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Summary. Let M ( X )  be the family of  all equivalent local martingale measures 
Q for some locally bounded d-dimensional process X,  and V be a positive 
process. The main result o f  the paper (Theorem 2.1) states that the process V 
is a supermartingale whatever Q E M(X) ,  i f  and only if this process admits 
the following decomposition: 

t 

Vt = Vo + f H, dX~ - Ct, t > O , 
o 

where H is an integrand for X, and C is an adapted increasing process. 
We call such a representation optional because, in contrast to the Doob-Meye r  
decomposition, it generally exists only with an adapted (optional) process C. 

We apply this decomposition to the problem of  hedging European and 
American style contingent claims in the setting of  incomplete security markets. 

Mathematics Subject Classification (1991): 60G07, 60G44, 60H05, 90A09 

1 Introduction 

The famous D o o b - M e y e r  decomposition states that each positive supermartin- 
gale V = (Vt)t>=o defined on a filtered probability space (f~, o~,F = (~t)t>=o,P) 
has the following representation: 

(1.1) V = M - A ,  

where M = (Mr)t__>0 is a local martingale, M0 = V0, and A = (At)t_>0 is 
an increasing process. Moreover, there exists a decomposition involving a 
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predictable process A, with Eq. (1.1) being the unique representation in 
this case. 

Now let Q = {Q} be a family of  equivalent probability measures on 
(t2, ~ ,  F), and let V be a positive supermartingale with respect to each measure 
Q ~ Q. We are interested in the decomposition of the form (1.1), with M being 
a Q-local martingale for all Q E Q. Even simple examples show that we can 
generally hope to obtain such a representation only with an adapted (optional) 
increasing process A. With this notation and following E1 Karoui and Quenez 
[7], this decomposition will be referred to as an optional decomposition of the 
positive supermartingale V with respect to the family of measures Q. 

Note that, in general, such an optional decomposition does not exist. As 
an example we take Q to be the family of all equivalent supermartingale 
measures for the process Xt = nt - t, t > 0. Here ~ is a Poisson process un- 
der the reference probability measure P. We assume that the filtration F is 
generated by this Poisson process: F = F ~. Then one can show that a local 
martingale with respect to all Q E Q is a constant. Therefore the process X 
which is a Q-supermartingale for all Q E Q cannot be represented as a differ- 
ence between a local martingale with respect to all Q E Q and an increasing 
process. 

The main result of  the paper (Theorem 2.1) states that the optional decom- 
position exists provided that Q is the family of  all equivalent local martingale 
measures for some locally bounded d-dimensional process X. More exactly, in 
this case process V which is a positive supermartingale with respect to each 
measure Q E Q, admits the representation as follows: 

vt = V o + ( H o X ) t - 6 ,  t > o ,  

where H is an integrand for X, (H �9 X)t = fo Hs dXs is the stochastic integral 
of  H with respect to X, and C is an adapted increasing process. 

In finance such a decomposition leads to a convenient supermartingale 
characterization of wealth and consumption portfolios. We apply this charac- 
terization to the problem of hedging European and American style contingent 
claims in the setting of incomplete security markets. This enables us to describe 
the capital evolution for the corresponding minimal hedging portfolios. The 
results obtained extend the solutions derived in E1 Karoui and Quenez [7] for 
the case when X is the solution of a stochastic differential equation governed by 
Brownian motion. In addition, they can be considered as a "dynamic" version 
of Theorem 5.7 in Delbaen and Schachermayer [4], This theorem implies the 
existence of a hedging portfolio with initial wealth equal to the upper bound 
for arbitrage-free option prices at time t = 0. On the contrary, Theorems 3,2 
and 3.3 below imply the existence of such a hedging portfolio whose capital at 
each time instant t is equal to the upper bound of arbitrage-free option prices 
at that time. 

The proofs in E1 Karoui and Quenez [7] are mainly based on Gir- 
sanov's transformation of probability measures. Apparently this approach 
cannot be extended to the general setting under consideration. Instead, we apply 
the arguments based on the Hahn-Banach theorem. The main source 
for the results presented here was an important paper by Delbaen and Schacher- 
mayer [4]. 
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2 Main results 

Let (~2,~-,F = (o~t)t>=o,P) be a filtered probability space which satisfies the 
conventional conditions of general theory of  stochastic processes, i.e., the ill- 
tration F is right-continuous (~ t  = ~-t+) and the a-field ~0 contains all null 
sets from ~-. For simplicity hereinafter the initial a-field ~0 is assumed 
to be the trivial one, i.e., it contains only sets with the measure zero or 
o n e .  

On this filtered probability space, we consider an RCLL (right-continuous 
with left limits) d-dimensional random process X = (xi)i<=d . We assume that 
X is a locally bounded process, i.e., there is a sequence of stopping times 
(zn),__>l on ( f~ ,~ ,F )  such that the variables ~n almost surely converge to oo 
a s n t e n d s t o  oc, and [Xt i] < n  for t < zn and 1 < i < d .  

A probability measure Q is called a local martingale measure, if  it is 
equivalent to P and the process X is a Q-local martingale. By M(X) we 
denote the set of all local martingale measures for process X. We assume that 
M(X) is not empty. Since all further concepts are invariant with respect to 
equivalent changes of measure, hereafter we assume that P ~ M(X). 

The main result of the paper is the following theorem. 

Theorem 2.1 (Optional decomposition) Let V = (Vt)t>=o be a positive process. 
Then V is a supermartingale for each measure Q E M(X) i f  and only i f  there 
exist an X-integrable predictable process H = (Hi)I <i<d and an adapted in- 
creasin9 process C such that 

(2 .1 )  v,  = V o + ( H . X ) , - C t ,  t > O, 

where (H . X ) t  = fo Hs dX~ is the stochastic integral of  H with respect to X.  

Since the process H �9 X mentioned above is uniformly bounded below, it is 
a local martingale with respect to all measures Q E M(X), see l~mery [8] and 
Ansel and Stricker [1]. Therefore, Eq. (2.1) is indeed an optional decomposition 
of V with respect to the family M(X). The proof of Theorem 2.1 is given 
in Sect. 5. 

Theorem 2.1 generalizes the following result obtained by Jacka [10] and 
Ansel and Stricker [1]. 

Theorem 2.2 (Jacka, Ansel and Stricker) Let M = (Mt)t>=o be a positive pro- 
cess. Then M is a local martingale for each measure Q c M(X) /f  and only 
i f  there exists an X-integrable predictable process H = (Hi)l<_i<d such that 

Mt = M o + ( H . X ) , ,  t > O. 

We now consider the question of uniqueness for the decomposition (2.1). 
We denote by X e the continuous martingale part of X with respect to 

P, (Xc,X c} means the quadratic variation of X c, [X,X] corresponds to the 

quadratic variation of X, and [X,X] designates the compensator of [X,X] with 
respect to P. For simplicity of notation we formulate the result for the case 
d = l .  
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Lemma 2.1 Assume that there is a positive predictable process h = (ht(o)))t>o 
such that 

t 

[x,x]t(co) = f hs(~o) d<XC,X~)X~) 
0 

almost surely. Then the processes H .  X and C in the decomposition (2.1) 
are uniquely defined 

Proof  Let H and G be predictable X-integrable processes, and A and B be 
adapted RCLL processes of bounded variation such that 

H e X + A = G e X + B : =  V. 

We must show that H �9 X = G �9 X or, equivalently, 

(2.2) H I { t H  [ < N}  o N  = GI{IG] < N}  . X ,  

for a n y N  > 1. 
Because the continuous martingale part of V equals 

V c = H � 9  c = G � 9  ~ , 

we deduce that 
o � 9  

f q-Is - c , )  2 d<XC,XC) = O. 
o 

Then the condition of the lemma implies: 

OG 

f ( H  s -- Gs) 2 d [ X ~ ]  ~- 0 ,  
0 

and Eq. (2.2) follows from the Doob inequality for locally square integrable 
martingales. [] 

Note 2.1. The condition of the lemma is invariant with respect to an equivalent 
change of measure P. 

Finally, we state the result that links the "optional" decomposition with the 
"predictable" decomposition of Doob and Meyer. 

Let V be a bounded below Q-supermartingale for all Q E M(X).  We denote 
by ~ the set of predictable increasing RCLL processes B, such that B0 = 0 
and V + B is a Q-supermartingale for all Q E M(X).  We introduce an order- 
ing -< on N indicating that A is less than B (A -4 B) if B - A is an increasing 
process. 

Lemma 2.2 The maximal element J3 in the ordered set ~ exists and is 
unique. 

Proof  We start with an intermediate claim. 

Claim. Let A and B be the elements o f  ~.  Then there exists C ~ ~ such that 
C - A and C - B are inereasin9 processes. 

Hahn's decomposition for increasing predictable processes (see [12, Chap. I, 
Proposition 3.13]) implies the existence of a predictable process h with values 
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in { -  1, 1 } such that 

t t 

f IdA  - dBsJ = fhs(aA  - aB , ) ,  
0 0 

Denote 

t = > 0 .  

C t = ~  l + h ~ ) d A , +  (1-h~)dB~ , t > O .  
o 

Then the processes C -  A and C -  B are increasing processes. Moreover, be- 
cause 

V + C = ~  ( l + h D d ( V ~ + A D + f ( 1 - h s ) d ( V s + B D ,  t>__O 
0 

and the processes V + A and V + B are supermartingales with respect to all 
Q E M(X),  we deduce that V + C is a supermartingale with respect to all 
Q E M(X)  and, therefore, C E N. The claim is proved. 

Now let b = supB~EBoo and (B"),__>I be a sequence in N such that the 
expectations EB~ tend to b as n tends to oo. Using the claim, we can construct 
this sequence so as to make the processes B "+1 - B" increasing for any n > 1. 
Then the sequence (B")n_>l converges to a process B in [0, +oc] uniformly. It 

can be easily seen that B E ~ .  Finally, the claim above and the fact 

E B ~  = b = sup EB~ 
B C ~  

imply that B is the unique maximal element in N. [] 

Note 2.2. When M(X)  is a singleton, the process B is exactly the process that 
appears in the Doob-Meyer decomposition. 

3 Applications in finance 

1. In finance the process X = ( x i ) i<d  is interpreted as a discounted price 
process of d assets in a security market. As above, we assume that X is 
a locally bounded RCLL process and that the set M(X)  of local martingale 
measures for X is not empty. This corresponds to the absence of arbitrage 
opportunities on the security market, see the recent paper by Delbaen and 
Schachermayer [4] for precise statement. 

We are reminded that a wealth and consumption portfolio can be 
described as a triple II  = (v,H, C), where v is the initial wealth of the portfolio, 
H = (Hi)i<=d is a predictable X-integrable process of  numbers of assets, and 
C = (Ct)t>=o is an adapted increasing right-continuous process of  consumption. 
A capital process V = (Vt)t>_0 of portfolio II  equals 

t 

(3.1) V t = v +  f H s d X ~ - C t ,  t > O. 
0 

This equation has a clear economic interpretation: changes in portfolio wealth 
are caused by changes in asset prices and by consumption. In particular, 
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when C -  0, Eq. (3.1) means that the portfolio 1I is developing in a self- 
financing way. Portfolio II is called an admissible strategy if Vt > 0, t > 0. 
Theorems 2.1 and 2.2 immediately lead to the following important characteri- 
zation of admissible portfolios. 

Theorem 3.1 Let (V~)t>__o be a positive process. Then 

(i) V is the capital o f  a self-financing portfolio i f  and only i f  V is a local 
martingale with respect to all Q E M(X). 

(ii) V is the capital of  a wealth and consumption portfolio if and only i f  V 
is a supermartingale with respect to all Q E M(X). 

2. Let now f be a positive random variable on ( f~,~) .  We interpret f as 
the value of a contingent claim or as the payment of a European option with 
maturity at time T = ec. An admissible strategy II with wealth V is called 
the hedging portfolio for f if V~ > f .  Moreover, a hedging portfolio H with 
wealth V is called the minimal hedge for f if Vt < Vt almost surely, for any 
t > 0 and hedging strategy II with wealth V. 

The supermartingale property of wealth V of hedging strategy H implies 
that 

(3.2) Vt > ess sup EQ[Vo~ I~-t] > ess sup E Q [ f l ~ t ] ,  t > O. 
QEM(X) QcM(X) 

The following theorem states that the lower bound in (3.2) is achieved and 
is equal to the wealth of the minimal hedge. For continuous price processes 
this result was proved in the paper by E1 Karoui and Quenez [7]. 

Theorem 3.2 Let f be a positive random variable such that SUpQcM(X ) 

EQf<eo. Then the minimal hedging strategy ~i = (~ ,H,C)  exists and its 

wealth ~" equals 

~ = ~ + ( ~ r * x ) t - C t = e s s  sup E Q [ f l ~ t  ] .  
QEM(X) 

Proof The proof follows from Theorem 3.1 above and from the fact that the 
process (esssupQcM(x) EQ[ff~t])t>_o is a supermartingale for all Q c M(X), 
see Proposition 4.2 in Sect. 4. [] 

If ~ is a finite stopping time, i.e. P(z < + o c ) =  1, and f is a ~-measurable 
function, then from Theorem 3.2 we deduce that Vo~ = f .  We notice that for 
a general ~- = a([,Jt__> 0 Nt)-measurable claims f this equality does not hold. 
To demonstrate this, we use the following simple example. 

Example 3.1. Let (f~,~,~,F,P) be a filtered probability space with a Wiener 
process W. We set X ~- 1 and define claim f as f = I (v<oc) ,  where stopping 
time ~ equals 

= inf{t > 0" Wt > et}.  
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In this case M(X) is the set of all probability measures equivalent to P. It can 
be easily seen that P(z < ec) < 1, and 

V t=es s  sup Q('c < p o i n t ) =  1, t -> 0.  
QcM(X) 

Therefore, Vo~ = 1 > I(z < +pc)  with positive probability. 

The question of particular interest is to know whether the minimal hedging 
strategy II is a self-financing portfolio. This is connected with the problem of 
attainability of contingent claims, see papers by Jacka [10], Ansel and Stricker 
[1] and Delbaen and Schachermayer [5]. From these papers we deduce that the 
minimal hedge H with wealth V is a self-financing strategy if and only if there 
is a measure Q E M(X) such that l ~ is a Q-uniformly integrable martingale on 
[0, +~[ .  

3. Let now f : (f~)t>__0 be an adapted positive process. We interpret f as 
the reward process of an American type option, The wealth and consumptior~ 
portfolio II = (v,H,C) with capital process V = (Vt)t__>0 is called a hedging 
strategy for f if 

Vt> f t ,  t > 0  

The portfolio l~ = (g,~r, ~ )  with capital process V -- (Vt)t>=o is termed the 
minimal hedging portfolio if 

v t > v  > f t ,  

for any t > 0 and hedging portfolio 17[ with capital V. 
The following theorem can be considered as generalization of the results 

obtained by Bensoussan [2] and Karatzas [13] in the setting of incomplete 
markets. 

Denote by /gt  the set of stopping times z with values in [t, +pc). 

Theorem 3.3 Let f = (ft)t>=o be an adapted positive process such that 

sup sup EQfz < +oo. 
z E.//~0 QcM(X) 

Then the minimal hedging portfolio II : (~,~I, C) exists, and its capital at 
time t >= 0 equals 

~'t = ' v + ( ~ I , X ) t - C t  =ess  sup EQ[U  I �9 
QEM(X), ~dCt  

Proof The proof follows from Theorem 3.1 and from the fact that the process 
(ess supQeM(X),~t EQ~f, [o~))t__> 0 is a supermartingate for any Q ~ M(X), 
see Proposition 4.3 in Sect. 4. [] 

4 Auxiliary facts and results 

1. First we recall some facts and definitions from the theory of stochastic 
integration, for which we refer to [6, 12, 17]. 
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Suppose X is a real-valued process; then the maximal function (X)[  is 
defined as suP0_<~_< t IX~J. 

Suppose X and Y are semi-martingales; then the t~mery distance between 
X and Y equals 

/ k 

IHI<I \n>l / 

where sup is taken over the set o f  all predictable processes H bounded by 1. 
For this metric the space of  semi-martingales is complete, see Emery [9]. The 
corresponding topology is called a semi-martingale or Emery topology. 

In particular, i f  A and B are predictable processes of  bounded variation, the 
l~mery distance between A and B equals 

F(J, )l D(A,B) = ~ 2 - " E  min dAs - d B s  n, 1 , 
n > l  L \ 0  

where fo I d A s -  dB~l is the total variation o f A -  B on [0,t]. This is a conse- 
quence of  the following Hahn decomposition: there exists a predictable process 
h with values in { - 1 ,  +1 } such that 

t t 

f [dA~ - d sl = f h~(dA~ - dB~), t >-> O, 
0 0 

see Jacod and Shiryaev [12, Chap. I, Proposition 3.13]. 
Now let H be a predictable process, and X be a semi-martingale. The 

process H is called X-integrable if  there exists a local martingale M and a 
process A of  bounded variation such that X = M + A and 

1. the process fo I Hs II dA~ I has a bounded variation, 
2. the increasing process ( f H ~  d[M,M]s) I/2 is locally integrable, where [M,M] 
is the quadratic variation of  the local martingale M. 

In this case, H �9 A is a Lebesgue-Stiel t jes  integral; the stochastic integral H �9 
M exists as a stochastic integral with respect to a local martingale, and is a 
local martingale. The stochastic integral H �9 X equals H �9 A + H �9 M and does 
not depend on any particular choice of  M and A. 

I f  a predictable process H is locally bounded, this process is integrable with 
respect to all semi-martingales. I f  H is unbounded, then by Theorem 1 in [3] 
process H is X-integrable if  and only if  the sequence HI{]H I < n} . X ,  n >-_ 1, 
converges in semi-martingale topology. Moreover, in this case the limit o f  the 
sequence equals H �9 X. 

An X-integrable process H is called an admissible integrand if there exists 
a constant a such that a § ( H  oX)r > 0, t > 0. A counter-example in l~mery 
[8] shows that a stochastic integral with respect to a local martingale can be not 
a local martingale. However, if  M is a local martingale and H is an admissible 
integrand for M,  then H �9 M is a local martingale, see [1]. 

A semi-martingale X is called a special semi-martingale if  it can be decom- 
posed as X = M §  where M is a local martingale and A is 
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a predictable process of bounded variation. Then such a decomposition is 
unique. For the sequel we need the following proposition on special semi- 
martingales. For the proof we refer to [3], where this result was called the 
Jeulin theorem. 

Proposition 4.1 Let X be a special semi-martingale with the canonical decom- 
position X = M § A, and H be a predictable X-integrable process. Then H �9 
X is a special semi-martingale i f  and only i f  

1. H is M-integrable in the sense o f  stochastic integrals o f  local martingales, 
2. H is A-integrable in the sense o f  Lebesgue-Stieltjes integrals. 

In this case, the canonical decomposition o f  H .  X is given as H * X = H .  
M + H . A .  

We will also need a technical lemma whose formulation is taken from the 
paper by Mrmin [ 16]. 

Lemma 4.1 Let X be a semi-martingale, such that the quadratic varia- 
tion [X,X]~ 2 belongs to LP( f2 ,~ ,P )  for  p > 1. Then X is a special semi- 
martingale, and there exists a universal constant ap such that 

II [A,A]~ 2 _-< II = 

II 2 _--- (ap + ) II = 

where X = M + A is a canonical decomposition o f  X; in particular, for  p = 2 
we can take a2 = 1. 

2. Let now X be a local martingale, and f be a positive function on (f~, ~ , P ) .  
We denote by M(X) the set of local martingale measures for X. The following 
proposition is adapted from the paper by E1 Karoui and Quenez [7]. 

Proposition 4.2 Let f be a positive variable such that SUpQEM(X ) E Q f  < +cxz. 
There is an R C L L  process V = (Vt)t>=o such that 

Vt = ess sup E Q [ f l ~ t ] ,  t >= O. 
QcM(X) 

The process V is a Q-supermartingaIe whatever Q E M(X). 

The Proposition 4.2 is a particular case of the following proposition used 
in the proof of Theorem 3.3. 

Proposition 4.3 Let f = (ft)t>=o be a positive adapted R C L L  process such 
that 

sup EQf~ < +c~ 
QEM(X), zE,//gO 

There is an R C L L  process V = (Vt)t>_o such that for  all t > 0 

Zt --- ess sup EQ[fr I ~ t ] .  
QcM(x), zc~/ct 

The process V = (Vt)t~=o is a Q-supermartingale whatever Q 6 M(X). 
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Proof For each time instant t we define the variable Vt as 

(4.1) Vt = ess sup EQ[f , l~t  ] . 
Q E M ( X ) ,  z G d C t  

We have to show that the process V = (~'t)t>=o is a Q-supermartingale for all 

Q E M ( X )  and that V admits an RCLL modification. 
Let the probability measure P be an element o f  M(X) .  By ~et we denote 

the set of  processes z = (zt)t>=o such that 

1. z is the density process of  some measure Q ~ M ( X )  with respect to P, 
2. z ~ = l , s < t .  

Eq. (4.1) can be rewritten as 

V, = ess sup E[f~z, I g ' ] ,  
zESt ,  zEJdt 

where E is the expectation with respect to the measure P. 
Let us fix positive numbers s and t, s < t, and show that 

(4.2) E[Vt I~-~] = ess sup E[f~z~ I~s]. 
zESt ,  zE/gt 

First we have 

(4.3) 

I I = E[Vtl~-s]  = E  ess sup EEf~z~l~,315s > ess sup EELz~lg,3.  
zESt ,  "cE Jdt zESt ,  "cE Jr 

To prove the reverse inequality we take the sequence (y",a~)~>l in 
( ~ t , / d ~ )  such that 

Vt = sup E[f~,~y'~, I J t] .  
n > l  

Using this sequence we construct a new sequence (z ' ,zn)n~t  as follows 

(z 1, 21) = (yl, ~ )  

and for n > 1 

i n vn+l 

(z"+1'z"+1) = (y"+l,a.+l) i f E [ f . S .  I~t] < E[f~.+~ ""+1 INt] 
"SO-n+ 1 

We have (z~,*n)n>=l C_ ( ~ t , . ~ t )  and 

E[f'~,,z~:n l,~t] = maxE[fr l Yt] T V,.  
k<n k 

Now from the theorem on monotone convergence we deduce 

E[~t  [~s]  = E [ lim E[f~,z~, I ~ t ] [ ~ ]  = lim E[f~,zz~ 
1_ n---+ o o  n--~ o o  

< ess sup E[fzz, [Ys] . 
zCLrt, ~:CJt 

Together with inequality (4.3) this proves Eq. (4.2). 
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Since ~ t _ c ~ , / g t  ___M(~ for s < t, the equality (4.2) implies the super- 
martingale property for the process V: 

E[P, IgJ__<V,, s_<_t. 

To finish the proof  o f  Proposition 4.3 we must show that the process 
admits an RCLL modification. This is the case if  and only if  the function 
(EFt)t>=o is right-continuous (see, for example, Theorem 3.1 in [15]). 

When s = 0, the equality (4.2) takes the form 

(4.4) EV, = sup E [ L z J .  
z E ~/ ' t  , z C J /g  t 

Let t,(t,)~>=l be positive numbers such that the.t, n--++ec, and t, < t +  

1, n >_ 1. Because V is a supermartingale, we have 

(4.5) EVt > lim EVt,~. 

To prove the reverse inequality we fix e > 0 and choose the stopping time 
o- = o-(e) from J/Jr and the process z = z(e) from ~et such that 

(4.6) EVt < E f ~ z ~ + e  and P(cr > t ) =  1. 

This is possible by Eq. (4.4) and the right-continuity o f  the process f .  
Now for n >- 1 we define the stopping time ~r~ r Jdt, and the process 

z ~ r ~t~ as 

{ ~r, a > t~ f zt/zt a > tn and t > t~, 

t + l ,  ~ r < t ~  ( 1 ,  o - < t ~  or t < t ~ .  

We have a ,  ---+ a and z~, --> z~ almost surely as n tends to cx~. Now we deduce 
from Fatou's  lemma and (4.4) and (4.6) that 

EVt_< " " < lim E V t , + e  hm E f~nz~, -4- e = 
n'----~ O O  n - - - + O O  

Since e is an arbitrary positive number and by Eq. (4.5) we deduce that 

the function (EVt)t>=o is right-continuous. This completes the proof  o f  
Proposition 4.3. [] 

3. The next proposition is a slight modification of  Theorem 5.7 in [4] and we 
only sketch the proof. We use the notation o f  Proposition 4.2. 

Proposition 4.4 Let ~ and ~r be stopping times on ( f 2 , ~ , F , P )  such that 
r < a, and f be a bounded ~-measurable random variable. Denote V~ = 
ess supQ~M(X ) EQ[f  I ~ j .  There is an admissible integrand H such that 

( H . X ) t = O ,  t < z, and V ~ + ( H . X ) ~  > f .  

Proof For simplicity we consider the case ~ = 0 and r = oo. 
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Following Delbaen and Schachermayer [4] we define the sets: 

K0 = { V0 + (H * X ) ~  : H is an admissible integrand}, 

Co = X o - L  o , 

C =  C o N L  ~ , 

where L~ and L ~ are the sets of  positive and bounded random functions on 
(f~, ~ ,  P )  respectively. 

We need to prove that f E C. We proceed on a well known path. By 
Theorem 4.2 in [4] (see also the remark after Corollary 1.2 in [4]) the set C 
is a(L~,Ll) -c losed.  Therefore, if  f ~C,  by the Hahn-Banach  theorem there 
is a signed measure R E L 1 such that 

sup ERg < E e f  . 
gCC 

This inequality and the construction of  the set C imply that R is a posi- 
tive measure such that ER(H . X ) ~  = 0, if  H and - H  are admissible pro- 
cesses. If  we normalize the measure R as R(f~) = 1, we obtain that R is an 
absolutely continuous probability such that X is a local R-martingale. There- 
fore for each e > 0 measure R e = ~P + (1 - e)R belongs to M(X).  We easily 
deduce that 

s u p E R ~ g =  Vo=  sup E e f  >=ER,f .  
gCC Q E M ( X )  

Therefore 
ERf  = lim E R , f  < Vo <= sup ERg 

e--~O gEC 

and we come to a contradiction. [] 

4. Finally we prove a technical lemma to be used later on several occasions. 
This lemma can be considered as an extension of  Lemma A 1.1 from [4] in 
the setting of  increasing processes. 

Suppose d is a family o f  random processes; then the notation B E 
conv d means that the process B is a finite convex combination o f  elements 
in d .  

Lemma 4.2 Let (An)~>_1 be a sequence of  positive increasin 9 adapted processes 
on a filtered probability space ( f ' t , ~ , F , P ) .  There exists a sequence BnE 
conv(An,A ~+1 . . . .  ), n > 1, and a [O,+oc]-valued increasing process B such 
that 

Bt = lim lim sup Bt% ~ = lim lim inf Bt+ ~ . 
8---~0 t/--~O~ 8--+0 n---+ OO 

I f  there are numbers T > 0 and e > 0 such that for all n : P(A} > e) > ~, 
then P(Br > O) > O. 

Proof Let (ti)i>_l be a dense subset o f  [0,+c~). Application o f  L e m m a A  1.1 from 
[4] and diagonalization procedure results in a sequence Bnc  conv(An,An+l,.. .),  
n _> 1, such that for all i _>- 1 the sequence (Bt ])~>=1 converges almost surely 
to a [0, +oc]-valued variable B t t i" 



Optional decomposition 47! 

We now define the process B = (Bt)t>=o as 

�9 g t  
Bt = lnf t-. 

t i > t  t 

It can be easily seen that the sequence (Bn).>__~ and the process B are the 
processes required by the lemma. 

Finally, if P(A~ > e) > e then 

E(Br A 1 ) > lira inf (EB" r A 1) > lim inf (EA~, A 1 ) > e 2 
n ----+ O O  t t - - +  O O  

and the result follows. [] 

5 Proof  of  the main theorem 

We start with two auxiliary lemmas. 
We are in the setting o f  Theorem 2.1. Let V be a positive supermartingale 

for all Q E M(X) .  By (g we denote the set o f  increasing processes C such that 
Co = 0 and the process V + C is a supermartingale for all Q E M(X) .  We 
introduce an order relation -4 on cg saying that C1 is less than C2(C1 -< C2) if 
C2 - Cj is an increasing process. 

Lemma 5.1 There exists a maximal element C on the ordered set cg. 

Proof Kuratowski's lemma (see [14, Theorem 25, p. 33]) implies the existence 
o f  a maximal chain Ug E (g. Denote 

a = sup ECoo �9 
CEc~ 

I f  C ~ c~, the process V + C is a P-supermartingale, and hence 

ECoo <=E(V~+Coo) < Vo. 

It follows that a < +co.  
Now we find an ordered sequence (Cn)n=>l in ~ such that expectations 

EC ~  tend to a as n tends to oo, and define the process C as the limit: C n T C, 
n ~ co. Notice that the convergence here is uniform on [0, + ~ ] .  

It is easy to see that C E cg. Moreover, since c~ is the maximal chain in 

cg, the process C is the maximal element o f  cg if  and only if it is the maximal 

element o f  c~. Let C E c~. Because all elements of  c~ are comparable between 
each other, there are two possibilities: 

1. C --< C ~o for some no and then C -4 C, 
2. C ~ -< C for all n > 1 and then C -< C. However the theorem on monotone 
convergence implies that 

E C ~  = lim ECho = a >= E C ~ .  
n "--~ O 0  

Therefore Coo = Coo and hence C = C. 
The proof  o f  Lemma 5.1 is finished. [] 
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Let C be the maximal element of  cd given by Lemma 5.1. Define the 
process U = (Ut)t>=o by 

ut=v~+~, t > 0 ,  

Let also T be a positive number, and Y- be a dense sttbset e f  [0, T]. 

Lemma 5.2 Let  (Gn)n>i be a sequence o f  admissible integrands, and 
(A').>=I be a sequence o f  adapted increasing processes such that A~ = O, 
n => 1, and 

U 0 + ( G  n � 9  > - a ,  t ~ [ 0 ,  T], n > l f o r  some a >= 0 

and 
l imsup ] U o + ( G n � 9  = 0 ,  t C 9--, 

t/--~r OO 

where the process U and the set ~ are defined before the formulation o f  the 
lemma. 

Then 

(1) the variables A~. tend to 0 in probability as n tends to oo and 

(2) the maximal  functions (Uo + G ~ � 9  - U)~ tend to 0 in probability as n 
tends to c~. 

Proo f  (1) Assume that there exists an increasing sequence (nk)k__>l and a pos- 
itive number e such that P(A'~ ~ > ~) > e, k ~ 1. Then Lemma 4.2 implies the 
existence of  a sequence B k E conv(A'k,A ~k+l . . . .  ), k _> 1 and of  an increasing 
adapted process B such that P(BT > 0) > 0 and 

k k B t = l i m  l imsupBt+ a = l i m  l imin fBt+  ~, t > 0 .  
6---+0 k---+c~ 6- -*0  k - - ~ o ~  

We come to a contradiction with the maximatity of  C, if we show that B0 = 0 
and the process U + B is a supermartingale on interva[ [0, T] for all Q ~ M(X).  

By H k we denote the convex combination o f  (G '~k, G'~+~. . . )  obtained with 
the same weights as B k C conv(A'~x,A"k+J,...). We have 

l imsup I U 0 + ( H  k � 9  : - U t l = 0 ,  t ~ -  
k----+ o o  

and 
g o + ( H k � 9  > --a, t ~ [0, T], k >__ I .  

Now we fix t > 0 and define a sequence (tl)l>__l in Y- such that tt ~ t, l --+ oo. 
We deduce 

Ut + B t  = lira l iminf  (Ur z +B~l ) = U0 + lira l i m i n f ( H  k oX)t~ . 
l---+oo k---+oc~ l - ~ o o  k---+oo 

I f  t = 0, Fatou's lemma and the supermartingale propert3/ of  H k * X  imply 
that 

Bo = EBo = E lira lira inf (H x �9 X)t~ 
l---+ o c  k ---, c<~ 

_< lira inf lim inf E ( H  k �9 X)tl  < 0 
- -  1 - - - + o o  k - - - ~ o G  

Since B > 0, it follows that B0 = 0. 
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Further, for t > 0, s E 3-', s < t and Q E M ( X )  Fatou's lemma and the 
supermartingale property of H ~ � 9  X imply 

EQ[Ut + Bt I ~ ]  ~ fo § lim inf lim inf EQ[(H k �9 X)t, I ~ ]  
l---+ oo k---+oo 

< U0 + lim i n f ( H  k . X ) s  
k--+oo 

= lim inf (Us + B~) _< Us + B, .  
k~-+(:xD 

Since the set ~-- is dense in [0, T], we deduce that the process U + B is a 
supermartingale on [0, T] for all Q E M(X)  and come to a contradiction. The 
first assertion of the lemma is proved. 
(2) We must prove that the maximal functions ((G n - G m) � 9  r tend to 0 in 
probability as n and m tend to cx~. I f  this were not the case, we could find two 
increasing sequences (ik,jk)k_>l and a positive number e such that 

P(',O-<t-<Tsup ((Gik G J k ) . X ) t  ~ e)  > e, k >= 1. 

We define the stopping time zk as 

We have 

zk = inf{t > O' ((G ik - G jk)  o X ) t  >= 8 } .  

Therefore 

co" s u p ( ( G  ik - GJk).X)t  > ~} 
t < T  

= {o~'  ~k(o)) _-< T } .  

(5.1) P(zk < T)  > ~, k >= 1. 

Now for k > 1 we define the integrand L k and the increasing process C k as 

We have 

L k = GikI{t <= Zk} + GJkI{t > Zk},  

C k = ((G ik - GJk) �9 ) . 

(L ~ - X ) t -  C~ = (aik �9 X)tI~0,~k~ + (GJ~ �9 X),Zt~,+oo ~ . 

It follows that 

U o + ( L  k � 9  >=-a,  tE[O,T] ,  k_-> 1. 

Part (1) of  the lemma implies that the variables A~ and A~ tend to 0 in 
probability as k tends to ec. Passing to a subsequence we can assume that this 
convergence holds almost surely. Then 

lira sup(JUo + (G ik �9 X ) t  - Vtl + IUo + (G jk . X ) t  - UtJ) = O, t c J 
k--+ oo 
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and therefore 

l imsup [ U o + ( L k . X ) t - - C k t - - U t t = O ,  t E 3 - - .  
k- - -+c~  

Now we deduce from part (1) of  the lemma that the variables Ckr tend to 0 in 
probability as k tends to co. But 

Cr ---_ ~I~_< r~ 

and we come to a contradiction with (5.1). [] 

Proof o f  Theorem 2.1. Let C be a maximal element o f  cg given by Lemma 5.1. 
By U = (Ut)t>=o we define the process 

U t = V t + C t ,  t > O .  

To prove Theorem 2.1 we have to construct an admissible integrand L such 
that 

U t = U o + ( L . X ) t ,  t >_>= O. 

Notice that it is sufficient to prove this representation only for any finite time 
interval [0, T]. In the sequel we consider the case where t belongs to [0, 1]. To 
make the proof more readable we divide it into a number o f  steps. 

Step 1 There are admissible integrands (K~),>=I such that 

(5.2) lim sup (Uo + (K n *X)s  - U~)~ = 0 ,  
n---+ Oo  

(5.3) U o + ( K  ~*X) t  > 0, t E [ 0 , 1 ] ,  n > 1 

(5.4) sup[K" oX~K n OX]l < @oQ, 
n>l 

where all relations hold almost surely. 

Proof  First we construct a sequence o f  admissible integrands (Gn)n>__l such 
that 

(5.5) lim sup (U0 + (G n - X ) ,  - Us)~ = 0 ,  
n---+ OO 

(5.6) U 0 -~ (G n o X ) t  ~ O, t E [0,2], n > 1. 

The desired sequence (Kn)n>=l will be obtained later as a sequence of  appro- 
priate convex combinations o f  (Gn),>=l. 

By Y ( n )  we denote the set o f  numbers of  the form i �9 2 -n, 0 -< i -< 2 n+l. 
We have that J - (n )  c ~--(n + 1) and that the limiting set ~-(oc)  = Un>__l J ( n )  
is dense in [0,2]. For n > 1 we define the process U n =  (Ut")t__>0 as Urn= 
min(Ut, n). It is clear that U" is a Q-supermartingale for all Q E M(X) .  

For n > 1 and 0 -< i _< 2 ~+1 - 1 Proposition 4.4 implies the existence of  
an admissible integrand G ni such that 

(G ni * X ) t = O ,  t < i . 2  -n 
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and 
U" ( G ni i ' 2  - n  ~- e X ) ( i + l ) . 2 _  n 2> U n ( i + 1 )  �9 2 - n  " 

Now we define the integrand G n and the increasing process A n as 

2 n + l  - -1  

G n =  ~ Gni I{ i .  2 -n < t <= ( i + l ) .  Z-n} ,  
i = 0  

2n+ 1 _ 1 

U n + (G ni _ U n . A n =  ~ ( i ' 2  - n  �9  "2-n (/+11"2 ")/[(i+1)'2-",+c~[ 
i = 0  

We have 

(5.7) U6, + ( G ,  e X ) i . 2 _ ,  _ A  n n i -2 -"  = U;.2_n, 0 -<  i -<  2 n+l 

The process G ~ as a finite sum of  admissible integrands is an admissible 
integrand. Therefore G n �9 X is a supermartingale. Since 

U~ + ( C  n . X ) 2  = U~ +A~ > 0 ,  

we deduce that U~ + (G n e X ) t  ~_ O, t E [0,2]. This proves inequality (5.6). 
Further we deduce from (5.7) that 

l imsup sup [U0 + ( G  n e X ) t - A ' }  - Ut[ = 0 ,  
n-+oo tEJ-(n) 

because maximal functions (U n - U)~ tend to 0 almost surely as n tends to co. 
Now part (2) o f  Lemma 5.2 implies the convergence o f  the maximal functions 
(U0 + (G" e X ) s -  Us)~ to 0 in probability. Passing, if  necessary, to a subse- 
quence, we can suppose that this convergence holds almost surely. It follows 
that Eq. (5.5) for the sequence (Gn)n>=l takes place. 

Since (U)~ < +co ,  we deduce from Eq. (5.5) that 

sup (G" �9 X)~ < + ~ .  
n__>l 

Therefore, the probability o f  the stopping time 

~r,, -- inf inf ( t  > 0: ](G n eX)t [  >_- m} 
n > l  

being below 2 tends to 0 as m tends to oo. Accounting for the supermartingale 
property of  G" �9 X we obtain that 

E[Uo § (Gn e X)~m] <= m § E[Uo + (Gn �9 X)~m] <= m § Uo . 

Now the Davis inequality implies the existence o f  a constant Dm < +cx~ such that 

E[G n �9 X, G n �9 X]~/2 < Dm 
u m ~ 

According to Lemma 4.2 there is a sequence of  increasing processes C~C 
conv([G n � 9  � 9  1/2, [G "+1 eX ,  G n+l eX]l /2 , . . . ) ,  n > 1, and an increasing 
process C such that 

Ct = lim lira sup Ct+ ~ = lim lira inf C n ~--+0 n ~  ~ 0  n~o~ t+~. t > 0 .  
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From Fatou's  lemma we deduce that 

ECfl(am > 2) < l im in f  EC~mI(am > 2) =< Dm. 
i ' l  - " +  O 0  

Since l i m m ~ P ( a , n  => 2 ) =  1, we have that C 1 < -}-00 allnost surely and 
therefore SUPn>l C~ < q-oo. 

Now we define the desired sequence (K~)n_>l as the sequence of  con- 
vex combinations of  (G")n_>_l obtained in much the same way as the se- 
quence (C ~)n >= 1 was obtained from ([G" * X, G ~ �9 X] 1/2),__> i. Now the proof  of  
Step 1 follows from (5.5), (5.6), and the "Minkowski" inequality: [K ~ �9  
K ~ �9 < C] ~ (see [6, Chap. VII, Eq.(54.1)]) .  The proof  of  Step 1 is 
finished. [] 

I f  the sequence ([K ~ eX,  K ~ oX])~__>l is bounded not only in probability 
but in L~-norm for some measure Q E M(X) :  

supEQ[K" * X , K  '~ �9 X]I < + o o ,  
n>l 

then by standard arguments we can find a sequence L n E conv(K",K~+l, . . . ) ,  
n _-> 1, such that martingales (L n ,X)~__>j converge in the space ~ 2 ( Q ,  [13, 1]) 
o f  square integrable martingales. The limiting martingale has the form L �9 X 
for some integrand L (see, for example, [11, Chap. 4]), and we finish. 

Under the weaker condition (5.4), the construction of  the desirable integrand 
L is much more complex. We proceed in a similar way to that in [4]. 

Denote p = sup~ _>_I[K ~ �9 X, K ~ �9 X]I ,  and define the probability R on (f~, Y )  
such that 

dR e-P 

dP - Ee-P 

Then the inequality (5.4) in Step 1 implies that R ~ P. 
The process X is a locally bounded P-martingale. Therefore, it is a special 

semi-martingale with respect to measure R. Let X--= M + A be the canonical 
decomposition of  X, where M is an R-local martingale and A is a process of  
R-integrable variation. Since the definition of  the stochastic integral is invariant 
with respect to equivalent changes of  measure, the stochastic integral K ~ o  X 
exists on ( f ~ , Y , F , R )  and is a semi-martingale. Since 

(5.8) E R sup [K n ' x ~ K  n e X ] l  < +0(3, 
n>l 

Lcmma 4.1 and Proposition 4.1 imply that K ~ e X  is a special semi-martingale 
on [t3, 1] with the canonicaI decomposition 

( K ~ . X ) t = ( K ~ . M ) t + ( K n . A ) t ,  0<- t <_ 1. 

Step 2 There is a sequence L ~ C conv(K" ,K n+l . . . .  ), n > 1, such that the se- 
quence (L~ * M)n>_t converges in semi-martingale topology on [0, 1]. 

Proof  Lemma 4.1 and Eq. (5.8) imply that sup~>lER [K n . M , K  ~ * M ] I  < 
+oc .  Therefore the sequence (K n �9 M)~__>I is bounded in the space J/t2(R, [0, 1]) 
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of  square integrable martingales. Hence there is a sequence LnE conv(Kn,K n+l 
, . . . ) ,  n > 1, such that the R-martingales (L n �9 M)n>__l converge in dg2(R, [0, 1]) 
and therefore converge also in semi-martingale topology on [0, 1]. [] 

Step 3 The sequence (L n *A)n>=l, where the integrands (Ln)n>=l are given in 
Step 2, converges in semi-martingale topology on [0, 1]. 

Proof  The proof o f  Step 3 follows the same lines as the proof  o f  Lemma 4.11 

in [4]. We have to show that the variances f2 [L~ -L'~l[dAt ] tend to 0 as n 
and m tend to oo. If  this were not the case, we could find two increasing 
sequences (in,in)n_->1 and a number e > 0 such that P(A~ > e) > e, n > 1, 

1 t L j  n where A~ = ~ f �9 [ L/" - ~ IldA~] �9 
Hahn 's  decomposition for increasing predictable processes implies the 

existence of  predictable processes h" with values in { - 1 ,  1 } such that 

n 1 t 
At = 5 f�9 hn(U" - L J " ) d A "  

We define the integrand G n as 

O n = l (L in  -~LJn .J -hn(L  in - L J n ) ) .  

We have 
Gn � 9  = �89 i. + L J " ) . X  + A" . 

Since L n is a convex combination of  integrands (Kn,Kn+1,...) given in Step 1, 
we deduce that 

(5.9) lim sup (U0 + G n o X  - A  n - U)~ = 0 .  
n-- -+  O o  

By construction o f  h n and since 

( G n _ L i , ) o A =  1 n ~(h - 1)(L i" - L  j " ) , A ,  

( G n _ _ L j . ) , A =  1 n _ L j . )  ~(h + 1)(L i" . A ,  

we deduce that the processes ( G n - L in ) �9 A and ( G n - L J" ) �9 A are increasing 
processes. Moreover, since 

( G n _ _ L i . ) � 9  1 n = g(h - 1 ) ( L  i " - L  j ' ) ' M  

we deduce that the maximal functions ((G n - L  ~n ) � 9  M)~" tend to 0 in probabil- 
ity, because the processes (U ~ - L jn ) �9 M tend to 0 in semi-martingale topology 
on [0, 1]. The same holds for ((G n - L  J " ) � 9  Taking, if  necessary, a sub- 
sequence, we can assume that these maximal fimctions converge almost surely. 
Then the stopping times zn defined as 

~, = inf inf{t => O: (Gm � 9  < max((L im � 9  jm � 9  - 1} 
m>n 

form an increasing sequence such that 

(5.10) lira I(zn < 1 ) =  O. 
/7---+OO 
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For t < zn a n d m  > n we have 

(Gm o X ) t  = (G m ~  + (Gm o M ) t  

> max( (U m oA) t , (L  jm o A ) t ) +  max((L im ~  jm ~  - 1 

> max((L im ~  jm ~  1 . 

At time z, the jump A ( G  m o X )  is either A ( L  im o X )  or A(L  jm ~  and hence 
the inequality 

(Gm ~  > max((L im ~  jm ~  - 1 

holds for t < ~n and m > n. Because L" is a convex combination of  the vari- 
ables ( K " , K  n+l . . . .  ) given in Step 1, we deduce that 

Uo-t-( Gm ~ >= --1, 0 < t <-- ~,, m > n .  

Now we define the integrand H" as H"  = GnI[0,~,]. We obtain that H ~ is an 
admissible integrand on [0, 1]: 

U o + ( H "  ~  > - 1 ,  0 < t <_ I .  

Moreover, Eqs. (5.9) and (5.10) imply that 

(5.11) lira sup (U0 + (H" oX)s  - A ~  - Us)~" = 0 .  
n---+ o ~  

Now Lemma 5.2 implies that the variables A T tend to 0 in probabil i ty as n 
tends to oe, and we come to a contradiction. The proof  o f  Step 3 is finished. 

[] 

Now we are able to finish the proof  of  Theorem 2.1. Steps 2 and 3 im- 
ply  the existence of  a sequence of  admissible integrands (L")~__>I such that the 
sequences (L" ~ and (L n ~ converge in semi-martingale topology 
on [0, 1]. Therefore, the sequence o f  stochastic integrals (L ~ ~ also con- 
verges in semi-martingale topology on [0, 1]. Now M~min 's  theorem (see [16]) 
implies the existence of  a predictable process L such that integrals L" ~ X con- 
verge to L �9 X in semi-martingale topology on [0, 1]. In particular, maximal  
functions (L ~ o X  - L  ~  tend to 0 in probabil i ty as n tends to ec. Since L n 
is a convex combination of  the variables (Km)m>n given in Step 1, we deduce 
that 

Ut = Uo + (L ~ X) t ,  0 _ < t _ < l  

and finish the proof  o f  Theorem 2.1. [] 
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