
Z. Wahrscheinlichkeitstheorie verw. Geb. 14, 2 0 0 - 2 0 2  (1970) 

On the Existence 
of Equivalent Finite Invariant Measures* 

D. L. HANSON and F. T. WRIGHT 

Summary. Necessary and sufficient conditions are given for the existence of a finite measure which 
is equivalent to a given measure and invariant with respect to each transformation in a given commu-  
tative semigroup of measurable null-invariant point transformations. This result was already known 
for denumerably generated semigroups. A complementary result is proved which states that if one 
such equivalent measure exists, then there exists a unique equivalent measure which agrees with the 
original measure on the invariant sets. 

Let ((2, Z, P) be a probability space, let T be a non-empty collection of point 
transformations ~ mapping ~2 into f2 which are measurable (AEZ implies z -  1A~Z) 
and null-invariant (P (A)= 0 implies P (z-1A)= 0), let T* be the collection of finite 
products of members of T, and for A ~  define 

r (a) = inf {P (z- 1 A) [ z~T*}. (1) 

The main purpose of this paper is to prove: 

Theorem 1. I f  the transformations in T commute, then a necessary and sufficient 
condition for the existence of a finite measure which is equivalent to P and invariant 
with respect to all the transformations in T is: 

(C) I f  AeZ and P(A)>0,  then r(A)>0.  

Theorem 1 generalizes early work of Calderon [2] and Dowker [3] in which T 
contains only one transformation, and also generalizes more recent work of Blum 
and Friedman [1] in which T is denumerable and the transformations in T 
commute. 

Let I be the collection of measurable sets which are invariant with respect to 
every ~ in T in the sense that AeI  if AeZ and P ( z - 1 A  AA)= 0 for every T in T 
The following result strengthens Theorem 1. 

Theorem 2. I f  there exists a finite measure m which is equivalent to P and 
invariant with respect to all the transformations in T, then there is such a measure 
which agrees with P on I, and it is unique. 

In the proof of Theorem 1 we use the following lemma which occurs as 
Theorem 3 of [2] : 

Lemma. I f  m is a finite and finitely additive measure which is equivalent to P 
and invariant with respect to each ~ in T, and if 

#(A)---inf :A.eZ, A c.~= aA. 
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for each AeX, then # is a finite measure which is equivalent to P and is invariant 
with respect to each �9 in T. 

Proof of Theorem 1. Suppose m is a finite measure equivalent to P and invariant 
with respect to each ze T. If P(A)>0 and r (A)-0 ,  then P<<m implies m(A)>0, 
and m <<  P implies inf {re(z- 1A)} = 0 which contradicts the invariance of re. Thus 

ze T* 
(C) is necessary. 

Now suppose (C) holds. For each AeZ let GA be the topological space 
consisting of [0, 1] with its standard topology, and let G = l~ GA with the standard 

A~2 

product topology; by Tychonoffs Theorem G is compact. Note that each geG 
is a set function on Z taking values in [0, 1]. Let Fo be the collection of elements geG 
such that 

i) g is finitely additive, 

ii) A~X and P (A) = 0 imply g (A) = 0, and 

iii) g(A)>=r(A) for all A~Z; 

note that ii), iii), and the fact that P satisfies (C) imply that g and P are equivalent, 
and that iii) implies g(z-lA)>-_r(r-lA)>-_r(A) for all AeZ and all zeT*. For each 
non-empty subset S of T define F s = {g[geF o and g(z-1 A)=g(A) for all z~S and 
all AeZ}. Note that Fo and Fs are closed sets. Our objective is to show that FT 
is non-empty. Then an application of the lemma completes the proof of the 
theorem. 

The original proof of the authors involved well ordering T and using an 
induction argument to show that whenever S is an initial segment of T the set F s 
is non-empty. The argument given here is due to Professor U. Krengel and is 
much simpler. 

Let Y be the collection of finite non-empty subsets of T. If S is in ~, then 
the argument of Theorem 3 of [1] shows that Fs ~: 4. (In fact it shows that Fs 
contains a probability measure.) Now {Fs[S~S~} is a collection of compact sets 
having the finite intersection property (since a finite intersection of sets in {Fs[Se5~} 
is again in {Fs[SeSr Since G is compact q~ 4: c~ F s = F T . 

Se5 ~ 

Proof of Theorem 2. First note that I is a o--algebra. Let m* and P* be the 
restrictions to I of m and P respectively. They are equivalent so by the Radon- 
Nikodym theorem there exists a non-negative /-measurable function f such 
that 

a) P*(A)= Sfdm* for each AeI, and 
A 

b) m* {e)[f(cn)=0} =0. 

For A e Z  define Q(A)= ~fdm and note that Q and P* agree on I; the fact 
a 

that (2 is invariant with respect to each z~T follows from the same fact for m 
and the/-measurabili ty of f If AeZ and P (A)= 0, then m (A)= 0 so Q (A)= 0; thus 
Q < < P .  If A e Z  and Q(A)=0, then from the definition of Q we have 

m [A(~ {co ] f (o~) > 0}] = 0. 
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But 
O<m(A)=m[A(~{o)lf (co)>O}] +m[A~{o~lf (co)=O}] 

_<_0+m {~olf(co)=0} =m* {(~ If((~)= 0} = 0  so re(A)=0 

and thus P(A)=0 .  Therefore P < < Q  so P and Q are equivalent. 

Now suppose Q1 and (22 are two measures which agree on I and are invariant 
with respect to each z~T. Then # = Q 1 -  Q2 is a signed measure which is zero on I 
and is invariant with respect to each zeT. F rom the Hahn  decomposition for # 
there is a measurable set A such that A is a positive set for # and A c is a negative set 
for #. IfA were not z-invariant, then either #(A(~z- 1A) > #(A) or #(Ayz- 1A) > #(A) 
contradicting the maximality of A. Thus A (and consequently A c) is in I. It follows 
that # ( A ) - 0  so Q1 =Q2.  

Remark 1. It would be interesting to know whether the Q of Theorem 2 
satisfies Q(A)>r(A) for all AsZ. This is, of course, true if T is finite. 

Remark 2. The authors tried to generalize Theorem 5 of [1] but became 
convinced instead that a rigorous proof  of Theorem 5 of [1] has not yet been 
published. 

If T =  {Zl, %}, (C) holds, and both h and r2 are of period 2, the authors 
of [ lJ  show on p. 303 how to obtain the desired finite measure equivalent to P 
and invariant with respect to both zl and %. However, suppose zt and z2 are 
both of period 3. Let S k be the collection of all finite products of the form z h z~2 ... z~ 
such that i~--- 1 or 2 for c~ = 1, ..., k and such that neither z~ z~ "c I nor z 2 z2 z2 appear 
anywhere in the product. Let c k be the number  of terms in S k. The authors of [1] 
seem to suggest using a Banach limit of the sequences 

E P( -IA) . 
k k= 1 z~Sk 

If that is the case, the number  of terms in 
N N 

Y, Z P A)- Z Z PEr- A)] 
k= 1 ~ S k  k= 1 z~Sk 

IV 

divided by ~ c k does not go to zero as N-~oo for i=  1 or for i=2.  Thus the finite 
k= l  

measure obtained from the Banach limit need be neither z~-invariant nor %- 
invariant. 
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