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Summary. In this paper, we observe how L6vy's stochastic area looks when we see 
it through various topologies in the Wiener space. Our theorem implies that it is 
quite natural from the viewpoint of topology to define a distinct skeleton of L6vy's 
stochastic area S(w) for each distinct topology in the Wiener space, or equivalently, 
for each distinct abstract Wiener space on which the Wiener measure and S(w) are 
realized. Thus we cannot determine its intrinsic skeleton in the theory of abstract 
Wiener spaces. 

1 Introduction and theorem 

To begin with, we introduce the two-dimensional Wiener space. It is a triplet 
(W, H, P) whose symbols are defined by 

W:= {w = (w 1, w2)ff C([0, 1] ~ R2)lw(0) = 0 ~ R  2 } , 

H := {h = (h 1, h 2) ~ WI h(t) is absolutely continuous and 

dh/dt~L2([O, 1] ~ R 2, dt)} , 

and 
P := the standard two-dimensional Wiener measure.  

Here we endow the spaces W and H with norms ll'll w and ]]'1In respectively which 
are defined by 

Ilwllw:-- max(lw(t)l; 0 < t < 1}, 

II h I1~ : =  II dh/dt II L2~E0, 11 -~ R 2, dr ) ,  

so that W becomes a separable Banach space and H, sometimes called the 
Cameron-Martin subspace, becomes a separable Hilbert space. 

Let l ~ W* (the topological dual space of W). Then, since the canonical coupling 
(l, w), w e W, is a Gaussian random variable with mean zero and variance II/11~ (l is 
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naturally regarded as an element of H because W* ~ H* -- H), the continuous 
mapping 

W*~l~(l ,  w)s L2(W, P) 

is isometrically continuously extended to the following mapping 

H~h~--~(h, w)~L2(W, P) . 

The functional (h, w) is nothing but the so-called Wiener integral 

( h , w ) = i ~ t ( t ) . d w ( t ) : = i (  dhx dh2 ) o o \ d t ( t ) dw l ( t )  + -(it -(t)dw2(t) " 

The Wiener integral (h, w) can be regarded as a natural extension of a continuous 
linear functional (h, h' }H, h' ~ H, defined on H. Thus, some functions defined on the 
Cameron-Martin subspace H can be extended naturally to P-measurable functions 
on W. We call such extension the stochastic extension. Since it is well-known that 
P(H) = 0, functions which are defined only on H cannot be observed through the 
measure P, and we may say that it is the stochastic extension that lifts them up (if 
possible) to the world of full P-measure, i.e., the Banach space W. At this time, the 
original functions defined on H are called the skeletons. 

The theory of It6's stochastic calculus deals with the most important stochastic 
extension. It is no longer so definite as the Wiener integral, which we discussed 
above. In fact it involves not only pure functional analysis but also some probabil- 
istic structures such as martingales. 
For example, let us consider the following functional ~o(h) defined for 
h = (h 1, hZ)~H. 

) q~(h) := ~ h 1 (t) -~-  (t)dt - h2(t) (t)dt . 

If the function h is of C l-class, the value (p(h) is just equal to the (signed) area of the 
region enclosed by the curve h(t), 0 _< t -< 1, and the chord connecting the origin 
with the point h(1) = (h 1(1), h2(1)). It6's stochastic extension is, roughly speaking, 
obtained by replacing the all ordinary differentials (in the above expression, for 
example, (dhl/dt)(t)dt and (dh2/dt)(t)dt) by the Stratonovich stochastic differen- 
tials (odwl(t) and odw2(t), respectively). According to this scheme, the stochastic 
extension of ~0(h) will be a double Wiener integral defined on the two-dimensional 
Wiener space (W, H, P) by 

1 
S(w) = ~1 ! (w 1 (t)o dw2(t) - w2(t) o dw ~ (t)) 

The Wiener functional S(w) is known as P. L~vy's stochastic area (although it is no 
longer "area"). 

Then in what sense is S(w) the stochastic extension of qo(h)? Or equivalently, in 
what sense is cp(h) the skeleton of S(w)? There may be many answers, but we here 
present only two of them. 

(A) The first answer is given by Stroock-Varadhan's polygonal approximation 
[11]: Let A be a finite partition of the interval [0, 1]. 

A : O - t o < t ~ < " ' < t , = l ,  
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and define w~ e H, for each w e W by 

{ w(t~) if t = ti for some i, 

w~(t) := linearly interpolated if otherwise. 

Then for any e > 0, we have 

lira P ( I S ( w )  - q~(w~)[ > e) = 0 .  
[zq-.o 

(B) The second answer is given by the skew product representation of the two- 
dimensional Wiener process ([6] [11]): For  any e > 0 and any he  W* ( c H), we 
have 

P ( I S ( w )  - q~(h)l > el II w - h [[w < 3) ~ 0 as 6 ~ 0 .  

This assertion says that the closer (in the sense of II" Hw) w is to  h, the smaller the 
fluctuation of S(w) around ~0(h) becomes. 

Although the first answer seems to be a convincing one, it is known that 
approximations of w by elements of H other than Stroock-Varadhan's do not 
always imply the approximation of S(w) by (p(h) (see [8]). 

Then how about the second answer? If we replace the norm II" I[w by other 
metrics, will it be still valid? As a matter of fact, from the viewpoint of Gross's 
theory of abstract Wiener spaces, the Banach space W (accordingly, as well as its 
norm II'll w) is not essential. Namely, any other Banach space will also do, only if it 
densely contains/- /and its norm is measurable  [2, 3]. Thus it makes sense to ask if 
(B) will be still valid when we change the norm II �9 Itw by other measurable norms. 

The answer to this question is unfortunately "No" .  To the contrary, (and 
strange to say,) we will show the following theorem in the forthcoming sections. 

Theorem There ex i s t s  an everywhere  dense set  A ~ R such that  f o r  each a e A,  we can 
f ind  a measurable  norm II'FI <~ so that  

P ( I S ( w )  - o(h)  - a[ > e[ [Iw - hl[<a) < 6) ~ O, as 6 ---> O , 

f o r  each e > 0 and each h e H.  

Remark .  Possibly, we may take A = R in this theorem. So far, however, we have 
shown it only for a countable everywhere dense set A. Nevertheless, it is enough for 
our purpose. 

For  each a e A, let W (") be the completion of H with respect to the norm IIll~~ 
Then this theorem claims that if we take the Banach space W <a), instead of the space 
W of continuous functions, it is more natural to consider S ( w ) -  a to be the 
stochastic extension of cp(h), and equivalently, (p(h) + a to be the skeleton of S(w). 
Thus we can conclude that from the viewpoint of topology, It6's stochastic 
extension is not an intrinsic concept in the theory of abstract Wiener spaces. 

2 Some lemmas 

In this section, we will prepare some lemmas for the proof of the theorem. 
Let Q: H --* H be an orthogonal projection with dim Q H  < oe. Then it has an 

expression like 

Qh = ~, (,hj, h)Hh~, h e l l ,  
j=o 
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where { h o , . . . ,  h,} is an orthonormal base of the range QH. Hence we can 
well-define an H-valued Wiener functional Qw by 

Qw = ~ (hj, w)hj, w~ w .  
j=O 

Namely, Qw ~ H is defined for P-a.e.w and it is independent of the particular choice 
of the base {ho . . . . .  h,}. 

A sequence of orthogonal projections {Q,} is called an approximating sequence 
of projections, if dim Q,H < oo and Q, ~ I~ (the identity operator of H), strongly. 

Under these preparations, we present the definition of measurable semi-norm, 
which is equivalent to that of Gross [2, 33. 

Definition 1 A semi-norm II']l~ on H is said to be measurable, if there exists 
a Wiener functional q(w) < oo, P-a.e. such that for any approximating sequence of 
projections {Q,}, a sequence of Wiener functionals {11Q,w II1 } converges to q(w) in 
probability with respect to P. If, in addition, I1 II 1 is a norm, it is called a measurable 
norm. 

The limit functional q(w) will be denoted by H w H1 and also called a measurable 
semi-norm or a measurable norm if I111 ~ is a norm. 

First we introduce a well-known theorem obtained by K. It6 and M. Nisio. 

Lemma 1 [7] Let I['ll t be a measurable semi-norm. Then for any approximating 
sequence of projections {Q,}, we have llw - (Lwlll  ~ 0, a s  n ~ ~ ,  P-a.e.w~ W. 

Lemma 2 Let h e H and II " Ill be a measurable semi-norm. Then for arbitrary e, 6 > O, 
we have 

P(l(h, w)L > ~, [Iwlll < ~) ~ P(l(h, w)l > ~)P(llwlll < ~)- 

If, in addition, 1t" I11 is a measurable norm, for an arbitrary e > O, we have 

P ( l ( h ,  w)l  > ElltwI]I < ~))'+0, as c ~ O .  

Proof. (i) Let {Q,} be an approximating sequence of projections. Then since 
Q , w ~ H  is naturally regarded as a finite-dimensional Gaussian random vector, 
Lemma A1 (see Appendix) implies that 

P([(h, Q.w)H[ > ~, IlO.wlll < ~) ~ P(l(h, Q.w)~l > e)P(llQ.wl[1 < 6).  

Letting n--* so, since [(h,.)l is obviously a measurable semi-norm, Definition 
1 implies 

P([(h, w)[ > e, llwlll < ~) ~ P(l(h, w)l > e)P(llwlll < 6). 

(ii) Let W1 be the completion of H with respect to H" 111, and (h.}2=o be a complete 
orthonormal system (CONS) of H such that each h. is taken from W~. Define an 
approximating sequence of projections (Qn} by 

Q,,:= ~ (hj, ' )~h~, n = 0 , 1 , 2  . . . .  
j=O 
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Since (h, .  - Q." )u  = ( ( I u  - Q.)h," )1t, we see by Lemma 1 that for any e, t />  0, 
there exists an n e N such that 

P ( ' ( h , w - Q n w ) ' > 2 ) < t l .  

And hence the above assertion (i) implies 

(1) P(](h,w-Qnw)]> 2 Ilwlll <~)<~ 
On the other hand, since all the norms are equivalent in each finite dimensional 
space, there exists a C~o > 0 such that 

P( l (h ,  Qnw)n,> 2 IlQ,,w,,t < c 5 ) = 0 ,  0 < c 5 < 6 o .  

Now noting that Qn is a bounded linear operator when we regard it as a mapping 
W~ ---, W*, we see that for a certain c > 0, 

Combining (1) and (2), for 0 < 6 < 6o/C, we have 

P(l(h,w)l > elllwfll < ~)_-< P(l(h, Q.w>H] > e/2 or [(h, w - Q.w)] 

> e/21 ]lwl[1 < 6) 

P(l(h, w - Qnw)l > e/2l II Wll < ~) 

r/, < 

which completes the proof. [] 

The norm fl ' l lw of w is of course measurabe and it is well-known that the 
H61der norm with index less than 1/2 is also measurable. Among others, we will 
fully make use of Hilbertian measurable semi-norms, which have the following 
expression 

[]h[lx= ~ 2.(h. ,h) 2 , h E H ,  
n = 0  

where 2. > 0, ~ 2 .  < ~ and {hn} is a CONS of H. At this time, we have 

[[w][z=(~  2"(h"'w)2) 1 / 2 ' w ~ W ' . = o  

Lemma 3 Let {h.}.%o be a CONS and let II'Jl~ be a Hilbertian measurable 
semi-norm defined as above and II" II~ be another Hilbertian measurable semi-norm 
defined by 

IlwHv:= (n=O ~ vn(hn'w)2) 1/2' 



288 H. Sugita 

where v. > O, and ~ v. < oo. Then for arbitrary ~, (~ > O, we have 

e( l lwl l~ > e, Ilwllv < c~) =< P(llw[l~ > ~)r( l lwllv < ~).  

I f  in addition, I1" [1~ is a norm (i.e., Vn > 0), for an arbitrary ~ > O, we have 

P(llwll~ > ~lllwll~ < a )~O,  as a ~ O .  

Making use of Lemma A2 in Appendix instead of Lemma A1, we are able to prove 
Lemma 3 in the same way as Lemma 2. 

Now we introduce the eigen-function expansion formulas for the functional 
cp(h) and L6vy's stochastic area S(w). The former one is nothing but a quadratic 
form (Kh ,  h)H, h ~ H ,  where K: H ~ H is a Hilbert-Schmidt operator given by 

~o 1 
(3) K = .=o~(2n + 1)2~ ((f2" '  ")~fz" + ( f 2 . + l , ' ) n f z . + l )  

.=o (2n + 1)2~z ((g2., ")riga. + (gz.+l , ' )ng2.+~)  �9 

Here {f., g.}~=o is, as a whole, a CONS of H, to which we can give explicit 
expressions using sine and cosine functions. We therefore have 

1 
~o(h) = .~o (2n + 1 ) 2 ~  ((f2"' h)2 + (f2.+~, h)~) 

1 h 2 h)h) 
1)27r((g2., ) ~ +  (g2n+t, �9 

n~O ( 2 n  -t- 

This K is also the kernel of L6vy's stochastic area as a double Wiener integral. 
Namely, we have 

(4) S(w) = (2n + 1)2re ({(f2., w) z - 1} + {(f2.+1, w) 2 - 1}) 
n=O 

1 
- . ~ o  (2n + 1)2~ ({(92"' w)2-  1} + {(92.+1, w) 2 -  1}). 

The above convergence is in the sense of L z ( w ,  P).  (See [5] for details.) Since the 
operator K is of Hilbert-Schmidt class but not of trace class, S(w) is by no means 
continuous in any measurable norm [12]. 

The following is the key lemma of this paper. 

Lemma 4 Let {h., k.}.%o be as a whole an orthonormal system of H and {)-.}.~ o be 
a sequence of  real numbers such that 2. > 0 and ~ 22 < oo. Define a double Wiener 
integral F(w) and a measurable semi-norm I[11o, respectively, as follows. 

(5t F(w):= ~ 2.{(h.,w) 2 -  1 } -  ~ 2 . { (k . ,w)  z -  1}, 
n~O n = 0  

where Jl' I1• is an arbitrary measurable semi-norm which degenerates on the subspace 
spanned by {h,,, k,}.  
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Then for any ~ > O, it holds that 

P(IF(w)l>elllwllo<5)=O exp - , a s S ~ O ,  

where c > 0 is a constant independent of e and & 

Proof. Since F(w) and Irwll• are mutually independent random variables, it is 
enough to prove the lemma in case l/w J[• = 0. In particular, we may assume that 
{h,, k, } spans the whole space H. 
First define h,, k, ~ H, n = 0, 1 , . . . ,  by 

_ h n  - k n  + k~ 
,A'  ,A 

Then {h,, k,} is again a CONS of H. By using the base {h,, k,}, f(w) is rewritten as 

F(w) = ~ X.((h., w) 2 - (k., w) 2) 
n = 0  

= 2 ~ 2.(h'., w)(/~., w). 
n = 0  

Let Hi ,  H2 be closed subspaces of H spanned by {h'.} and {/~.}, respectively. 
Accordingly, we define induced measures Pi := P ~ Qi- 1, i = 1, 2, where Qi: H ~ Hi 
is the orthogonal projection onto Hi, and measurable semi-norms t1 " [[i, i = 1, 2, by 

Finally, we define Hilbert spaces Wi as the completion of H with respect to I1' lli, 
i = 1, 2, respectively. 

Then a triplet (W1 @ W2, H1 �9 H2, P1 | P2) forms an abstract Wiener space. 
Since H = H1 @ H2, P = P1 | Pz, we may consider everything on this abstract 
Wiener space instead of the original Wiener space. Hence we once again rewrite 
F(w) as a two-variable function F(wl, w2). That is, 

e ( w , , w z ) = 2  ~ 2.(h.,w,)(C.,wz), w 1 E W I ,  w 2 ~ W  2. 
n=O 

Now if we fix a wa e W~, then F(wa, ") becomes a linear functional on Wz and hence 
its distribution under Pz is centered Gaussian. Since {(/~., w2)} is a sequence of 
independent random variables with variance 1, the variance ofF(w1, ") is just equal 
to 

4 ~ (2.(ft.,w1)) 2 = 4 1 1 w 1 [ 1 #  �9 
n=O 

Consequently, for sufficiently small 5o > 0, there exists constants c, e~ > 0 such 
that for any wt with H wl II 1 < 5 < 5o, 
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On the other hand, 

P1 |  w2)l > E, ltwl H~ + llw21l~ < ~2) 

= ~ Pl(dwl)P2(lF(wl, w2)[ > 5, IIw2 II~ < ~2 _ Ilwl I1~). 
Ifwl I1~ < ~2 

For  each fixed Wl, F(wl ,  w2) is linear in w2 and hence Lemma 2 implies that the 
above value is 

< ~. Pl(dwl)P2(IF(wl ,  w2)l > e)r2(llw2 ]l~ < c ~2 - [IWl II~) 

=< c lexp - - ~  ~ Pl(dwl)P2([Iw2[I 2 < t~2 - -  IIwl [l~) 

= cl exp - ~  P1 | Pz([I wz II~ + [I w~/1~ < ~2). 

Note that for any h = h~ + h 2 e H  = H~ | H2, we have 

n = O  

= ~ ).~ ((h., h)~ 4- @., h)~) 
n = 0  

= I[hN~. 

Now we therefore have 

P ( I F ( w ) l > ~ , l l w l l o < O ) < c x e x p  - P ( l l w l l o < ~ ) ,  

which completes the proof. [] 

Since L6vy's stochastic area S(w) has the expression (4), Lemma 4 implies 

P(IS(w)l > 5111wll ~~ < ~)-- ,0,  as ~ --*0, 

for a measurable norm 

( 1 
liwll<~ .=o ~ (2~4- 1) ~ {(A"'w)~ + (/2"+*'w)2 + (gz"'W)~ + (~"+1'w)2}) */~ 

Thus Lemma 4 does not seem to support our theorem, but as a matter of fact, it 
does imply the theorem. The trick consists in the elementary fact that a condi- 
tionally convergent series can have various different sums by rearranging the 
sequence. The readers will find it in the Eqs. (8), (10) and so on in the next section. 

3 Proof of theorem 

We will prove the theorem in three steps. Throughout  this section, e denotes an 
arbitrary positive number. 
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Step 1. First we will prove that 

(6) P(IS(w) - al > et II w II (a) < 0) --* 0, as 6 --, 0 ,  

for a = (1/2701og 2 and 

I lwl l (~ = ~ ~{(fn, w)2-'l-(gzn-l,W)e-t-(gzn, W)2} +(fo, W)2 4-(go, W)Z\l/2. 
n = l  

Put 

Fo(W):= ~ l ( ( f . ,w)2 1) 
n = l  ~ 

1 
G(w):=S(w) ~ Fo(w) . 

Then we have 

1_ ((g., w) 2 _ 1) and 
n = l  n 

G(w) = (fo, w) 2 + ~ 2-n 2n + 1 (g2., w) 2 
n = l  

{ ~  ~ 1 ( 1  1 ) } 
- (go, w) z +  ~ 2-n 2n+1 (f2.,w) 2 

n = l  

=: G1 (w) -- Gz(w) . 

1 ) 1 ( 1  
2n + 1 > 0 and ~,~1 

1(1 
Since ~ 2n 

that 

(7) P(IGi(w) l>e[l lwl]  ( " ) < ~ ) ~ 0 ,  a s 6 ~ 0 ,  i = 1 , 2 .  

On the other hand, we can rewrite Fo(w) as follows. 

2 n = l  1'/ n=l ~ 

~ (  1 1) ~ (  1 1) 
.=1 in  1 ~ ( g 2 . - 1 , w Y + . = l  2 ~ - 1  2-n 

=: F i (w) - �89 ) - F3(w ) + log 2 . 

Owing to Lemma 4, we have 

(9) P(lFi(w)l > ~lllw/l~") < ~ ) ~ 0 ,  as ~ 0 ,  i =  1 ,2 ,  

and owing to Lemma 3, we have (9) also for i = 3. Consequently, we see that 

P ( t F o ( w ) -  log2[ > elllw[l (a~ < ~5) ~ 0 ,  as 6 ~ 0 .  

Since S(w)=G(w)+(1 /2rc )Fo(w) ,  (7) and the above fact imply (6) 
a = (1/27t)log 2. 

1) 
2n + 1 < oe, Lemma 3 implies 

for 
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Step 2. N o w  putt ing 

o0 ,2 .... } 

which is everywhere dense in R, we will show (6) for each a E A. 
First we note that Fo can also be rewritten as follows. 

( 1 0 )  f ~  ~ ! ( ( f 2 n ' w ) 2 - 1 ) - ~ l ( ( g n ' w ) 2 - 1 )  } n = l  H n =  1 F/ 

+ 2  n n = l  n = l  l'l 

+ 
.=1 2 n - 1  2-n ( f2 . -1 ,w)  2 .=1 2n2_1 2n 

=:F~(w) + �89 + F~(w) - log2. 

Following the same procedure of Step 1, (10) implies (6) for a = - (1/2=)1og 2 if we 
choose a suitable measurable no rm 1t" ][~a). N o w  rewrite the term Fz(W ) in (8) in the 
same manner  as above, say, 

! 1 / / F 2 = F21 q- ~F22 -t- F23 - l o g 2 .  

Then we have 

= ~'ff21 4. 2 2 - ~ F 2 3 - F 3 + 2 1 1 o g  2 ,  Fo F1 _ 1 , __i  F ,  1 , 

which implies (6) for a = 2-1(1/2re)log 2 (and a suitable measurable no rm [1" I1<% 
Continuing this procedure, it is easy to see that  (6) holds for each 
a = 2 - " ( 1 / 2 r c ) l o g 2 ,  m = 0 , 1  . . . . .  I t  is easy to see that  it also holds for 
a = -2 - " (1 /2 re ) log  2, only if we exchange the roles of (8) and (10). 
Thus we have obtained the following expression for each m = 0, 1, 2 . . . . .  

Fo(w) = Fl(w) + G"(w) + 2 - " 1 o g 2  , 

where G" as well as F1 has the following property.  

P(lGm(w)l > ~ll[wLI (a) < 5 ) ~ 0 ,  as 6 ~ 0 ,  (a = 2-"(1/2~)1og2)  . 

N o w  rewrite the term Fl(w) here in the same manner  as above recursively, say, 

then we have 

F l (w) = F'l' (w) + G" (w) + 2 - "  l o g 2 ,  

Fo(w) = F~'(w) + G~,(w) + Gm(w ) -1- 2" 2 - "  log 2 .  

Applying this procedure again and again, we will obtain (6) for every 
a = k2-m(1/27r)log 2, k = 1, 2 , . . . .  It is clear that  it also holds for all negative 
integers k. 
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Step  3. Let a s A and 11'11 (~) be such that  (6) holds. Take an arbi t rary h e H and put  

M ( w )  := e x p ( - ( h ,  w) - �89 [I h 112). 

Define a probabil i ty measure /5  on W by 

/~(dw) := M ( w ) P ( d w ) .  

Then it is well-known that  the distribution law of w - h u n d e r / ;  is just equal to 
P(Cameron-Mar t in ' s  theorem). Then we have 

t~(IS(w - h) - al > el Hw - hi[ (~) < 3) 

/ ~ ( I S ( w  - h) - al > e, [rw - hl[(") < ~5)• P(IPw[I (~) < 3)  

/7(11 w - h[Ic") < 5) P(llwll ta) < 5) 

EEM(w)IB(w)III w lit"J< ~] 
E[M(w)I Ilw]] (a~ < ~]  

E [ e x p ( - ( h ,  w))ln(w)[ Ilwll ~ < 3] 
E [ e x p ( - ( h ,  w))l Ilwl[ (a) < 3] 

where B :=  {wllS(w)- at > e}. Using Schwarz inequality the numera to r  of the 
above expression can be bounded  by 

E[exp(-2(h, w))[ I/wll <~ < 5] a/2 xP(lS(w) - a[ > el Ilwl[ <~) < ~)1/2. 

Although M is not  necessarily continuous,  it is not  difficult to see, using Lemma 
2 that  the condit ional  expectat ion of e x p ( - ( h ,  w)) given { J[ w [[ (~) < ~}, converges to 
one as 6 tends to zero. This is because the condit ional  law of I(h, w)[ is bounded  by 
the law of this variable (Lemma 2) . - -The limit of the condit ional expectat ion of 
exponentials of Gaussian random variables has been studied by Shepp and 
Zeitouni  in a recent work [10], using some techniques which are similar to those of 
this paper. 
Consequently,  we have 

(;1) P ( J S ( w  - h) - al > el IIw - hH (") < ~5) ~ 0, as 3--+0 . 

Not ing  that 

S(w  --  h) = S(w) - 2 (Kh,  w - h) - qg(h) , 

where K is the opera tor  given by (3), and that  

P ( l ( K h ,  w -  h)l > e l f l w -  hl[(O) < O ) ~ O ,  a s 6 ~ 0 ,  

which is proved by Lemma 2 and a similar argument  used in (11), we finally see that  

P ( I S ( w ) - ( p ( h ) - a l > e l l ] w - h l [  (a) < 3) --* 0, a s h y 0 .  

This completes the proof. [] 
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4 Appendix 

The aim of this Appendix is to prove the following two lemmas, from which we 
derived Lemma 2 ~ind Lemma 3 in Sect. 2. 

Lemma A1 (cf. [-4]) Let  # be the standard Gaussian measure on R". 

#(dx):= (2~) -" /2exp( - lx l2 /2)dx ,  x ~ R "  

Then for an arbitrary semi-norm [1'11 in R" and for an arbitrary ~ R " ,  it holds that 

~(1(r x ) l  < a, Ilxll < b) > ~(1(~, x ) l  < a)~(llxll  < b), a, b > 0 ,  

where ( . , . )  stands for the inner product o f  R". 

Lemma A2 Let  # be the same as Lemma A1. For arbitrary )~ = ()q . . . . .  2,) and 
v = (v l , .  �9 . , v,) with 2k, Vk > O, define semi-norms I1" I1~ and II I1~ respectively by 

IIxLla: = ~ 2kXk z , IIxl[,:= - V k X  2 , x : ( x l , . . . , x , ) e R " .  
k=l k=l 

Then it holds that 

~( l lx l l~  < a, lixll~ < b) >_- ~(Ibxll~ < a)~( l lx l l~  < b), a, b > 0 .  

The assertion of these two lemmas seems to be valid for any pair of semi-norms. In 
fact, when n __< 2, L.D. Pitt [93 proved it for any pair of semi-norms. But so far, it 
seems to be still an open problem for n > 3. 

In this paper, we will approach to the problem by means of the following 
inequality, which is an elementary case of the so-called FKG-inequality. 

Lemma A3 Let  f g: [0, ~ )  --* R be non-increasing functions and m(dx) be a probabil- 
ity measure without atoms on [0, ~ ) .  I f  f and g are square integrable with respect to 
m, then we have 

f ( x )g ( x )m(dx )  > f ( x ) m ( d x )  #(x)m(dx)  . 
0 0 0 

Proof. Put f :=  ~o f ( x )m(dx) .  Since f is non-increasing, there exists an Xo e [0, oe) 
such that 

[ f ( x ) - f > _  O, O<-_X<Xo, 

[ f ( x ) - f < O ,  X o < X < O O  . 

On the other hand, g is non-increasing too, and hence putting fl := g(xo), we have 

g(x) - - f l>=O,  0<=X<Xo,  

g(x) ~ < 0, X o < X < O ~  . 

We therefore have 

( f ( x )  - f ) ( g ( x ) -  fl) > O, x~[-O, x o ) w ( x o ,  ~ )  . 
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Then  we see that  

0 < ~ ( f (x )  - - f ) (g (x )  - fl)rn(dx) 
0 

= ~ f (x)9(x)m(dx)  - ~ f (x )m(dx)  9(x)m(dx). 
0 0 0 

[] 

Now let us prove Lemma A1. Since the Gaussian measure # is invariant under any 
rota t ion a round  the origin, it is enough to show 

#([xi[ < a, Ilxll < b) > #(Ixl l  < a)#(llxll < b),  

where x I is the first coordinate  of x = (x~ . . . .  , x,). 
Let  #1 and #y be the marginal  distributions of x l s R  and 

y - - ( x 2  . . . .  , x n ) s R  n- l ,  respectively. It is clear that the both  two are again 
Gaussian and that  # = #1 | #y. Then we have 

#(Ix1] < a, ;Ixll < b) = 2 ~ l t o . a l ( x i ) # , ( { y e R " - i l  II(xl,y)[I < b } ) # i ( d x l ) .  
0 

The indicator function l to ,a](X1) of the interval [0, a] is clearly non-increasing in 
xl  > 0 and it is known that the function 

# , ( { Y e R " - l l  II(xl, y)ll < b}) 

is also non-increasing in x~ > 0. (See [1], the proof  of Theorem 6.1.) Applying 
Lemm a  A3, we complete the proof  of Lemma A1. 

We will next prove Lemma A2 by induction. For  n -- 1, the assertion is clear. 
Suppose n > 2, then we have 

~(11 x I1~ < a, H x fl~ < b) = 2 ~ #i  (dxl)#,(l l  (x~, y)II ~ < a, II (xi ,  y)11~ < b) .  
0 

Now it follows from the hypothesis of the induction that 

#y(Ir(xl,y)llz < a, II(xl,y)rl~ < b) => #y(rl(xa,y)ll~ < a)~y(IJ(xx, y)ll~ < b), x l  => O. 

Fur thermore ,  functions py(ll (xl,  y)I1~ < a) and #r(ll (xl, y)IIv < b) are both non- 
increasing in xl  > O, and hence we have 

~(llxll~ < a, IIxL < b) ~ 2 S #1(dxl)~y(ll(xl,y)Hx < a)#y(II(xl,y)lJ~ < b) 
0 

_-> 2 S #l  (dxi )~ , (  If (xl ,  y)II ~ < a). 2 ~ #1 (dx i )# , (  IJ (Xl, y)I1~ < b) 
0 0 

= ~(llxll~ < a)~(llxll~ < b).  [] 

Acknowledgement. The author would like to thank the referee for presenting him an improved 
proof of Step 3 of the main Theorem. 
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