Corrigendum

Elliptic equations in \mathbb{R}^2 with nonlinearities in the critical growth range

D.G. de Figueiredo, O.H. Miyagaki, B. Ruf

Calc. Var. 3, 139-153 (1995)

In hypothesis (H6) of Theorem 1.4 the λ_k has to be replaced by $\lambda_k + \sigma$, with $\sigma > 0$. In the statements of Thms. 1.3 and 1.4 the lower bounds for β have to be replaced by $\frac{2}{\alpha_0 d^2}$ and $\frac{4}{\alpha_0 d^2} \, e^{K/\sigma}$, respectively, where $K = K(\alpha_0, \lambda_k)$.

In the inequalities (4.5) and (5.4) the last integrals in fact go to πd^2 . So the last inequality of the proof of Thm. 1.3 is $4\pi/\alpha_0 \ge (\beta - \epsilon)d^2\pi M_0$. One proves that $M_0 = 2$.

The first integral in (5.4) is split into integrals over $B_{d/n}$ and $B_d \setminus B_{d/n}$. The latter integral is estimated from below by $\pi d^2 \hat{M}$ as in the paper; one calculates that $\hat{M}=1$. To estimate the integral over $B_{d/n}$ one uses the following estimates on t_n and v_n : $t_n^2 \leq 4\pi/\alpha_0 + c\|v_n\|/\sqrt{\log n}$, $\|v_n\| \leq c/(\sigma\sqrt{\log n})$, and $t_n^2 \geq 4\pi/\alpha_0 - c/(\sigma\log n)$ which are obtained from (5.1) and (5.2). Then the last inequality in the proof of Theorem 1.4 becomes $4\pi/\alpha_0 \geq (\beta-\epsilon)d^2\pi e^{-K/\sigma}$, which yields a contradiction if β satisfies the above condition.