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Summary. We consider a L6vy process Xt and the solution Yt of  a stochastic 
differential equation driven by Xt; we suppose that Xt has infinitely many small 
jumps, but its L6vy measure may be very singular (for instance it may have a 
countable support). We obtain sufficient conditions ensuring the existence of a 
smooth density for Yt: these conditions are similar to those of  the classical 
Malliavin calculus for continuous diffusions. More generally, we study the 
smoothness of the law of variables F defined on a Poisson probability space; 
the basic tool is a duality formula from which we estimate the characteristic 
function of F. 
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0 Introduction 

Suppose that we are given a continuous diffusion process Yt; it can be repre- 
sented as a functional of  a Wiener process. The aim of Malliavin's calculus 
introduced in [8] is to prove, by means of probabilistic methods, the existence 
of a smooth density for Yr. The basic tool is an integration by parts formula 
on the Wiener space which enables to prove, under some conditions on the 
diffusion, that for any smooth function g. 

I]E[g'(h)]l ~ c sup [g(Y)] 
y 

for a C which does not depend on g; this implies that the law of Yt is absolutely 
continuous. Moreover, by iteration, the integration by parts formula shows that 
expectations of  further derivatives of  g are also dominated by the supremum 
of g, and the following basic result enables to conclude about the existence of 
a smooth density. 
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Proposition 0.1 Let F be a IR d valued variable; suppose that for any real- 
valued C~  function g defined on 1R d and any k c Nd: 

k( . . . .  kd ( f )  < G sup I#(Y)I 
[~Yl " '~Yd Y 

for a Ck which does not depend on g. Then the law o f F  has a C~  density. 

By choosing g(Y)= exp(iw.y) for w E IR d, Proposition 0.1 is a conse- 
quence of the following result which is proved by means of the inversion 
formula for the Fourier transform. 

Proposition 0.2 Let F be a ]R d valued variable with characteristic function 
O, and let k be a non-negative integer; if  

f [w/kl (w)l dw < 

then the law of F has a C~ density. 

It should be noticed that the integration by parts formula on the Wiener 
space is obtained by applying small perturbations on the Wiener process in 
the direction of the Cameron-Martin space, so that these perturbations involve 
absolutely continuous changes of  probability. 

Now consider the case where Yt is a diffusion with jumps: more pre- 
cisely, let # be a measure on 1R m which integrates the function Ix[ 2 A 1, let 
2+(dt, dx), t E ]R+, x E N m, be a space-time Poisson measure with intensity 
measure 2-(dt,  dx) = dt#(dx),  let 2 = 2 + - 2 - ,  let Z E IR m, and consider the 
L6vy process 

t t 

x =zt+f f xd (s,x)+ f f  d2+(s,x) (0.1) 
o {l~l<1} o {Ix[>1} 

without Brownian part and with L6vy measure #. We suppose that Yt is 
the solution of a stochastic differential equation (SDE) driven by Xt. The 
analogue of Malliavin's calculus for this framework was introduced in [2], 
and many papers were devoted to this subject afterwards. In order to prove 
an integration by parts formula in this case, one has to choose the type 
of small perturbations which should act on the Poisson measure 2+; in the 
literature, these perturbations consist in moving the points of  the support 
of  2 +, either in the time, or in the space directions; in both cases, as- 
sumptions ensuring the existence of a smooth density can be obtained for 
some functionals of  2 +. However, these results suffer some limitation. The 
technique of moving in the time direction (see [3]) has the advantage of 
being applicable without small jumps, for instance when Xt is a standard 
Poisson process; it can be used to study some diffusions Y,, but not Xt itself 
(this is not surprising since the standard Poisson process is integer-valued). 
On the other hand, since the move should be small and should induce an 
absolutely continuous change of law, the technique of moving in the space di- 
rections considered in [2, 1, 6, 7] imposes regularity conditions on the measure 
#, which exclude for instance the case where the measure has a countable 
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support. The aim of this work is to derive the existence of a smooth density 
for Yt in a framework which makes possible countably supported measures #; 
we will first obtain a result for a general class of  functionals F of the Poisson 
measure 2 +, then will apply it to the case F = Yr. 

For instance, let us consider the particular case where F = Xt is the L6vy 
process itself; the absolute continuity of  the law of Xt was studied a long 
time ago (see [14, 13] and references therein), and it appears that the main 
problems concern the case where # is singular. As it has been explained 
above, if for instance # has a countable support, then the classical technique of 
Malliavin's calculus cannot be applied. Nevertheless, one must notice that the 
characteristic function of Xt is given by the L6vy-Khintchine formula, so with 
Proposition 0.2, one can obtain conditions on # which are sufficient for the 
existence of a density and for its smoothness; these conditions state that # 
should have enough mass near 0, so that Xt has many small jumps; then, even 
if # is singular, the accumulation of small jumps forces Xt to have a smooth 
density. In [2], it is explained how precise estimations on the tail of  # near the 
origin are equivalent to precise estimations of  the characteristic function ~b(w) 
as w ~ ec; here, we only need an upper bound for ~b; this will be done in 
Sect. 1. 

Then we will consider more general functionals F of a Poisson measure 
2 + on a space U; our basic tool will be a duality formula on the Poisson 
space taken from [11, 12] which will be the analogue of the integration by 
parts formula on the Wiener space (actually, as noticed in [10, 11], by means 
of the Fock space formalism, the two formulas can be transformed into each 
other). However, the analogue of the Wiener gradient operator is not any more 
a derivation, so the formula on the Poisson space cannot be used to estimate 
the expectation of 9~(F) as on the Wiener space; the perturbation resulting 
from this operator indeed consists in adding a Dirac mass to 2 +. Nevertheless, 
it will appear that the duality formula can be used to estimate the charac- 
teristic function of F, and therefore, we will apply Proposition 0.2 rather than 
Proposition 0.1. Our assumptions will be of two types; the regularity assumption 
will say that adding masses to 2 + has smooth enough influence on F, and the 
non degeneracy assumption will say that this influence is large enough; the 
particular case where F is a linear functional of  2 + will provide in Sect. 1 a 
second study of infinitely divisible laws; the general non linear case will be 
worked out in Sect. 2. 

In Sect. 3, we wilt consider the case where F is a functional of  a finite- 
dimensional L6vy process Xt with many small jumps, and in Sect. 4, the 
particular case where F = Yt is the solution of a SDE driven by Xt will be 
dealt with. In classical Malliavin's calculus for continuous diffusions, the as- 
sumptions involve the vector fields of  the SDE; for example, the ellipticity of  
the diffusion matrix implies the non-degeneracy of the diffusion. However, in 
the case of  diffusions with jumps, the problem is made more difficult by strong 
geometrical interaction between the L6vy measure of  X and the equation. In 
this work, we will limit ourselves to the case where the SDE is driven by a 
L6vy process which has approximately the same number of small jumps in all 
the space directions. In this framework, the non-degeneracy assumption will 
be linked with the invertibility of  an analogue of the Malliavin matrix, and a 
sufficient condition ensuring this invertibility and which can be easily read on 
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the equation will be given; this condition consists of  two parts; the first part 
describes the behaviour of  the small jumps; it says that an analogue of  the 
diffusion matrix is elliptic (more general conditions of  H6rmander's type will 
not be studied in full generality, but an example will be given); the second 
part, which does not appear in the case of  continuous diffusions, is concerned 
with big jumps and says that the semi-flow generated by the equation is locally 
injective. Some examples and counterexamples will be discussed. 

1 Infinitely divisible laws 

We first set some notation. Let (U, ~ )  be a Lusin space and let 2 -  be a o--finite 
infinite diffuse measure on U; in particular, the measured space ( U , ~ , 2 - )  is 
isomorphic to IR with its Borel o--field and its Lebesgue measure. Let f~ be the 
space o f  integer-valued measures co on U such that co({u}) < 1 for any u, and 
co(A) < oc as soon as 2 - (A)  < oc; we consider on f~ the canonical random 
measure 

,~+(co, A) = co(A), 

the o.-field ~ generated by the variables 2+(A), A E ~ll, and the probability 
IP under which 4 + is a Poisson measure with intensity 2 ; this means that 
2+(A) is a Poisson variable with mean )y-(A), and that the variables 2+(A j)  are 
independent as soon as the sets Aj are disjoint. We will denote by 2 = 4 + - 2 -  
the compensated Poisson measure. 

Remark. We suppose that 2 -  is diffuse because formulas are simpler in this 
case; however, this is not a restriction, since one can always replace U by 
U x [0, 1] and 4 -  by its product with the Lebesgue measure. 

On the other hand, let h be a IR d valued measurable function defined on 
U such that 

f ( lh(u) l  2 A 1)dS<(u) < oo, 

and let 2 E IR d. We consider the variable 

F = ~  + f h(u)l[o,1](lh(u)l)d)~(u)+ f h(u)l(1,~)(lh(u)l)d2+(u), (1.1) 

where the first integral is a stochastic integral, whereas the second one is for 
each co E f~ a finite sum. Then the law of  F is infinitely divisible and its L6vy 
measure # is the image of  2 -  by h. 

Proposition 1.1 Suppose that there exists an ~ E (0, 2) and a c > 0 such that 
for any p C (0, 1) and any unit vector v, 

f ]v.xl2d#(x) > cp ~ . (1.2) 
{~; Iv'~l_-<p} 

Then F has a C~  density. 
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Remark. The conditions (1.2) can also be stated by saying that 

f Iw.xl 2 @(x) > clwl 2-~ 
{x ; lw  "x  I < 1} 

(1 .3)  

for any vector w such that ]w I >__ 1. 

Proof The characteristic function of  F is given by the L6vy-Khintchine 
formula 

r  = exp (iw.~ + f (e iw'x -- 1 - iw.x 1EO, l~(Ixl))d#(x)) , 

for w E IR a, so 

Ir = exp - f ( 1  - cos(w.x))d#(x)  

< exp - c '  f Iw.xl2d (x) < exp -e"lwl 
{Iw'xl <_-1} 

for Iwl > 1, from (1.3). w e  can conclude from Proposition 0.2. [] 

In particular, one easily verifies that the condition (1.2) is satisfied in the 
following cases. 

Corol lary 1.2 Define 

v(p)  = f xx* d~(x) . 
Ixl_-<p 

(a) I f  the family of  symmetric matrices p-~V(p),  0 < p < 1, is uniformly 
elliptic for some c~ C (0, 2), then F has a C~  density. 
(b) In particular, if  the ratio between the largest and smallest eigenvalues of  
V(p) is bounded as p --+ O, and i f  

lira inf  p -~  f Ix[ 2dp(x) > 0 (1.4) 
p-0 {ixl__<p } 

for some c~ E (0, 2), then F has a Cb~ density. 

These results for infinitely divisible laws can of  course be expressed in term 
of  L6vy processes (processes with stationary and independent increments). Sup- 
pose that U = IR+ • 1R m and that 2 -  is the product of  the Lebesgue measure 
on IR+ and of  a measure/~ on IRm integrating (ix]) 2 A 1). I f  one considers on 
U the function 

h,(s,x) = 1E0,tl(s)x, 

and if  Xt denotes the variable F of  (1.1) corresponding to h = ht and ~ = Zt 
in dimension d = m, then Xt is the L6vy process of  (0.1), and the image of  2 -  
by ht is in this case equal to t#. Thus, i f  the above assumptions are satisfied 
for #, then Xt has a C ~  density for any t > 0. 

Remark 1 The condition of  Corollary 1.2 is sufficient but not necessary for the 
condition (1.2) o f  Proposition 1.1. For example, suppose that Xt is the two- 
dimensional process which consists of  the Cauchy process with L6vy measure 
dx/x 2 on IR, and of  its quadratic variation. Then the L6vy measure /1 of  Xt is 
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given by 
2 d x  

f = fg(x,x ) 7  
~2 IR 

The eigenvalues of  V(p) are of  order p and p3, so the assumption of  
Corollary 1.2 is not satisfied; however, after some calculation, one can check 
that the condition of  Proposition 1.1 holds, so Xt has a smooth density. Later, 
we will study the solutions of  SDEs driven by L6vy processes Xt, and the 
assumptions about the LOW measure/~ of  Xt will be those of  Corollary 1.2(b), 
so this example will be excluded; it seems indeed hard to handle nonlinearities 
under more general conditions, though, as shown in [6], some results can be 
obtained from classical Malliavin's calculus. 

Remark 2 One can also find conditions under which Xt has not a C ~ density, 
but a C "(0 density, where n(t) is a non-decreasing function tending to ec as 
t---, oe; then (see [2,6, 1]) the solutions of  "well-behaved" SDEs driven by 
Xt satisfy the same property, so one can say that the LOW process is slowly 
regularizing. However,  the method which we will use for non-linear functionals 
is not well adapted to study this type of  behaviour. 

Remark 3 I f  the law of  F is rotation-invariant /3-stable (0 < /3 < 2) so that 
d#(x) is proportional to dx/lxl a+~, then V(p) is proportional to p2-~I. Thus 
our condition can be viewed as a comparison with (2 - e)-stable laws. 

We are now going to describe another proof  of  Proposition 1.1 which is 
more complicated, but which will be extended to more general functionals F.  
To this end, we need some other notation taken from [12]. We consider the 

+ of  f~ which consist in removing or adding a mass transformations e~ and e u 
at point u; they are defined by 

e~-co(A) = co(A N {u}C), e+co(A) = e~-co(A) + 1A(U). (1.5) 

We will have to use compositions of  transformations of  this type: if  ul 4= u2 E U 
and if  01,02 c { - ,  +} ,  then 

01 02 ~0~ O ~01, ~ 01 O 202 = ,~ 0l (1.6) 
gUl O ~u2 = 

Note also that • eu co = co for all co and 2-- almost all u, so, if  Z. is a positive 
measurable process indexed by u E U, then 

f(z  • o e, )d2•  = fZud2•  (1.7) 

After these easily checked properties, let us state the lemma which appears as 
the basic result for our Poisson stochastic calculus. 

L e m m a  1.3 I f  Z, is a positive measurable process such that 

Z. o e + = Z ,  oe  u ,  (1.8) 

then 
IEf  Zu d2+(u) = IEf Z, d2-(u).  (1.9) 
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Proof (sketch). One shows that the processes Z satisfying (1.8) are the positive 
functions on U x f~ which are measurable with respect to the a-field generated 
by sets A x B with A E og and 

B 6 ~r(2+(A');A ' 6 q/, A' NA = @). 

Thus it is sufficient to prove the result when Z is the indicator of  such a set, 
and this is not difficult because B and 2+(A) are independent (details of the 
proof can be found in [12]). [] 

In particular, if Z is a 2 -  | IP integrable (subsequently, we will only say 
integrable) process satisfying the condition (1.8), then the variables f Z~ d2+(u) 
are integrable, and formula (1.9) still holds. On the other hand, if we remove 
the condition (1.8), then the processes Zu o e~ still satisfy it, so for any positive 
process, properties (1.7) of the integrals can be completed with 

IE f (Zu o e[) d2~:(u) = IE f Z~ d2+(u). (1.10) 

Now, for functionals F defined on f~, we introduce the operator 

+ - F  (1.11) D~F = F o e, 

(with a slight modification with respect to the definition of [12]). Since the 
image of IP by e + is not absolutely continuous with respect to IP, the variable 
DuF is not well defined for u fixed when F is defined almost surely; however, 
it is defined d2- (u)  | diP almost everywhere. We also consider an operator 6 
which operates on integrable processes Zu and which is defined by 

6(z)  = f (zu o 82) d~(u) = f (zu o q )  d~+(u) - f Z~ d r  (u). 

The following result can be fotmd in [11] or [12] and is an easy consequence 
of (1.10) and (1.6). 

Lemma 1.4 Let Z be a complex-valued integrable process and let G be 
a complex-valued bounded variable. Then 

IE[Ga(Z)] = IE f ZuDuGd;~-(u). (1.12) 

Remark. The operators D and 6 are closable in L 2, and it appears that in 
the chaotic representation of square-integrable functionals, D and 6 correspond 
respectively to the annihilation and creation operators (see [10, 11]); thus the 
lemma describes the duality between these two operators. When transposed to 
the Wiener space. D and fi are respectively the Malliavin derivative and the 
Skorohod integral; however, here, D is not a derivation; it satisfies 

Du(F1F2) = F1DuF2 + F2DuF1 + DuF1DuF2 . (1.13) 

We now define non linear operators 6(n) by induction on n as follows; for 
n = 0, put ~(~ = 1; for n > 0, the domain of 6(n+l) consists of processes 
Z in the domain of 6(n) such that Z,6(n)(Z) is an integrable process, and for 
such a Z, we define 

~(~+~)(z) = ~(z~(" ) (z ) ) .  
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In particular, if Z is deterministic and integrable, then it is not difficult to verify 
that 

6(n)(z) = f Zul ...Zu, d,~(Ul)...d)L(un), 
& 

with 
Sn = {(Ul, . . . ,Un)E Un; V(i,j) i4=j ~ ui:#uj} , 

so that 6(n)(Z) is in the nth Poisson chaos; if U is identified with an interval 
of IR, 

3(~)(Z) = n! f Zul . . .Z, ,  d2(ul). . .d2(u~) . (1.14) 
{U 1 <...<Un} 

Lemma 1.5 Let Z be an integrable process and let G be a bounded variable 
such that 

G = f Z ~ D u G d 2 - ( u ) .  (1.15) 

I f  Z is in the domain o f  6 (~), then 

IE[G6(n)(Z)] = IE[G]. 

Proof This is evident for n = 0 and 

IE[G6("+O(Z)] = IE[G6(Zf(")(Z) )] 

= �9 [3(")(Z) fZ.auGdZ-(u)] 

: 

from the duality formula (1.12) and the assumption (1.15). [] 

Second proof  o f  Proposition 1.1 The assumption (1.3) can be written in 
the form 

f Ih(u) �9 w l 2 m - ( u )  >_clw[ 2-~ 
A 

for Iwl > 1 and 

A=A(w) - - - -{uE  U: [h(u) .w[  < 1}. 

Thus there exists a p(w) > 0 such that 

f Ih(u) �9 w[ 2 d~-(u)  >= clw[2-~/2, 
B 

with 
B = B(w) = {u E A(w); [h(u)[ > p(w)}.  

Note that B has 2--finite measure. Then 

f leiW. h(u) _ 112 d2-(u)  > c' f Iw" h(u)l 2 d)C(u) 
B B 

> cc' 1w12-=/2. 
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Now consider the deterministic function 

1 B ( u ) ( e - i W ' h ( u ) - - 1 )  / f  l e iW'h(u)_  l l 2 d 2 - ( u ) .  z~= 
/ - B  

489 

and the variable G = G ( w )  = exp(iw �9 F) .  Then Z is bounded, and is zero 
outside B which has finite measure, so Z is integrable: moreover 

DuG = (e iw " h(u) _ 1)G 

for 2- -a lmos t  every u, so the assumption of  Lemma 1.5 is satisfied, and there- 
fore the characteristic function q5 of  F satisfies 

I r  = IIEEG]I = I~[G6(~) ( / ) ] I  _-__ lE[la(n)(z)[2] 1/2 

for any n. But from (1.14). 

IEKIr(~)(Z)I 2] = n !  ( f  Izul 2 d2- (u) )"  

= n! idw. h(~) _ 112 d 2 - ( u  

< C.Iwl~(~-2>. 

Thus, for any k > 0, 

Iwlkl•(w)l __< Cnlwl~-~(2-~>/2 

is proved to be integrable by choosing a large enough n. [] 

2 The main result 

We now want to prove a result for non linear functionals F .  The basic idea 
has been developed in last proof, but it involves here more technicalities. We 

+ and Du are respectively defined in use the notation o f  Sect. 1; in particular, e u 
(1.5) and (1.11); if z = ( U l , . . . , u k )  C U k, we consider the transformation 

gz + = e -t- O O q- 
u 1 . . . F.Uk 

and the operator 
D~ = D u l  . . .  D u k  . 

I f  7 is a real fimction defined on U, we also extend 7 to U k by putting 

7 ( ~ )  = 7 ( u l ) . . .  7 ( u k )  �9 

In the case k = 0, we use the convention e~-co = co, D o F  = F and 7(0) = 1. 

The measure 2 is extended to U k by putting 

d}L( Ul  . . . . .  Uk  ) = d,'],( U l  ) . . .  d )~(  Uk ) , 

and a similar convention is adopted for 2 + and 121 = 2 + + 2 - .  In particular, 
the expression "almost everywhere" on U k will refer to the extension of  2 - .  
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The positive constant numbers will be denoted by c or C, and may vary from 
line to line; if they depend on some parameter, this is emphasized by an index. 

Theorem 2.1 Let 7 be a positive function defined on U such that 7 A 1 is in 
L2(U,2- ) ;  for  0 < p < 1, define 

A ( p ) = { u E  U; 7(u)_<- p } ,  

and suppose that 
f 7(u)2d2-(u) > cp ~ (2.1) 

A(p) 

for  some ~ E (0,2). Let F be a real-valued variable such that 
(a) for  any p E (1,ec),  any k > 1 and almost any z C A ( l )  k, one has 

[ID~FIIp ~ Cp, kT(z) ; (2.2) 

(b) there exists some ~/2 < fi <= 1 such that for  any p E ( 1 , ~ ) ,  any pE(O, 1), 
any k >= 1 and almost any ~ E A(p) k, one has 

- i  ~+ 

P 

Then F has a C ~  density. 

5 Cp, k ~)(U) 2 d ) ~ - ( u  . 
A ) 

(2.3) 

Assumption (a) is a regularity assumption on F with respect to the per- 
turbations e +" it means that each iteration o f  a Du multiplies the order of  T 
magnitude by 7(u); in Sect. 3, we will take U = [0, T] • IR m and 7(t,x) = Ixl, 
so, for k = 1, (a) will mean that a jump of  size x at time t of  the process Xt 
o f  (0.1) should induce on F a perturbation of  order Ixl. On the other hand, 
(b) is a non-degeneracy assumption; it says that ]DuF] is bounded below by 
7(u) in some sense; actually, an application of  the Jensen inequality proves 
that 11 H-1  lip --> IIHllp 1, and one can deduce from (2.2) that the right-hand side 
of  (2.3) is dominated by the left-hand side; thus condition (b) means that the 
two sides are equivalent when p tends to 0. Let us now state the extension of  
Theorem 2.1 to the case o f  vector-valued variables F .  

Theorem 2.2 Let F be a IR d valued variable; suppose that for any unit vector 
v E S a-l ,  there exists a function 7~ such that the variable F.v satisfies the 
assumptions o f  Theorem 2.1 with 7 = 7~. I f  the constant numbers c~,fl, c and 
Cp, k can be chosen independently o f  v, then F has a C ~  density. 

Example. For variables defined by (1.1), one has DuF = h(u), so iterates o f  
the operators D,  i are zero on F.  Thus (2.2) and (2.3) are satisfied with 7v(u) = 
]h(u)-v] and fl = 1, so Theorem 2.2 reduces in this case to Proposition 1.1. 

Remark. The theorems also hold when F is defined on the product o f  f~ with 
another probability space: this other space may for instance be a Wiener space 
or another Poisson space. 

Theorem 2.1 will be proved by estimating the characteristic function ~b(w) 
of  F as w ~ ec; more precisely, we will check that for any n, the function 
[w]-n~b(w) is bounded for ]w] _-> 1 by some number depending only on n, ~, fi, c 
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and Cp, k: then we will deduce that F has a smooth density as in Sect. 1. 
On the other hand, if  F is vector-valued, we can apply this estimation to 
the variables F.v for v a unit vector; this implies that w-nO(wv) is bounded 
uniformly in w => 1, vESd-1; we deduce that ]w]-~qS(w) is bounded uniformly 
in w E IR d, [w[ > 1, so that Theorem 2.2 actually follows from Theorem 2.1. 
Thus the remainder of  this section is devoted to the proof  of  Theorem 2.1 for 
a real-valued F.  

For w C IR, ]w] > 1, and ( > 0, consider 

B(w,()  = {u C U; ~ < 7(u) < Iw]-l/~} . (2.4) 

By taking p = Iw] -1/fl, the assumptions (2.1) and (2.3) are written in the form 

f y(u) 2 d 2 - ( u )  > c]w]-~//~ , (2.5) 
B ( )1  

f lDuf]21{iD~Fl<_l/iwl} d2-1(u)  o 
p 

(fB )--1 =< Cp, k ~](u) 2 d 2 - ( u )  . (2.6) 

for v C B e and B = B(w, 0). This implies that there exists ~o = ~o(w, p,  k)  > 0 
such that (2.5) and (2.6) are also satisfied for B = B(w, ~), 0 < ~ < {0, and 
after a modification of  c and Cp, k; the sets B(w, {), ~ > 0, have the advantage 
of  having 2 -  finite measure. Now consider the process 

Zu = la(u)(e -iwD~F- 1 ) l / f 8  ]dw~ - l l2d2 (v) (2.7) 

for B = B(w, ~). Then G = e iwF satisfies 

DuG = (e iwD~F - 1)G,  

so (1.15) is satisfied, and from Lemma 1.5, the estimation of  IE[G] can be 
reduced to the proof  of  Z E D o m ( 3  (")) for ~ > 0 small enough, and to the 
estimation of  6(n)(Z). Recall that Sn is the subset of  U n consisting of  vectors 
with distinct components. 

L e m m a  2.3 Let Y~ be a positive process indexed by z -- ( u b . . . , u n )  ~ Un; 
consider (Ob...,O~) E { - , + } ~ .  Then 

IE f Yz d2~ (btl)..- d2On(un ) 
Sn 

- f o I oo -- 0 . . . o  e , , )d2 - (u l ) . . ,  d 2 - ( u , )  . 
U n 

Remark. In the right-hand side, the euj corresponding to Oj = - can be omitted. 



492 J. Picard 

Proof From Fubini's theorem and (1.10), the left-hand side is equal to 

E f ( s~ l&(z)Yrd'~~176 d20~(ul) 

=E f ( Sn_ 1 l&(~)Yrdj'O2(u2)'"d2G(Un)) ~ d2-(ul) 

= f @ s . _ ,  (Yr~176 d2-(ul)" 

It is then not difficult to prove the lemma by induction on n. [] 

Lemma 2.4 Let Y~ be a process indexed by ~ = ( q , z 2 ) E  U k x U ~. I f  

then 

]E f  IY~I Id, ZO:l)ld;~+(r=) < ~ ,  

IF:, f Yzd}~(T1)d/~+(T2):]E f DvtY~o~,;d~-(T ) . 
Sk+ l uk+ 1 

Remark. When q and r2 consist of  distinct components, then 

(Dq Y,:) o e + = Dq(Yz o e + ) 
"~2 r 2  " 

Since this holds for almost any (q , r2 ) ,  the right-hand side of  the lemma is 
not ambiguous. 

Proof It is sufficient to expand d2(q)  and to apply previous lemma to each 
term. [] 

Lemma 2.5 For any n, the process Z defined by (2.7) is in the domain of  5 (~) 
for ~ > 0 small enough, and 

5(~)(z)= f h (Zuj oe~-t o... oe~)dZ(u,), dZ(un). (2.8) 
& j=l 

Proof This result is again proved by induction on n. For n = 1, we have to 
prove the integrability of  Z: to this end, note that Zu is zero for u outside 
B = B(w, ~) which has 2 -  finite measure, and that 

(f )l 
F 2 d2-(v)  [Zu[ <= Cw -2 Dv I I{ID~FI<=I/lw[} (2.9) 

The right-hand side is integrable from (2.6) for ~ small enough, so Z is 
integrable and (2.8) for n = 1 is evident. Now suppose that the result holds 
at rank n; we have to prove the integrability of  ZuS(nl(Z); from the formula 
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(2.8) written at rank n, 

n Z I~")(z)l _-__ f HI ~j 
Sn j=l 

o ~ o. . .o ~jl I d~(u~)l ... I d2(u,)[ 

Oc{-,+}nsn j = l  
o 8~ o . . .o  ~ I  d2~ ...a'~~176 

Thus, 

~flz~116<~)(z)l d2-1(u) 

=< ~ E f I/u01UI/.j~176176176176 
0C{--,+} n Sn+ I j = l  

n 

+ H + = ~ IE f IZ~oo~u<~,o,o) I IZ~jO~wr ) 
0E{--,+} n un+l "= 

from Lemma 2.3, where z = (u0, . . . ,u~)  and U(z,j ,O) consists o f  the compo- 
nents uk such that j < k < n and Ok = +.  On the other hand, one deduces 
from (2.9) and (2.6) that for any p,  the variables Z, o e + are bounded in L p 
for ( small enough; since they are equal to 0 outside B, this implies that the 
above expression is finite. Thus Z is in the domain of  6 (~+1) and 

~(n+ l ) ( z  ) 

= f(Zuo o ~s o ~s d2(uo) 

= f(Zu~ ~176 \sn J=~-[(ZUJ euo- o ... o 8uj-)l{uj=~uo}d2(Ul) ... d2(un) d2(uo) 

satisfies (2.8). [] 

In order to compute the variance of  ~(n)(Z), we need a new multi-indexed 
process. For z = (u l , . . . ,u2n)  E U 2", define 

n _ 2n 
"~(~)= lsnxSn(~)H(Zujj=l O~u 'O . . .  o '~uj- ).=n~I+l(ZUj o~u~+l o . . .  o ~ ) ,  (2 .10)  

where Zu is the conjugate complex number of  Zu. Let Z(z)  be the random 
function of  z obtained from Z by symmetrization. 

L e m m a  2.6 For any n, 

(2n)! 
m[16~")(z)12] -- k+~, 2r162 ~ f (Dz,Z(Zl,'C2,'c2) o ~; )d2- ( ' c l )d2- ( ' r2) ,  

= U 2 k  X U l 

(2.11) 
N 

where for  each (k, l), the process (21,22) ~ D,lZ(zl ,  22, 22) o e + is (2-)| 22 
| IF' integrable for  ( small enough. 
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Proof From Lemma 2.5, it is clear that 

la(')(z)l 2 = f 2(-c)d2(-c) = f Z(z)d2(-c). 
u2n u2n 

In this integral, the components of  v are not supposed to be distinct, and equal 
components cannot be neglected in the integration with respect to 2+; however, 
since Z(z)  is zero as soon as three components of  r are equal, there only may 
be some pairs o f  components which are equal; when two components are equal, 
we can use 

d2(u) d2(u) = d2+(u). 

By developing on the possible numbers l = 0 . . . . .  n o f  such pairs and by using 
the symmetry of  ~z, we obtain 

(2n)! 
lO(')(Z)l 2 =  ~ 2/(2k)!l[ f Z(~l,'cz, rz)d)~('~l)d,4+('c2) 

k+l=n $2k+1 

with zl of  length 2k, ~2 of  length l, and where the coefficient is the number 
of  sets of  l disjoint pairs in {1 . . . . .  2n}. From the definition of  Z and since the 
moments of  Zu o e + are bounded, we prove that 

]E f I~(-q,'~2,-c2)l Id;t(~,)ld,~+(~2) < 
s2k+l 

for ~ small enough, so we can apply Lemma 2.4 in order to conclude. [] 

Thus we have to estimate the right-hand side of  (2.11); to this end, we 
still need some technical results. I f  He is indexed by z E Uk Bk, the notation 

He = O(7(r))  will mean that for any k, for almost any r E B k, and for any p,  
one has 

Jill, lip < Cp,~(z) 

for ~ > 0 small enough. I f  H depends on some other parameters, the constant 
Cp, k must be uniform; in particular, H will generally depend on w. 

L e m m a  2.7 Let H, H1,H2 be complex variables which may depend on some 
parameters. 

(i) IfD~H = O(7(r)),  then DqH o e~ = O(7(rl)) .  

(ii) I f  D~Hj = O(7(z)) for j = 1,2 and r of length at most k, then D~(H]H2) = 
O(7(z)) for r of length at most k. 

(iii) IfD~H = O(?(r ) )  and H -1 o e+ = O(1), then D~(H -1) = O(7(z)). 

Proof The first result is proved by induction on the length of  z2, this is evident 
when the length is 0; suppose that it holds for any z2 of  length k, and let us 
prove it for ~ = (rz, V) of  length k + 1; to this end, note that 

+ =D~jHoe + +D(q,v)Ho~ + D z l H  o e(.C2,V ) 

is of  order 7(za ) + y(zl)7(v) from the induction assumption: moreover ?(v) < 1 
on B, so (i) is proved. The second result is also evident for k = 0; suppose 
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that it holds at rank k and let us prove it for z' = (%v) of  length k + 1; from 
(1.13), we have 

D,,(H1H2) = DzDv(H1H2) = Dz(DvH1DoH2 + H1DvH2 + H2DvHI ) 

= y(v)2Dz(H[H~) + y(v)D~(H,H~) + V(v)D,(H;H2) 

with Hj = DoHj/7(v); from the induction assumption applied to the vari- 
ables Hj and Hj ,  we deduce that this expression is of  order y(z)7(v) = 7(z'),  
so (ii) is proved. The third result is also proved by induction on the length 
of  z. When the length is 1, the result follows easily from the assump- 
tions and 

DoH 
Do(1/H) - H ( H  o e +) " (2.12) 

I f  the result holds for "c of  length k and in order to prove it for "c' = (~, v) o f  
length k § 1, we apply the operator Dr to (2.12) and obtain 

1 (Doll ) 
?(v)DT,(1/H) = -Dr  \ - ~  H - I ( H  o g+) -1 . 

From (ii), we only have to estimate D~ applied to each of  the three terms 
DvH/y(v), H -1 and ( H  o e+) -1. For the first one, we use the assumption; for 
the second one, we use the induction assumption; for the third one, we apply 
the induction assumption to the variable H o e + which satisfies 

D~(H o e +) = O(?(z))  

from (i). Thus all these terms are of  order 7(Q, and we can conclude that 
D~,(1/H) is o f  order 7(v)7(z) = 7(z'). [] 

Remark. Subsequently, we will consider variables or processes which are 
smooth in the sense that each application of  D ,  multiplies their order of  mag- 
nitude by 7(u). Lemma 2.7 says that this class of  smooth variables is stable 
by some operations. 

L e m m a  2.8 For [w[ > 1, almost any u E B, almost any z E B k and ~ small 
enough, one has 

(1 'B f ))--1 [[D~Zullp ~ Cp, kT(U)y('C) w 7(v)2dj[-(v 
Proof We first prove by induction on the length k of  zl that 

Dq (exp(-iwD.~2F) - 1 ) = O(IwlT('Cl )~('c2) ) (2.13) 

for zz of  length l > 1. For k = 0, we have 

l e xp ( - iwDr  11 < Iwl tDr = O(Iwl~(~2)) 
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from assumption (2.2). Now suppose that the estimation holds at rank k, con- 
sider a vector rl of  length k, and ~] = (zl, v) of  length k + 1. Then 

D d e x p ( - i w D ~ 2 F  ) -- 1) 

= e x p ( - i w D ~ 2 F  - iwD, ,2F  ) - e x p ( - i w D r 2 F  ) 

= ( e x p ( - i w D r 2 F )  - 1 )(exp(-iwD~,2F) - 1 ) + (exp(--iwD~,2F) -- 1 ) 

with z~ = (~2,v). We apply the operator D~ l and use Lemma 2.7(ii) and the 
induction assumption to check that the expression is dominated by 

~('Cl)(W2~(X2)]~(T~_) -~  Iwl~(~;)) = Iwlw(~'l)w(~2) (l~,lw(~2) + 1). 

Since 7 is bounded by 1/Iw t on B, 7(z2)  is bounded by 1/Iw] ~, and we can 
conclude about (2.13). In particular, we have 

D , ( e  -iwD"F - 1) = O ( I w ] y ( u ) 7 ( z ) ) .  (2.14) 

Now define 
H = f i e  iwl)"F - l [2dk- (u )  . 

B 

By applying the operator De to 

[e iwDuF -- 112 = (e  iwDuF -- 1 ) ( e  -iwDuF -- 1)  

and by using our estimation (2.14) and Lemma 2.7(ii), we obtain 

D~(lei'~Z)~F _ 112) = O(w2~(Tj)'~(tl)2), 
s o  

D z H  = O ( w 2 y ( ~ ) f  T(u)2 d ~ - ( u ) )  �9 

On the other hand, our assumption (2.6) implies that 

((s ,)') + O W 2 2 (U , H -1 oe~ = ?(u) d2-  

so, from Lemma 2.7(iii), 

( I s  t D ~ ( 1 / H )  = O y ( z )  w z 7(u)id)~ (u) . (2.15) 

Now Z, is the product of  the two processes which have been studied in (2.14) 
and (2.15), so we can conclude from Lemma 2.7(ii). [2 

P r o o f  o f  T h e o r e m  2. I The process Z(zl,  z2, z2) is defined by symmetrization 
of  (2.10), so it is a linear combination of  products of processes; in particular. 

l~7(zl,r2,v2)[ =< I ]  IZul 1-I [/ul 2 
UE'C I UEZ 2 
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almost everywhere, so 

2('C1,'C2, T2) ~- O 7('L'I )~('G2) 2 WfB~(bl)2d,~--(U ) o 

We apply the operator Dq and the transformation e + to this expression, and 
we expand Dq by iteration of  (1.13); we obtain expressions of  type D~,(Z, o 
e~3 ) o e + where ~ is extracted from Zl, u and z3 are extracted from (zbz2);  
if  z~ and z3 have a common component, this expression is 0; otherwise, it is 
almost everywhere equal to D~,Z, o e + where z~ consists of  the components 

of  z: which are not in z3; from Lemmas 2.8 and 2.7(i), it is of  order 

7(u),(Z'l) (Iw, f ,(v)2 d2-(v)) -I 

This means that applying D~, and e + multiplies the order of  Z~ by 7(z~). By 

+ to taking into account all the terms, one can check that applying Dq and ez2 
Z(r l , r2 ,  ze) multiples its order by 7(zl), so that 

OzlZ("Cl,"g2,"c2) 0 ~ ;  = O ~("61)2~;('i~2) 2 wf]l(b/)2 d,)~-(b/) 

After the integration with respect to Zl and z2, we obtain 

fD~12(~l, r2, r2) o ~+ a ,~-(q)  d,~-(~2) z2 

= 0 (W -2n / \2k+l--2n"~ 

= O(iwl-(2-~/~> ~) 

from (2.5). From Lemma 2.6, the left hand side is involved in the variance 
of  6(n)(Z), so, by choosing ( small enough, the characteristic function q~ of  F 
satisfies 

t~b(w)l < IE[I6('~ < Cnl w I -(2-:'//~)'/2 

and we can conclude as in Sect. 1. [] 

3 Funetionals of  L6vy processes 

Suppose that U = IR+ • IR m, that 2 -  is the product o f  the Lebesgue measure 
on IR+ and a measure p on IR m which integrates the function Ixl 2 A 1. Then 
variables on f~ are functionals o f  the L6vy process (Xt; t > 0) with L6vy mea- 
sure # defined by (0.1). We would like to find conditions which are sufficient 
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for the existence of  a smooth density and which are more tractable than those 
of  Theorem 2.2; these conditions will then be applied to the case of  stochastic 
differential equations. The particular form of  U makes possible the use of  the 
differential calculus on IR m, and we are going to replace the non-degeneracy 
condition (2.3) by a condition involving an analogue of  the classical Malliavin 
matrix. A random variable F defined on ft can be viewed as a fimctional of  
the path s ~-+ X~, and for random variable F defined on ft can be viewed as a 
functional o f  the path s ~-+ Xs, and for (t,x) E U, the variable F o e+x is equal 
to the functional F computed for the transformed path 

S ~ - + X s 4 - x l { s > t }  . 

Theorem 3.1 Suppose that the Ldvy measure # satisfies the conditions of  
Corollary 1.2(b). Let T > 0 and let F be a IR d valued functional o f  (Xt;O <_ 
t < T) satisfying 
(a) for any p and k, 

17 ~--- ((tl, Xl) . . . . .  ( t k ,  Xk)), Ixjl ~ 1} 
p 

(3.1) 

(b) there exists a matrix-valued process Ot such that for Ixl < 1, p > 1. 

][DtxF - OtX[[p <= Cp[xl r 

for some r > l, and 

(3.2) 

T ) -1  P detfoCtO*dt < o o .  ( 3 . 3 )  

Then F has a C~ ~ density. 

Remark. In (a), the essential supremum is relative to the product of  measures 
dtjd#(xj); in particular, we can replace the process z ~-+ D~F by one of  its 
modifications: this is useful because F o e + is generally not well defined when 
X has a jump at one of  the times tj. 

In order to prove Theorem 3.1, we have to verify the conditions of  
Theorem 2.2; to this end, we put 

~(t,x) = lxt tE0, r l ( t )  

and fix fi in (~/2, 1). We will need the following result which is proved like 
Lemma 2.7. 

L e m m a  3.2 Let H, Hi, H2 be variables which may depend on some parameters. 
(i) I f  

esssup ID~HI p 
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for any k and p, then 

ess sup 
('c I , z 2)CA(1 )k+l 

(ii) If  

for j = 1,2, then 

[DqH[_~l )o e+*2 p 

ess sup ID,Hjl p 

,cA(1) k 
<= Cp, k 

esssup ID*(H1H2)I p < Cp, k . 
,~A(1)k 7(~) = 

Now, for k and v fixed, define the events 

and 

and let 

El(p) = 

Cp, k,l . 

esssup f ID~F.vl2 oe+, dA-(u) - f I~Ptx.vl2 dtd#(x) 
~Ea(p) k A(p) A(p) 

_-> 1. A(p) f IO'x'vl2 dtd#(x)} 

/ + } E 2 ( p ) =  esssup ]DuFloe, > pB , 
1. (z, u)EA(p) k+l 

E(p) = E l (p )  U E2(p) . 

Note that on the complement of  E(p), 

(A f),DuF.VI2I{ID,F, vI<p#} d2-(u)) 

L e m m a  3.3 For any q, 

o ~ + => 1 f i~tx.vl2dtdlz(x) 
A(p) 

]P IE(p ) ]  ~ Ck, qP q . 

499 

(3.4) 

(3.5) 

f Iq,,x.~12dtdl,(x) = ~*f~,, xx*d#(x) ~*dt~ 
A(p) 0 {]x I p} 

(fo ) =~ C f ]XI 2 d # ( x ) A  Otl]lt "k d t  , 
{1~t =<p) 

Proof We have to estimate the probabilities o f  El(p) and E2(p) as p--+ 0. 
Note that from the assumptions on V(p) in Corollary 1.2(b), 
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where A(S) denotes the smallest eigenvalue of S, so from our assumption (3.3), 

Af  ) I~x.v[ 2 dt dp(x) = O {Mfp } IxlZdg(x) (3.6) 

in the spaces LP; on the other hand, 

A(p) f ID"F'v[2 o g+ d X- (u) - A(p) f [tbtx'vl2 dt d#(x) 

<= f ]b~(lDuF.v[2)[ d)~-(u) 
A(p) 

+ f (2lOtXl + [DtxF - Otxl)[DtxY - t)txldtd~(x) (3.7) 
A(p)  

with the notation 

k 
D z H  = H o g  + - H  = Y'~Duj H ~ e+ul 0 , . . 0  'f'uj4-_ 1 

j= l  

One deduces from (3.1) and Lemma 3.2 that 

(Ul ,...,Uk )CA(1) k 

SO 

. . .  _~l/(,/(uj)7(u) 2) < Cpk e s s s u p  ]Duj(lD~F.v[:)oa+oUl O,S@ = , , 

P 

ess sup [-D~( [DuF.vI2 )I = O(py( u )2 ) . 
z c A ( p )  k 

(3.8) 

From (3.2), (3.7) and (3.8), one obtains 

ess supzeA(p) k A f(p) ]D~F'vl2 ~ e+d 2- (u)  - A(p) f [tPtx'v[Zdt d#(x) 

= o (P~(p)f Y(u)2dX-(u)+A(p) f ~(u)r+ld;~-(u) 

= 0 ( p(r-~)AI Ixl <=p} [x'2dg(x)) " (3.9) 

Thus the product of  the left-hand sides of  (3.6) and (3.9) is of  order p(r-1)/,1 in 
any L p, so, since El(p) is the set o f  co C f~ such that this product is greater than 
1/2, its probability is o f  order pq for any q > 0. In order to estimate E2(p), 
one deduces from (3.1) and Lemma 3.2(i) that 

ess sup ]D,F[ o ~+~ p < Cp k 
( z , u ) e X ( 1 ) k + l  " 7 ~  = " ' 
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so 

esssup [D,F] o e + _ O(pl_~ ) ' 
(~,u)eA(p)~+i P/~ 

and therefore, the probability o f  Ez(p) is also o f  order pq for any q > 0. [] 

Proof of  Theorem 3.1 Recall that 7(t,x) is [x[ for t E [0, T], so condition (2.1) 
is evident from the assumption (1.4); thus we have to verify that each variable 
F.v, v E S d-l, satisfies (2.2) and (2.3). But (2.2) follows immediately from 
(3.1), so let us prove (2.3) for p and k fixed. Define 

R = R(p, co) = sup{p' < p; co r E ( p ' ) } .  

From Lemma 3.3, 

Vp' < p IP[R < p']  < IP[E(p')] < Cap  tq . (3.10) 

From the definition o f  R, there exists a variable R' = if(p, co) taking the value 
p on the complement o f  E(p), and such that 

R(p, co)/2 < R'(p, co) < R(p, co) and co C E(R'(p, co)). 

One can check that R ~ also satisfies an estimate o f  type (3.10), so the moments 
o f  l i f t  are finite, and moreover 

IE[R'-'I{R,<p}] <= Cn, qP q (3.11) 

for any n and q. Now if we recall that A(S) denotes the smallest eigenvalue 
o f  S. 

(a f)[DuF.vl21{lD~F.vl<p~} d 2-  ( u ) ) -  l o e + 

<= IOuF.vf <=p,} d2-1(u) o e + 
a( ) )1 

<= 2 IOtx.v{Z dtdl~(X) 
A( ) 

( < CA ( , f  OtOt* dt) Ix[ 2 
',o {ixl<R,} 

(f,,o- d t /  f dbt(x) + CR'-=I{R,<p} . < CA 
{ I~1 <= p} 

In the first inequality, we have used the property R' =< p; in the second one, 
we have used (3.4); in the third one, we have used (3.5); in the last one, we 
have considered separately the eases R ~ = p and R ~ < p, and in the latter case, 
we have applied 

f Ixl d/~(x) => cR '~ . 
{Ixl<R '} 
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Thus the estimation (2.3) which has to be proved for F.v can be reduced to 
the estimation of  

{ixlfp) [xl2 dla(X) + CIIR'-=l{R, <;}llp 

as p---, 0. The first term (which tends to infinity) is exactly what we want, 
and the second one is negligible from (3.11). [] 

Remark. Suppose that Xt has not approximately the same number of  jumps in 
all the directions, so that eigenvalues of  V(p) are not in a bounded ratio. Then 
one can still obtain a similar result, provided that the nondegeneracy condition 
(3.3) holds in the directions where there are many jumps. More precisely, i f  

f xx*dp(x) > S f lxlidp(x) 
{Ixl_-<;} {Ixl__<p} 

for some symmetric positive semidefinite matrix S, then conclusion holds if  

T )-1 P det f OtSO* dt < oo. 
\ 0 

One can also apply a partial calculus; i f  # = / q  +/~2, then 2 + can be decom- 
posed into the sum of  two independent Poisson measures; if  one applies our 
calculus only with respect to the first one, then only #i has to satisfy our 
assumption. 

4 The case of stochastic differential equations 

Consider again the L~vy process Xt of  (0.1), and let us study the special case 
F = YT of  a variable defined by a X-driven stochastic differential equation: we 
want to see how conditions of  Theorem 3.1 can be verified in this framework. 
Let a(y,x) and b(y) be IRa valued functions defined respectively on IR d x IRm 
and IRa: suppose that 

a(y,x) = a (y )x  4- a ( y , x ) ,  

where "d(y,x)= o(]xl) as x ~ 0. We will say that the process Yt is a solu- 
tion of  

dYt = b(Yt)dt + a(I~,_,dXt), Y0 = Y0, (4.1) 

if  

where 

t t 

Yt = yo + f b(YDds + f a(~_ )dX~ + ~ a(Y~_,AX,) 
0 0 s < t  

E la(Y~_,e~x,)l < oo.  
s<=t 

I f  9(y,x) is smooth with respect to y and if k E N d, the function g differen- 
tiated kj times with respect to each yj is denoted by 9(k); the Jacobian matrix 
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with respect to y is denoted by f .  Henceforth, the regularity and boundedness 
assumptions for a and b are the following ones. 

Assumption (A) The functions ~ are b and C ~ with bounded derivatives, the 
function "d(y,x) is infinitely differentiable with respect to y, and 

I~(y,x)l _<- C(1 + ]yl)lxL I~(~)(y,x)l __< Cklxl r (4.2) 

for kcNd\{0},  Ixl =< 1, and some r > 1 such that 

f ( lxl  r/~ 1)d/~(x) < ~ .  (4.3) 

Moreover 

f la(y,x) lPdp(x)  < C(1 + lyl) p, supfla(k~(y,x)]Pd#(x) < oo (4.4) 
Y 

for k ~ Nd\{0}, p _--> 2. [] 

Under Assumption (A), Eq. (4.1) has a unique solution Yr. When ~ = 0, 
this is a standard result since the coefficients ~ and b are globally Lipschitz. 
The general case can be dealt with by writing (4.1) as dYt -- dXt(Yt-)  in the 
sense of  [4], where 

t 

Xt(y)  = b(y)t  + f a(y, dX~) = b(y)t  + -d(y)Xt + ~ "6(y, AXe) 
0 s < t  

is a L6vy process with values in the space of  smooth maps from IR d into itself 
(the convergence and smoothness of  the sum follow from (4.2) and (4.3)). 

Moreover, it is proved in [4] that for ( t ,y)  fixed, the solution at time 
s > t with initial value y at time t is given by a smooth stochastic semiflow 
~bts(y), and the derivatives of  qSt~ are obtained by deriving formally the equa- 
tion (in [1], a weaker differentiability is studied; when ~ = 0, one can also 
see [9]). In particular, the derivative Z t = O~s(Yt) is the unique matrix-valued 
solution of  

dZt~ = b'(Ys)Ztds + a'(r~_,dX~)Zt_, Z[ = I (4.5) 

for s > t. In contrast with the continuous case, one must notice that the semi- 
flow ~bt~ is invertible only when #-almost all the maps 

y ~ y + a(y,x)  

are invertible (see for instance [5] in the case S = 0). 
We now verify that in the case F = Yr, the Malliavin matrix involved in 

Theorem 3.1 can be expressed as in the classical continuous case; the analogue 
of  the diffusion coefficient is ~ * .  

Theorem 4.1 Assume that a and b satisfy (A), that the Ldvy measure 1~ of  
X satisfies the conditions of  Corollary 1.2(b), and that the nondegeneraey 
condition (3.3) holds with 

~bt = Z ~ (  Yt ) (4.6) 

for some T > O. Then YT has a C ~  density. 
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We need some preliminary results. We will use the Sobolev inequality 

suplH(y)l <= C ~ flH<k)(y){dy 
[el=d+1 

which is valid for smooth functions H with compact support in IR d, and which 
is easily proved by estimating the Fourier transform of H; by localizing, one 
deduces that 

sup [H(y)[ <= C 2 f [H(k)(y)ldy (4.7) 
lyl<p Ikl <d+l {[y[ ~p§ 

for a C which does not depend on p. 

Lemma 4.2 Let Hl(Co, ybz) and H2(oa, yl,y,z), Yl E IR d, y E ]R d, z EE  
(a parameter space), be random functions such that 

sup [HI(YI,Z)[ =< Qp(yl) ,  
P 

sup [H~k)(yl,y,z)[ p <= Q~p(y), 

for p > 1, k E N d, some functions Op, Qkp with at most polynomial 9rowth, 
and where 11(2 k) are the derivatives with respect to y. Then the function 

H "  (y l ,z )  ~ H2(Yl,HI(yl,z),z)  

satisfies an estimate similar to the one for Ht: for any p, there exists a 
function Qp with at most polynomial growth such that 

sup ]H(ybz)[ p <= Qp(y l ) .  

Proof. By applying the Sobolev inequality (4.7) to y ~-~ H2(yb y,z). 

IH(ybz)l < sup(lg2(YbY, Z)l; [Yl < suplHl(YbZ)l}z 

<= C ~ f IH~e)(yl,y,z)ldy. 
[k[ =<d+l {]y[ <=SUpz[HX(YX,Z)[+i } 

Thus 

suplH(yl,z)l ~ c ~ f suplH(2k)(yl,y,z)l 
p Ikl _-<d+l z 2p 

[ j 1/(2p) 
• le sup IH~(yl,z)l + 2 __> lyl + 1 dy 

Z 

< C(Qq(lyl[)+2)q/ZP ~ f(hyL + 1)-q/2pQk,2p(y)dy, 
Ik[ __<d+l 
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where the probability was estimated from the Bienaym6-Chebyshev inequality. 
By choosing q large enough, the integrals are finite, so we can conclude. [] 

Lemma 4.3 One has 

sup I~bf~)(y)l <= Qkp(y) 
O<_s<_t<_T p 

for  some functions Qkp with at most  polynomial  growth, and where the supre- 
mum is relative to the couples (s, t). 

Proo f  I f  we only take the supremum with respect to t with s fixed, this is 
a standard estimate on the solution o f  (4.1), and Qkp is affine if  k = 0 and 
is constant otherwise (see [4]; estimates o f  the derivatives require the graded 
equations of  [1]). More generally, for any stopping time a, the process Oat(Y) 
is the solution o f  (4.1) with initial value y at time a, and 

sup Iq~a,(y)l p < cp(1 + lyl), sup [q~)(y)l  p <-- cp (4.8) 
a<~t<_T a<_t<_T 

for k + 0 and where Cp does not depend on a. The delicate point in the lemma 
is that we have to take also the supremum with respect to s; moreover, the 
flow is not necessarily invertible, so we cannot write ~bst = ~btq~s 1. To make it 
invertible, we have to remove the big jumps. Let P0 > 0 be such that 

1 
Ixl = p0 ~ sup la'(y,x)l < ~.  (4.9) 

Y 

When Ixl _-< p0, the map y ~ y + a ( y , x )  is a diffeomorphism, so ~bst is a 
diffeomorphism as soon as Art has not a jump bigger than P0 on [s, t] (see 
[5,4]). Now consider the sequence of  stopping times aj where a0 = 0 and 
aj+l is the infimum of  times s > aj such that 

I/XX l _-__ p0 or sup I~b~js(y)- y[ _--> pl /2  or s > aj + T 
ly--yl[<Pl 

for fixed Pl > 0 and yl.  On the event {aj < s < aj+i}, the map % j  is invertible 
and we can write 

~bst = Cajto ~)~1 s . (4.10) 

We want to estimate l(k)~ q)~t tYl ) uniformly in s E [aj, @+1 ) and t E Is, T]. We 
expand this derivative as a sum of  products o f  type 

~b(k) -1 t - I  -1 ajt ~ ~)ajs(Yl ), cA(k) -1 "rays o Oajs(Yl ), ( 4a j s )  o Oajs(Yl )"  

From Lemma 4.2, we are reduced to estimate the L p norms of  

I 0~(/~!(y') I, s u p  t 1 --1 I(~ajs) (y)[, sup I~v,(yl)l sup  
aj <=t<=T aj <s<aj+ 1 aj <s <aj+l 

by some functions of  y or Yl with at most polynomial growth, and the estimates 
for the first and second terms should not depend on Yl (note that @ depends 
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on Yl). Firstly (k) t O~ss(y ) is estimated in (4.8). Secondly, (Oajs(Y) is solution of 
t --I (4.5) with Ys replaced by Ooj~(Y), so (0r is solution of 

dZs = --2s(b' o Ooss)(y)ds + Zs((I + a'(O~j,_(y),dXs)) -1 - I ) .  (4.11) 

Since the coefficients of this equation are bounded, one can deduce that 

sup I(O~jx(Y) - i  ) [ < Cp. (4.12) 
O'J <=S < a'J +1 p 

Thirdly, we have to study O~ls(yl ) on {aj < s < aj+~ }; but from the definition 

of o-j+l, we have that 

I T - y l l  < pa ~ 1 0 w ( Y ) - Y l  < pi /2 .  

so the image by 0oj~ of the sphere of center Yl and radius Pl is included 
in the complement of the closed ball of center yl and radius pl/2 and this 
ball contains O~js(yl ); since 0~;~ is a diffeomorphism, the image of the ball of 
center yl and radius Pl contains the ball of center yl and radius pl/2, so 

lo l ls (y1)  -- Yll ~ Pl 

and therefore 

sup - 1  p (4.13) v--<s<~ lOess(y1)[ =< yl  + Pl �9 

As it was explained above, from (4.8), (4.12) and (4.13), we can apply 
Lemma 4.2 and deduce that 

sup lost (yl)[ < Qk, p(yl)  l{~j=<s<oj+l} (k) = 
O<_s<_t<_T p 

for Qk, p with at most polynomial growth. Now 

sup [0~tk)(yl)l p < (k) _-<T} P o<_s<_t<_r = ~j o<_s<_t<_vsup lost (Yl)[l(aj<s<aj+l}l{aj 

<= Qk,2p(Yl) ~ IP[o'j ~ T] I/(2p) (4.14) 
J 

so we still have to estimate the series. From the definition of {aj}, it can 
be seen that the variables (aj+a - aj) are independent, identically distributed, 
and that 

1P[al =< t] =< IP [sup [AXs[ => PO[ + ~ ]Esup  sup 

1 

10s (y ) -  y] 
Ls<t j Pl s<t [y-yll<pl 

for t < T and with Os = OOs. Since Xt is a L+vy process, 

IP [sup ]AX,[ ~ p o ] ~ C t .  
L s<_t 
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The supremum with respect to y is estimated from the Sobolev inequality (4.7), 
so that 

sup [qSs(y) - Yl < C f Iq~,(Y) - Y] dy 
ly-ytl<ox {ly-ytl<pt +I } 

+ c E f [q~)(y)l dy .  
1 __<[k[ =<_d+l { [ y - y l l < P i + l }  

We deduce from the L 2 estimates o f  [4] that 

lEsup [~b,(y) - Yl < C(1 + lyl)x/ t ,  
s<-_t 

for k # O ,  so 

1Esup @~k)(y)[ ~ Ckx/ff 
s< t  

1 

i f  t < T A 1/(4Q(yi)2), with Q having at most polynomial  growth. Let J = 
J ( Y l )  be the first integer greater than 4TQ(y l )2;  since (Tj is the sum of  j 
independent variables distributed like (71, we have 

]P[tTj <= T] <= J]P[tyU/d] <= T/J] <= JIP[o'I  ~ T/J] [j/J] <= (2J) / (2  j/J) 

where [ j / J ]  is the integer value o f  j / J .  We deduce that 

~'~]P[~yj < T]  1/2p ~ Cp(4T Q(yl)2 + 1) I+t/2p . (4.15) 
J 

The result now follows from (4.14) and (4.15). [] 

Proof  o f  Theorem 4.1 Consider the function 

~ ( p , x , y ) =  y + p [ x [ - l a ( y , x ) ,  p > O, [x I <= 1,  

and for 0 < tl < . . .  < tk < T, the random map 

E(Y0, Pl ,  t l  ,X l  . . . .  , Pk, tk,xk ) 

= d)tk T o ~ ( p k , X k  . . . .  ) 0 (~tk_lt  k 0 . . . 0  ~ ( p l , X l , . )  O O0t l ( f l0 ) .  

Then for z = (h , xb . . . , t k , xk ) ,  one has 

YT o e + = E(y0, Ixl l, tl ,xl . . . .  , [xd, tk,Xk ) 

and 

D~F = f dp~ ...  f dpkop I (yO, p b t b x i , . . . , p k ,  tk ,xk) ,  
o o . . .  8pk 

so in order to estimate the left-hand side of  (3.1), we can use 

[D~F[ < sup (Yo, p l , t l , x l , . . . , p k ,  ; esssup [ I  [xj[ = 

O < p j < l ,  O < h < . . . < t k < T ,  I x j l < l  . 
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Now, by expanding the derivative, since the derivatives of ~ with respect to 
p and y are bounded, we are reduced to estimate the moments of variables 
of type 

0(k') ,j,:+, o ~(pj,xj,.) o O,:_~,: o . . .o  ~(p~,xt , . )  o 40,~(y0) .  

We appty Lemma 4.2 te ~his cQmj~osed fanction, and (x') 4~t/tj+~ (Y), 4,m+~ (Y) are 
estimated from Lemma 4.3, so we obtain the condition (a) of Theorem 3.1. 
For (b), it is clear that 

+ = 4',r ( g  + ~ ( L , ~ ) )  

is differentiable with respect to x at x = 0 ,  and if ~'t is the Jacobian matrix, it 
is given by (4.6). Moreover 

DtxYr = =~(Yo, Ixl,t,x) - E(yo,O,t,x) 

and 

so 

d ~OtT OE d ~0t37 
@tX = j=l ~ ~ (} ~ t ) S j ( Y t ) x  = Ixl-~p(yo, O, t ,x)-  j=l ~ ~ (Yt)aj(Yt'x)' 

Ixl ~ 02q%tT ( ~ ) a i ( Y t , x ) a k ( Y t , x )  
D , x Y r - ~ , , x =  ~ J d - f i Jdp~- - ; - -  Y t + P  

j,k 0 0 oyjeyk [xl 2 

+ ~] ~ ( Y t ) ' S j ( Y t , x ) .  

The moments of the first and second derivatives are proved to be bounded from 
(4.8), the variables aj(~,x)  and ~dj(Yr,x) are respectively of  order Ix[ and [xl Y, 
so this expressioa is of order lxl "Az. D 

In Theorem 4.1, the only condition which does not rely explicitly on the 
coefficients of the equation is the condition (3.3) concerning the Malliavin 
matrix; we now want to find sufficient conditions for it; this condition can 
actually be decomposed into conditions on Z~ and on a; the condition on Z~ 
is linked with the local invertibility of the flow (note that such a condition 
does not appear for continuous diffusions); for 8, we verify that the uniform 
ellipticity of 88*  is sufficient, but we also give another example, namely the 
Lrvy stochastic area; this example can probably be generalized to a more 
general condition of H6rmander's type as in [7], but we will not deal with this 
problem in this work. 

Corollary 4.4 Suppose that # satisfies the conditions of' Corollary 1.2(b), that 
a and b satisfy (A), that 88* is uniformly elliptic, and that 

det(I + a'(y,x)) > c/(1 + lyl q) (4.16) 

for some q >= 0, any y and # almost any x. Then Yv has a C~  density for 
any T > O. 
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sup 
t > a  k 

On the other hand 

Proof  One can check from the assumption (4.16) that the derivative Z~ t of  the 
flow ~ts is invertible; moreover, if  a0 = T and 

o-j = sup{t < O'j_l; IAXtl ~ P0} 

for P0 defined in (4.9) and with the convention sup ~ = 0, then 

I 6" 2 aj__ 1 ZZT = Z T I ( I  _L a (g~l , A X ~ I  ) )Z;1 . . . .  Z d j _ 2 _ ( / 4 -  a ' ( Y a ] _ l - ,  A Z a j _  1 ))ztaj 1-  

(4.17) 

on {aj < t < a j _ l } .  Conditionally on (o-k,k E N ) ,  one can write the equation 

satisfied by (Z] j )  on {o-j < t < o-j-l} as an equation similar to (4.5), but with 
the jumps of  X greater than Po removed; the solution of  this equation is in- 
vertible and its inverse satisfies (4.11) with the big jumps of  X removed. The 
times ak are not stopping times, but the sequence (ak) and the process X with 
its big jumps removed are independent, so one can deduce as in (4.12) that 

sup I(zTJ)-ll . N)] < IE 
aj<=t<aj_l J 

From this estimate and (4.16), by writing the inverse Ut of  Z~. from (4.17), 
we obtain 

IU, I _-< Ck, p sup(1 4- [ r ,  lq) k - '  < ~ .  
s pt 

P 

SO 
( ~ 7 ) - ~  = u*(~( r , )~*(Y, ) ) -~u ,  < cu,*u~ 

~gt~t* = > v t i  

for a positive variable Vt satisfying 

sup Vt -1 p 
t > a  k 

Thus, for any k, 1()1 
ak 

<= I ( T -  ak) -1 sup Vt -1 . 
t > a  k 

The variable T - a k  is the sum (limited to T)  of  k independent exponential 
variables, so its inverse is in L p if  k is chosen large enough, and we can 
conclude. [] 

Remark 1 I f  one assumes that the left hand side of  (4.16) is bounded below by 
a positive constant, the proof  of  the corollary can be shortened by noticing that 
(Z~) -1 has bounded moments, so that ($tSt*) -1 also has bounded moments. 
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Remark 2 Our assumption (4.16) deals with the behaviour at big jumps; it 
implies that the semi-flow ~b,t is locally injective, but not necessarily globally, 
as it can be seen in the two-dimensional example 

a(y,x) =x  if  x@xo, 

a(y, xo) = (2 + arctan Yl ) ( c ~  y2 
\ s i n  y 2 / I  - y 

when/~({x0}) > 0. 

Remark 3 I f  the L6vy measure # does not charge similarly all the directions, 
one can try to proceed as explained in the end of  Sect. 3. However,  some 
results which were previously obtained with the classical Malliavin calculus do 
not follow directly from our results, and really need a precise study of  noises 
with different levels such as [6]. 

Remark 4 In contrast with the continuous case, the ellipticity condition for 
~ *  must hold everywhere and not only at the origin y0; a big jump can 
indeed make the solution to exit the ellipticity domain too quickly, so that the 
density cannot be bounded. Note also that the ellipticity condition without the 
local invertibility of  the flow is not sufficient. 

We now consider an example which satifies a H6rmander condition rather 
than the ellipticity condition of  Corollary 4.4; this will be the classical L6vy 
stochastic area considered in the case of  L6vy processes. 

Corollary 4.5 Let Art = ( x t l , x t  2 ) be a two-dimensional LOW process satisfying 
the assumptions of Corollary 1.2(b), and such that 

f Ix[" d (x) < 
for any p >= 2. Define 

= _ f , _  d X )  LT ~ x t l  d X t  2 - -  X,  2 - 

0 

Then Yr = (Xr,LT) has a C~ density for any T > O. 

Proof This case corresponds to Eq. (4.1) with coefficients lO) 
b = a  = 0, a ( y )  = 0 1 . 

--y2/2 yl/2 

After some computation, one obtains 

r f Xt ds 2 det f ~Ot* dt = T 2 1 f Xs dt 
0 0 - - T o  

k--1 tJ+l Xt k 9+1 ds 2 

j=0 tj tj 

k T x-1 9+1 9+1 
- f f Ix -x,12dsdt 

2 j=~otj tj 

dt 
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for the regular  subdivis ion  tj = jT /k  o f  [0, T]. For  any  6 > 0, the variables 
Xt - Xs, It - s] > ~, have un i formly  bounded  densities,  so 

sup{lg[lxt-Xsl-I]; I t - s l  ~ ~} < oo,  

and therefore 
//9+19+1 \--1/2 

]g \ t j  ~ y ]xt -- xs[2 dsd t )  

The variables corresponding to different values of  j are independent ,  so 

IP F det __<r/ __< I - l IP  
L o j=0 

9+1 9+1 
f f (Xt 1 -- Xs 1 )ads dl < 2rl/(kT ) 
tj tj 

= < Ck~lk/2 

so the inverse o f  the determinant  is proved to have a finite p th  momen t  by  
choosing k large enough. [] 
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