Correction to Approximation with Restricted Spectra

Math. Zeitschr. 144, 289-297 (1975)

Charles K. Chui, Philip W. Smith and Joseph D. Ward

Department of Mathematics, Texas A & M University, College Station, Texas 77843, USA

The purpose of this note is to correct the proof of Theorem 4 in [1]. The result in Theorem 4 is still correct. However, the application of Berberian's result in the proof is incorrect. In what follows we use the same notation as in [1].

Theorem 4. Let C be a closed convex set of cardinality larger than one in the complex plane. Then any normal operator N has a unique best approximant $P_C(N)$ from $\mathfrak{N}(C)$ if and only if

 $\hat{d}(\sigma(N), C) = d(s, C)$

for all $s \in \sigma(N)$. Furthermore,

 $\widehat{d}(\sigma(N), C) = \|N - P_C(N)\|.$

In order to prove the above theorem, we need the following lemmas.

Lemma 1. With the same notation as in Theorem 4, $\hat{d}(\sigma(N), C) = ||N - P_C(N)||$. This result is a distance formula of Halmos (cf. reference [6] in [1]).

Since $\sigma(N)$ is compact, we need only consider a compact restriction K of C. If K is a line segment, the proof would follow similarly and hence we assume K to be a compact convex body. Let $K_{\alpha} = \{x: d(x, K) = \alpha\}$ and y an interior point of K. Let $r_{n,i}, i = 1, ..., n+1$ $(r_{n,n+1} = r_{n,1})$, be rays emanating from y and terminated by K_{α} with each angle, l_i , between $r_{n,i}$ and $r_{n,i+1}$, equal to $2\pi/n$. Let $x_{n,i} = r_{n,i} \cap K_{\alpha}$ and $z_{n,i}$ the arc on K_{α} subtended by the angle l_i and the chord $y_{n,i}$ connecting the points $x_{n,i}$ and $x_{n,i+1}$. Finally, let $d_{n,i} = d(y_{n,k}, z_{n,k})$.

Lemma 2. There is a sequence $\varepsilon_n \to 0$ such that $d_{n,k} \leq \varepsilon_n / n, k = 1, ..., n$.

To prove this lemma, consider the triangle with sides $r_{n,i}$, $r_{n,i+1}$ and $y_{n,i}$. Since K_{α} is a convex curve, there is a $\delta > 0$ such that the two angles facing $r_{n,i}$ and $r_{n,i+1}$ are between δ and $\pi - \delta$. Thus, using the law of sines,

$$|y_{n,i}| \le C_1 \sin \frac{2\pi}{n} \le C_2/n$$

for some constant C_2 independent of *i* and *n*. Now, using the fact that the radius of curvature for each point on K_{α} is at least α , it is easy to see that

$$d_{n,i} \leq \varepsilon'_n |y_{n,i}| \leq \varepsilon'_n C_2 / n \equiv \varepsilon_n / n.$$

Returning to Theorem 4, let $x_i \in H_i$, $||x_i|| = 1$, where H_i is a reducing subspace of N such that $\sigma(N|_{H_i}) = z_{n,i}$. If N' is a best approximant to N, then

$$\alpha \ge \|(N - N') x_i\| \ge |\langle (N - N') x_i, x_i \rangle| \ge \alpha - \varepsilon_n/n.$$

Hence, $(N-N')x_i = (\alpha - \delta_{n,i}/n)x_i + f$, where $0 \le \delta_{n,1}, \ldots, \delta_{n,n} \le \delta_n \equiv \delta_n(\varepsilon_n, N') \to 0$, $\langle f, x_i \rangle = 0$ and $||f|| \le \delta_n/\sqrt{n}$. Thus, if N_1 and N_2 are any two best approximants to N and ||x|| = 1, then

$$\begin{split} \|(N_1 - N_2) x\| &\equiv \left\| \sum_{i=1}^n \alpha_i (N_1 - N_2) x_i \right\| \leq \sum_{i=1}^n |\alpha_i| \, \|(N_1 - N_2) x_i\| \\ &\leq \left(\sum_{i=1}^n \|(N_1 - N_2) x_i\|^2 \right)^{1/2} \leq [n(\eta_n/\sqrt{n})^2]^{1/2} = \eta_n \to 0, \end{split}$$

where η_n comes from $\delta_n(\varepsilon_n, N_1)$ and $\delta_n(\varepsilon_n, N_2)$. Thus, $(N_1 - N_2) x = 0$ for all x, or $N_1 = N_2$.

The proof of the converse is the same as in [1].

We also note that the reference to the Berberian embedding in the second line of the proof of Theorem 6 should be omitted.

Remark. We would like to thank Professor J. P. Williams for pointing out the error in [1].

References

1. Chui, C.K., Smith, P.W., Ward, J.D.: Approximation with restricted spectra. Math. Z. 144, 289-297 (1975)

Received October 13, 1975