Z. Wahrscheinlichkeitstheorie verw. Geb. 14, 254-256 (1970)

On a Characterization of Infinitely Divisible Characteristic Functionals on a Hilbert Space

B. L. S. PRAKASA RAO

Summary. A characterization of infinitely divisible characteristic functionals on a Hilbert space, analogous to that of Johansen [1], is given.

1. Introduction

Let X be a separable Hilbert space, (x, y) denotes its inner product and ||x|| the norm. Let μ be a probability measure on the σ -field of Borel subsets of X. The characteristic functional $\hat{\mu}(\cdot)$ is defined by

$$\hat{\mu}(y) = \int e^{i(x,y)} d\,\mu(x) \tag{1.1}$$

for $y \in X$.

Definition 1.1. A positive semi-definite Hermitian operator A on X is called an S-operator if it has finite trace. The class of sets $\{x: (Sx, x) < t\}$ where S runs over S-operators and t over positive numbers forms a neighborhood system at the origin for a certain topology on X which is called the S-topology. A net $\{x_{\alpha}\}$ converges to zero in S-topology if and only if $(Sx_{\alpha}, x_{\alpha})$ converges to zero for every S-operator S.

We have the following characterization of characteristic functionals on a Hilbert space due to Sazanov [3].

Theorem 1.1. In order that a function $\hat{\mu}(\cdot)$ may be the characteristic functional of a distribution μ on X, it is necessary and sufficient that (i) $\hat{\mu}(0)=1$ (ii) $\hat{\mu}(\cdot)$ be positive definite and (iii) $\hat{\mu}(\cdot)$ be continuous at 0 in the S-topology.

Our aim in this paper is to give a similar characterization for infinitely divisible characteristic functionals on a Hilbert space. We shall state a few more definitions and the main theorem in the next section. Proof of the theorem is given in Section 3. For more details on probability measures and characteristic functionals on a Hilbert space, the reader is referred to either Parthasarathy [2], or Varadhan [4].

2. Infinitely Divisible Distributions

Definition 2.1. A probability measure μ on a Hilbert space X is said to be infinitely divisible if for every positive integer n,

$$\mu = \lambda_{\underline{n} * \lambda_n * \cdots * \lambda_n}_{\underline{n \text{ times}}}$$

where λ_n is a probability measure on X and * denotes the convolution operation.

Theorem 2.1. If μ is an infinitely divisible distribution on X and $\hat{\mu}$ is its characteristic functional, then $\hat{\mu}(y) \neq 0$ for all $y \in X$.

We refer the reader to Parthasarathy [2] for a proof of this theorem. We also note that a Hilbert space has no nontrivial compact subgroups and hence there are no nontrivial idempotent distributions. Further more, if $\hat{\mu}(\cdot)$ is the characteristic functional of an infinitely divisible distribution on X, then it has a unique representation of the form $\hat{\mu}(y) = e^{\chi(y)}$ for some complex valued function $\chi(\cdot)$ on X by Theorem 4.10 of Parthasarathy [2]. We shall call $\chi(\cdot)$ the logarithm of the characteristic functional $\hat{\mu}(\cdot)$. The main theorem of the paper will be stated now.

Theorem 2.2. In order that $\chi(\cdot)$ be the logarithm of a characteristic functional of an infinitely divisible distribution μ on X it is necessary and sufficient that

(i)
$$\chi(0) = 0, \chi(y) = \overline{\chi(-y)},$$

(ii) $\chi(\cdot)$ is continuous at 0 in S-topology, and

(iii) for every choice y_i , $1 \le i \le N$ in X and complex numbers α_i , $1 \le i \le N$ such that $\sum_{i=0}^{N} \alpha_i = 0$,

$$\sum_{i=1}^{N} \sum_{j=1}^{N} \chi(y_i - y_j) \alpha_i \, \bar{\alpha}_j \ge 0.$$

Before we give a proof of the above theorem, we shall state a lemma. This lemma has been proved by Johansen [1] for complex valued functions on the real line. Proof of the lemma for complex valued functions on a Hilbert space is exactly similar to the proof given by Johansen [1] and hence it is omitted.

Lemma 2.3. Let $\chi(\cdot)$ be any complex valued function on X such that $\chi(0)=0$, $\chi(y)=\overline{\chi(-y)}$. Then the following conditions are equivalent.

(i) For every choice y_i , $1 \leq i \leq N$ in X and complex numbers α_i , $1 \leq i \leq N$ and $\lambda \geq 0$,

$$\sum_{i=1}^{N}\sum_{j=1}^{N}e^{\lambda\chi(y_{i}-y_{j})}\alpha_{i}\,\overline{\alpha}_{j}\geq 0.$$

(ii) For every choice y_i , $1 \le i \le N$ in X and complex numbers α_i , $1 \le i \le N$ such that

$$\sum_{i=1}^{N} \alpha_{i} = 0, \qquad \sum_{i=1}^{N} \sum_{j=1}^{N} \chi(y_{i} - y_{j}) \alpha_{i} \bar{\alpha}_{j} \ge 0.$$

(iii) For every choice y_i , $1 \leq i \leq N$ in X and complex numbers α_i , $1 \leq i \leq N$,

$$\sum_{i=1}^{N}\sum_{j=1}^{N}\left[\chi(y_{i}-y_{j})-\chi(y_{i})-\chi(-y_{j})\right]\alpha_{i}\overline{\alpha}_{j}\geq 0.$$

3. Proof of Theorem 2.2

Necessity. Suppose $\hat{\mu}(\cdot)$ is the characteristic functional of an infinitely divisible distribution μ on X. Let $\chi(\cdot)$ be the logarithm of $\hat{\mu}(\cdot)$. (i) follows from the definition of a characteristic functional. (ii) follows from Theorem 1.1. Since $\hat{\mu}$ is an infinitely divisible characteristic functional $\hat{\mu}^{1/n}$ is a uniquely determined characteristic

256 B.L.S. Prakasa Rao: Characterization of Infinitely Divisible Characteristic Functionals

functional for every *n* and hence $\hat{\mu}^r$ is a characteristic functional for every rational number *r*. Hence by Theorem 1.1,

$$\sum_{i=1}^{N} \sum_{j=1}^{N} \left[\hat{\mu} (y_i - y_j) \right]^r \alpha_i \bar{\alpha}_j \ge 0$$
(3.1)

for every choice of y_i , $1 \le i \le N$ in X and complex numbers α_i , $1 \le i \le N$. Let r_n be any sequence of rational numbers approaching $\lambda \ge 0$ as *n* approaches ∞ . By taking limits as $n \to \infty$ on both sides of (3.1), we get that

$$\sum_{i=1}^{N} \sum_{j=1}^{N} \left[\hat{\mu} (y_i - y_j) \right]^{\lambda} \alpha_i \, \bar{\alpha}_j \ge 0 \tag{3.2}$$

for every choice of y_i , $1 \le i \le N$ and complex numbers α_i , $1 \le i \le N$, and $\lambda \ge 0$. This proves (iii) in view of Lemma 2.3 since $\hat{\mu}(\cdot) = e^{\chi(\cdot)}$. This completes the proof of the necessity of the conditions (i), (ii) and (iii) of the theorem.

Sufficiency. Suppose $\chi(\cdot)$ is a complex valued functional which satisfies (i), (ii) and (iii) of the theorem. Define $\psi(y) = e^{\chi(y)}$ for any $y \in X$. Clearly $[\psi(0)]^{\lambda} = 1$ for any $\lambda \ge 0$ and ψ^{λ} is continuous at 0 in S-topology for any $\lambda \ge 0$. Since

$$\sum_{i=1}^{N} \sum_{j=1}^{N} \chi(y_i - y_j) \alpha_i \bar{\alpha}_j \ge 0$$
(3.3)

for every choice of y_i , $1 \le i \le N$ in X and complex numbers α_i , $1 \le i \le N$ such that $\sum_{i=1}^{N} \alpha_i = 0$, Lemma 2.3 implies that $\sum_{i=1}^{N} \alpha_i = 0$.

$$\sum_{i=1}^{N} \sum_{j=1}^{N} e^{\lambda \chi(y_i - y_j)} \alpha_i \bar{\alpha}_j \ge 0$$
(3.4)

equivalently

$$\sum_{i=1}^{N} \sum_{j=1}^{N} \left[\psi(y_i - y_j) \right]^{\lambda} \alpha_i \,\overline{\alpha}_j \ge 0 \tag{3.5}$$

for every choice of y_i , $1 \le i \le N$ in X and every choice of complex numbers α_i , $1 \le i \le N$. In other words ψ^{λ} is positive definite for every $\lambda \ge 0$. This fact together with earlier remarks prove that ψ^{λ} is a characteristic functional for every $\lambda \ge 0$ by Theorem 1.1. Hence ψ is an infinitely divisible characteristic functional which proves the sufficiency of the conditions (i), (ii) and (iii) of the theorem.

References

- Johansen, S.: An application of extreme point methods to the representation of infinitely divisible distributions. Z. Wahrscheinlichkeitstheorie verw. Geb. 5, 304-316 (1966).
- 2. Parthasarathy, K. R.: Probability measures on metric spaces. New York: Academic Press 1967.
- 3. Sazanov, V.: A remark on characteristic functionals. Theor. Probab. Appl. 3, 188-192 (1958).
- 4. Varadhan, S. R. S.: Limit theorems for sums of independent-random variables with values in a Hilbert space. Sankhya, Ser. A 24, 213-238 (1962).

Dr. B. L. S. Prakasa Rao Department of Mathematics Indian Institute of Technology Kanpur, U. P./India

(Received August 2, 1968)