)ad(aw-a~ x, y s f f  . 

While at first sight (8.10) and (8.11) appear to be a considerable generalisation of 
(1.1), if these bounds are rewritten using the chemical distance d(x, y), then they 
assume very much the same form. Set 

(8.12) d~ = logme/logbe, d~ = logt~/logbF ; 

then d) is the Hausdorff dimension of ff with respect to the chemical metric d. Since 
d) = dl/dc, and d~ = d,~/d~, using (8.8) one obtains 

dl l.~l 
(8.13) p(t, x,y) < ci8t-  f'~exp(-c19(d(x,y)a~/t)l/(a~-l)), x, y s f f ,  

and a corresponding lower bound. 
We remark that Kumagai and Hambly have obtained similar estimates for the 

transition density of Brownian motion on nested fractals. 
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