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Abstract An experimental study was conducted to evaluate 
the effect of length on the parallel-to-grain tensile strength 
of Japanese larch (Larix kaempferi, Carriere) lumber. Six 
hundred pieces of mechanically graded lumber were tested 
at gauge lengths of 60, 100, and 180cm. The lumber was 
sorted into matched groups according to the dynamic 
Young's modulus measured by the longitudinal vibration 
method before the lumber was cut to the particular length. 
The averages of the dynamic Young's modulus of high- 
grade (H) and low-grade (L) specimens were 12.8 and 
7.5 GPa, respectively. Using nonparametric estimates, the 
estimated length effect parameters of H and L were 0.268 
and 0.304 for the 50th percentile and 0.121 and 0.256 for the 
5th percentile, respectively. We then concluded that the 
different length effect factors between H and L could be 
used when using the lumber for practical purposes. The 
parameters of L were larger than those for H, and the 
parameters for 5th percentiles were smaller than the param- 
eters for 50th percentiles. When two-parameter Weibull 
distribution functions were fitted to the strength data, the 
estimated shape parameters of the Weibull distribution by 
the parametric method were almost identifical to the in- 
verse of nonparametric parameters except the 5th percen- 
tiles for H. The influence of defects such as knots on the 
lower tail of the strength distribution in H may be different 
from that in L. 
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Introduction 

The design of structures using glued laminated timber, 
wood trusses, and so on may be governed by the strength of 
the structural lumber in tension parallel to the grain. In the 
past, the tensile strength properties of lumber were derived 
by testing small, clear specimens with adjustments for de- 
fects such as knots and the slope of the grain. A more recent 
approach to the development of tensile strength properties 
involves testing full-size lumber. The ASTM standard D 
19905 indicates that the property values of all lumber test 
data should be adjusted to the characteristic size, and the 
effect of length on tensile strength is 0.14 expressed in an 
exponential factor. The tensile strength test of full-size lum- 
ber as an alternative testing method to the usual bending 
test added the Japanese agricultural standard for structural 
glued laminated timber 2 (JAS) revised in 1996. However, 
the method of length adjustments of tensile strength was 
not involved in JAS. 

Calculating the effect of size was based on the weakest 
link theory. Bohannan 3 reported the first study in which the 
Weibull brittle fracture theory was applied to wood. He 
studied clear wood beams and found that for geometrically 
similar beams the strength was proportional to the depth of 
the beam to the power 1/9, this being the result of a depth 
effect and length effect of equal importance. This power 
(1/9) is adopted in JAS as the depth effect factor. Many 
studies have used the weakest link theory, for example the 
tension perpendicular to the grain strength of Douglas fir 
reported by Barrett, 4 the length effects in 38mm spruce- 
pine-fir (SPF) dimension lumber reported by Madsen, 5 the 
effect of length on the tensile strength of visually graded 
kiln-dried nominal 2 × 4 inch SPF lumber reported by Lain 
and Varoglu, 6 and a comparison of the length effect models 
for lumber tensile strength reported by Taylor et al. 7 In 
Japan, Hayashi et al. s studied the effect of size on tensile 
strength using sugi lumber of various lengths and Okohira 
et al. 9 studied the effect of size on the tensile strength in 
small clear western hemlock. 



At first, we thought that the effect of length on tensile 
strength of Japanese larch (Larix kaempferi, Carriere) lum- 
ber would be different from that in other species such as 
sugi and SPF, because Madsen and Buchanan 1° showed spe- 
cies dependence based on bending test results. We thought 
also that the length effect in mechanically graded lumbers 
would be different from the length effect in visually graded 
lumbers, a theory studied by many researchers. Then we 
thought that the length effect might be dependent on the 
mechanical grade of the lumber, as characters such as knots 
should be different for each grade. There is little informa- 
tion about the length effect in Japanese larch, so we con- 
ducted tensile tests ~1 of Japanese larch, which is usually used 
for glued laminated lumber. Here we discuss the differences 
of the length effect in mechanically high-grade and low- 
grade Japanese larch lumber. 

Theory 

A statistical strength theory has been developed on the 
basis of the "weakest link theory," which states, "when 
subjected to tension a chain is as strong as its weakest link." 
The size effect ~2 on the strength of lumber is based on the 
weakest link theory. The length effect on tensile strength 
using the brittle fracture theory is described as a relation 
between the length and strength of two members with the 
same cross-sectional shape and different lengths. The rela- 
tion is given by 

=I l X1 (1) 
X2 

where xl and x2 are the strengths of members of length L 1 
and L2, respectively, and s is the length effect parameter. 
The change in strength for doubling the length can be ob- 
tained by setting L2/L~ = 0.5. If s becomes greater, the 
effect of doubling the length becomes severe, and for s = 0.3 
only 81% of the strength remains. 

Suppose that each member consists of a large number of 
brittle elements selected at random from a parent popula- 
tion of elements with a cumulative distribution function of 
strength given by a three-parameter Weibull (3P-Weibull): 

F ] 
F(4 = , -  J (2) 

where x is the strength; k, m, and x0 are parameters of the 
3P-Weibull: k is the shape parameter, m is the scale param- 
eter, & is the location parameter. 

If the location parameter x 0 is assumed to be zero, as is 
often done, the 3P-Weibull described above reduces to 2P- 
Weibull with the parameters k and m. The 2P-Weibull is 
given: 

F(x) = 1 - exp - m (3) 
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where x is the strength, k is a shape parameter, and m is a 
scale parameter. 

If a member contains n elements, the cumulative distri- 
bution function of this member should be derived from the 
function of one element. When the function of one element 
can be assumed in the 2P-Weibull, the function with n ele- 
ments is given as: 

E 1 - F~(x)= {1 - F~(x)} n = exp - n  m (4) 

where x is a strength, and Fn(x) and F~(x) are the 2P-Weibull 
of n elements and one element, respectively. Equation (4) 
can be rearranged to give the strength at any quantile q in 
the distribution: 

x{ : mn-Vk[-ln(1 - q)]l/k (5) 

Now consider two members of different sizes containing 
n 1 and n2 elements, the ratio of strength of two sizes at any 
quantile q is: 

Xq(K/1) __ mnlVk[-ln(1-q)] 1/k :IFll1-1/k 
Xq (r/2) mn21/k [_ln(1 q)]l/k \n2] 

(6) 

When the distribution of the strength follows 2P- 
Weibull, s in Eq. (1) and 1/k in Eq. (5) are the same value at 
any quantile q. 

In general, there are three methods to obtain estimates 
of the size effects from experiments: the slope method, the 
shape parameters, and the fracture position shown by 
Madsen. 12 Because the last method is applicable to a simply 
supported beam with a concentrated load in the center of 
the span, we did not deal with it. With the slope method, Eq. 
(1) can be rearranged to give a linear relation between the 
logarithm of strength and the logarithm of length: 

lnx2 - lnxj _ 

lnLa - inL 1 
s (7) 

where s is the length effect parameter, which is the slope 
of the regression line of x on L (disregarding the negative 
sign). With the shape parameter method, s is the inverse 
of k of the 2P-Weibull presented in Eq. (6). This method 
is generally used for estimating not only the length effect 
parameter but also the depth, width, and volume effect 
parameters. 

The 50th and 5th percentiles of tensile strength distri- 
butions were obtained by the nonparametric method ac- 
cording to ASTM Standard D2915-94J 3 The sample 
nonparametric percent point estimate (NPE) at any 
quantile q is given by: 

NPE = [q(n + 1) -  ( j -  ] ) ] (x j -  x(j_l) ) -J-X(j_I) (8) 

where xj is the j-th value by arranging the test values in 
ascending order; n is the sample size; ] is the smallest order 
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satisfying j/(n + 1) -> q. In the following section, we use 
NPM and NPL, which denote 50th and 5th percentiles, 
respectively, estimated by the nonparametric method. 

Experiment 

Materials 

Japanese larch (Larbc kaempferi, Carriere) lumber was 
sampled at a manufacturing factory in Nagano Prefecture in 
Japan. Most of this lumber is used daily for manufacturing 
structural glued laminated timber in the sawmill. The 
dimensions of the lumber specimens were nominally 3 cm 
thick, 17.5cm wide, and 400cm long. After kiln-drying, 
these rough-sawed lumbers were selected with the Japanese 
made continuous mechanical grading machine. 14 The ma- 
chine can measure the localized flat-wise Young's modulus 
for each lumber specimen and can calculate the average of 
the measured values within a specimen. The target values 
of Young's modulus of the two sampled groups were 7 and 
11 GPa, respectively. We call the former group the L speci- 
men (low-grade lumber) and the latter group H specimen 
(high-grade lumber) in the following section. Because the 
lumber was not planed, the actual values of Young's 
modulus were higher than the values indicated by the ma- 
chine. The lumber was then measured with the machine 
again after planing. The lumber specimen were 2.4 × 15.0 × 
400 cm. 

The dynamic Young's modulus (E~) values of the se- 
lected lumber were measured by the longitudinal vibration 
method. 15'16 They were calculated from the resonance fre- 
quency of the tap tone with a fast Fourier transform (FFT) 
spectrum analyzer. The specimens were ranked according 
to their E; values in ascending order. In the case of the H 
specimen, lumber with the three lowest E s values were se- 
lected, and one was assigned to the H100 group. The others 
were assigned to the H060-H180 group. The specimens 
with the next three lowest E I values were then selected and 
assigned similarly. This process was repeated until all the 
lumber was assigned to the two groups. This process was 
similarly done for the L specimens. The 400 cm long lumber 

in the H100 or L100 group was cut at the center point and 
two 200cm long specimens were prepared for each speci- 
men. From the H060-H180 group and the L060-L180 
group, one specimen with 140 cm length (H060 or L060) and 
the other with 260cm length (H180 or L180) were obtained 
from each specimen. We measured the dimensions, annual 
ring width, density, and E~. for each specimen. 

Tensile test 

Tensile tests were conducted with the tensile test machine 
(NET-501E) made in Japan in accordance with JAS. The 
contact of the specimen with the grips of the machine is 
fixed by indenting the faces of the grips. Test spans are 60, 
100 and 180cm as shown in Table 1. The average moisture 
content (MC) measured at the rupture location by the oven- 
dried method was 10.9%, with its standard deviation small 
(0.8%). No adjustments were made for the MC as all mem- 
bers were tested in the same air-dried conditions, and the 
average MC was close to equilibrium. Test time to failure 
was about 3-5 min. 

Results and discussion 

Characteristics of specimens and distribution of 
tensile strength 

Table 1 shows the sample sizes, dimensions, annual ring 
widths (ARW), densities, and Ef for each specimen. The 
differences in the ARWs and densities between H and L 
were clear, but the differences within each grade were 
small. The densities of H were higher than that of L, and the 
ARWs of H were narrower than those of L. These results 
showed that mechanical grading should be useful for sorting 
lumber according to Young's modulus and for selecting 
lumber with various characteristics. 

The differences of means and coefficients of variation 
(CVs) of ARWs, densities, and E l among varying length 
specimens within a grade were small, as shown in Table 1; 
and the differences of Ef distributions among them were 

Table 1. Dimension, test span, and properties of specimens 

Specimen No. Width (cm) Height (cm)  Length (cm) Test span  Annual Density Ej (GPa) 
(cm) ring width (g/cm 3) 

(mm) 

Grade H 
H060 101 15.0 2.4 140 
H100 102 15.0 2.4 200 
H180 101 15.0 2.4 260 

Grade L 
L060 100 15.0 2.4 140 
L100 100 15.0 2.4 200 
L180 100 15.0 2.4 260 

60 3.4 (25.0) 0.565 (10.0) 12.64 (11.3) 
100 3.3 (23.6) 0.570 (10.2) 12.95 (9.3) 
180 3.4 (26.1) 0.565 (9.1) 12.86 (7.2) 

60 5.2 (18.6) 0.458 (7.0) 7.54 (14.1) 
100 5.4 (18.2) 0.456 (7.5) 7.49 (12.0) 
180 5.4 (16.2) 0.460 (7.4) 7.55 (12.2) 

El, Young's modulus measured by the longitudinal vibration method 
Values in parentheses are coefficients of variation (%) 
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also small, as shown in Fig. la .  The averages of E/. were 
12.8GPa in H and 7.5 G P a  in L. The  matching among vary- 
ing length specimens was successful for est imating the 
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Fig. 1. Distributions and coefficients of variation (CVs) of Young's 
modulus (El) by the longitudinal vibration method. Lines are regres- 
sion curves, a Distributions of El. Curves on the left are comprised of 
L060, L100, L180. Curves on the right are comprised of H060, HI00, 
H180. b CV of E? Open squares, H; filled squares, L 

203 

length effect on tensile strength. It might be noted that  
corre la t ion coefficients of E I be tween  the coupled 140cm 
long specimens from one lumber  specimen were 0.23 in H 
and 0.15 in L. CVs of Ef decreased with the increase in 
specimen length. I t  was thought  that  the correlat ion among 
mechanical  proper t ies  of each lengthwise por t ion in the L 
specimens might be stronger than that in H because  the 
es t imated powers  of regression curve in H and L were 
- 0 . 7 2  and -0 .25 ,  respectively.  

The basic statistics of tensile strength data  are shown in 
Table  2. In this table,  we dist inguished the data  from lumber  
that  failed within the span to est imate the length effect on 
tensile strength. When  a specimen failed without  the span, 
the strength of the any por t ion  within the span should be 
larger  than the strength of the failed por t ion  faced to the 
grips, whose failure mode  was valid for pract ical  use. Then  
we decided to address the strength data  of specimens failed 
within each span. 

The distr ibutions of tensile strength (TS) data  are shown 
in Fig. 2. It is clear that increasing the specimen length 
lowers the TS, whereas the differences be tween H100 and 
H180 were small. 

Est imat ing length effect by the slope method  

To est imate length effect parameters  for the 50th percent i le  
we calculated the NPM (50th percent i le)  for each specimen 
and then p lo t ted  each NPM in Fig. 3a. W e  then est imated 
the length effect pa ramete r  s in Eq. (1) by the least-squares 
method  as shown in Fig. 3a. The  es t imated values of s were 
0.268 (1/3.73) in H and 0.304 (1/3.29) in L. The length effect 
on TS in H was slightly smal ler  than in L. 

Similarly, we calculated the NPL (5th percenti le)  for 
each specimen and es t imated the length effect pa ramete r  s 
as shown in Fig. 3b. The s values were 0.121 (1/8.26) in H 
and 0.256 (1/3.91) in L, respectively.  The  s value for NPL in 
H was small compared  to s for NPL in L and s for NPM 
in H. 

We bel ieved that  the length effect on TS should be 
weaker  in H compared  to that  in L, as the physical  and 
mechanical  proper t ies  of H were bet ter  than those in L, and 
H involved fewer s t rength-reducing factors than did L. I t  
should be noted  that  the length effect on TS for NPL was 
significantly smaller  in H. 

Table 2. Basic statistics of tensile strength data 

Specimen All specimens 

N Tensile strength 

Specimens failed within the span 

N' Tensile strength 

Mean (MPa) SD (MPa) Skewness Mean (MPa) SD (MPa) Skewness 

N'IN (%) 

H060 101 36.83 12.07 0.85 70 35.15 10.37 0.38 69.3 
H100 102 34.40 11.43 0.30 87 34.00 11.13 0.23 85.3 
H180 10l 27.99 9.86 1.31 96 27.39 9.26 1.14 95.0 

L060 100 20.66 7.60 0.79 67 19.63 7.44 0.74 67.0 
L100 100 16.90 5.92 1.03 81 16.82 6.10 1.03 81.0 
L180 100 14.43 5.41 1.01 92 14.21 5.27 1.04 92.0 

SD, standard deviationi N, and N', numbers of all specimen and specimens failed within the span, respectively 
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Fig. 2, Distributions of tensile strengths (TS) failed within the test span 

Estimating the length effect by parametric method 

When the distribution of TS may be assumed to be the two- 
parameter Weibull (2P-Weibull), the shape parameter  (k) 
of the 2P-Weibull should be the inverse of length effect 
parameter  s, as shown in Eqs. (1) and (6). There are various 
fitting methods of distribution function to estimate the pa- 
rameters of 2P-Weibull, such as the moment  method, the 
regression method, and the maximum likelihood method. 
We compared the length effect parameter  k determined by 
these three methods and then compared these values with 
the inverse of s obtained by the nonparametric method 
mentioned above. 

The parameter k of the 2P-Weibull fitted by the moment  
method (2PW-M) can be obtained by 

SD 

Mean 

_ ~[F(1 ~ - 2 / -  /~2(]_ ~ - 1  / 

(9) 

where F(x) is the gamma function, and Mean and SD are 
the mean and standard deviation of the TS distribution as 
shown in Table 2, respectively. 

With the k obtained by Eq. (9), the parameter  m of the 
2P-Weibull can be obtained by 

F 

The regression method of fitting the 2P-Weibull is ap- 
plied by first sorting the data, in ascending order, as xl, 
x2 . . .  x,. To each of these values is assigned a plotting 
position Pi = 1/(n + 1). Coordinate pairs (ti, y,) are then 
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Fig. 3. Relation between span and TS. H (open squares) denotes 
high-grade lumber (H060, H100, H180). L (filled squares) denotes 
low-grade lumber (L060, L100, L180). The 50th-percentiles (a) and 
5th-percentiles (b) are nonparametric percent point estimates 

computed using the transformations ti = ln [ - ln(1  - Pi)] and 
yi = in x i. Once the coordinate pairs (t~, y~) have been com- 
puted, one can use linear regression to estimate the inter- 
cept and slope parameters a and b of a straight line of the 
form y = a + b t. The parameters k and rn of the 2P-Weibull 
are finally obtained as k = 1/b and rn = exp (a). This is 
called 2PW-R in the subsequent discussion. 

By the maximum likelihood method, the log-likelihood 
function for the 2P-Weibull can be written as 

n 
lnL = 

i=1 (11) 

b 



Table 3. Estimated parameters of 2P-Weibull 

Specimen Moment: Regression: Likelihood: 
2PW-M 2PW-R 2PW-L 

k m k m k m 

H060 3.79 38.9 3.95 38.7 3.68 38.9 
H100 3.37 37.9 3.29 37.9 3.34 37.9 
H180 3.25 30.6 3.97 29.9 3.05 30.6 

L060 2.86 22.0 3.16 21.8 2.83 22.1 
L100 3.01 18.8 3.33 18.6 2.87 18.8 
L180 2.94 15.9 3.40 15.7 2.83 15.9 

k and m, shape and scale parameters of 2P-Weibull, respectively 

where f (x)  is the probabili ty density function of the 2P- 
Weibull  written as 

f ( x ) =  I~ r f ~ 7 _2=_xk_lexn[_ |x  k| (12) 

"L <m;j 
Then the parameters k and m were sought to equate 

partial derivatives of Eq. (11) with respect to each param- 
eter to zero simultaneously by the asymptotic method. 

The parameters k and m estimated by the above- 
ment ioned three methods are shown in Table 3. Both k and 
m values in H were higher than the values in L. This ten- 
dency was identified with the results obtained by a nonpara-  
metric method. Though there were small differences among 
the rn values estimated by the three methods, the k values 
estimated by the regression method were slightly higher 
than the k values estimated by the other two methods. The 
harmonic averages of k for each grade were calculated, and 
we compared these averages with the inverse of the length 
effect parameter  s estimated by the nonparametr ic  method. 
This comparison is shown in Fig. 4. The shape parameter  k 
was almost equal to the inverse of s except the inverse of s 
for NPL in H. We believe that the parameter  method can be 
useful for estimating length effect parameters,  except NPL 
in H. 

Conclusions 

A n  experimental  study was conducted to evaluate the 
effect of length on the parallel-to-grain tensile strength of 
Japanese larch. The tensile test was conducted for each 
of three lengths (gauge lengths 60, 100, and 180cm) and 
for two grades (H and L). We obtained the following 
results. 

1. The percentage of specimen that failed within the 
span increased with the length of the span in both H and L. 

2. The length effect on tensile strength in H was smaller 
than that in L, and the length effect of NPL (5th percentile) 
was smaller than that of NPM (50th percentile) for H and L. 
The size effect factor - defined as the ratio of the strengths 
when the length has been doubled - were 0.92 in H and 0.84 
in L. We believe that these length effect factors for H and L 
should be used for practical designs. 
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Fig. 4. Shape parameters (k) of 2P-Weibull compared with the inverse 
of the length effect coefficient s obtained by the nonparametric 
method. NPM and NPL are the inverse of s for the 50th and 5th 
percentiles, respectively. 2PW-M, 2PW-R, and 2PW-L, see Table 3. 
Lightly shaded bars, H average; heavily shaded bars, L average 

3. The inverse of s (length effect parameter)  of each 
NPL and NPM was almost equal to the shape parameter  
estimated by the parametric method except NPL in H. The 
influence of defects such as knots on the lower tail of the 
strength distribution in H may be different than that in L. 
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