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Abstract 

Although today's advanced biomedical technology provides unsurpassed power in diagnosis, monitoring, and treat- 
ment, interpretation of vast streams of information generated by this technology often poses excessive demands on 
the cognitive skills of health-care personnel. In addition, storage, reduction, retrieval, processing, and presentation 
of information are significant challenges. These problems are most severe in critical care environments such as 
intensive care units (ICUs) and operating room (ORs) where many events are life-threatening and thus require 
immediate attention and the execution of definitive corrective actions. This article focuses on intelligent monitoring 
and control (IMC), or the use of artificial intelligence (AI) techniques to alleviate some of the common information 
management problems encountered in health-care environments. This article presents the findings of a survey of 
over 30 IMC projects. A major finding of the survey is that although significant advances have been made in 
introducing AI technology in critical care, successful examples of fielded systems are still few and far between. 
Widespread acceptance of these systems in critical care environments depends on a number of factors, including 
fruitful collaborations between clinicians and computer scientists, emphasis on evaluation studies, and easy access 
to clinical information. 

Abbreviations: AI - artificial intelligence, ICU - intensive care unit, IMC - intelligent monitoring and control, OR 
- operating room 

1. Introduction 

The increasing sophistication of medical devices is 
often a mixed blessing in health-care environments. 
Although today's advanced biomedical technology 
provides unsurpassed power in diagnosis, monitoring, 
and treatment, interpretation of vast streams of infor- 
mation generated by this new technology often poses 
excessive demands on the cognitive skills of health- 
care personnel. Storage, reduction, retrieval, process- 
ing, and presentation of information also pose signif- 
icant challenges. These problems are most severe in 
critical care environments such as intensive care units 
(ICUs) and operating room (ORs) where many events 
are life-threatening and thus require immediate atten- 
tion and the execution of corrective actions [1, 2]. 

Several engineering methods and techniques are 
proposed and put to use in order to alleviate the prob- 
lems caused by the massive flux of information into 
critical care environments. These techniques include 
integrated monitoring devices, central monitoring con- 
soles, more reliable sensors, advanced signal pro- 
cessing techniques, and methods to standardize data 
exchange between biomedical devices [3]. Despite all 
these advances, the modern critical care environment is 
still not immune to problems such as spurious alarms 
and misplaced or misinterpreted information. Tasks 
such as information storage, retrieval, and interpreta- 
tion are entirely handled by overworked medical pro- 
fessionals, thus increasing the possibility and potential 
severity of information management problems. 
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During the past fifteen years, the field of artificial 
intelligence (AI) started tackling problems in real-time 
information management. To that end, several projects 
were initiated to help clinicians with their informa- 
txon processing needs in critical care environments. 
Among these early projects were VM [4] and Compas 
[5, 6]. VM was developed in the late 1970s as an exper- 
iment in extending the MYCIN formalism in order 
to manage time-varying information. The application 
area for VM was the management of patients undergo- 
ing mechanical ventilation. The Compas system was 
another advice-giving system which was designed to 
assist the respiratory therapy of patients with adult res- 
piratory distress syndrome (ARDS). Compas was sub- 
sequently modified to serve as a ventilator management 
advisor for a number of assisted ventilation modes, and 
its current incarnation (CORE) is in clinical use at the 
LDS Hospital in Utah [7, 8]. 

The focus of this article is on intelligent monitor- 
mg and control (IMC), or the use of AI techniques 
to alleviate some of the common information man- 
agement problems encountered in health-care environ- 
ments. Over the past fifteen years, we have come to 
a better understanding of the task domain of critical 
care monitoring, and of the capabilities of the tools 
and techniques we have devised. In the next section, 
I describe the task domain of IMC. In section 3, I 
present the findings of a survey of over 30 projects 
which I conducted in 1992. The purpose of the survey 
was to identify the state-of-the-art in this field, espe- 
cially with respect to the medical foci of the projects, 
the reasoning tasks, and the extent of fielding and eval- 
uation. The survey provides a representative sample of 
current research projects rather than covering the field 
exhaustively (the responses to the survey are collated 
in a technical report and are available upon request 
[9]). Where appropriate, I mention additional influen- 
tial projects which are not represented in the survey. In 
the final section, I discuss the current state of the field 
and hint at future directions. 

2. Intelligent monitoring and control: tasks and 
concepts 

Monitoring is the process of observing a physical sys- 
tem, and control is concerned with guiding the behav- 
ior of the observed system toward some predetermined 
objective. Since monitoring is inherently related to 
control, it has to be performed in real time in order to 
constrain the utility of particular actions. IMC can thus 

be defined as the use of AI methodologies in order to 
perform knowledge-intensive monitoring and control 
tasks in real time. As this definition implies, the domain 
of IMC applications is not limited to medicine. In fact, 
as engineered systems have become more and more 
complex, sophisticated techniques for keeping these 
systems operational have become an integral aspect 
of engineering practice. In engineering domains, IMC 
focuses on assisting human operators of complex engi- 
neered systems by interpreting and explaining system 
behavior and by providing expert advice on possible 
actions and their consequences [10]. In this article, I 
will limit the scope to critical care applications and use 
the term 'intelligent monitoring and control' through- 
out. 

The related notions of monitoring and control often 
bring into mind an image of a rapidly-changing system 
under observation, manipulated by time-critical deci- 
sions and actions. However, the real -time constraints in 
monitoring and control do not necessarily result in sig- 
nificant time pressures on the reasoning process. Many 
monitored systems do not evolve rapidly in time (e.g., 
glucose metabolism). The real-time requirement is met 
in such systems as long as actions can be taken while 
they still have non-negligible utility, that is, before 
it is too late. The major challenge in monitoring and 
control of rapidly-changing systems is timely response 
whereas the crux of the problem for systems with slow 
dynamics is filtering, reduction, and interpretation of 
large amounts of time-varying information. 

2.1. Tasks 

The tasks that constitute the scope of IMC include 
interpretation of observed behavior, explanation of 
causal mechanisms, reasoned response to observed 
events, and planning courses of action [ 10]. These tasks 
can be broadly classified in three categories: diagnosis, 
prediction, and control. 

2.1.1. Diagnosis 
A variety of inference methods may be classified under 
the category of diagnostic inferences. All of these 
methods are used in existing IMC systems, and a giv- 
en system often uses more than one of these methods 
in its reasoning processes. I will discuss these meth- 
ods along two orthogonal dimensions: level of inter- 
pretation (data dimension) and temporal abstraction 
(time dimension). The level of interpretation dimen- 
sion relates to the data types that inference methods 
are concerned with, whereas the temporal abstraction 
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Fig. 1. Diagnostic inferences in IMC. 

dimension indicates whether a given inference method 
interprets single data points or data sequences ordered 
in time. Figure 1 illustrates these dimensions and the 
corresponding inference methods. Another orthogonal 
dimension of analysis (which will not be discussed 
here) applies to types of abstractions (interpretations): 
definitional abstractions, qualitative abstractions, or 
generalizations [ 11 ]. 

At one end of the interpretation spectrum, infer- 
ence methods interpret values of simple parameters. 
If the system only considers single data points, the 
inference operation is called classification, typically a 
number-to-symbol transformation. If the system inter- 
prets sequences of data, the inference method may 
be referred to as trend detection. In recent years, 
new inference methods were introduced to deal with 
sequences of data which traditionally cannot be dealt 
with efficiently because of problems such as miss- 
ing, incomplete, and uncertain information. Such tech- 
niques [ 12, 13] complement established trend detection 
techniques such as Kalman filtering [14]. A discussion 
whether such inference methods should be implement- 
ed using prescriptive or normative techniques is incon- 
sequential; in this classification we are only concerned 
with the data requirements, i.e., the input/output behav- 
ior. 

The next level of abstraction in the interpretation 
spectrum is state-based abstraction. Inference meth- 
ods operating at this level synthesize interpretations of 
parameter values into interpretations of physiological 
and pathophysiological states. If the interpretation is 
extended into sequences of states in time, a state-space 
trajectory is obtained. The identification of state-space 
trajectories is a useful concept in diagnosis because 
some disorders can only be distinguished from each 
other by the sequences of pathophysiological states that 
they follow in time [15, 16]. In addition to such cate- 
gorical methods, a recent project for state-space moni- 
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toring uses the possibilistic concept of fuzzy automata 
to capture the uncertainty inherent in state interpreta- 
tion tasks [17]. 

The final level of abstraction in the interpretation 
dimension is that of disorders where a disorder may 
be defined as a collection of pathophysiological states, 
either at a certain point in time or as a trajectory of this 
state vector over time. This is the level at which tradi- 
tional diagnostic consultation systems operate [18]. A 
monitoring system does not have to reason at the levels 
of parameters and states in order to achieve an interpre- 
tation at the level of disorders. However, the fragility 
and limitations of traditional diagnostic expert systems 
(which typically deal with pattern recognition at the 
disorder level) suggest that a system which reasons at 
all three levels will be more robust since it will be able 
to synthesize its interpretations of parameter values and 
physiological states into subsequent interpretations of 
diseases and complications. 

Another inference task which may be classified 
under the diagnosis category is explanation. Explana- 
tory inferences typically describe plausible paths from 
causal agents to diseases to signs and symptoms in 
a parsimonious and relevant fashion. As such, expla- 
nation methods typically (but not necessarily) use the 
data types and relations which are required by other 
diagnostic inferences. 

2.1.2. Prediction 
True predictive inferences require models of the prob- 
lem domain which is under observation) Such mod- 
els typically belong to one or more of three cate- 
gories: structural, behavioral, and functional. Exam- 
ples of modeling languages used for prediction pur- 
poses in medicine are qualitative/quantitative process 
models [ 19], qualitative mathematics [20], and numer- 
ical models [21]. A comprehensive review of model- 
based reasoning techniques in medicine may be found 
in [22]. 

A major use for predictive inferences in IMC is in 
treatment planning and management. Possible uses of 
prediction in the treatment context are: 

�9 evaluation of treatment plans [23] 

�9 optimization of treatment plans [24] 

I It is possible to achieve some success in prediction by caching 
certain expectationsand outcomes in a database of actions and plans. 
However such methods are not robust since, for example, competing 
expectations cannot be resolved unless all possible combinations are 
enumerated a priori. 
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�9 predictive alarming (i.e., anticipation of nonde- 
sirable parameter values and pathophysiological 
states before they occur) [25] 

�9 management of computational resources based on 
demand estimates [26, 27]. 

2.1.3. Control 
In criticalcare, control inferences are mainly used 
for therapy planning and management. Depending on 
the sophistication of domain models the system is 
equipped with and the competence of its diagnostic 
skills, the control capability of a system ranges from 
simple reflex actions (i.e., reactivity) to long-term plan- 
ning for most possible scenarios including contingen- 
cies. 

Most of the IMC systems in development today 
are open-loop systems with respect to planning and 
control. These systems do not take direct therapeutic 
actions; rather, they convey their recommendations to 
clinicians who are ultimately responsible for the well- 
being of patients. It is up to the physicians, nurses, 
or technicians to execute or disregard these recom- 
mendations. A different twist on the same scenario is 
that of critiquing. In this scheme, the computer system 
does not offer treatment advice; instead, it criticizes 
treatment decisions made by clinicians based on its 
knowledge of the problem domain [28]. 

There are two fundamental roles for IMC systems 
in the context of therapy management. One of these 
is execution monitoring of treatment plans devised by 
either a clinician or by the device itself. In this case, the 
system observes whether the patient state is evolving 
according to predictions based on a particular treatment 
plan. The other is closed-loop control: if a system is 
able to execute treatment plans directly (by manipulat- 
ing ventilator settings or modifying drip infusion rates, 
etc.), it is considered a closed-loop system. Not sur- 
prisingly, there are very few examples of closed-loop 
IMC systems in clinical use or trial due to issues such 
as legal liability and social and cultural factors. Some 
existing examples are discussed in the survey section 
of this article. 

2.2. Concepts 

A number of important concepts differentiate IMC sys- 
tems from conventional approaches to patient monitor- 
ing. Not all of these concepts are exploited in every 
project. However, many researchers emphasize the 
importance of these issues in developing the next gen- 
eration of monitoring and control devices. These con- 

cepts are discussed in the following subsections. Other 
issues such as user interfaces and details of reasoning 
methods are beyond the scope of this article. 

2.2.1. Real-time performance and resource 
management 
Earlier, I stated that real-time performance is crucial 
for IMC systems. However, the real-time constraint is 
a loosely-defined constraint. A critical care intelligent 
agent may face situations where the demands on its 
cognitive and reasoning skills may exceed its compu- 
tational capabilities. In order to handle such situations 
gracefully, an IMC system should be able to manage 
the use of its internal resources based on interpreta- 
tions of the external environment [26]. One aspect of 
resource management is selective perception, a method 
by which more attention is paid to critical data channels 
in order to distribute resources in favor of situations 
which may require immediate attention [29]. 

2.2.2. Handling noisy data 
Information available in the real world is often noisy, 
incomplete, and erroneous. Many ICU monitors today 
have methods to deal with known failure modes such 
as disconnected electrodes and with known sources of 
noise such as AC interference. Fielded IMC systems 
should be able to provide higher levels of resilience 
against noise and measurement errors compared to 
the best of today's commercially-available monitors. 
Those systems could use techniques such as cross- 
channel correlation, trend- and model-based expecta- 
tions, and model-based diagnosis, in order to verify 
or refute questionable information [27]. Unfortunate- 
ly, many of the IMC systems in development today are 
proof-of-principle models and thus do not deal ade- 
quately with the problem of noisy data. 

2.2.3. Context sensitivity 
Interpretation of information in proper context is an 
important issue which cannot be addressed by moni- 
tors devoid of domain models. In contrast, an intelli- 
gent monitor may base its interpretations of the patient 
on a sophisticated knowledge base and all facts rel- 
evant to the current situation. Thus, certain features 
and patterns may be interpreted differently on different 
patients based on demographics and pathophysiologi- 
cal disorders already known to exist. A trivial example 
of context sensitivity is the capability to interpret and 
classify arterial blood pressure measurements based 
on patient age and existing cardiovascular disease. A 
more advanced example would be the capability to 



interpret signs of myocardial ischemia in varying sit- 
uations, such as during or after cardiac surgery, or on 
sedated or fully awake patients. 

2.2.4. Intelligent alarms 
The intelligent alarming idea is somewhat related to the 
issue of context sensitivity. The purpose of intelligent 
alarms is to increase the specificity of alarms (to reduce 
false-positive rates) while maintaining or increasing 
their sensitivity (reducing false-negative rates). An 
illustrative albeit simplistic example is an intelligent 
alarm which can disregard a momentary increase in 
the heart rate of an ICU patient if it can relate the 
abnormality to an extraneous cause (patient turning 
in bed, endotracheal suctioning, etc.) sensed by other 
means. 

3. Survey r e s u l t s  

In 1992, I conducted a survey of IMC projects in 
medicine via the AI in medicine mailing list on 
internet, 2 via personal contacts, and via question- 
naires distributed at conferences. I received informa- 
tion about 32 projects, which is not exhaustive but nev- 
ertheless a representative sample of projects from the 
United States, South America, Europe, and Australia. 
Appendix 1 lists and briefly describes the projects cov- 
ered in the survey, including monitoring and control 
tools which are reported as parts of larger systems. Sec- 
tions 3.1, 3.2, and 3.3 respectively analyze the appli- 
cation domains, operating modes, and reasoning tasks 
addressed by these projects. Section 3.4 discusses the 
issues of evaluation and fielding. 

3.1. Application domains 

Critical care environments face the greatest challenges 
in the timely management of information and thus 
stand to gain the most from IMC applications. Not sur- 
prisingly, the majority of projects reported in this sur- 
vey are applied to critical care problems. Close to two- 
thirds of reported projects are ICU applications, either 
in cardiovascular monitoring or in ventilator manage- 
ment. The range of parameters monitored by these 
systems varies extensively. However, the expertise in 
most systems is limited to a narrow range of prob- 
lems typically encountered in the ICU (the Guardian 

2 To subscribe, send e-mail to Wanda Pratt at <ai-medicine- 
REQUEST@MED.Stanford.EDU> 
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Table 1. Application areas of surveyed projects. 

Application area Number of 
projects 

ICU/Cardiovascular monitoring 11 
Ventilator management 9 
Clinical event monitoring 5 
Anesthesia alarms 2 
Antenatal monitoring 2 
Other biosignal monitoring (ECG, EEG, etc) 2 
Insulin management 1 

knowledge base is limited to post-operative care of 
cardiac surgery patients [26]; the SIMON system is 
developed for a proof-of-concept in respiratory mon- 
itoring of infants with respiratory distress syndrome 
[30], etc.). 

Only two of the reported projects focus on prob- 
lems encountered in the OR [31, 32]. Both of these 
projects deal with the diagnosis of faults in anesthesia 
circuits, and none of the surveyed projects is concerned 
with the important problems of monitoring anesthe- 
sized patients and anesthesia alarms. A few earlier 
projects have addressed anesthesia monitoring [33], 
and there is a demonstrated need in this field for assis- 
tance with information management tasks [32]. 

With the advent of integrated hospital informa- 
tion management systems, monitoring of clinical 
events is rapidly gaining importance. Five of the 
reported projects focus on clinical event monitor- 
ing, in other words, monitoring and interpretation 
of slowly-changing parameters, states, and disorders. 
These efforts include trend templates [12], tempo- 
ral abstractions [13], specialized event monitors [34], 
the Protege-II architecture for therapy management 
[35], and the GRECC projects from Utah which aim 
to improve health care delivery for the elderly (see 
Appendix 1 for details). 

Table 1 presents the breakdown of surveyed 
projects by application area. 

3.2. Operating modes 

The prototypical mode of operation for an IMC appli- 
cation is one of a passive observer and controller: the 
system acquires data from the environment, processes 
information, and expresses its findings and inference 
results via a user interface or by means of closed-loop 
control. As long as data are available on-line, the pas- 
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sive observer mode is the ideal operating mode for 
critical care IMC systems since it does not further tax 
the scarce human resources. Unfortunately, some of 
the systems mentioned in the survey have to operate 
with manually-entered data because of technical limi- 
tations. Although a serious impediment to fielding, the 
manual data entry model is reasonable for proof-of- 
principle studies. 

As a positive note, none of the covered systems 
adhere to the 'consultation system' (or, 'the Greek Ora- 
cle') paradigm which has not proven popular or suc- 
cessful among intended users despite extensive efforts 
in the past couple of decades [36]. The consultation 
paradigm might have limited merit in clinical event 
monitoring, but even in that case the trend is toward 
systems that operate in the background with minimal 
intervention. IMC systems will have greater appeal as 
long as they successfully perform their assigned tasks 
without interfering with or impeding clinicians' busy 
schedules. 

3.3. Reasoning tasks 

The majority of surveyed projects perform some form 
(or several forms) of diagnostic inference. The infer- 
ence methods utilized by these programs span the 
whole spectrum of diagnostic inferences as discussed 
in Section 2.1.1. A smaller number of systems attempt 
prediction of parameter values, physiological states, 
or disorders. Over one-third of surveyed systems exe- 
cute control algorithms. However, most of the control 
decisions are conveyed to the external environment 
in the form of open-loop control, that is, advice giv- 
ing or planning. Only three projects are concerned 
with closed-loop control. Guardian [26] is a proto- 
type intelligent agent which is capable of closed-loop 
control in simulation. However, the system has not 
been tested in closed-loop mode in human or animal 
experiments. Bedside Pancreas is a closed-loop insulin 
monitoring and pump control system currently under 
development (see Appendix 1 for details). Only two 
closed-loop control systems are actually tested on ven- 
tilator management of human subjects [37, 38]. One 
of these systems, Gan6sh, is currently in limited clin- 
ical use in Henri Mondor Hospital in Creteil, France, 
and a successor (NeoGan6sh) is under development. 
Both of these systems focus on a relatively narrow 
ventilator management problem (weaning) and control 
two ventilator settings based on the evaluation of a 
very small number of monitored parameters. Never- 
theless, they deserve recognition since they mark the 

Table 2. Categories of inference tasks handled by surveyed 
projects (the total is greater than 32 since several projects 
address multiple categories of inference tasks). 

Inference category Number of projects 

Diagnosis (incl. explanation) 28 
Prediction 8 
Closed-loop control 3 
Open-loop control (incl. planning) 10 

early successful demonstrations of closed-loop venti- 
lator management on humans. Another group which is 
currently looking into closed-loop ventilator manage- 
ment is the LDS group from Utah, who are using one 
input parameter (arterial oxygen partial pressure), a 
PID controller, and the CORE ventilator management 
protocol in order to control two ventilator settings [39]. 
To date, this method has not been tested on humans. 

Table 2 outlines the inference categories handled 
by surveyed projects. 

3.4. Evaluation and fielding 

There is little consensus or collective wisdom on how to 
evaluate the performance of IMC systems. In contrast 
with diagnostic consultation systems the performance 
of which could be assessed in terms of the accuracy 
of their diagnoses, real-time monitoring and control 
systems prove exceedingly difficult to evaluate. A typ- 
ical critical care monitoring and control system oper- 
ates continuously in an observe/interpret/(act) cycle. 
Therefore, the most natural method for evaluating a 
critical care IMC system is continuous evaluation. The 
only example of such an evaluation in the survey was 
performed by Dojat on the Gan6sh closed-loop ven- 
tilator control system. In this evaluation, a 'comfort 
range' was described as a multi-dimensional quality 
surface representing comfort ranges for several respi- 
ratory parameters. The percentage of time the patient 
had spent within the comfort range was then used as 
a measure of success for the ventilator control system 
[37]. 

The more common method for evaluating the per- 
formance of a continuous monitoring and control sys- 
tem involves a series of discrete evaluations. A natu- 
ral interpretation point is the interpretation step of an 
observe/interpret/(act) cycle. However, depending on 
how the cycle is triggered, some of the runs through the 
cycle may be totally redundant (i.e., no 'new' informa- 
tion). So, it may be misleading to evaluate the system at 



each cycle. The other alternative is to evaluate whenev- 
er something 'qualitatively significant' happens, based 
on some arbitrary or principled criterion. One example 
is the VentPlan evaluation where the system's ther- 
apy suggestions regarding FiO2 (volume fraction of 
inspired 02)  changes were compared to actual deci- 
sions made by physicians on recorded patient cases 
[40]. Another example was the evaluation of the diag- 
nostic performance of YAQ, a quantitative/quantitative 
reasoner for model-based prediction and diagnosis. In 
this evaluation, the diagnostic hypotheses proposed by 
the system were reviewed and criticized by a domain 
expert on a case-by-case basis [41]. Finally, the clin- 
ical trials of  the CORE ventilator management proto- 
cols at Utah focused on clinicians' compliance with 
the system's suggestions [7]. In these studies, physi- 
cian compliance reached as high as 92% of all CORE 
recommendations. 

One method of evaluation noticeably lacking in 
the literature of the field is the randomized controlled 
clinical trial, which, incidentally, is the preferred 
method of evaluation in clinical medicine. Although 
the researchers from the LDS group claim a 40% sur- 
vival rate in the most severe category of ARDS patients 
using the CORE protocol (based on their experience on 
over 200 patients) as opposed to around 10% without 
computer assistance, the latter figure reflects the aggre- 
gate experience of several centers with widely ranging 
methods of patient care [1]. The use, useability, and 
usefulness of IMC systems in the clinical environment 
is yet to be shown using evaluation methods that are 
widely accepted in clinical practice. 

The lack of fielded IMC systems in routine clinical 
use is another indicator that the field has yet to reach 
maturity. Apart from the CORE protocol which is in 
routine use at LDS and currently installed at a sec- 
ond site in Los Angeles [7] and a few systems tested 
in clinical environments for limited periods [32, 37, 
42], such systems are still largely confined to com- 
puter science laboratories. This is largely due to our 
failure to demonstrate the potential benefits of such 
systems in clinically significant studies. Arguably, the 
best measure of success for these systems is the opti- 
mization of various quality-of-care criteria in large ran- 
domized controlled clinical trials (e.g., length of ICU 
stay, cost of care, long-term morbidity and mortality, 
certain measures of patient comfort). The design and 
execution of such trials should be a critical item on our 
collective research agenda if we expect IMC systems 
to gain widespread clinical acceptance. 
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4. Conclusions 

Patient monitoring and therapy management is a rela- 
tively new and promising focus of AI in medicine. As 
evidenced by this survey, a wealth of current projects 
addresses important issues in critical care and clinical 
information management. Most of the projects dis- 
cussed here are either currently under development or 
are developed as proof-of-principle systems with no 
intentions of fielding. Thus, almost none of the sys- 
tems presented in the survey are in actual clinical use. 
Furthermore, evaluation of these systems, if any, is 
based on empirical methods and protocols. None of 
the systems reported here were subject to stringent 
evaluation protocols such as randomized clinical tri- 
als, and no studies were conducted in order to assess 
the clinical impact of such systems. As a result, iden- 
tification of methods and protocols for the evaluation 
of such systems remains a critical issue. 

IMC is an interdisciplinary field which lies at the 
intersection of clinical medicine, computer science, 
AI, and biomedical engineering. Therefore, compre- 
hensive projects require diverse teams composed of 
physicians, nurses, medical technicians, computer sci- 
entists, and engineers. As many AI in medicine scien- 
tists have witnessed in the past, managing such diverse 
teams is a difficult task because of the vast cultur- 
al differences between involved disciplines. The ideal 
IMC research and development team should have a 
balanced distribution of clinicians and computer sci- 
entists, should have clearly defined clinical goals and 
evaluation plans, and the clinical goals should never be 
sacrificed in order to give precedence to exploration of 
technology. 

Finally, IMC systems require easy access to infor- 
mation in order to function adequately. In critical care, 
this requirement implies robust interfaces to monitor- 
ing, treatment, and laboratory instruments, and to 
heterogeneous clinical databases. These connectivi- 
ty requirements indicate that IMC research is tightly 
related to research in medical informatics and comput- 
er science, especially in the areas of medical device 
connectivity standards (MIB, HL7), databases, infor- 
mation retrieval, networking, and shared vocabular- 
ies. The success of the LDS group in establishing the 
CORE protocols as a local standard in ventilator man- 
agement largely stems from their long-term experience 
with a sophisticated hospital information management 
system (HELP). The current trend toward the develop- 
ment of such integrated systems in other centers will 
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pave the way for cost-eff icient  I M C  applicat ions to 

cha l lenging  clinical  problems.  

Earlier,  I stated that I M C  systems are developed to 

a l leviate  in format ion  management  problems in critical 

care. Unfor tunate ly ,  the field is yet  to reach maturi ty in 

terms of  fruitful  applicat ions.  The  p ioneer ing  applica- 

t ions ment ioned  in this art icle (and several others which 

are not  represented in the survey) serve to demonstra te  

the potent ia l  appl icabi l i ty  o f  AI  technology  to critical 

care informat ion  management .  With careful attention 

to evaluat ing  the impact  o f  such systems on health care 

del ivery and cost  conta inment ,  we should expect  to 

see I M C  discussions  migra te  f rom esoteric  scientific 

meet ings  to mains t ream medical  literature. 
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Appendix 1: projects represented in the survey 

T h e  i n f o r m a t i o n  in  th i s  sec t ion  is up  to date  as o f  Fall ,  1992. M u l t i p l e  en t r i es  are m a d e  for  p ro jec t s  w h i c h  c o m p r i s e  

m u l t i p l e  c o m p o n e n t s .  W h e r e  avai lable ,  the  m o s t  c o m p r e h e n s i v e  and  recen t  re fe rences  are ind ica ted .  F u r t h e r  de ta i l s  

abou t  p ro j ec t s  r ep r e s en t ed  in the  survey  m ay  be  ob t a ined  f rom the  au tho r  as a t echn ica l  repor t  [9]. 

Researchers Institution Description, status and references 

Orr, Westenskow University of Utah Neural-network based anesthesia alarm system. Used to 
detect breathing circuit faults. Tested using simulators, 
animal studies, and in the OR [32]. 

King, Hyman, Xu Vanderbilt University Computer-based evoked-potential monitoring in the ICU. 
Used to evaluate patient status and nervous system function. 
Experimental [43]. 

King, Kambam, Smith, Jiang Vanderbilt University Respiratory system monitoring: respiratory patterns of dogs 
monitored during controlled ventilation in order to 
recognize normal and abnormal events. Project not active at 
time of writing [44]. 

King, Patterson Vanderbilt University Artificial intelligence vs. neural-network based monitoring: 
aims to compare the success rates of two methods 
independently and in combination. In development; will use 
recorded data sets. 

Haimowitz MIT TrenDx: intelligent trend detection in pediatric growth data. 
Develops an epistemiology for trend templates; currently in 
trial using retrospective clinical data sets [12, 45]. 

Kohane Children's Hospital/Harvard Medical 
School 

Clinician's Assistant Project: an architecture for clinical 
event monitors. Currently uses growth monitors developed 
by Haimowitz (see entry above) [34]. 

Shahsavar, Wigertz, Gill Linkoping University Sweden KUSIVAR: a knowledge-based system for ventilator 
management of adult respiratory distress patients. An 
on-line version named VentEx is currently under trial [46, 
47]. 

Coiera, Higgins, Tombs, et al. Hewlett-Packard Labs, Bristol, UK Intelligent alarm technology project: investigates the use of 
AI technology to enhance current generation patient 
monitoring systems [48, 49]. 

Duran, Nunez Univ. of Barcelona LATIDO: intelligent monitoring system for congenital heart 
defects. Focuses on all aspects of health care in the pediatric 
ICU: diagnosis, treatment, data interpretation, alarming. In 
development. 

Miksch, Paky, Popow, Horn Univ. of Vienna A knowledge-based system for monitoring and optimizing 
artificial ventilation of neonates. In development [50]. 

Widman, Tong Univ. of Oklahoma EINTHOVEN: a model-based ECG interpretation system. 
Combines model- and rule-based methods to interpret 
ECGs in critical care, cardiologic diagnosis, and Holter 
monitoring [51]. 

Tong et al. Louisiana Tech. Univ. WeanPro: a knowledge-based system for ventilator 
management. Implements a weaning protocol; has 
undergone a successful clinical testing with encouraging 
results [42]. 
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Wang, Wischnewsky, et al. 

Eytan, Pinget, Keipes 

Dawant, Uckun, Lindstrom, Manders 

Uckun 

Fertig, Factor, Sittig, et al. 

Leaning, Patterson 

Hayes, Cielsieski, Kelly, et al. 

Gardner, Hunter, Salatian 

Rutledge, Fagan, et al 

Farr 

Rutledge 

Hayes-Roth et al. 

Ash, Hayes-Roth 

Univ. of Bremen Intensive-Help: an intelligent monitoring system for ICUs 
which provides assistance with on-line data acquisition, 
presentation, interpretation, and documentation. On trial. 

Univ. Strasbourg I & II Bedside Pancreas: a closed-loop insulin monitoring and 
pump control system. Under development. 

Vanderbilt University SIMON: an architecture for patient monitoring in critical 
care environments. Addresses the issues of data 
interpretation, diagnosis, and prediction. Applied to a 
newborn ventilator management problem [30, 52]. 

Vanderbilt University YAQ: an ontology for model-based diagnosis and prediction 
in physiological domains. Used in the context of SIMON 
(see above). Evaluated using retrospective clinical data [ 15, 
19]i 

Yale University ICM: an intelligent cardiovascular monitor based on the 
process trellis parallel computing architecture. ICM was 
developed as a prototype patient monitor for post-cardiac 
surgery patients [53, 54]. 

University College London GAMES-II intensive care exemplar: an EC project focusing 
on general methodologies and tools for medical KBSs. 
Current area of interest is the physiological monitoring and 
control of patients with sepsis [25]. 

Royal Melbourne Inst. Tech. Intensive Care Respiratory Monitor: focuses on techniques 
for combining neural and symbolic processing methods in 
ventilator management. Project currently not active [55]. 

Univ. of Aberdeen Scotland EC/TANIT: Part of INFORM project on providing decision 
support on drug therapy for intensive care. Currently under 
development. Same group also interested in interpretation 
and abstraction of cardiovascular monitoring data [56]. 

Stanford University VentPlan: an architecture for model-based ventilator 
management advice. Combines patient-specific models 
based on belief networks, quantitative constraint models for 
prediction, and a treatment module. Developed for 
proof-of-principle [57]. 

Stanford University Treatment plan evaluator for VentPlan (discussed above). 
Used to recommend ventilator settings based on a 
decision-theoretic model [23]. 

Stanford University Model selection for ventilator management assistance: 
criteria and methods for selecting the model with the most 
appropriate level of detail given a patient-specific model. 
Currently in final stages of development [21]. 

Stanford University Guardian: an intelligent architecture for ICU monitoring 
and ventilator management. Developed as a 
proof-of-concept system on a blackboard architecture; the 
application area is post-operative monitoring of cardiac 
surgery patients [26]. 

Stanford University A reactive response subsystem for Guardian. Used to select 
tests and treatments under time pressure based on a 
hierarchy of problems and related therapeutic actions [58]. 
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Fehlauer, Soller, et al. 
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Passariello, Mora 

Larizza, Berzuini 
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Stanford University Resume: a formalism for temporal abstraction for 
interpreting clinical data. This is used in the context of 
Protege and T-Helper projects, and typically applies to slow 
clinical data with temporal and value uncertainty. Currently 
in final stages of development [13]. 

VA GRECC, Utah A set of projects evolving around hand-held computer 
systems for data collection and interpretation in a geriatric 
care setting. Data integration, analysis, and diagnosis are 
among major concerns. 

Univ. de A Coruna Spain NST-Expert: an expert system for antenatal monitoring and 
prediction of prognosis. Used for obstetrical decision 
support [59]. 

Univ. de A Coruna Spain Patricia: an expert system with a patient-specific model of 
ICU monitoring. Applied to ventilator management support 
including data interpretation and treatment [60]. 

Univ. de A Coruna Spain A case-oriented approach in ICU monitoring. An extension 
of the project mentioned above. Shares the same application 
platform [60]. 

Univ. de A Coruna Spain Application of neural networks to antenatal diagnosis and 
prognosis. Aimed to compare performance of neural 
networks with the expert system NST-Expert (mentioned 
above). Development of a hybrid system is also under 
consideration [61 ]. 

Univ. Simon Bolivar, Caracas, 
Venezuela 

Intelligent instrumentation in cardiology. Focuses on the 
creation of an infrastructure for knowledge-based 
instrumentation and decision support in a coronary care unit 
[621. 

Univ. di Pavia, Italy Monitoring and prediction of clinical events and patient 
outcome using Bayesian networks. Used to monitor and to 
predict future patient responses to antiviral therapy [63]. 

INSERM, Creteil, France NeoGanesh: a knowledge-based system for closed-loop 
control of assisted ventilation. Successor to Ganesh. 
Applied to the weaning stage of pressure support 
ventilation. Successfully tested on patients [37]. 

Univ. of Florida Intelligent Alarm Project: an expert system used to detect 
faults in the anesthesia breathing circuit. Tested using a 
simulator, in animal studies, and in the OR. Under 
development [31]. 

German Heart Center, Berlin Knowledge-based support for diagnosis and therapy of 
cardiac disease. Currently in design/early development 
stage. 


