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Summary. We discuss statistical properties of random walks conditioned by fix- 
ing a large area under their paths. We prove the functional central limit theorem 
(invariance principle) for these conditional distributions. The limiting Gaussian 
measure coincides with the conditional probability distribution of certain time- 
nonhomogeneous Gaussian random process obtained by an integral transforma- 
tion of the white noise. From the point of view of statistical mechanics the studied 
problem is the problem of describing the fluctuations of the phase boundary in 
the one-dimensional SOS-model. 

Mathemat ics  Subjec t  Classification (1991)." 60F17, 60F10, 60J15, 82B24 

1 Introduction 

The problem of description of shapes of phase boundaries is a well-known prob- 
lem of statistical mechanics. From the mathematical point of view it is equivalent 
to the investigation of the asymptotical behaviour of the corresponding sequence 
of probability measures describing the statistical properties of these boundaries 
(see the recent book [10] for a discussion of related questions in the case of 
the two-dimensional Ising model). The simplest variant of this problem arises 
in the one-dimensional Solid-On-Solid (SOS) model and has a nice probabilistic 
interpretation. 

Consider a one-dimensional random walk So = 0, Sk = ~ = a  ~i, k > 1, where 
~1, ~2,..- are independent identically distributed random variables having finite 
exponential moments. Assume that the variables (i are integer-valued and the 
greatest common divisor of their values having non-vanishing probabilities is 
equal to 1. The random variable 
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n--1 

k=0 

presents the area under the trajectory So, $1,..., Sn of this random walk. Fix a 
real number q such that for some e > 0 and all n the probabilities of events 
{tin > n2(q + e)} and {~n < n2(q - e)} do not vanish. Assume also that for 
all sufficiently large natural values n the events {~7~ = [n2q]} have positive 
probabilities (here [naq] denotes the integral part of the number n2q). 

Let x~(t), t E [0, 1], n = 1, 2 , . . . ,  be the paths of the random process such 
that 

x n ( k )  =Sk, k = 0 , 1 , 2 , . . . , n ,  

and x~(t) are linear on the intervals [~, k+ll~ j. Define the conditional process 

On(t) =- (xn(t) I r/~ = [n2q]). 

The probability distributions of the normalized conditional processes n-lO~(t) 
converge weakly to the probability distribution concentrated on some determin- 
istic function ~(t). The limiting curve ~(t) is interpreted as the shape of the phase 
boundary in the one-dimensional SOS-model. The formulated result is known in 
the literature on mathematical physics [5]. From the probabilistic point of view it 
is a direct corollary from the known results of the sample paths large deviations 
theory (see, e.g., [8, Chap. 5]). 

The limiting curve ~(t) can be calculated using the algorithm known in the 
physical literature as the Wulff construction [21]. To do this one needs to de- 
termine the surface tension (an angle-dependent function which can be explic- 
itly calculated in our situation), then integrate it along any smooth curve e(t), 
t E [0, 1], with e(0) = 0, and finally, to minimize the value of this integral in the 

set of all such functions e(t) with the fixed value of the integral f2 e( t )dt  = q. 
It is expected that a similar construction is also applicable to a wide class 

of more involved and physically more natural situations but the problem of 
mathematical justification of the Wulff construction in such situations becomes 
essentially more difficult. In the case of the two-dimensional Ising model at a 
sufficiently small temperature this problem was solved in the book [10]. Recently 
Ioffe ([15, 16]) extended this result to all subcritical temperatures. 

The aim of the present paper is to study the asymptotics of fluctuations 

On(t) ~ H - 1 / 2  (On(t) -- n~( t ) )  

of the random process 0n (t). We prove that the probability distributions of the pro- 
cesses O*(t) converge weakly to some Gaussian measure # in the space C[0, 1] 
of continuous functions on the segment [0, 1]. The limiting measure # presents 
the conditional distribution of certain inhomogeneous Gaussian process ~(t) with 
independent increments conditioned by vanishing the value of integrals along its 

trajectories, ~ = f2 ~(t) dt = O. 
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To prove our main theorem we need to study the asymptotics of probabilities 
more accurately than it is usually done in the classical large deviations theory. 
Although there exist some interesting papers with the refinements of classical 
theory (see [2] and references there) we could not find a possibility to apply those 
general results to our situation. Instead of this we use a more elementary approach 
based on the multidimensional limit theorems for the tilted random variables (i.e., 
the variables obtained from the original ones via Crambr transformation of their 
distributions). 

There is another and physically even more natural variant of the problem, 
when the second end of the boundary is also fixed, i.e., when the process On(t) is 
additionally conditioned by a condition like 0n(1) = 0. The results and the proofs 
for this modified variant of the problem are similar. 

Combining the approach developed in the present paper with the methods 
of the book [10] one can obtain similar results for the fluctuations of the phase 
boundary in the Ising model but this is a topic for separate considerations. 

2 Formulat ion of results 

Let integer-valued random variables (1, ~2,. . .  be independent and have the 
same probability distribution P(-) with finite expectation and variance a 

E ~ = a ,  D~ = E ( ~ -  E~)2 = ~r2 > 0. (2.1) 

Suppose that the greatest common divisor of the values of variable ~ having 
non-vanishing probabilities is equal to 1. Denote by ~ the set of real h such 
that 

L(h) =-- lnE exp{h~} < co. (2.2) 

Assume that the set 5~  is an interval (can be infinite or semi-infinite one) con- 
taining some neighbourhood of the origin. 

k Consider the random walk So = 0, & = ~i=1 ~i , . . .  generated by random 
variables ~i. For any natural number n define a random polygonal function xn(t), 
t E [0, 1]: 

xn(t) =- S[~t] + {nt}~[~t]+l, (2.3) 

where [a] denotes the integral part of a real number a and {a} = a - [a] is its 
fractional part. Denote 

Yn= 1-(So+S1+ +Sn-1) = ~ ( 1  - J 
n "'" n/~j" ~ 

(2.4) 
j=l  

Clearly, Yn presents the "area under the graph" of the piecewise constant function 
of t C [0, 1) which equals S/ on the interval [i/n, (i + 1)/n). Our aim here is to 
investigate the asymptotical behaviour of random paths x~ (t) with fixed "large" 
value of In. 

We start with the following definition. 

1 Here and in the following E and D denote the operators of mathematical expectation and of 
variance corresponding to their probability distribution. 
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Definition 2.1 Let the random variable ~ be as described above. For any h E ~r~ 
we consider the random variable ~h with the (h-)tilted probability distribution 
ph(.), 

Ph(~ = k) = P(~h = k) ~ exp{kh - L(h)}P(~ = k), (2.5) 

where L(.) is the logarithmic moment generating function from (2.2). This trans- 
formation of probabilities is called the Cram~r transformation. 

Note that for every h from the interior ~;_~~ of the interval ~ we have 

E ~h = L'(h), D ~h = L"(h) > 0. (2.6) 

Moreover, the function L(h) is analytical in some complex neighbourhood 
~ g ( ~ ~  of the open interval ~ ~  

Definition 2.2 A real number r is called ~-admissible if there exist h E ~ such 
that 

E~h = r. 

Comparing the last equality with (2.6) one can see that the set of all ~- 
admissible numbers coincides with the interval (R, R) where 

R = inf{U(h) : h C ~ ~  R = sup{L'(h) : h E ~ ~  

In other words, (R, R) is the image of ~ ~  under the strictly increasing mapping 
h ~ Ll(h). 

Let Lrn(h) be the logarithmic moment generating function corresponding to 
the random variable Y~, 

n 

L r , ( h ) = _ l n E e x p { h Y n } = Z L ( ( 1 - J ) h ) ,  (2.7) 
j=l 

where the second equality above is due to the mutual independence of the vari- 
ables ~i. Observe that the function Lr, (h) is strictly convex in ~ and analytical 
in the neighbourhood cg~(~o) defined above. Denote also 

Ly,oo(h) -- lim 1-L~,,(h) fo 1 = L(hx) dx. (2.8) 
n---+oo n 

Consider any sequence nq~ of real numbers such that n2q~ are integer and q~ - ,  
q ~ a /2  in such a way that 

q,~ - q = o as n ~ co. (2.9) 
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Definition 2.3 Any sequence nqn satisfying (2.9) is called Yn-regular/f the fol- 
lowing conditions hold: 

a) for any natural n the probability P(Y~ = nq~) is positive; 
b) for any natural n the value nqn is Yn-admissible, i. e., there exists a solution 

_ 0 h - h n C ~r176 of the equation 

d L r ,  (h) = (2.10) nqn 
h=hOn 

c) there exists a solution h = h(q) E ~ ~  of the equation 

/o dLr~(h)dh , h== x L ' ( f t x ) d x = q .  (2.11) 

For future references we fix some Yn-regular sequence nqn. Then the random 
process 

On(t)  - ( x n ( t ) [ Y .  = nq~) (2.12) 

is well defined. 
Note that the variable Yn has the mean value E Y, = a(n - 1)/2 and the 

variance D Yn = a2(n - 1)(2n - 1)/6n of order n. Therefore, the condition 
2q # a corresponds to the situation of large values of Yn. Moreover, in view of 
the strict monotonicity of the function L~, oo(.) in ~ ~  the condition 

~Lr , cc (h )  h=~ h:0 
a d 

= q # ~ = ~ L r , ~ ( h )  (2.13) 

implies h # 0. Define 

e~(t) = (L(h) - L(h - h t ) ) / h  (2.14) 

and consider normalized fluctuations of paths On (t) around ne~ (t), 

o~(t) - ~n (On(t) - n e d ( t ) ) .  (2.15) 

Let #~ denotes the measure in the space C[0, 1] of continuous functions on the 
segment [0, 1] induced by the probability distribution of the process O~(t). The 
following statement presents the main result of this paper. 

Theorem 2.1 Let a sequence ~1, ~2,...  of integer-valued random variables and 
a sequence qn be as described above. 

Then the sequence of measures #~, converges weakly to some Gaussian mea- 
sure #* in C[0, 1]. The limiting measure IZ* coincides with the conditional distribu- 
tion of the random process ~(t), t C [0, 1], obtained by the integral transformation 
of the white noise dwx, 

~(t)  --~ (Ltt(h -- fzx)) i /2  d~dgx, (2.16) 

conditioned by fixing the value 

ff _= ~ ( t ) d t  = 0. (2 .17)  
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Remark 2.1.1 The limiting conditional Gaussian process O(t) = (~(t)l~ = O) 

has zero mean and its correlation function ~ o ( t ,  s) = E O(t)O(s) can be easily 
calculated (see, e.g., [20, Chap. 21), 

s A t  

-~o( t , s )  = L"(h(1 - x ) )  dx 
dO /1 

xLt'([~x) ax xLt ' ([ tx)  dx (2.18) 
- - S  - - t  

fo (1 - x)2L '' (h(1 - x)) dx 

where s A t = rain(s, t). 

Remark 2.1.2 Definition (2.15) and Theorem 2.1 together imply the law of large 
numbers for 0,s(t): distributions of  random processes n-iOn(t) converge weakly 
in C[0, 1] to the distribution concentrated on the (deterministic) function eh(.). 

Remark 2.1.3 Using the inequalities for dual functions (see Property A.3 in Ap- 
pendix below) one can easily obtain the estimates for moderate and large de- 
viation probabilities of the process On(t). Then arguments similar to those used 
in Theorems 5.2 and 5.4 below together with relations (5.5) and (2.9) give the 
following estimate 

G) 1 E  (Xn(t)lrn = nqn) - e~(t) = o . 
n 

As a result, the random process 

1 
O:(t) - -~ (On( t )  - EOn(t)),  t �9 [0, 11, 

has the same asymptotical behaviour as O~(t). 

Plan of the proof of  Theorem 2.1. First we consider the process 

X,( t )  =- S[nt], t E [0, 11. 

For every natural number k and may set of real numbers si, 0 < Sl < s2 < �9 .. < 
sk _< 1 we form a random vector 

Qn =- (Yn,Xn(Sl) , . . .  ,Xn(sk)) C R k+l. (2.19) 

Then for every Mn -- (mn~ mnl,.. ., m~) with nm no, mnl, . . . ,  mnk E Z 1 we have 

1 , X n ( S k  ) k P(~n  = Mn) 
. . . .  mn IYn = m ~ - P(Yn m ~ (2.20) P(Xn(Sl) = mn, 

where P( ' I ' )  denotes the conditional probability (provided the probability of the 
condition does not vanish). 

To estimate the numerator and the denominator of the last fraction in the case 
0 (see (2.12)) we build new random variables Yn,h and f2n,n using of  m n = nqn 
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the Cram~r transformation with parameters h and I-I of the original distributions 
of Yn and Y2n and then prove the corresponding local central limit theorems 
for these random variables. This makes possible to evaluate the asymptotics 
of conditional probabilities (2.20) by using the normal approximation for these 
tilted random variables. As a result, we obtain the central limit theorem for the 
finite-dimensional distributions of the conditional random process 

OR(t) = (X~(t) 1Y~ = nq~). (2.21) 

Noting that the interpolated conditional random process (recall (2.12)) 

On(t) =-- (Xn(t)] rn = nqn) 

is obtained from the process On(t) by adding the random variables uniformly 
bounded in probability as n --~ oo we conclude that the finite-dimensional distri- 
butions of the process O~,(t) tend to the same limiting distributions as for @~,(t) 
defined similarly to (2.15). 

Finally, we establish the weak compactness of the sequence of measures #~ 
in C[0, 1] by proving the inequality 

E 10~,(t) - 0~,(s)l 4 < f i t  - sl 7/4 

with some constant C > 0 uniformly in n and all t ,s  C [0, 1]. It remains to 
apply Theorem 2.2 from [12, Chap. 9]. 

The detailed proof of Theorem 2.1 is given in Sect. 4-6 of this paper. [] 

The explicit limit formula (2.14) for the function eh(t) can be explained by 
using well-known facts from the theory of large deviations. Let Co denotes the 
space of all absolutely continuous functions f ( t ) ,  t c [0, 1], such that f (0)  = 0. 
Define /01 I( f )  = L* (f'(t)) dt, f E C0, (2.22) 

where L*(x) is the Legendre transformation 2 

L*(x) = sup(xh - L(h)) 
h 

of the logarithmic moment generating function L(h) from (2.2) and f~(t) is the 
derivative of the function f .  The functional (2.22) is known in the literature as 
the rate function of the sample paths large deviation principle for the random 
walk So = 0, Sk = ~ = 1  ~i, k _> 1, (see, e.g., [8, Chap. 5]). The infimum of 
this rate function governs the asymptotics of large deviation probabilities for the 
considered random walk. The direct check assures us that the function er,(t) from 
(2.14) gives the solution of the following variational problem 

2 Here and in the following we omit restrictions near the signs like upper bounds, sums, integrals 
etc. when the appropriate operation is going over the whole set of possible values of parameters, 
summation indices, integration variables respectively. 
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f0 
1 

I ( f )  ---+ inf; f E Co, f ( t ) d t  = q. (2.23) 

Observe however that results concerning the paths large deviation principle are 
usually formulated in the so-called integral form when the integral condition 
Yn >_ nqn is considered instead of the local one, Yn = nqn. Nevertheless, these 
results are valid also in our case since the local condition Yn = nq,~ can be 
understood as a limiting case of  the integral one, nqn <_ Y, <_ n(q~ + c), when 
first n ~ eo and then c"-.~0. 

A similar result holds also in the case of  non-lattice random variables. Name- 
ly, let ~1, ~2 . . . .  be a sequence of  independent identically distributed random 
variables satisfying conditions (2.1) and (2.2). Assume that these variables have 
a bounded continuous probability density. Define the random polygon x~(t), t C 
[0, 1], and the area Y, by (2.3) and (2.4) respectively. Then the variables x~(t) 
and Y~ also have bounded continuous probability densities. 

Fix any sequence of  real numbers qn satisfying (2.9) with 2q r a. We call 
this sequence Y~-regular if the density of  Y~ does not vanish at the point nq~ and 
conditions b), c) of  Definition 2.3 hold true. Then for every natural number k and 
any set of  real numbers si, 0 < sl < s2 < �9 �9 �9 < & _< 1 the mutual conditional 
probability densities of  the random variables x, (sa), x~ (s2), �9 . . ,  x~ (Sk) under the 
condition Yn = nqn are well defined. Now we can define the conditional random 
process (2.12) as the random process with finite dimensional distributions having 
these conditional densities. 

Theorem 2.2 Let a sequence ~1, ~2,... of  random variables having a bounded 
continuous probability density and a sequence qn be as described above. Then 
the statement of  Theorem 2.1 holds true. 

Remark 2.2.1 The condition of  the existence of  a continuous probability density 
used in this theorem is essential since otherwise there are no natural definition of  
the conditional distributions under the condition { Yn = nqn }. The results of  this 
paper can also be extended to a more wide class of non-lattice random variables, 
if we change the condition {Y~ = nq~ } to the condition {IYn --nqn I < e~} where 
e~ = o(n 1/2) as n -+ ee. 

Plan of  the proof  o f  Theorem 2.2. The proof of  this theorem is very similar to 
that of Theorem 2.1. The only essential difference is that we need now to prove 
the con'esponding local central limit theorems for the probability densities of  
random elements Yn,h and ~?~,n instead of  the probabilities of  their values. But 
since such theorems for densities are very similar to their analogs in the discrete 
case (see, e.g., [18]) we omit the proof of  Theorem 2.2. [] 

As mentioned in Sect. 1 there is another interesting variant of  the main prob- 
lem when one considers the conditional distributions of  random walks xn(t) with 
fixed value of area Y~ and value x~(1) = S~ at the terminating point. Problems of  
this kind arise in statistical mechanics (see, e.g., [5], [17]) in the context of the 
so-called SOS-models (see discussion of this and related questions in Sect. 3 of 
the present paper). We formulate the corresponding results. 
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Consider the random vector An = (Yn, Sn) and denote its logarithmic moment  
generating function by LA, (H),  H = (ho, hi), 

n 

L z . ( H ) = ~ l n E e x p { h o Y n + h l S n } = E L ( ( 1 - J ) h o + h l ) .  
j= l  

Let ~A,  be the set {H = (ho, h~) E R 2 : LA,(H) < cx~}. Similarly to (2.8) define 

/0' LA,~(H)-- n--,~lim 1LA, (H)  = L ( ( 1 -  x)ho+hl)dX. 

Clearly, LA,~(H) is finite for all H from the set 

5~A = {H =(ho, h~) : hl,ho+hl E ~ ~  

Let An = (nqn, nbn) be any sequence of real numbers such that n2qn and nbn 
are integer and n-lAn ~ A  = (q, b), 2q r b, in such a way that 

(5) n-lAn - A = o as n -+ ec. (2.24) 

Definition 2.4 Any sequence An satisfying (2.24) is called An-regular  if the fol- 
lowing conditions hold: 

a) for any natural n the probability P(An = An) is positive; 
b) for any natural n the pair An is An-admissible, i. e., there exists a solution 

H = Hn C ~A of the equation 

VHLA.(H) H=m=An; 

c) there exists a solution H = H (A) E ~r~A of the equation 

VHLA,~(H) H=ff= A. (2.25) 

In the last two equalities VH denotes the gradient with respect to H = (ho, hi). 

Fix any An-regular sequence An. Then the random process 

On(t) ~ (xn(t) I A, =an) 

is well defined. Determine the quantities h0 = ho(q, b) and ha = ha(q, b) from 
the following system of two equations (cf. (2.25)): 

{ f o  

fo lY L' (hl + yho) dy = q. 
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Using convexity property of L(.) it is possible to prove that there exists a unique 
pair of such quantifies (see, e. g., [14, Appen.]). Moreover, they satisfy the 
condition h0 r 0 and so one can define the function 

e ~ o , ~ l ( t )  ~-- El(h1 + (l -- y)/10) dy (2.27) 

= (L( I + ho) -C(h  + ( 1 -  t)ho))/ho 

(Note that the integral expression in (2.27) was obtained earlier in [5], although 
the simple formula in the last part of (2.27) was not presented there.) Consider 
normalized fluctuations of the paths O,(t) around the function n[~o&(t), 

1 

and denote by/2* the corresponding measure in the space C[0, 1]. 

Theorem 2.3 Let a sequence ~1, [z , . . .  of integer-valued random variables and 
sequences qn and b, be as described above. 

Then the sequence of measures ~[, converges weakly to some Gaussian mea- 
sure fi* in C[0, 1]. The limiting measure f~* coincides with the condifional proba- 
biIity distribution of the random process ~(t), t E [0, 1], obtained by the integral 
transformation of the white noise dwx, 

Ji' ~(t) = (L"(hl + (1 - x)ho))1/2 dwx~ t E [0, 11, 

conditioned by the conditions 

P 1 

=- Jo ~(t)dt = 0 and ~(1) = 0. 

Remark 2.3.1 Note, that the equations (2.26) can be rewritten in the equivalent 
form 

^ 
1 ^ ^ 1 ho ^ 

~-L(hL + h o ) -  ~ f L(ht +y)dy =q 
ho h o do 

obtained in [17, Theorem 3] in a similar situation. 

Proof of Theorem 2.3 follows the same scenario as that of Theorem 2.1. For 
details see [14, Chap. 1]. [] 

Observe that the function ~h0,~l (') presents the solution of the following vari- 
ational problem (cf. (2.23)) 

I ( f )  --~ inf; f E Co, f ( t ) d t  = q, f (1)  = b. (2.28) 
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Clearly, a result similar to Theorem 2.3 holds also in the non-lattice case under 
the conditions analogous to that of Theorem 2.2. But since our "Formulation of 
results" is rather long yet, we will not make it longer and leave the details for 
the reader. 

3 Physical interpretation 

The situation considered in the present paper is known in statistical physics as 1- 
dimensional SOS-model (Solid-On-Solid model), which is the simplest interface 
model. In view of its simplicity the 1D SOS-model is used for investigating the 
properties of phase boundaries and so it was studied in the literature (see, e.g., 
[6], [5], [17]). Our aim here is to discuss formulated results from the physical 
point of view. 

Let us recall some notions needed (cf. [1], [6]). The SOS-model consists of 
the interfaces without overhangs and therefore its configurations of the horizontal 

r N length N are represented by sets of heights { i}i=0' r0 = 0. The energy of the 
configuration R = {r  i }No is determined by the Hamiltonian 

N--1 

= Z U(ri+~ - ri), 
i=0 

where U(-) is a real-valued function. There are many possible natural choices for 
U(.) (see, e.g., [6] for a list of examples). For the sake of simplicity we restrict 
ourselves to the case of integer-valued heights ri (though the generalization to 
the non-integer case is straightforward). 

Introducing a positive parameter/3 called an inverse temperature and assum- 
ing the finiteness of the partition function 

ZN,/~ = ~--~... Z e--~'~N(R) 
r l E Z  1 rNCZ I 

r N we define the Gibbs probability distribution in the ensemble of surfaces { i}i=0 

by 
- -  Z - 1 e - ~  (R) PN,~(R) - Nfl 

Rewriting the last expression in terms of jumps ki =-- ri - r / - l ,  i = 1 , . . .  ,n, 
we see that this Gibbs distribution coincides with the probability distribution 
of random walk r0 = 0, rj = ~=1 ki, j _> 1, generated by the sequence of 
independent (integer-valued) jumps ki having the same distribution 

e-3U(k) 
P;~(k) - Z ~ '  where Z~ = Z e-~V(k)' (3.1) 

k C Z  1 

i.e., with the situation considered in the present paper. 
Consequently, theorems formulated in Sect. 2 describe the statistical prop- 

erties of the interfaces in 1D SOS-model: Theorem 2.3 studies the interfaces 
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with fixed endpoints and the area under the interface, Theorem 2.1 describes the 
similar situation but with the free right end, and Theorem 2.2 generalizes the 
previous situation to the case of non-integer values ri. 

There is a well-known general approach in statistical mechanics called the 
Wulff construction [21], which is used for describing the asymptotical shapes of 
interfaces. It is based on a fundamental notion of the surface tension and consists 
in minimizing the total surface tension along interfaces with given constraints. 

To discuss it more explicitly we fix a sequence of real numbers bN such that 
b~v --~ b = tan cp (with qo E ( -7r/2,  7r/2)), nbN is an integer number, and consider 
the constrained interfaces Rbu = {rz)N=0 satisfying the condition rN = NbN. 
Denote the corresponding partition function by ZN,r 

ZN,13 (NbN ) = ~ e - ~o~eN (RbN ). 
Rb ,v 

The quantity (see, e. g., [17]) 

T(7))_ cos~  lim lnZN,~(NbN) (3.2) 
~3 N--+oc) N 

is called the surface tension of the inclined interface with the slope angle qo. The 
last limit can be evaluated explicitly if we assume in addition that for all e in 
some neighbourhood of the origin the following sum is finite 

Z;~(c) = ~ eeke-/~g(k) < oe. 

k E Z  t 

(Note that this condition holds true in all situations listed in [6]). Then the known 
Cramrr theorem (see, e.g., [9], [7], [4]) is applicable and one obtains 

cos ~ ( lim lnPu,o(ru = NbN) + lnZ~) 
T(T) - /3 "N--.c~ N 

_ cos ~ (L~(tan ~) - L~(0)), 
(3.3) 

where L~(.) is the Legendie transformation of the function L;~(.) -- lnZ;~(-). 
Observe, that instead of the integral form of the Cram~r theorem describing the 
asymptotics of the probability PN,~(rN > NbN) we use here the local one (for 
PN,fi(rN = NbN)), which is also true (see, e.g., [11]). 

Consider the space Co of all absolutely continuous functions f ( t ) ,  t E [0, 1], 
such that f (0 )  = 0. Every f C Co is rectifiable and so it is possible to introduce 
the natural parameterization along the graph 7 ~ )  of the function f ( . )  denoting by 
s = s(t) the arc length from the starting point (0, 0) of ~/(f) till the point ( t , f ( t ) ) .  
Let qos and ds denote the slope angle of the tangent and the length element at 
the point s under this parameterization. The WuIfffunctional is defined by 

f 
~ =-- ] T(qas)ds, 

a7 if) 
(3.4) 



Fluctuations of shape for random walks 435 

where T(.) is the surface tension introduced in (3.2). 
Consider the collection of one-dimensional SOS interfaces satisfying the re- 

strictions from Theorem 2.3. According to the Wulff principle the limiting shape 
eq,b(t) of the phase boundary under such constraints presents the solution of the 
following variational problem: 

/0' ~ ---+ inf; f E Co, f ( t ) d t  = q, f (1)  = b. (3.5) 

On the other hand, the Wulff functional ~/Y(.) and the rate function I(.) for 
the sample paths large deviation principle defined as in (2.22) for the random 
walk with the single step distribution given by (3.1) are closely related. Namely, 
substituting (3.3) into (3.4) and changing the variables one easily obtains the 
relation 

~ / ( f )  = ~ L* (f'(t)) dt L~(O) _ I ( f )  L~(O) 

that immediately implies the equivalence of variational problems (2.28) and (3.5). 
Consequently, the function e~0,~, (t) from (2.26)-(2.27) coincides with the Wulff 
shape eq,b(t) (i. e., the solution of (3.5)) and thus one comes to the following 
conclusion: in the case of 1D SOS-model the Wulff principle coincides with the 
standard approach of large deviation theory. 

One can expect that with the appropriate definition of the surface tension 
the Wulff principle is applicable to much more general situations. As it was 
mentioned in Sect. 1, the Wulff principle has been proved for the two-dimensional 
ferromagnetic Ising model ([10], [15, 16]). Its mathematical justification for two- 
dimensional SOS-models describing the surfaces separating three-dimensional 
phases is a very difficult open mathematical problem. 

4 Limit theorems for tilted distributions 

Let (1, ~2,. �9 be a sequence of i. i. d. random variables introduced in Sect. 2 and 

: con i  r 
N / 

tilted variable Yn,n with the distribution 

P(Y.,h = x) = exp{xh - Lr. (h)} P(Y. = x) ,  (4.1) 

where Lr. (-) is the logarithmic moment generating function for the random vari- 
able Yn and x is a real number of the kind m/n with integer m. Clearly, the 
mean value and the variance of Y.,h can be calculated from the equalities 

d2 
Eg,,h ; L~o(h), DY,,h = -~7Ln(h).  (4.2) 

The probability of interest P(Y, = x) can be expressed as 

P (Yn = x) = exp{-  (xh - Ly n (h)) } P (Yn,h = x ) .  (4.3) 
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Therefore, if for given x one can evaluate the probability P(Y,,h = x)  from the 
left hand side of  (4.1) explicitly, say can prove the local limit theorem for it, 
then the classical large deviation estimate in the strong form ([11, sec. 2]) for 
the probability P(Yn = x) will be available. Note that the left hand side in (4.3) 
does not depend on h and so one is free to choose any possible value of  h. As 
usually in the large deviation theory the best value h(x )  of the tuning parameter 
h can be determined from the condition 

EYn, h --=x 

that prescribes to choose such a tilted distribution first moment of which coincides 
with x. Recall that due to Definition 2.3 b) in the case x = nq,~ such h = h 2 
always exists. Observe also that in view of the first relation in (4.2) the function 
h ~-+ x h -  Lr,,(h) in the exponent in (4.3) attains its maximum at the point 
h = h(x) ,  i. e., equals the value of the Legendre transformation of  Lro at the 
point x, 

L~o(x) = sup(xh - L r , ( h ) ) .  (4.4) 
h 

In this case (4.3) boils down to 

P(Y~ = x) = exp {-r~,,, (x)} P (Y,,h(x) = x ) .  (4.5) 

Consider now the Yn-regular sequence nq,~ fixed in Sect. 2. Without loss of 
generality we may assume that the limiting value q of  q,  satisfies the condition 
2q > a which in its turn implies h > 0 (recall (2.13)). For future references we 
fix a segment ~ "  C ~ ~  such that 

[0, h] C ~%"~ (4.6) 

where ~ - o  denotes the interior of ~ ' .  
In what follows we will need the estimates on the rate of  convergence of h ~ 

calculated from (2.10) to/z. For this reason we observe that convergence of the 
kind (2.8) is valid for all derivatives. Moreover, for any k = O, 1 , . . .  one has 

1 d k d k 
n dh k Lr~(h) = d ~ L r , ~ ( h )  + O ( n - ~ ) ,  (4.7) 

where the estimate O(-) is uniform in h from any fixed compact subset of  ~ ~  

Then, applying the last relation to k = 1 and h = h ~ and using the implicit 
function theorem for L],,~(.) one easily obtains 

h~ - h = O(qn - q)  + 0 ( n - l ) ,  (4.8) 

where the remainder terms 0(n -1) and O(q~ - q) are uniform in h E ~ and 
q~ E L} ,oo ('-%"~ respectively. Here L~, ,oo (~b'~ denotes the image of  ,~b "~ under 

the map L~,,oo('). Consequently, h ~ --~/~ as n --+ co and without loss of generality 
we may assume that every number h 2 belongs to the interior 3~g "~ of the compact 

set ~ C ~ ~  
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Analogous constructions can be drawn for the random vector f2n from (2.19), 

S2n = (gn, S[ns1], S ins2] , . . .  , S[nsk]) , 

defined for any fixed integer number k = 0, 1 , . . .  and a collection ~ of real 
numbers sl, s2 , . . . ,  sk satisfying the condition 0 < sl < s2 < . . .  < Sk _< 1. For 
any vector H = ( h ~  ,h k) C R k+l we put 

n 

Lo~(H) = lnE  exp {(H, ~2~)} = ~-~L(hj,n), (4.9) 
j = l  

where (., .) is the usual inner product in R k+l, 

k 

hj,n=hj,n(H)=- ( 1 - J ) h ~  Zhtx~j<_p,,tl}, (4.10) 
1=1 

and X{j<[ns~]} denotes the indicator function of the relation {j < [nst]}. Put 

"~On ~-- { H  E n k+l : Ls?. (H) < oe}. 

The sets !~o,, depend essentially on n and on the collection ~ .  However,  any 
of these sets contains the following region 

~ + l  =_ {H E R~+l : - d  < h~ < h +d, lhll < d, l  = l , 2 , . . . , k } ,  (4.11) 

provided the constant d = d(k,h,._~E) > 0 is sufficiently small. Moreover, we 
can choose d in such a way that for any H E !~+i  all hj,n, n = 1 ,2 , . . . ,  
j = 1, 2 , . . . ,  n, defined in (4.10) belong to the set ~r176 For future references we 
fix such d. 

Similarly to (4.1) we consider the random vector ~2n,t~ with the tilted distri- 
bution 

P (S?~,ri = M) = exp{(M, H) - Ls~, (H)} P (f2~ = M) ,  (4.12) 

with M = ( m ~  .. ,m k) E R k+l such that the numbers nm~ k 
are integers. Then the vector E f2n,n of  mean values and the covariance matrix 
Coy ~?n,n can be found from (cf. (4.2)) 

E Y2~,n = VHLsgn(H), Cov Y2n,n = HessL~ ,  (H), (4.13) 

where VH denotes the gradient and Hess Ls~,(H) is the Hessian matrix (the 
matrix of  the second derivatives) of  Ls2~ as a function of the variables h ~  h ~. 
Consider also the Legendre transformation (cf. (4.4)) 

L* (M) = sup ((M, H) - Ls~n (H)) ~'~n 
H 

If  vectors H and M satisfy the condition 

M = VrILs2.(H), 
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then one obtains (cf. (4.5), (A.1)) 

P (g?, = M) = e x p { - L ) ,  (M)} P (X?,,n = M) .  (4.14) 

The functions n-1Ls?~ (H), n _> 1, are analytical and uniformly bounded pro- 
vided H belongs to some complex neighbourhood ~(1~+1)  of the set 4 + 1  from 
(4.11). As in (2.8) we define 

Ls?,oo(H)--= lira Ls?,(H) = L (x) dx, 
R ---~ O o  

where (cf. (4.10)) 
k 

h(x) = (1 - x)h ~ + E hz X{x<s,} (4.15) 
/=1 

with X{x<sl} denoting the indicator function of the set {x < sl}. Note that 
the analog of (4.7) is also true here with the estimate O(n -1) uniform in t I E  

Define the matrix 

1 b(n)l,m i,m=0 B,(H) = nHeSsLs?,(H) = . (4.16) 

In view of the analog of (4.7) for the functions Ls?, (H) one easily obtains the 
relation 

B . ( H )  = B(H)  + O(n-~), (4.17) 

b where the matrix B(H) = ]l ~,ml]l,m=o has the elements 

0 2 
bt,m - Oh I ohm LS?,~(H) (4.18) 

and the term O(n -1) in (4.17) is uniform in H E ~ ( ~ + 1 ) .  For any vector 
T = (to, q , . . . ,  tk) C R k+l define the quadratic form 

v "  . .  ~.(n) c~.,H(T) = ~ t l t m u l ,m  

l,m=0,1,...,k 
k (4.19) n . 2 

-- 1 E L ' ( h J ' ~ ) ( ( 1 - J )  _>0 
j=l /=1 

and the quadratic form 

c~n(T) = E h tm bl ,,, 
l,m=O,1,...,k 

k (4.20) 

1LH(h(x)) (1 x ) t o + ~ X { x < ~ } h  dx >_0. 
l=l 

Clearly, the strict convexity of L(-) (recall (2.6)) implies the strict positive deft- 
niteness of the symmetric matrices B.(H) and B(H), H c 5~k+l, (in the case of 
B~(H) at least for all sufficiently large n, n > no(S'~)). 



Fluctuations of shape for random walks 439 

Theorem 4.1 Let a sequence of vectors H, E 5~+t be given such that I-I~ --+ 
H C ~ + t  with 5~+t defined in (4.11). Put 

1 
(4.21) 

Then the distribution of the vector [2* tends weakly to the distribution of the 
Gaussian random vector (9 with zero mean and covariance matrix B (H). 

Remark 4.1.1 The distribution of the random vector (9 is nondegenerate. We 
denote its density by pn(X), X E R k+l, and its characteristic function by ~H(T), 

1 C R k+l ~n(T) = e x p { - ~  (B(H)T, T)},  T . (4.22) 

Proof Fix any T = (to, t l , . . . ,  t~) E R k+l. Using the Taylor expansion for the 
logarithm of the characteristic function ~ ( - )  of the vector ~22 we get 

l n ~ ( T )  
i 

= Ls2n (Hn  + i n - 1 / 2 T )  - Ls2n(Hn)  - 

_ 1 (B~(I-I,)T, T) +Rn, 
2 

(4.23) 

where the matrix B.(-) is determined in (4.16) and the remainder term Rn equals 

i ~ 03 
R n -  6n3/2 Z tltmtp OhlOhmOhpLS?,(Hn +iam-1/2T) 

l,m,p=O 

with some co = w(Hn, T), 0 < w < 1. The uniform boundedness of the family of 
analytical functions n-tLs?~(H), n = 1 ,2 , . . . ,  H E ~(2~+1), implies the uniform 
boundedness of their third derivatives. Consequently, R~ = O(n -t/2) as n --+ oo 
uniformly in T from any fixed compact set in R *+1. Finally, (4.17) implies the 
relation 

1 (B(H)T, T) = ln~n(T) (4.24) nlirrl In ~n (T) = - 

which finishes the proof. [] 

Our next step consists in the evaluation of the probabilities P(f2n = Mn) and 
P(Y, = mn ~ entering the right-hand side of (2.20). 

Fix any integer k _> 0 and assume that a sequence of vectors Hn E R k+l, 
H n  0 1 ", h k = (h~,h~,.. ~), satisfy the assumption of Theorem 4.1. According to 
the choice of the value d in (4.11) all points hj,n = hj,n(H~), j = 1 ,2 , . . .  ,n; 
n = 1, 2 , . . . ,  calculated as in (4.10) belong to 3"o r~ (see (4.6)). Without loss 
of generality (taking d slightly smaller if necessary) we may assume also that 
h(x) c ~ " ~  (recall (4.15)) for any x E [0, 11. 

Denote 

.//N=_=~+t= { ( m 0 , m t , . . . , m  k) C Rk+t: { n m ~  k} C z t } .  (4.25) 
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Let Mn 0 1 k = (ran, mn, . . . . . .  , m n) be any sequence of vectors such that Mn E.//~k+a 
for all n. Put (cf. (4.13)) 

En = E ~2~,Hn 

and define the vector X~ E R k+l by 

X, = ~ n  (M, - E , ) .  (4.26) 

Theorem 4.2 Let k >_ 0 be any integer number and vectors Hn be as in Theo- 

rem 4.1. Then uniformly in M~ C ~ / t~  +l one has 

n ~ P ( ~ , r i  = M , ) - p r I ( X , ) - - ~ 0  as n - - ~ o c ,  (4.27) 

where f in( ')  is the density o f  the Gaussian random vector (9 with the characteristic 

function ~H(T)from (4.22). 

The following corollary specifies the statement of Theorem 4.2 in the one- 
dimensional case. Let nq~ be the Yn-regular sequence fixed in Sect. 2, h ~ and h 
be the solutions of (2.10) and (2.11) correspondingly. Denote 

/o' b 2 = b 2 ( ~ )  - ~ "  ( ~ ( 1  - x ) )  (1 - x )  2 d x .  

For any real x E ~ / ~  (recall (4.25)) put z = (x - nqn) /x / f t .  

Corollary 4.3 Uniformly in x E ~/~1 one has 

_ e-Z /2b ~ 0 as n --+ exp. (4.28) n3/2P (r.,hO = x) 1 2 
, / ~ b  

To prove Theorem 4.2 we need the following simple observation. 

Lemma 4.4 Fix any real numbers ~5, 60, 0 < ~ < 6o < 1/16. Denote by 6 ( m ) ,  

m E Z 1, the ~-neighborhood o f  the integer number m in the real line R i a n d p u t  

6 = U 6 ( m ) .  (4.29) 
m E Z  1 

Consider an arithmetic progression ao, ai , . . ., an o f  the length n + 1 with the step 
v and denote by . ~ t h e  number o f  elements ai located outside o f  the set 6 .  Then 

the following statements hold true. 

A. i f  8~n -1 <_ Ivl _< 1/2, then 

.//~'~ _> ( ~ -  4 6 0 ) n -  3. (4.30) 

B. Let Iv[ < 8(5n-1 and assume additionally that the element ao is located outside 

o f  the set 6 at a positive distance p from it, p = dist (a0, 6 )  > 0. Then 

J/~" > P n. (4.31) 
- 260+p 
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Proof A. First observe that at most []a, - a0]] + 2 < ]v]n + 2 intervals ~ ( m )  
can contain the points ai. Moreover, every interval ~ ( m )  contains no more than 
[255]v] -1] + 1 elements of  the progression. Hence, the number ~/~6 = n + 1 -.A4"~ 
of the points ai belonging to the set ~ satisfies the following inequality 

~/~6 _< (lvln + 2)(2551v1-1 + 1) = 255n + 461vl -1 + Ivln + 2. (4.32) 

To estimate the right-hand side of  (4.32) we consider two possibilities: 
a). If  1/2 ___ Ivl _> 2/n,  then 4551v1-1 < 255n, Ivln <_ n/2 ,  and so ~/~6 _< 

(&5 + 1/2)n + 2. 
b). I f  2/n  > Ivl _>_ 86/n, then 461v1-1 _< n/2,  [v]n < 2, and so ~ 6  _< 

(2~5 + 1/2)n + 4. 
Obtained inequalities together with the definition of ~ e  imply (4.30). 

B. Note that Ivln _< 855 < 1/2. Three cases are possible. 
a). I f  ]v]n <_ p, then ~4/~'= n + 1. 
b). I f  p < Ivln < p + 255, then ,A4"~ > [p/Ivt] + 1 >_ p/Ivl > pn/(255o + p). 
c). If  p + 255 < Ivln <_ 1/2, then at most one interval ~ ( m )  can contain 

points ai and so r ig6  _< [255/Ivl] + 1 _< 255/Ivl + 1. Consequently, ~ _> 
n + 1 - (255/lv I + 1) > pn/(255 + p). Collecting all three estimates one obtains 
(4.31). [] 

Proof o f  Theorem 4.2 Assume first that k > 1. 
For any h E ,.%" (recall (4.6)) we denote by ~h(t) the characteristic function 

of the random variable {h defined in (2.5), 

qOh(t ) =-- E exp{it{h} = exp{L(h + it) - L ( h ) } .  

Let us collect some properties of  the function ph(t) which will be used in 
the following. First of  all, for any h E ~g" and t E R 1 

lg)h(t)[ _< g)h(0) = 1. (4.33) 

Since the probability distribution of the random variable {h is concentrated on 
the integer lattice Z 1, the function ~h(t) is a 2re-periodical function of t, i. e., 
~h(t + 2re) =--- g)h(t) for every h E .,~g'. Then, for any 55, 0 < (5 < 7r, there 
exists a constant C = C ( ~ ' ,  (5) > 0 such that for every h c , . ~  and any t, 
(5 < t < 2re - 55, one has 

]~h(t)] _< e - c .  (4.34) 

And finally, there exists a constant a = a(,.~g') > 0 such that for all h c ~ and 
any t, It] _< re, the following inequality holds 

[ggh(t)l < exp{ -a t2L"(h )} .  (4.35) 

The last two inequalities follow easily from the known properties of the char- 
acteristic functions of  lattice random variables and from the compactness of  the 
set ~ .  

Using relations (4.9) and (4.10) we rewrite the characteristic function gin(T) 
of  the vector f2n,rI, in terms of functions qOh(t), 
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#n(T) = E exp{i (T, ~2n,n.) } = I I  ~hj,, (tj,~), (4.36) 
j=l  

where the numbers tj,, are calculated from T = (t ~ t l , . . . ,  t I) via (cf. (4.10)) 

k 

t j ,n==-( l -J )  t~ ,. (4.37) 
I=1 

Note that (recall (4.23)) 

i (T, E g2,,n,,) } (4.38) : 

is the characteristic function of the random vector X2* defined in (4.21). 
Using the well-known inversion formula for the Fourier transformation and 

definition (4.22) we rewrite the left-hand side 

Rn = n ~ P  (~?n,n,, =Mn) - p n ( X , )  

of (4.27) in the form 

1 
R n -  

(27r) k+l 

where 

fA ~ ( T ) e  -i(T'xn) dT 

1 fR ~H(T)e-i(T'X") dT, 
(271-) k+[ k+l 

(4.39) 

with 

A3 (4.40) 
A4 

Fix an arbitrary c > 0. We will show in the following that for a convenient 
choice of the constants A = A(c) and A = A ( ~ )  one has the bounds Ji < el4, 

A2 = R k+l \ A1, 

p = 3,4, 

= {T E R k+l : [tl [ <_ z ~ ,  l = 0, 1 , . . . ,  k} \ A1, 

= A \ (A11.3 A3). 

A = {T = (to, h , . . .  ,tk) E R k+1 :It01 ~ ~n 3/2, Itzl ~ ~ , 2  = 1 ,2 , . . .  ,k}. 

Following the standard proof of the local limit theorem (see, e.g., [13, Sect. 43]) 
we evaluate the left-hand side of (4.39) as the sum of four terms, 

(27I") -(k+l) (J1 + J2 + ,]3 + J 4 ) ,  

where, for some positive constants A and A, 

J1 = f I~n(T) - ~n(T)l dT, A1 = [ - a , a ]  k+l, 
dA 1 

Jz = [  ~n(T)dT,  
JA  2 

JP = jar, I~'~(T)I dT, 
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i --- 1, 2, 3,4, for all sufficiently large n. This will imply the assertion of the 
theorem. It remains to evaluate all Ji. 

First of all, due to Central Limit Theorem 4.1, for every finite A > 0 one 
obtains the convergence J1 ---+ 0 as n -+ co. 

Secondly, it is evident that 

-/2 = [ ~ ( T ) d T  -+ 0 as A -+ OO. (4.41) 
,/A 2 

To estimate ./3 we fix any T E A 3 and put 

7l- 
A _ k + 1" (4.42) 

Then all the numbers tj,n defined in (4.37) satisfy the condition Itj,~ I <- Try Tff. 
Hence, evaluating each factor in (4.36) by the help of (4.35) one obtains the 
bound (recall (4.38), (4.19) and (4.20)) 

I~, (T) I _< exp{--c~ ' , ,n ,  (T)} <_ exp{-cw.~n(T)},  

where the last inequality follows from estimate (4.17), the convergence H~ 
H and the positive definiteness of the quadratic forms ~n,rI ,(T) and ~ r i (T )  
provided c > 0 is sufficiently small. As a result, 

J3= an [ 3 1 ~ ( T ) I d T  --< aA[2 exp ( - t w i n ( T ) }  d T - + 0  as A -~  oc. 

To evaluate J4 put 
1 

6 = 17(k + 1) 2. (4.43) 

For any T E A4 denote by Nn(T) the number of indexes j = 1, 2 , . . . ,  n such that 
~3,~ ~ ~ (recall (4.29)), where 

1 
7j,n =~ 2~xf f f  tj,n. (4.44) 

Using (4.33) and (4.34) to estimate factors in the representation (4.36) one has 

I~n(T)l = I-I ~h~,,, ty,n <_ exp{-CN~(T)}. 
j=l  

Our aim here is to prove that for T E A4 and all sufficiently large n 

Nn(T) >_/3n, (4.45) 

were/3 > 0 is a constant depending only on the set ~ = (Sl,S2,... ,sk). Then 

fA  k+l ~+3 J4= I~,(T)I dT_< (27r) n T e x p { - - C / 3 n } - - - , O  
4 

as n --+ oc and we obtain the needed estimate for J4. 
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It remains only to prove (4.45). First observe that in view of its definition 
(see (4.44) and the relation (4.37)) the sequence ~),, , j  = 1, 2 , . . . ,  n, splits into 
k + 1 arithmetic progressions (k progressions if sk = 1) with the same step v, 

to 
7~',n - -  7~_1 ,  n -- 'V -- 27rn3/2 (4.46) 

for [ns~] < j  <_ [nsl+l], l = 0, 1 , . . .  ,k  + 1. Here we put so = 0, Sk+l = 1. 
Fix any T E A4. It follows from the definition (4.40) that for any T C A4 

there exists a number I E {0, 1 , . . . ,  k} such that Itll > Av/-ff. Let lT denotes the 
minimal such I. Two cases are possible: lT = 0 and lT > 0. 

Consider first the case IT = 0. Then A~v/n < It01 _< 7rn 3/2 and so, in view of 
(4.42) and (4.46), the step v satisfies the condition 

1 A 1 - > v >  
2 - 27rn 2n (k + 1) 

On the other hand, at least one of the progressions mentioned above consists of  
no less than [(n + 1)/(k + 1)] elements. Then for all sufficiently large n one has 
the inequality v [(n + 1)/(k + 1)] _> 8/~ and so Lemma 4.4.A can be applied. As 
a result, for all sufficiently large n 

(1  4 ) I n + l ]  n (4.47) 
N , ( T ) >  ~ 17 (k+1)  2 k k + l l - 3 >  4(k+1----~' 

In the case IT > 0 the statement B of Lemma 4.4 is applicable. Indeed, put 
jz = [nslT] and consider the difference (recall (4.44), (4.37)) 

R = ~,,~ - ~l+l,~ - 27rx/ff + tit - 

(for & = 1, 1T = k we put %+1,~ = 0.) Using the inequalities It0l _< zavrff and 
A V ~  < [t~T] _< 7rxfff it is easy to verify that for all sufficiently large n 

6 6 < 1 R 1 < 3 / 5 <  1 -6 /~ .  

Consequently, at least one of the points ~ ,~,  ~t+l,~ (~-~,~ in the case Sk = 1, 
IT = k) is located outside of the set ~ on the distance p > 26. 

To apply the statement B of Lemma 4.4 it remains to observe that for the 
fixed set .52 ~ there exists a constant 3' = ~ ' ( ~ )  > 0 such that for all sufficiently 
large n the length of every progression obtained above is no less than "yn. Hence, 

~ P  7n > 3' (4.48) N, (T)  _> 2 6 + p  _ ~ n. 

Obviously, (4.47) and (4.48) imply (4.45). 
Collecting all the estimates of the integrals Jp obtained above we finish the 

proof for k >__ 1. 
The case k = 0 can be treated in the same way with obvious simplifications 

in the formulas (4.10), (4.42), (4.43), and in the evaluation of  J4. U 

Observe that in the arguments above the Ganssian density fill( ') can be re- 
placed by the density of zero-mean Gaussian distribution with the covariance 
matrix B~(H,~) (recall (4.23), (4.24)). In particular, one has 
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Corollary 4.5 There exist positive constants no, co and Co such that for  all n > no 

c0 ,! 0 -1/2 P(Yn,hO nq~) <C~176 - -  (Lyo (hn)) < = (4.49) 
n - -  - -  n \ Y. n )  

where h ~ is determined from (2.10). 

For the future references we make also the following simple observation. 

Corollary 4.6 Let all X~ in (4.26) be uniformly bounded. Then in the conditions 
of  Theorem 4.2 one has 

P (/2,,,n. = Mn) = n k~-3pH(Xn)(1 + O(1)), 

where the estimate o(1) is uniform in such Xn. In particular, this probability is 
positive for  all sufficiently large n, n >_ no, and therefore there exist positive 
constants ci, Ci, i = 1, 2, such that uniformly in such Xn and n >_ no one has 

c2 _< QFn(Xn) _< n ~ P  (/2n,nn = Mn) _< CI~H(Xn) __< C2- (4.50) 

5 Convergence of finite-dimensional distributions 

We prove here the convergence of finite-dimensional distributions of the random 
process O*(t) from (2.15) to the corresponding distributions of the conditional 
random process 0(t) = (~(t)[~ = 0) (recall (2.16), (2.17)). To do this we check 
such a convergence for the random process O*(t) (cf. (2.15), (2.21), (2.14)) 

1 o:(t) -  (on(t)- neh(t)) 

and prove the convergence @*(t) - O~(t) ~ 0 in probability as n --* ec. 
As before, let nqn be the Yn-regular sequence fixed in Sect. 2, h ~ and h be 

the solutions of equations (2.10) and (2.11) correspondingly. Then the sequence 
of vectors 

0 R k + l  H ~ - -  ( h n , O , . . . , O )  C (5.1) 

converges to the vector (recall (4.8)) 

I"I 0 =-- ( f ' l , O , . . . , O )  E R k+l (5.2) 

and all H ~ belong to the region ~ + i  from (4.11). 
Denote (recall (4.13), (4.9) and (2.10)) 

E~ -- E f2,~,I-IO = (nqn, e l , . . . ,  e~). (5.3) 

It follows from (4.13), (4.9) and (4.10) that 

�9 [ns~] 
0 L = -- ein = en(si)------ ~ 7 0 .  (H) U=HO ~ ' L ' ( ( 1  J~h~  

n n J  ~]" (5.4) 
j=l  
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Similarly to (4.7) we find that 

f o  si t o en(si) = L (hn - h~  + O(n-1) ,  

where the estimate O(n -1) is uniform in ~ (recall (4.6)). Moreover, the ana- 
lytical dependence of the function eh(S) = (L(h) - -L(h  - h s ) ) / h  on h in some 
neighbourhood of h as well as relation (4.8) imply that 

1 e~ ( s i )  + s i O ( h  0 - f t )  + s i O ( n  - 1 )  
n e ~ ( s i )  = ( 5 . 5 )  

= e~ ( s i )  + s i O ( q n  --  q) + s i O ( n - 1 ) ~  

where the estimates O(-) are uniform in si E [0, 1]. 
�9 ~ + 1  Consider an arbitrary vector M ,  C - - - n  of  the kind 

1 m k M ,  = ( n q ~ , m , , . . . ,  , )  (5.6) 

i --1/2- i e i and define x n = = n tm n - ~), i 1 , . . .  ,k.  Denote by ilk(') the probability 
density of  the Gaussian random vector ~ = (7, ~ 1 , . . . ,  ~k) with the characteristic 

function ~no(T) (recall (4.22), (5.2)). Then 

pk(x 1, . , x k l O )  ~ pk(X0)  X 0 = (0,X 1, . ,x1'), (5.7) 
""  P o ( 0 )  ' " 

gives the probability density of  the conditional distribution (~1 , . . . ,  ~k [7 = 0). 

L e m m a  5.1 Let x i be uniformly bounded. Then 

1 - & ~  1 P(69n(S i )=mn, . . . ,On(Sk)=mkn)  =n  2p~(x~, . . . ,x~lO)( l  +o(1)) (5.8) 

i as n ---+ c~; the estimate o(1) is uniform in such x n. 

Proof It follows from (5.1), (5.6), (4.9), (4.10) and (2.7) that 

( M n , H  ~ : n q ,  h ~ Ls~, (H ~ : Ly, (h~ 

Hence, applying (4.12) to M = M~ and H = H ~ and using (4.1) with x = nqn 
and h = h ~ we obtain 

P(~2. = M . )  _ P(~.,ri~ = M . )  

P(Y~ = nqn) P(Y.,ho = nq~) 

In view of (4.27) with H = H ~ H~ = H ~ (4.28) with hn = h ~ x = nq~, and the 
definition of p~(.) we rewrite the last ratio in the form 

P(f2~,no = M~) - 0 
= n - ~  pk(X~) (1 + o(1)) ,  (5.9) 

P(Yn,h o = nqn) fro (0) 

where the estimate o(1) is uniform in the case of  uniformly bounded x/.  Finally, 
substituting (5.7) into (5.9) we get (5.8). [] 
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Theorem 5.2 Fix any natural k, a set of real numbers 0 < tl < t2 < �9 �9 < & <_ 1 
and denote (cf (2.15)) 

1 
O~*(t) = ~ (~gn(t) - ned(t)) ,  (5.10) 

where the process @,,(t) is defined in (2.21). 
Then the distribution of the random vector (69~(t l ) , . . . ,  O*(tk)) tends weakly 

to the Gaussian distribution with the probability density &(.10)from (5.7). This 
limiting distribution coincides with the corresponding finite-dimensional distribu- 
tion of the measure #* from Theorem 2.1. 

Proof. In view of (5.5) and (2.9) one has en(t) - ne~(t) = o(v/-ff) uniformly 
in t E [0, 1] and so it is enough to prove the statement of  the theorem for the 
random vector  ( o n ( t )  - e n ( t ) ) .  

For T = ( h , . . .  ,tk) put On(T) -- (@~(q),. . .  ,O,( tD).  If  x = (Xl~... ~Xk) E R k, 

Y = (Yl , . . .  ,Yk) E R k, we will write y > x instead o f  {Yl _> x t , . . .  ,Yk _> xk}. 
Denote also (cf. (5.3)) 

e .  -- (end, . . . ,  ekn). 

According to Theorem 2.2 from [3, Chap. 1] it is sufficient to prove the 
asymptotical smallness of the difference 

Rn : e(yv/-ff _< 69n(X) - en _< Z~v/n) - -  ~y<x<z&(XlO)dx (5.11) 

for every y, z E R k, y _< z. 
To do this we recall that the estimate o(.) in (5.8) is uniform in x belonging 

to every fixed compact set in R k and so one can rewrite 

p ( y _ <  @ n ( T ) - e n  ) v/'h- < z  = ~ P(@n(T)=m) 
m E Z  k : y v ~ _ < m - e n _ < z x / n  

(1 + o(1)) 
k (5.12) 

= pk" (x l0)n-  ~. 

x : x = ( m - e n ) / x / f f ,  

m C Z  k , yv~_<m--en_<Zvrff  

It remains to observe that the last sum in (5.12) presents the Riemannian sum 
for the integral expression in (5.11). 

To prove the last assertion of the theorem we note that in view of definitions 
(2.16) and (2.17) one easily obtains 

1 j0 ' j0 :~ (Ltt( f l  -- f l y ) ) 1 / 2  dq2lxd t --  (1  - x )  (Lt t( f l  --  } I x ) )1 /2  d723 x 

and so 
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s A t  

E ~(t) ~(s) = L"(h - hx) dx, 
d O  

/o E~(t)  ~ = (1 - x)L"(h - hx)dx,  

2 E ~  = (1 - x)2L"(h - hx) dx. 

Since the last expressions coincide with the appropriate elements of the covari- 
ance matrix B( t I  ~ of the Gaussian random vector O = (7, 7 1 , . . . ,  ~k) with the 
characteristic function ~ri0(T) (recall (4.18), (4.15), (4.22), (5.2)) the last asser- 
tion of the theorem follows from the first part of the theorem, definition (5.7) 
and well-known properties of conditional distributions [20, Chap. 2]. [] 

To study the finite-dimensional distributions of the process On(t) from (2.12) 
we observe that due to (2.15), (5.10), (2.12), (2.21), and (2.3) one has 

{ n t }  , 
02(t) - 02(t)  = ~ -  (~[nt]+l I Yn = nqn). (5.13) 

Since ~btl+I depends weakly from Yn for large n it is naturally to expect that the 
last expression vanishes in probability as n ~ oo. The next lemma contains the 
key result in this direction. 

L e m m a  5.3 Fix any number p > 0 such that the real 2p-neighbourhood ~ p  of 
the segment ~ lies inside the set ~ ~  Then there exist constants C = C(./~'2p) > 
0 and no = no({%}) such that uniformly in n >__ no andj  = 1 , . . . ,  n thefollowing 
inequality holds 

E (ePlCJl I Y, = nqn) < C. (5.14) 

Proof. Let a be any number such that P(~ --- a) > 0. Then 

P(~j=a[Y~=nqn)  P(Y~=nqn[~ j=a)  
= p (~-  Z_ ~qn~ P(~j = a). 

We prove below that for all sufficiently large n the following inequality holds 

P(Y~=nq~l {J=a)  < C e x p { ( 1 - J ) a h ~  (5.15) 
P(Yn = n q n )  - 

where hn ~ gives the solution of (2.10) and C > 0 is some absolute constant. Then 
for all integer a one has 

P ({j = a[Yn = nq.) < C exp{ (1 - J--' ]ah ~ + plal }P  ({j = a) 
- -  n J  n 

and so (5.14) follows easily from the inequality 

+OO 

E ( e P l " J [ Y n = n q ~ ) < C  ~ exp{(1  j o 
_ 

k = - - o o  
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and the inclusion [(1 - j / n ) h  ~ - 2p, (1 - j / n ) h  ~ + 2p] C ~ 2 p .  
It remains to verify estimate (5.15). Defining 

Yn ~ Yn(ff) ~ Yn - ( 1 -  J )~j, nOn -'~" ?lqn - ( i  - J )a  

we obtain 
P ( Y .  = nq. l~g = a )  - r07. = nO.). (5.16) 

The logarithmic moment generating function L~ (.) of the random variable Y,, 

satisfies the relation of the kind (4.7) with the estimate O(n -1) that is uniform 
in j = 1 , . . . ,  n and h belonging to any fixed compact subset of ~ ~  Therefore, 

determining f~o from the equation 

d L~(h) h=h~ = nqn (5.18) 

one easily gets (recall (2.10)) 

d d 
~-Ly,eo(h)  h=h o d--~Ly,eo(h) h=h~ = O(n-1) .  

As a result, the implicit function theorem gives the estimate h ~ - h  ~ = O(n -1) 
as n ---+ oc which is uniform in j -- 1 , . . . ,  n. Thus, 

I[~ ~ - h~ <_ p/2 (5.19) 

for all sufficiently large n. 
The convergence/~o _ h o _+ 0 as n --+ ec and the analog of (4.7) for L~, (.) 

mean that the asymptotical behaviour of Yn is close to that of Y,, i. e., all the 
statements of Sect. 4 hold true for Yn. In particular, the probability P(Yn = nqn) is 
positive for all sufficiently large n. Then (recall (2.10), (5.18), (A.1), and (5.17)) 

= - h n nqn L},(nqn)-l@y(nqn) h~ Lro(h,~ - ~ ~  +Ly(h  ~ 

: ( h n  ~ f~~176176 J'~[to'~ 
- - n )  ~) 

and therefore this expression is bounded uniformly in j = 1 , . . . ,  n. Finally, (4.5) 
and (4.50) together imply the inequality 

P(Y, = nq~) < exp{-l-~y (nq~)} een-312 

P(Yn = nqn) - exp{-L~. (nqn)}cen-3/2 <- C3 

which in view of (5.16) gives for all sufficiently large n the estimate 

P (Yn = nq,, I~j = a) P(Y~ = n//n) (5.20) 
P-(Y2=~qn; <- C3~(Yn nqn) " 
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TO evaluate the last fraction we apply analog of (4.5) for Y, to obtain 

P(]~. = nO,,) _ ~ P(Yn,ho = non) (5.21) 
P(Yn nqn) = exp{I~y (nqn) (nOn)} p(~.,> Tnqn~) . 

Observe that (5.18) and (A.3)-(A.4) imply 

d , 
L~ (n~ln) - L~y (nq~) > ~I_~y (nqn)(nOn - n q n )  = h ~  J ) a  

and so it remains to evaluate the last fraction in (5.21). 

(5.22) 

Let first [a] _< Dv;ff  with some constant D > 0. Then the analog of (4.50) 
for Yn imply 

P(Yn,~o = n0o ) C2n-3/2 
< - -  = C 4 .  ( 5 . 2 3 )  

P(Y,,;,o = n q , ) -  c2n -3/~ 

In the case ]aj >_ D ~  we find a constant C5 such that 

P(f, ,~0 = non) < 1 < Cse vIal~2 (5.24) 
P(Yn,/~o nqn) - ~ .2n-3 /2 -  

for all n. Finally, the estimates (5.20)-(5.24) and (5.19) together imply (5.15). 
[] 

Theorem 5.4 Fix any natural k, a set of  real numbers 0 < h < . . .  < tk <__ 1 
and consider the process O* (t) from (2.15). 

Then the distribution of  the random vector ( 0 * ( q ) , . . . ,  O* ( tk ) ) tends to the 
Gaussian distribution with the density Pk ('10) defined in (5. 7). 

Proof. Denote 

rn = (O*( t l ) , . . . , •* ( tk ) ) ,  Vn = (O*(tl) , . . . ,O*(tk)) .  

In view of the result of Theorem 5.2 it is enough to show that the difference 
Tn - v,  vanishes in probability as n --+ ~ .  

Let Ct = CI(p) > 0 be a constant such that Ixl < C~ exp{plxl} for all real x. 
Then (5.13) and (5.14) imply the estimate 

1_ E CC1 
E lO~(t) - O,,*(t)l <_ x/- ff (l~[nt]+lll Yn = nqn) < ~ -  ~'~ 0 as n ~ c~ 

and so the difference O~(t) - O~(t) vanishes in probability as n ---+ c~. Clearly, 
the same is true for Tn - vn. [] 
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6 Weak compactness of the sequence/~* 

To complete the proof of the Theorem 2.1 it remains to prove the weak com- 
pactness of the sequence of measures #*. We obtain it here as an implication 
of Theorem 2.2 from [12, Chap. 9] which presents a sufficient condition for the 
weak compactness of  sequences of  measures in C[0, 1]. The following statement 
verifies the assumption of the mentioned theorem. 

Theorem 6.1 There exists a constant C > 0 such that 

E [0n*(t) - 0n*(s)l 4 < f i t  - sl 7/4 

uniformly in all n >_ no and all segments Is, t] C [0, 1], s < t. 

The remaining part of  this section is devoted to the proof of  Theorem 6.1. 
Two cases, A -- It - - s l  _< n - 8 / 9  and A > n -8/9, are treated separately. 

Lemma 6.2 There exists a constant C ~ > 0 such that for all n >_ nl and all 
[s, t]  C [0, 1], A < n-8/9, the following inequality holds true 

E 10n*(t) - 0n*(s)l 4 _< Ct[AI 7/4. (6.1) 

Proof Denote ~j,n =-- L'((1 - j / n ) h  ~ and consider the function (cf. (5.4)) 

{nt] 
en(t) = Z e.j,n -b {nt}e[ntl+l,n. (6.2) 

j=l  

According to estimates (5.5) and (2.9) one has the following relation 

en(t) - neh(t) = to(v/if) as n --+ oe 

that is uniform in t E [0, 1]. Consequently, it is enough to prove the assertion of 
the lemma for the random process 

On**(t) =- ~ n  (On(t) - en(t)). (6.3) 

Observe that due to Jensen inequality for the function y = x 4, 

l 4 I 

i=1 i=1 

and Lemma 5.3 one has the estimate 

(6.4) 

E(I~j -~j,nl4lyn =nqn) <_ 8C4E(ePI~Jl]Yn =nqn) + 81~j,nl 4 < G (6.5) 

provided n is sufficiently large. Here the constant C4 is such that the inequality 
]xl 4 _< C4 exp{plxl)  holds for all real x. 

Define 
nt ~ [nt l ,  n s -  [ns]. (6.6) 
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For nt = ns the assertion of the lemma follows easily from the observation 

{n t }  - { n s }  - [Yn = nq~) (6.7) O**(t) -- On*(S) - -~#~ ({n, -- e ..... 

relation (6.5), and the condition nA  < 1. Otherwise nt > ns and we consider 
two cases, A < 1_ and A > _1 separately. The following formula is the starting 

- -  n t / '  

point in our reasoning (recall (6.3), (6.2), (2.12), and (2.3)) 

nt+l ^ (n)~..., 
o~*(t) - o,*,*(s) = ~ ~*s,,V,J j=n,+l ~ (~j -- ej'n]Yn = n q . ) ,  (6.8) 

where 
{nt}, if j = n t + l ,  

_(n)r:, 1, if n~ + 1 < j  < nt + 1, (6.9) 
% , t W  = 1 - -  {ns} ,  if j = n s + l ,  

0, otherwise. 

Let A < ! Then nt = ns + 1 and one easily obtains (cf. (6.5)) 
- -  n "  

(1  - { n s } )  4 { n t }  4 
E ]0~*(t)- 0~(s)[ 4 _< 8C~ n2 + 8C~ n2 (6.10) 

<_ 8Csn2[t - sl 4 <_ 8C51t - s[ 2 

for all sufficiently large n. In the second inequality above we use the simple 
relation a 4 + b 4 < (a + b )  4 and the equality 1 - { n s }  + {n t }  = h A .  

In the case A > ~ we use Jensen inequality (6.4), the expansion (6.8), the 

estimate (n) �9 [as,t( j)  [ < 1, and the simple observation n t + l  - n s  < 2 + h A  < 2+n  1/9 
following from (6.6) mad the condition A < n-8/9 to obtain 

E [0*(t) - 0~(s)[ 4 < (nt + 1 - ns) 3 nt+l 
-- n ~ Z E ( ( ~ j -  ~j,n)41Yn = n q n )  

j=ns + l 

(nZ~ + 2)7/4(2 + nl/9) 9/4 
C5 n2 ~ c t ] t  - s [  7/4 

(6.11) 
for all sufficiently large n. Combining (6.7), (6.10), and (6.11) we get (6.1). [] 

L e m m a  6.3 There exists a constant  C "  > 0 such that f o r  all n >_ n2 and all 
[s, t] C_ [0, 1], A > n-S~ 9, one has 

E [0*(t)  --  0n(S)l 4 < c"l l 2. (6.12) 

Proo f  As before, it is enough to prove (6.12) for the random process 0;~*(.) from 
(6.3). Define the random variable q'~ (recall (6.9)), 

nt+l 

~ - x ~ ( t )  x~(s)= ~ (,o. - o < , ( j ) ~ j ,  

j=n~+l 
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and consider the random vector A, = (Y~, ~ / v / - ~ ) .  Let LA.(It), H = (h0, hi), be 
its logarithmic moment generating function, 

n ( n )  �9 

For H ~ = (h ~ 0) with h ~ determined from (2.10) denote 

En ~ = VHLA, (H) = (nqn, ea) ,  (6.14) 
I-i=rio 

where 
nt+l _ (n)l-3 

=-- cI L A . ( H )  = Z c ~ s ' t u ) -  ez5 
Ohl H=H ~ j=m+l V/~ el , . .  

Observe that in view of  the estimate 

Ek{O**(t)-O-**(s)) 4 V / z  / <_ ~ ( k +  1)4P( It" - e A V ~ [ ~  > k[Y. = nq.) (6.15) 

k>O 

it is sufficient to prove the finiteness of the last sum for all n _> n2. We prove 
below the following estimate 

P([C,, _ eAV~l  > k nv/~l  Y~ = nq,) < g~(k), 

where for some positive constants C1, C2, cq, c~2 and 

C1 exp{-c~lk2}, if Ik[ _< 6 ~ ,  

9,(k) = C2exp{-ee2nl/lS[kl}, if I;~1 > ~ ' / ~ "  
(6.16) 

Then the convergence in (6.15) follows immediately. 
To prove estimate (6.16) we consider the vector (cf. (6.14)) 

Z~ - (nqn, ea + kv/-~) = E~ + (0, kv/-n) (6.17) 

and determine H ,  = H---~ (k) = (h~ hi(k)) from the condition 

VItLAn(H) n=~n Z a  = , ,  (6.18) 

It follows from (6.13) and the implicit function theorem that provided k in (6.17) 
is of  order ~ the quantities -o o h~ (k)-hn and ~z ( k ) v ~  are of order A. Therefore, 
there exist ~5 = 8(p) > 0 and n3 > 0 such that for all k, [k I _< ~ ,  and n > n3 
the following inequalities hold true 

(6.19) 

Consequently, if p is the same as in Lemma 5.3, then the function LA,(I-I~) as 
well as all its derivatives are uniformly bounded. For future references we fix 
such value ~5(p). 
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Assuming that ~ - e A V ~  _> 0 (in the opposite case the estimates are similar) 
we rewrite 

P(r > ezxv/~ + k nv/-h~l Yn = nqn) 

_ P(Yn = nqn,r > e A ~ + k ~ )  
P(Yn = nqn) (6.20) 

e-L~,,(Z2) P~, (Y~ = nq~, 4, > eA ~ + k ~ )  
e--L~ (nq~) P(Yn,hO = nqn) ' 

where 1~, was determined in (6.18), h ~ in (2.10) and PN( . ,  .) denotes the tilted 

distribution of A~ (cf. (4.12)) with the fixed value H = I t , .  
Our aim here is to evaluate the last expression in (6.20). Let first Ikl _< 5nv~.  

It follows from (6.13), (6.14), (2.10) and duality relations (A.1) that 

�9 a OIL~,~(E~ a )  O, L& (E,~ ) = L~ (nq,~) and = (6.21) 

where OIL*A. (E~) denotes the derivative of the function L~, (x0, xl) with respect 
to Xl. Hence, applying (A.5) one obtains 

L*A,(Z~) -L~,,(nqn) = (k~-y)O12L*A,(nqn,ea +y)dy. (6.22) 
.Io 

To bound the derivative O12L*A(.) from below we determine I t  y = (h~ 'y) 
from the condition 

VItLA,,(H) n=ny: E~ -- (nq~, ea +y), 

where [Yt -< Iklv/~ -< ~ n~n-~. The same estimates as in Sect.4 (see (4.19)) prove 
that the matrix HessLA,, (H y) is positively definite provided n is sufficiently large. 
Then 

02 02 
0 < det ItessLA.(H~) _< O~o2LA.(I-F~) ~TLA~ 

and applying duality relation (A. 1) one obtains 

02 02 y 
�9 y Oho2LA,,(Hn) ( O~h12 )-1 C3 

Oxl 2 LA"(En) = det HeSSLA~ (H y) -> LA"(HYn) >- --'n 

~ L e~ty, since for all t I  y under consideration the derivative ~ A,, t n ,  ) is bounded from 
above. Substituting the last estimate into (6.22) one gets 

a C3 f k ~  C3k 2 LA,(Z,~* )-L~(nq,,)  > - -  l ( k ~ - y )  dy = (6.23) 
- n a o  2 

provided [k I <_ 5V/hA. 
In the opposite case, Ikl _> 5 ~ ,  we apply Property A.2 to obtain 
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Z~tn (Zn~) . .4 C3 ( ~ v / ~ l k  I C3(~ n 1/18 
- L A " ( E n  ) > -2- > 2 Ik[" (6.24) 

It remains only to estimate the last fraction in (6.20). Consider first the case 
Ikl < ~ n4-n-Z. Let L y e ,  (h) be the logarithmic moment generating function of 

the first component Y ,fi,, of the tilted random vector A n,~, 

L r ~ ,  (h) -= ln( E eh~~ (Yn = ko)) = LA,(Ft 0 + h,f~ln)- ZAn(flO~ftl). 
koCZ 1 

In view of the choice 5 > 0 in (6.19) the quantity n - l L "  ~,~ (h) is bounded 

from below by infhc~,~p L ' ( h )  for all sufficiently large n. Therefore, all the 
considerations of Sect. 4 are true for Y,~, and so (cf. (4.49)) 

P~,(Yn =nq. )  <_ f r o /  02 _ \ - 1 / 2  

As a result, one obtains (recall (6.21)) 

P~.(r. = nq.  ) < C o  d2 0 (.~_~ftyn(hn) ~ 1/2 
_ - -  02 - -  < C4, (6 .25)  

P(Yn,h o nqn) co \ ~o2LA.(Itn) J -- 

where the last inequality follows from the boundedness of -1 , n Lro (h) in ,~ '~  
In the opposite case, Ik[ _> ~ nV%-Z, one easily gets (recall (4.50)) 

n 3/2 ~ ~ Cain 1/1s 
(Y. = nqn) < 1 < < Ikl}. (6.26) 

P(Yn,ho = nqn) -- P(Y~,ho = nqn) - c2 _ t~5 exp~ 

Finally, (6.16) follows from (6.23)-(6.26) with C1 = C4, C2 = C5, c~1 = C3/2, 
and OL 2 = C3~/4. [] 

The assertion of Theorem 6.1 follows immediately from Lemmas 6.2 and 6.3. 

Proof  o f  Theorem 2.1 The statement of Theorem 2.1 is a simple implication of 
Theorems 5.2, 5.4, 6.1, and Theorem 2.2 from [12, Chap. 9]. [] 

Appendix 

We collect here some properties of convex functions used above. 

Property A.1 Let f ( . )  be a strictly convex twice continuously differentiable real 
function defined in a region U c R m (m > 1) and f * ( p )  be its Legendre trans- 
formation, f * ( p )  -- supx ( (x ,p )  - f ( x ) ) ,  p C R m. Assume that the values x E U 
and p E R m are related via Vf(x) = p. Then the following relations hold 

f * ( p )  = (x ,p )  - f ( x ) ,  

xTf* (p) = x, (A.1) 
Hess/*(p) = (I-Iessf(x))-1 
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Observe that in the considered case the matrix Hessf (x)  of the second derivatives 
f ( x )  as a function of x E R m is strictly positive definite at x. 

This duality property of the Legendre transformation can be verified directly 
or induced from the known facts ([19, Chap. 5]). 

Property A.2 Let fT, 7 E F, be a family of  convex functions satisfying the con- 
dition f~(x) > fT(O) = O. Assume that for  some b > 0 and all x, Ixl < D, with 
some positive D the following inequality holds true 

f~(x) >_ bx 2. 

Then for all x, Ix l > O, one has 

fT(x) > bD Ix[. 

Proof Evidently. [] 

Finally, we prove here the following property of the Legendre transforma- 
tion. Let f , ( . )  be a sequence of strictly convex twice continuously differentiable 
functions defined in some &neighbourhood U6(x,) of the point x, ~ R I. Assume 
that there exists a strictly convex twice continuously differentiable real function 
f ( . )  defined in U6(x,) such that 

d k d k 
dxkf~(x) = ~--s + O(n-1) ,  k = 0, 1, 2, (A.2) 

where the estimate 0(.)  is uniform in some fixed segment ~ C U6(x,). Let Pn 
be a sequence of real numbers such that Pn - P  = o(n- l /a )  as n --~ oo for some 
p and for any natural n there exists the solution x~ of the equation f~(xn) = Pn 
belonging to the interior ~ ~  of the compact set , ~ ' .  Suppose also that the 
limiting point x of the sequence xn also belongs to ~ " ~  Let fn*(.), f*( . )  be the 
Legendre transformations of the functions f~(.) and f(-)  correspondingly. 

Property A.3 There exist positive constants Do = D0({p~},3~ "~) and a = a(o~g;') 
such that: 

a) for  all real s satisfying the condition Is I < Do one has 

fs +s )  >-f*(Pn) + x ,s  + as  2, (A.3) 

b) for any D = D~, 0 < D <_ Do, and any s, Isl > D, one has: 

f*(Pn + s) >__fn*(Pn) + XnS + o~Dls ]. (A.4) 

In the proof of Property A.3 we will use the following simple formula that can 
be verified directly using the integration by parts. L e t f  ~_ C2(a, b), x0 C (a, b) 
andff(xo) = 0. Then for any x E (a ,b)  one has 

2 f ( x )  - f ( x o )  = (x - y ) f " (y )  dy. (1.5) 
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Proof Let ~ C ~g'~ be the smallest segment containing all the sequence xn 
and its limit as well. Clearly, the difference ~'{'~ \ ~ consists of two intervals. 
Every function f~(.) is strictly increasing in ,~/'~ therefore for any n the image 
f~ (~b "~ \ ~ )  also consists of two intervals. Denote by D'  the length of minimal 
of them (over all n). Observe that (A.2) implies the estimate D '  > 0. We put 
Do =D'/2. Then for any s, Isl _< Do, and any n one has 

p .  + s ~ { f ' ( x )  : x e ~e~~ 

Denote 9n(s) =f~(P~ +s)-f*(p~)-x~s. Since everyf '(-)  is strictly increasing 
the equation f ' (yn) = Pn + r has a unique solution yn = yn(r) for any r, Ir] _< Do, 
and so (A.I) implies 

g'nt(r) *" t(yn) >_ i n f  i n f  (f~ (x) )  = 2c~, =f/, (pn + r)= (f~ )--1 ,t --1 
n x@.~6 "o 

where in view of (A.2) the constant c~ is positive. Applying (A.5) we obtain 

fo x f0 ) /t 
9n(S) = (S -- r 9 n ( r ) d r  > 2ee (s - r ) d r  = o~s 2 

which coincides with (A.3). Finally, relation (A.4) follows easily from (A.3) and 
Property A.2. [] 
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