
Z. Wahrscheinlichkeitstheorie verw. Geb. 14, 1 6 9 -  188 (1970) 

The Martin Boundary and Completion 
of Markov Chains* 

JOHN W AL S H 

Summary. In this paper we treat a t ime-symmetrical Martin boundary theory for continuous 
parameter  Markov chains. This is done by reversing the time sense of a Markov chain X t in such a 
way as to obtain a dual Markov chain )(t, and considering the two chains together. Various relations 
between the Mart in exit boundaries ~ and N* of these processes are studied. The exit boundary  
, ~  of JTi[ t is in a sense an entrance boundary  for Xt and vice versa. After a natural  identification of certain 
points in N* and ~ *  one can topologize I w N* ~ ~ *  in such a way that both X, and )(~ have s tandard 
modifications in this space which are right continuous, have left limits, and are strongly Markov. 

w 1. Introduction 

According to fundamental theorems of Knight [10], Ray [14], and more 
recently Kunita and Watanabe [11], it is possible under slight restrictions to 
complete the state space of a Markov process in such a way that an extension of 
the process is strongly Markov on the enlarged space. It is clearly of interest to see 
how such compactifications look in special cases. Doob [4] has given a treatment 
of the case of standard Markov chains. 

In a different connection, Chung [2], Dynkin [5], Feller [6] and Williams [15] 
have considered compactifications of the state space of certain Markov chains 
based on the Feller and Martin exit boundaries. Chung has extensively analyzed 
the sample paths of the process in this case. Boundary states are used to describe 
the behavior at infinity, but the process is not regarded as taking its values in the 
enlarged space; in fact there are times - for example the last time the process 
hits certain boundary states - when the process can not be said to be either in 
the state space or in the boundary. A weak version of the strong Markov property 
holds [2] but the process is not strongly Markov. 

In general the Martin boundaries of a Markov chain are too small to provide 
a strongly Markov extension. In this paper we show that under certain finiteness 
conditions, the Martin entrance and exit boundaries are sufficient. 

Our methods rely on the basic time symmetry of the Markov property. We 
use both exit and entrance boundaries; the latter is defined by reversing the process 
in time. One of the advantages of this approach is that both the forward and reverse 
processes can be made strongly Markov in the same space, which is not neces- 
sarily true of previous compactifications. 

We also find close relations between sticky and non-sticky boundary states 
- here we use Chung's terminology - and the non-branching and branching 
points introduced by Ray; the set of branching points is exactly the set of non- 
sticky exit boundary points. The relations between these types of points are also 
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170 J. Walsh:  

bound up with relations between the entrance and exit boundaries. For instance, 
in a certain sense one can say that a boundary point is sticky if and only if it is in 
both the entrance and exit boundaries. 

A word is in order about the entrance boundary. We define it in terms of the 
reversed process rather than the dual process, so that it is not identical with the 
boundary defined by Hunt  [7] and Doob [3], being in general smaller. 

Let (Pij(t)) be a standard substochastic transition matrix on the set I of positive 
integers. By adjoining a single extra state to I, we can and will assume (pit(t)) is 
stochastic. 

Let Po be a probability measure on I putting strictly positive weight on each 
point. The Markov chain {Z (t), t > 0} associated with this transition function and 
having initial distribution P0 can be chosen so that it is separable in the one-point 
compactification I to {oo} of I, and satisfies: 

Z (t) = lira inf Z (r) for all t. 
rSt 

r rational 

We assume that all states of the chain are stable, that is that each state is an 
exponential holding point for the process. Instead of dealing directly with the 
process Z, we deal with the process killed at S, where S is independent of Z and 
for all t > O, P {S > t} = e- ' .  That is, we define processes {X (t), t > O} and {2 (t), t > O} 
by 

X(t)={Z(t) O<_t<St>s 

. [lira inf Z ( S -  r) 0 < t < S 

x(t)=~[/'+' t >_s, 

where A and zJ are "death points" isolated from I. The process {X(t), t>0} is 
again a Markov chain, with transition probabilities 

Po(t)=e-' pij(t) i, jeI  
PAj(t) = 6aj je I  
Pja( t )=l- -e  -t  jeI .  

The X(t)-process is the X(t)-process reversed from the time S; it can be shown 
by direct calculation to be a separable Markov chain with transition probabilities 
~i (t) where 

~j(0 c0) 

Ps,s(t)=ass 
~ , S ( t )  = 1 -  e - t  

and G(j) is the expected time spent in state j by the X(t)-process. 

We assume that the probability space (~2, ~,  ~ )  on which this process is 
defined is equipped with shift operators Ot and Ot, t > 0, so that X s (Or co)= Xs+, (co) 
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and ff~(Otco)=Xs+,(o~ ). For t>0 ,  the fields ~.~ and ~ will denote the smallest 
completed Borel fields making measurable the families {X(s),O<s<t} and 
{J?(s), 0 < s < t} respectively. 

w 2. The Martin Entrance and Exit Boundaries 

Define e to be the infimum of all times t > 0 such that either X( t )=  A or the 
sample path of X( ' )  has infinitely many jumps in the interval (& t] for some 6 > 0. 
Note ~ < S < oo, w.p. 1. All states are stable, so if the process starts from a state 
in I, it stays in that state for some interval of time. In this case, for almost every 
sample path, one - and only one - of the following holds: 

i) The sample path has a countable number of jumps 0 < Z x < r z < " .  in 
(0, c~], and ~ = lim z,. 

ii) The sample path has only finitely many jumps in (0, el,  but infinitely 
many in (0, ~ + 3] for each 6 > 0. 

iii) X(a) = A, in which case there are only finitely many jumps in (0, c~]. 

We will also consider cases where the process does not start from the state 
space; then we have to take into account the additional possibility that 0 < 3 < c~ 
and that there are infinitely many jumps in (0, 3). 

We can - and therefore will - introduce an auxiliary Markov chain X u by: 

xM(t)=X(t) if t < ~  

=A if t=>~ and case i) or case iii) holds 

=X(a)  otherwise. 

It is easily verified that X M is indeed a Markov chain with absorbing points 
A and oo ; the sample paths of X ~t are step functions with jumps at times 0 < zl < 
32 < " ' .  This sequence terminates if the process strikes one of the absorbing points 
after finitely many jumps; to reduce the proliferation of special cases we set 
z,+l = z, in c a s e  xM(Tn) is either A or oo. There is a related discrete parameter jump 
chain {Z,}, called the embedded jump chain, defined by z ,=X(z , ) .  Following 
Hunt  [7] i we can define a compactification I* of I, called the Martin exit space, 
which is a compact metric space in which I is dense. The set ~ = I * - I  is called 
the Martin exit boundary. Then )/, has a limit in I* as n ~ oo; this limit is in fact 
in N~', as it follows from the construction o f /*  that both A and oo can be identified 
with points of N~. 

The above construction can be applied to the reversed process f f  to get a 
process 2M and embedded jump chain 2, with a related compactification 7", 
called the Martin entrance space. The Martin entrance boundary ~ is then just 
7 * - I .  The Borel sets of I* and [* are then the topological Borel sets with respect 
to the two Martin topologies, and the Borel sets of N~ and ~ *  are those inherited 
from the larger spaces. I* and i* are distinct topological spaces, but we shall 

1 There is a slight difference in the boundaries defined by Doob [3] and Hunt [7]. Applied to 
our setting, Doobs definition allows the possibility that Z, converges to a point of I as n ~ oo ; under 
Hunt's definition, this is impossible. 
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often abuse notation by considering them apart from their topology, as when 
we write I w I* = I w ~* u ~*.  

The Martin topologies are adapted to the minimal processes X M and 2 M in 
the sense that these processes have right and left limits in them, but they are not 
necessary compatible with the "whole" processes X and X. We will eventually 
replace these topologies with a single topology compatible with both X and 2 ;  
for the present we use such phrases as " X ( t - ) = a "  and " X ( t + ) = b "  to mean, 
respectively, " X  is in I for some interval ( t -5 ,  t) and lim X(s)= a in the Martin 

sTt 
exit topology," and "X  is in I for some interval (t, t+6)  and l i m X ( s ) = b  in the 

s,~t 
Martin entrance topology." Because of the requirement that the process be in 
the state space for some time after t, X( t  + ) may not be defined; similarly for X ( t - ) .  
Although the process X(t) takes values in I w {o e} u {A}, X ( t + )  and X ( t - )  take 
values in the Martin extrance and exit spaces respectively. Thus it is possible that 
X ( t - ) = a ,  X ( t + ) = b  and X(t)= + oe! We will use this convention for stopping 
times as well as fixed times. 

I fB is any set in 1" w i* w {oe} define the sets S~(co) = {t: X(t, co)cB}, S + (~o)= 
{t: X(t+,o~)eB}  and S~(co)={t: X ( t - , ~ o ) c B } ;  SB, 2 + and ~ are the corre- 
sponding sets for X. A set A in N ~ - A  or ~ * - z ]  is said to be negligible if 
P {X(e- )cA} = 0 or P { 2 ( ~ - ) c A }  = 0 respectively. 

A second useful pair of topologies are the fine and co fine topologies on I* 
and I* respectively; see for instance [9, Ch. 10J. These topologies are intrinsic 
topologies for X and 2 respectively. The relevant property of these topologies 
is that if f is a function on I, then f has a fine limit at all but a negligible set of 
~* iff f i~ f (X(s))  exists w.p. 1, and f has a cofine limit at all but a negligible set of 

~*  iff l i~ f (X(s) )ex is ts  w.p. 1. 

w 3. Extension of the Transition Functions to the Boundary 

Much of our subsequent analysis depends on the existence of right and left 
limits for processes of the type {f(X(s)),  s > 0}. In deference to the fact that f (X(s))  
may not be defined for all s, we will use the term "/- l imit"  to indicate the limit is 
taken only over s for which X(s)EI. Since X is well-separable and is in I for each 
fixed s w.p. 1, this is equivalent to requiring the limit be taken over rational s only. 

Our first theorem of this sort concerns the semi-group. It can be deduced 
from results in [4J or [12]. The proofs in these papers depend on a compactification 
of the state space; we provide a direct proof here. 

Theorem 3.1. Let f be bounded on I. Then for ~o not in some exceptional null set, 
s~Ptf(Xs(o~))  has both left and right l-limits at all s for each t>O; these limits 
are continuous functions of t for t > O. 

Lemma 3.2. Let zl <=z2 be stopping times, A c I  and let A = { X ( s ) c A ,  some s 
in (zl, z2)}. Then for e > 0  there is a stopping time a <=z 2 for which P { a c(z l, z2) and 
X(a )cA}  > P ( A ) -  e. 

Proof Since A is a countable set, there is some finite set A' c A and 6 > 0 such 
that, if z = inf { t > zl + 5: X(t)c A'}, then P {z c (zl, "c 2)} --> P (A) - e. By right con- 
tinuity, X(z)cA' .  Just let a=ZAZ2,  q.e.d. 
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Proof of Theorem 3.1. Let a < b and define 

A={i :  Ptf(i)<a}, B={i :  Ptf(i)>b}. 

Let ~ be any stopping time and let Aab be the (r-set on which r is a limit from the 
right of both SA (CO) and SB (co). Let {o-,} be a decreasing sequence of stopping times 
such that o-o--- + 0% and for each n > 1 o'2, and o-a,-~ are chosen by Lemma 3.1 
so that both 

1 
P{O-2"eS~4r~(~'O-2"-a);Aab}>----P(A~b) 2" " 

1 
(3.1) 

2" ' 

(3.2) 

By the Borel-Cantelli lemma, we have X(O-2")~A , X(O-2n+I)~B , and o-,$~ a.s. 
on A~b for all large enough n, 

Now t > 0  so w.p. lf(X(z+t)) is continuous at t. It is a fact, observed by Hunt 
that if t/, 7" are random variables, ~ o--fields, such that W,+~-, t/" ~ t/a.e, and all 
the tl" are dominated by an integrable random variable, 

Then" 
E {t l 'I~}  ~ E {tI[Y } a.e. 

2i2n E { f(X(o-" + t))[~,} = E {f (X(r  + t))[ A 4 ,} .  (3.3) 

Now X(o-')~I if o- '<oe so the strong Markov property holds and the 1.h.s. of 
(3.3) is ! ira Pt f(X(o-')). But this limit fails to exist a. e. on Aab by the choice of the o-', 

so we must have P(Aab)=O. Then P{ [_) A,b} =0,  which implies P~f(X(s)) has an 
a < b  

/-limit as s+'c. By Doob's  now-standard transfinite induction argument, P~f(X(s)) 
must have r ight /- l imits  at all t w.p. 1. To show left limits exist for all t, define 
stopping times 

"CO~0 

~2,+~ = i n f { t > % , :  X(t)~B} 
%,+2 = i n f { t > r 2 , + l "  X(t)EA}. 

By the fact that r ight-hand/- l imits  of Ptf(X(s)) exist, Tn+ 1 >'E n on {~,< oe}. By 
the lemma we can find a sequence {o-,} of stopping times such that o-,e [z,, Z,+l] 
and P{O-2n(z-SA,O-Zn+I(SB, O-Zn+I<OO}<I/2 n. Let z=supo- ,  and l~ab~-{Z<OO}, 
Again, as s---,f(X(z+s)) is continuous at t a.s. on F,b, we have as before: 

JimE{f(X(o-.+t))[~.}=E{f(X(a+t)[V~.} on F~b. 

As the 1. h. s. is lirn Pt f(X(o-,)), which diverges a.e. on F~b, P(F~b)= O. 

Before proving continuity of the transition functions we need the following 
lemma. 
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Lemma 3.3. Let gj(s)=I-l!mPx(,)j(t ) and hj(s)=I-l!mPx(,)j(t ). Then for a.e. 

co and for all s, ~ gj(s) = 2 hi(s) = 1. 

Proof Let {A,} be a sequence of finite sets increasing to I w {A }, and let B, = 
{i: ~, P~j(t)__< l - e } .  The sets B, decrease to the empty set. Suppose T, is the first 

j e A n  

time X hits B,. We claim T= lim T, is infinite. If not, there are two cases: either 
T= T" for all sufficiently large n or T > T", V n. In the former case, we can use 
Lemma 3.2 to find a sequence {a,} of stopping times decreasing to T such that 
on {T< ~} ,  X(a,)~B,  for all sufficiently large n. Then for each fixed N: 

1 - e ~  lim ~ Px(~,)j(t)= l imE{X( t+cr , )~Au[~,}  
n ~ o z  j e A ~ v  n ~ o o  

(3.4) 

As N ~ oo the right hand side approaches E {X(t + T) e I w {A } 1~,} = 1, a contra- 
diction. On the other hand, if T > T,, all n, we can find an increasing sequence 
{a,} of stopping times with T.____a,< T such that X(a, )eB.  for all sufficiently 
large n a.e. on {T< oo}. Then the argument (3.4) for this sequence shows T= oo 
a.e. But this is true simultaneously for a sequence of ~ going to zero, which proves 
the lemma, q.e.d. 

The proof of Theorem 3.1 is readily completed. By Dini's theorem, if, for 
each k, a,k ~ ak, where a,k and a k are positive, and if ~ a,k = ~ a k = 1 for all n, 

k k 

then ~ a,k converges uniformly in n. Thus, i f f  is bounded 
k 

P~+t f (X (u))= ~ Pxt,)i(t) P~ f (j). (3.5) 
J 

As u either decreases or increases to Uo through values for which X(u)sI ,  by the 
lemma and the above remark, (3.5) converges uniformly. Since s~P~f ( j )  is 
continuous for allj, s--,I-limP~+tf(X(u) ) is also continuous, q.e.d. 

U ~ u o  

By virtue of the fact that S is independent of the original process Z and that 
Z is actually continuous w.p. 1 for each fixed t, we have 

X ( t ) = X ( S - t )  w.p. 1 

simultaneously for all rational t. Consequently, statements about r ight/- l imits  
of X imply corresponding statements about left /-limits of f(  and vice-versa. 
With this remark and the symmetry of X and X we have: 

Corollary 3.4. Let f be bounded on I and t > O. For a.e. co, the following have 
right and left I-limits, and these limits are continuous in t for t> O. 

a) s--*Ptf(X~), b) s~Pt f (X~) ,  

c) s ~ ~ f(Xs), d) s ~ ~ f(X~). 

As a consequence of this we can extend both semigroups P, and ~ to N~ w ~*. 
We indicate this for P~, as the extension of ~ is similar. 
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Let f =  Ij in Corollary 3.4. Then lim Px(~)j(t) exists a.e. and is continuous in t; 
s'[cr 

this implies i ~ Pu(t) has a fine limit at all but a negligible subset No of N*, where 
No is independent of t. Similarly, by (b) of Corollary 3.4, lira Pyr(~)j(t) exists, so 

st~ 
that i~Pzj(t) has a continuous cofine limit at all but a negligible subset No of 
~3,  where N o is also independent of t 2. Thus we define 

Pbj(t)=fine limit Pij(t) if b e N * - N  o 
i ~ b  

= cofine limit Pi;(t) if b e ~ , -  ]Vo- z]" 
i o b  

=~bb if be~r 

(3.6) 

A consequence of Lemma 3.1 is that ifb is not in some negligible subset N 1 c N *  or 

j ~ I w A w A  

Note that for t > 0 

P {X(a + t)=j]  V ~ , }  = l i m  Px(,,)j (t) a.e. 

This is almost surely Px(~- )1 (i); this gives us a limited version of the strong Markov 
property due to Chung in case N* is countable. If A e V o~, then 

P {X(c~ + t) = j ;  A} = E {Px(~-)j; A}. (3.7) 

A second limited form of the strong Markov property comes from consideration 
of right limits. If T is a stopping time for the forward process, then 

P{X(T+t)=jl~,}=limPx(T+l/,)j(t) a.e. on { T < ~ } .  

This limit is almost surely Px(r+)j a.e. on {X(T+)e~*~I} 3, so for AeYT, we 
have 

P{X(T+t)=j, u I; A} =E{Px(T+lj(t); x(r+)eN* u I; A}. (3.8) 

Both (3.7) and (3.8) will be strengthened later. 

w 4. Reflecting Atoms 

Following Chung we divide boundary points into two classes, according to 
whether they are regular for themselves or not. Chung called the former "sticky"; 
because of the analogy with diffusion processes, where "sticky" has a different 
meaning, and because of some of the following results, in particular the role of 
these points in the exit and entrance boundaries, we call such points "reflecting". 
More precisely if A ~ I* w 7", define 

7a= in f{ t>0 :  X(t-) or X(t+)cA} 

= oo if there is no such t, 
and 

7A the corresponding time for the X(t)-process, 

2 The point ~ is negligible for both X and X, and can thus be included in both No and fi" o. 
3 X (T+)  and X ( T - )  for stopping times are defined as for fixed times. See Section 2. 
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where the convention of section 2 on X(t +) and X ( t - )  is still in effect. A point 
as#~3 is reflecting if P{7,o0~ = 0 } > 0  and non-reflecting otherwise. Similarly, 
a s ~ 3  is reflecting if P {~ o 0fa = 0} > 0  4. 

Chung has shown that for any point a eN * ,  and a.e. co: the set $2(co)= 
{t: X(t- ,co)=a} is countable; if a is non-reflecting S2(co) has no finite accu- 
mulation points, and if a is reflecting then each t in $2 (co) is a limit from the right 
of points of S;-(co). Applying this first to the forward and then to the reverse 
process we see that a point a in either N3 or N3 is reflecting iff 

P{3,. o O~ --017~< ~} = P  {po O~ =O]~a< o0} = 1. (4.1) 

This zero-one law for reflecting atoms can be extended considerably - the 
following proposition is the first step in this extension. 

Proposition4.1. Let a ~ u ~  be reflecting, and define a-fields Ga(t)= 
~(X(7~+s);O<s<t) if t>0 ,  and G,(0)= 0 G,(t). Then the trace of G,(O) on 
{?a< oe} is trivial, t> o 

Proof If a reflecting, the process hits a infinitely often in any neighborhood 
of 7,; thus, if f is bounded and t >  0, I-lira Pt f(X(s)), since it exists, must be Ptt f(a). 

s,L ~2a 

Let A e G,(0). Then 

E{f(X(7,+ t)); A, ~,< oOlGa(0)} 

But X(7,+(1/n)) is almost surely in I so the strong Markov property is valid; 
noting that A e G, (l/n) we have 

=limPtf,~ X 7 ,+  T I(~,,~ ~. 

This implies A and X(7 a + t) are independent. A similar calculation shows A is 
independent of any finite family X(Ta+ tj), 0<  t l < . . - <  t,. It follows that A is 
independent of G~(0), and so must have probability zero or one. q.e.d. 

If two atoms a and b of N* are reflecting, it follows from this proposition that 
P {Yb o 0~o = 0 ] 7, < oe } is either zero or one, and is equal to P {7, o 0~b = 01Yb < oe }. 
The same is true of ~ ,  so we define an equivalence relation R: a is equivalent (R) 
to b if they are both reflecting atoms, either both in ~*  or both in N*, and 
P {Tb o 0 ~ = 0 l y ~ <  oe} = 1. R is easily seen to be an equivalence relation. Then 

define ~o  = N*/R 

~ o - - ~ * / R ,  

so that equivalent reflecting atoms are identified. 

4 Recalling the convention of w 2 on X(t+), X(t-), it is not difficult to show a reflecting atom 
must be non-negligible for either X or X. 
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w 5. Harmonic Measures 

In order to relate the boundary behavior of X and )7 to quantities defined in 
terms of the minimal processes, we introduce the harmonic measures. This 
section is devoted to the development of their properties, the most important 
for this paper being Theorem 5.4 which tells us that harmonic measures have no 
oscillatory discontinuities along the sample paths. 

If A and B are Borel subsets of No and ~o respectively, define 

HA(i)= P {Jim zn~Alzo=i} 

FIB(i)=P { lim 2n~B[2o=i}, 
n - +  ao 

where )~, is the jump process of X and X, the jump process of X. Ha and/ tB are 
called harmonic measures, The following elementary facts hold for both Ha 
a n d / l s ,  though we state them for the forward chain only. 

H 1) For fixed i, HA (i) is a measure on ~J0. HA (i) > 0, all i, and H eo_ ~ (i) < 1. 

H2) HB(i) is regular for the jump chain. 

H3) w.p. 1, l imHB0f , )=l  if l imz ,~B 

=0  if lim z,r 

H4) Let T be any stopping time. Then the processes Y~ and Y2 are a sub- 
martingale and a supermartingale respectively, where 

VI(t)=H (X(T+O) O<t< oO  

=1 t>c~oOr, t > 0  

Y2(t)=H~(X(T+t)) O<t<c~oOr 

=0  t>~oOr, t > 0 .  

The point t = 0  can be included in the parameter set in case X(T)~I.  
The fact that H a (i)> 0 is a consequence of the stability of the point i and the 

fact that there is positive probability of jumping from i to A in any time interval. 
(H 2) and (H 3) follow directly from the fact that 

(x,t = P { imjm B t Zl, . . . ,  X~ 

and L6vy's martingale convergence theorem. 

To prove (H4) let 0 < s < t ;  we prove only that Y2 is a supermartingale; the 
proof for Ya is similar. The supermartingale inequality is clear on {ctoO r <s}, as 
Y(s) and Y(t) are both zero. On {~ o Or > s}, it is enough to prove it for the case 
T= s = 0 and X(0) = i. 

Ei{ Y 2 (t)} = E i {Hn(X(t)), e > t} = P/{lim Z, ~ O, eB, c~ > t} 

= P~ {lim g, eB, ~>t}  < Pz {lim z, eB} = HB(i). 

Before proceeding to the properties of HB(X(t)) we state an awkward-appearing 
but useful lemma which will come up several times below. It is a type of local 
version of the converse Borel-Cantelli lemma. 
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Lemma 5.1. Let A ~  and let h(i)= P {AIX(O)= i}. Let z be any stopping time 
and let A be the set where z is a limit point from the right of times t for which either 
X(t-)EY3 o or X ( t + ) e ~  o. Then for a.e. co in the set A c~ {I-lira sup h(X(t))>O}, 

t,L ~ 
z is also a limit point from the right of times t.for which Otco~A. I f z  is accessible 5, 
the analogous statement holds for left limits. 

aim sup h(X (t))> 5}. Proof. It is enough to prove the lemma for the set F = A  n { t+~ 

Assume P(F)>0  and, using Lemma 3.2, define a decreasing sequence {a,} of 
stopping times such that a , =  oo off F, a,~z and a , > z  on F, and 

where 

P{F.}~ ( 1 - ~ )  P(F) 

E = F  n {X(~.)e{i: h(i)>e}; o~oO~rn<ffn_l--ffn}. 

Let A, = O2IA. We claim A, occurs for infinitely many n. 

Let fr be the field generated by the events F, A,+I .... , A,+k and consider 

P{A.I~  } >=P{A.I~, F.} P {F~ I ~ } . (5.1) 

For j>_l, ~ ( 3 A n + j ~ .  SO by the strong Markov property - which holds if 
X(a,)~I - the r.h.s, of (5.1) is 

>eP{F,[~}.  

I fH,  c F  is the subset for which P {F,I~}__<�89 then 

and for each k 

P {A,~ [ N} =< 1 - 2  (1 - IH.), 

1} P{A~c~...c~X.+g}<E 1 - ~ -  ( 1 - I )  . (5.2) 
Lj=n 

But now, if we integrate P(F, IN) over F = H , w ( F - H , )  and note this integral is 
bounded by P(F) (1 - 1/2"), we see 

P{H,}____@V_~ P(F). 

By the Borel-Cantelli lemma, I ra=0  for all but a finite number of j. The r.h.s. 
of (5.2) accordingly goes to zero as k --+ oo. 

It z is accessible, then t~ = K 1 u K :  u-- .  where for each i there is a sequence 
{z,} such that on Ki, z,<-c, z,T~. The lemma can be proved in the case of left- 
hand limits by choosing the times o-, as before, except now a,q" and o-,~(~,, z) 
with high probability on Ki c~ {lim sup h (i) > e}. q.e.d. 

tlv 

s A s topp ing  t ime  T is accessible  if there exist coun tab ly  m a n y  sets K , c  t2 wi th  P K,  =1 
n 

and  s topping  t imes S,,j such tha t  for each n we have  S,,j < T and  S,f~ T as j ~ oo a.e. on K,.  T is pre- 
d ic table  if we can choose  K 1 such tha t  P(K1) = 1. 
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This will usually be used in the situation where A = {X(c~-)~B} where BENo. 
In this case O~-IA = {X(c~oO~-)~B} and we have: 

Corollary. Let A and r be as above, and let B c . ~  o be a Borel set; then for a.e. 
co in the set A (~ {I-lira sup HB(X(t))>O}, r is a limit point from the right of times t 

for which X ( t -  )6B. l f  z is accessible, the analogous statement holds for left limits. 

At this point we abandon the time symmetry in our hypotheses. In order to 
be able to describe the process completely in terms of the Martin boundaries it 
is necessary to introduce some type of finiteness assumptions on either the 
entrance or exit boundary. We make the customary choice, that is, to restrict 
the exit boundary. The corresponding results for a finite entrance boundary will 
be gotten by reversing the process. 

From now on, we will assume: 

(A) All states of I u A are conservative. 

(B) There exists a finite subset 2 of ~o with the property that P{X(c~-)e 
2 o - 2 J }  =0, and for each a e 2 ,  P { X ( ~ - ) = a } > O .  

A word is in order about assumption (A); the reason for introducing it is 
that non-conservative states can act as boundary atoms, so that allowing in- 
finitely many non-conservative states subverts the finiteness assumption on ~.  
As Pittinger [13] has shown, one can always allow non-conservative states as 
long as there are only finitely many of them. Under these assumptions, almost 
every sample path of the X process is known to have the following character: 

(S1) The set Si(co) is the union of a countable number of disjoint right- 
open intervals {g,} satisfying: 

if J , = [ a , , b , )  or (a,,b,), and bnKTA , then 

i) X ( b , - ) e 2 ,  X ( a , + ) ~ I u ~  o, 

ii) ~ ( a , ,  b,) ~ X(r X(~+),  X ( ~ - ) ~ I .  

(S 2) Let 5 e be the set of reflecting atoms of N. The set S~ (co) is countable and 
dense in itself, and the set S~_s~(co) is discrete. The set Si(co) is dense in [0, oo). 

Except for the statement about left-hand limits, which is obvious upon con- 
sideration of the reversed process, the above is due to Chung. 

Theorem 5.2. Let B c ~ .  Almost every sample path of the process {HB(X(t)), 
t > 0} has right and left I-limits for all t > O. 

Proof Let 0 < a < b < 1 and let 

A '={i :  HB(i)<=a}, B'=  {i: HB(i)>=b}. 

Define a sequence T, of stopping times by: 

T1 =YA, 

T2, = ?~, o Or2, -1 (5.3) 

V2n+l = ? A "  o OT2n . 
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Let T =  lim T,, and suppose T<  oe with positive probability. There are two 
n--+ oo 

cases: 

Case 1. T, = T for all sufficiently large n. 

Then e o OT is zero, for if not, by (H 4) the process 

y(t)={I~,~(X(T+t), 0<t<~o0tt>=~o0t (5.4) 

is a positive sub-martingale, and therefore has a limit as t$0; but it cannot have 
a limit on the set where both e o Or = 0 and T,-- T, for on this set, 

limHB(X(t))>b, limHB(X(t))<--a as tST. 

Notice that T is a limit from the right of S~, and 

limHB(X(t))>_b>O and l imH~_B(X( t ) )> l - - a>O.  
tST t~T 

By the corollary to Lemma 5.1 T is a limit from the right of both S~_ B and S~. 
But B and N - B  are finite so T is a limit from the right of both S~- and S~- for 
some cEB, d ~ - B ;  but this means c~d, a contradiction since c and d are 
distinct points of ~.  

Case 2. T. < T < oe all n. 

If we replace T by T, in (5.4) we see that submartingale convergence requires 
c~ o Or, < T -  T, a. e. for all n. Thus T is a limit from the left of S~ ; applying the corol- 
lary to Lemma 5.1 as in case 1, we see T must be a limit from the left of both 
S~- and $2 where c~B, d e N - B .  This is again a contradiction, implying T =  + o% 
w.p. 1. Thus w.p. 1 HB(X(t)) has only finitely many crossings of (a, b). This is true 
simultaneously for all rational a and b. q.e.d. 

We remark that HB(2(t)) also has right and left/-limits; this follows from the 
theorem and the fact that X(r)= X(S-r)  a.s. simultaneously for all rational r < S, 
so that right and left/-limits are interchanged. 

Thus H B must have a fine limit at every point of r and a cofine limit at all but 
a negligible set in ~0.  We thus extend the defnit ion of H~ to ~ u ~o by fine and 
cofne  continuity at those points where the limits exist, setting it equal to zero 
where they do not. 

Since we have placed no restrictions on the entrance boundary, the previous 
theorems, which relied on finiteness restrictions on N, cannot be immediately 
translated into theorems on / t~ .  However, for the most part these theorems can 
be proved using the same ideas as before. 

If a ~ ,  let A(a)={b~o: Ha(b)=l } and let F ~ = { b ~ o :  H s , ( b ) < l - 6  }, 
d >0. The sets A(a) are disjoint since if a and a' are distinct points of N, we have 
for all i~I and thus for all i ~ o :  Ha(i)+Ha,(i)<= 1. The set A(a) is the set of points 
in ~o which are in a sense equivalent to a, and the set F = U Fa is the analogue 

8>0 
of the set of non-reflecting points, as the following shows. 

Theorem 5.3. I f  (5 > 0, the set S~ is almost surely discrete. 
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Proof We show no point is a limit from the right of S[~. A minor modification 
of the argument shows no point is a left-limit of S~ either. 

Suppose t is a right-hand limit of S~(o)); if o is not in some null set N~, 
/d im Hj(X(s)) exists and is bounded above by 1 -6 .  But now if o) is not in a 

s l t  

second null-set Nz, it must also be a limit from the right of S~, and hence, as S~_s~ 
is discrete, of S~. Thus if o is not in some third null set N3, l!m t Hy (X (s))= 1. 

Clearly co cannot be in the complement of 741 u N 2 u N~. q.e.d. 

With this established, we can extend Theorem 5.2 to harmonic measures on 
the entrance boundary. 

Theorem 5.4. Let B ~ ~ ,  and let C be a Borel set in F~ for some 6 > O. Then 
w.p. I the following processes have right and left 1-1imits at all t: 

a) {HB(X,); t>0} ,  b) {H~(20, t>0} ,  

c) {/~c(X,), t_>0}, d) {/tc(X0, t>0}.  

Proof Part (a) is just Theorem 5.2; b) and c) follow from a) and d) respectively 
by noting that left limits with respect to X t become right limits with respect to 
)(, and vice versa. It remains to prove d). This can be proved in much the same 
way as Theorem 5.2, this time considering X rather than X. First observe that for 
a.e. co and any t, ~ o 0t = 0 implies either 2 (t) = zl or t is a limit point from the right 
of S~. 

Let a<b and let A '=  {i: fIc(i)<a }, B'= {i: ~Ic(i)>b}. Define stopping times 
T~,72 . . . .  by 

rl =~A' 
T2. = 9~, o OT2, , (5.5) 

T2,+l=ga, oOr=,, and let T= l im T,. 

If T<  co with positive probability, then there is positive probability that either 
T= T, for all large enough n or T,, < T for all n. In the first case, T must be a limit 
from the right of both SA' and S~,; but this means ~ o Or = 0, since otherwise the 
submartingale Y(t) would fail to have a limit at the origin, where 

y( t )={f t l , (*(T+t) )  0<t<~o0Tt>=~ODr. (5.6) 

By our remark above, T is a limit from the right of S+; as we have seen 
lim Hc(X(t))>b>O, so by Lemma5.1, T is a limit from the right of Sc <S~-  
t,t s 

This contradicts the discrete nature of S~. The other possibility is that T, < T 
for all n. Replacing T by T~ in (5.6), we see ~ o Or, < T -  T~, hence T must be a limit 
from the left of S~ almost surely on {T< co}. Apply Lemma 5.1 once more: 
as above, Tis almost surely a limit from the left ofSg,  again a contradiction, q.e.d. 

An immediate consequence of this theorem is that H c has a fine limit at each 
point of N, so that we can extend/~c to ~ by fine continuity. To be definite, we 
set f t c = I  c on ~o; then /4c is cofine continuous except for a negligible subset 
of ~o.  
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Proposition 5.5. Let C be a Borel set in F~. I f  a e ~ ,  FI c (a) < 1, and if a ~ ~, flc(a ) = O. 

Proof. I f a ~  and/4c(a)>  0, Lemma 5.1 applied to FIc(X(t)) would imply Sc, 
and therefore Sr~, is not discrete. If a e N - ~ ,  the set S+ is discrete so that if 
T=  inf Sa +, then 2 (T+)  = a and a o 0 T > 0 a.e. on the set { T<  oo }. The conclusion 
then follows immediately from Lemma 5.6 below. 

Lemma 5.6. Let T be a stopping time. Then 

P {c~o 0 T > 0, lim sup H a_ A ( X ( T +  t))= 1} = 0; (5.7) 
t,Lo 

(5.7) remains valid if a, OT, Ha-a ,  and X are replaced by ~, OT, ffI~_ ~, and 2 respec- 
tively. 

Proof The process 
~Ha-  A ( X ( T +  t)) if 0~ o OT > t > 0 

Y(t) 
1 t>c~oOT 

is a bounded submartingale, and has a limit Yo at t -O.  If A =  {Yo = 1}, then for 

t>0 :  ~ y~>= ~ ro=P(A);  
A A 

but Yt= < 1 so Yt= 1 a.e. on A. By separability, Yt -= 1 a.e. on A; since Ha_ ~ < 1 
onE,~OOT=Oa.e,  onA .  q.e.d. 

A second application of this lemma is to show A (a) is negligible if a e ~ -  ~ - 
hence Ha < 1 on ~ except for a negligible set. Let y = Ya(~) be the first time X(t  +)e  

+ X(?+)sS,~(~) a.e. on {7<c~}. A(a). As A(a)cF~ for any ~>0,  SA(~) is discrete, so 
Thus ~ o 0~ > 0 and lira H,(X(t) )= 1 on {~; < Go } ;by  Lemma 5.6, P {7 < oo } = 0. 

w 6. The Boundary 
Now and for the remainder of this paper assumptions (A) and (B) are in effect. 

We have shown in w 5 that the harmonic measures H A and/~B, where A~5~ and 
B c F~ for some 6 > 0, are defined on I w r w ~o,  are fine continuous at all points 
of ~ and cofine continuous at ~o excepting possibly a negligible set. Further 
HA[ a = I A and/tB]~o = lB. 

Let {G,} be a countable basis for the Martin entrance boundary and let 
B , = G ,  nF1/,. Let {G, n = l ,  2, ...} be some ordering of the functions Ha, a e ~  
and/4B,,  n = 1, 2, ... and let 

Uo(i) = [ l  ie I  

i e B w ~  o. 

Let i f  be the topology on I w ~' w ~o generated by the sets of the form 

{x e I w ~ w ~0: [ ub(x) - uij(a)[< G j = 1 . . . .  , n} 

where i t . . . . .  i, are non-negative integers and a e l w ~ w ~  o. The restriction of 
to I is then the discrete topology and 3 f  makes all functions Uo, u 1 . . . .  con- 

tinuous in I w N w ~o.  Notice that the topology Yf identifies a reflecting atom a of 
with the set A(a )c  No; thus we may consider only the set d = N  w F, which is 
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identical to ~ u ~0 as far as the topology ~ is concerned. Further J f  is a metric 
topology; ~vf is generated by the distance 

d(x,y)= ~ 21~-,u,(x)-u,(y)[. 
n=O 

This is easily seen to be a pseudo-metric on I w ~r The only question is whether 
it separates points, or equivalently, whether {u,} separates points. But {u,} in- 
cludes Uo, which separates points of I from each other and from points of s~', 
and it includes the functions H,,  a ~ ,  which separate N. The functions /4B, 
separate points of F since ffls.rr=IB, , and also separate points of F from N by 
Proposition 5.5. Thus ~ is a Hausdorff topology on I w d ,  and a sequence {x,} 
converges to x in this topology iff uk (x,) ~ uk (x) for all k. 

Recall the notation of w 1: Z(t) is a Markov chain with all states stable, X(t) is 
the subprocess of Z whose lifetime is an exponential random variable independent 
of Z(t), and J?(t) is the reverse process of X(t). The Martin exit boundary is sup- 
posed to satisfy the finiteness conditions (A) and (B). With the set of ~ as defined 
above, we have 

Theorem 6.1. There exist standard modifications of the processes X and 
which are right-continuous, and have left limits in the space I u d with topology ~.  
The right limits of X and the left limits of X are in I u S~ w F while the left limits of 
X and right limits of f( are in I u ~. 

We already know that u, (x (t)) has right and left/-limits with probability one 
so if I w so' were compact, the theorem would be a triviality. However, I u d is 
not compact. We could easily complete it using the metric d, but this would 
introduce extraneous points and would still leave us the task of proving the process 
lives in the original space. 

Proof We define a standard modification 2 of X by 2 ( 0 =  l-lira Xt, where 
s,~t 

the limit is taken in the topology ~r Now I- l i~  u,(X(s)) exists for all t and n; 

we must show that there exists a~I u d such that this limit is u,(a). 
The interval [0, oo) can be written as the union of $I and S}. The first set is 

a union of countably many disjoint right-open intervals {J,} by (S 1), and is dense 
in [0, oo). 

Case 1. t is in the interior of one of the ~ .  Then X(t+)=f(( t )=X(t)  and 
) ? ( t - ) =  X ( t - )  in I. This immediately shows )? is a standard modification of X 
since for each t, X(t) is in the interior of some J ,  w.p. 1. 

If t is not in the interior of an J , ,  it is either a limit of endpoints of the J , ,  
an endpoint itself, or both. If the former is true, it must even be a limit of right- 
hand endpoints of the ~ .  There are several cases to be distinguished. 

Case 2. t is a left-hand endpoint of some J , .  Then we claim X(t)=X(t+)6 
I w 5 ~ u F. For  each n, 

l~m u,(X (s)) = 1~  u,(X (s))= un(X (t +)), 

and X ( t + ) e l u ~ .  If X( t+)EIwF,  we are done; if X ( t + ) ~ - F ,  then w.p. 1 
X(t+)eA(a) for some a e ~ c ~ r  and u,(X(t+))=u,(a) for all n. 
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Case 3. t is a right hand endpoint of some J ,  and t < 7~. Then X ( t - )  = X ( t - ) ~ 8  
since, for each n, lira u, (X(s)) -- lim u. (X(s)) = u, (X (t-)) ,  and by (i) of(S 1), X ( t - )~8 .  

s~t s~t 
Since there are only countably many J , ,  the above statements hold simultaneously 
w.p. 1 for all n. 

Case 4. t is neither an interior point nor left-hand endpoint of any J , .  We 
claim 2 ( t ) ~  There exists a sequence t,$t such that t, is a right-hand endpoint 
of some i s .  Thus by (S 1) there must be a unique a e S ,  for which X ( t , - ) = a  
for all large enough n. But for each k, I-lim Uk(X(s)) exists, and thus must equal 

s.Lt 
limUk(X(t,--))=Uk(a), all k. Thus X(t)=a.  

Case 5. It remains to show that X(t) has a left limit in 5~ c d in case t is neither 
an interior point nor a right-hand endpoint of an J , .  In this case there must be a 
sequence t, Tt of right-hand endpoints of the J , ,  and hence there is an a~5 p for 
which X ( t , - ) = a  for all large enough n. Then for each k, I-lim Uk(X(s)), since it 

sTt 
exists, must be Uk(a); this proves the assertion. The desired standard modification 

of )f is just )~(t)= 1!~ Jr(S-s) ,  the limit being taken in the topology ~ .  q.e.d. 

w 7. The Strong Markov Property 

The following theorem is true even without finiteness restrictions on 8 .  

Theorem 7.1. Let a ~ 8 .  Then for t > O, Pij(t) ~ P,j (t) as Ha (i) ~ 1. 

Proof. By Theorem 5.1 of [2] : 

P~{Xt=j}---iPi(a, ds)P~J(t-s) + Z iP,(b, ds)PbJ(t-s) 
0 beN-{a} 0 

oo 
q- P i { X t = j l c ~ >  t} S P i ( 8 '  ds)  

t 

where p~(a, ds) is the joint distribution of (X(c~-), e) given X(0)= i. If p~(a, ds) is 
the joint distribution of (Z (e-), a) where Z is the original process, then pi (a, ds)= 
e- s p~ (a, ds) if a + A. Then 

oo 

H~(i) = ~ e -s pT(a, ds). 
0 

As/4,  (i) ~ 1, p~, and therefore Pi, must tend weakly to the unit mass at (a, 0). 

The conclusion now follows from continuity of the Pbj('). q.e.d. 

This means that for each t>0,  i--+P~(t) has an ~f-limit at each point a o r S ;  
this limit must be P,j(t), which was defined in Section 3. It is not necessarily true 
that i ~ Pq(t) is ~-cont inuous  at F; however, it is cofine-continuous there at all 
but a possibly negligible set. Inasmuch as S+(F~) is discrete for each J > 0, this is 
enough to assure that lim P~(~)~(t)=P~(u)~(t) for all ueS+(F~), and hence for all 

s),u 
ueS+(F). Thus we see s~Px(s)j(t) is right-continuous for all t>0 ,  j e I .  This is 
sufficient to prove by the usual method that: 

Theorem 7.2. X is a strong Markov process. 
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w 8. Branching Points and Quasi Left Continuity 
A point b e s J  u I is said to be a nonbranching point if for every bounded con- 

tinuous function f on ~ w I, lira Ptf(b) =f(b), and is a branching point otherwise. 
t.~o 

It is clear that all points of I are nonbranching, since P~j(t)~ 6ij as t ~ 0 for 
all j. Furthermore, all points of F, other than possibly a negligible set, are non- 
branching; if we let T be inf S~o, then 3~(t)~ F~ on { T< oo } and 3~ is right-continuous 
there, so that if f is continuous, f(X(t))->f(X(T)) as t~T. If f is bounded, the 
strong Markov property implies P,f (b)~f (b)  for all except possibly a negligible 
subset of F~. As 6 is arbitrary, we see that the set of branching points in F is 
negligible. 

Theorem 8.1. Except for possibly a negligible subset ofF, the set of branching 
points of suC u I is ~ - 5 ( .  Further if {T,} is an increasing sequence of stopping 
times with limit T, then w. p. 1 Iim X ( T,) = X ( T) a. e. on the set { T < ~ ,  lira X(T,)r 
~ - J } .  

Proof. We prove the second assertion first; the first follows easily. We may 
assume T<  oo everywhere. Let f be bounded and continuous on I u d ,  and let 
t>O. I f A 6 V ~ T , ,  

E{P~f(lim X(T,)); A} =E{lim PJ(X(T,)); A} = E { f ( X ( T +  t)); A}. (8.1.1) 

Let t ~ 0 ;  by right continuity, the right hand side goes to E{f(X(T)); A}. Now 
consider A x = {T, < T Vn, lira X (T,)= x} for x ~ I u ~.  Then we have: 

{itm o Pt f(x) P {Ax} = E { f (X  (T)), A:,}. (8.1.2) 

If x ~ I, choose f = I x, and if x ~;9 ~ take f =  Hx. In either case the left-hand side of 
(8.1.2) is P{A~} so we must have f (X(T) )=I  a.e. on A~, hence x ( r ) = x  on A x. 
This verifies the second statement. 

Now for x e I  u ~ ,  (8.1.2) must hold for all bounded continuous f and predict- 
able stopping times T, hence lim PJ(x)=f(x).  It remains to show that all points 

t J,0 

of N - 5  P are branching points. Suppose x e ~ - 5 s  Take Tto  be the first hit of 
the boundary; then P{A~} >0. By Theorem 6.1, X(T) can not be in N-5~,  hence 
Hx(X(T))<I and (8.1.2) gives us: 

limPtHx(x)<l=Hx(x ). q.e.d. 
t$o 

We now have a reasonably complete description of the boundary behavior of 
the paths of X(t). Since X is gotten from the original process Z by killing at an 
exponential time independent of Z it follows that there is a version of Z which is 
right-continuous and has left limits in I u d ;  this version is strongly Markov 
and has ~ - 5  ~ as its set of branching points. 

We are left with the question of what happens if the entrance rather than the 
exit boundary is finite. This is easily answered by looking at the reversed process. 

Theorem 8.2. The process X is a strong Markov process in I w s~/. The set of 
branching points is F. 
13 Z. Wahrscheinlichkeitstheofie verw. Geb., Bd. 14 



186 J. Walsh: 

Proof It is enough to show that s ~ Pt f(X~) is right-continuous, or equivalently, 
that ~ can be extended to N' tj F by fine and cofine continuity. We already know 
from section 3 that it can be extended to ~ and 9}~. But each point of ~ is either 
a single point or an equivalence class of such points. If a ~ b, we must have/st f(a) = 

~f(b)  for otherwise s ~ f ( ~ )  would have an oscillatory /-discontinuity the 
first time it hit a (which equals the first time it hit b) contradicting Corollary 3.4. 

As before, all points of I are nonbranching points, and points of F (excluding 

perhaps a negligible set) are branching points since, although X may have left 
limits in F, it takes its values in I w ~ .  Note that for a~M, if z = i n f S  +, that 

X(z)=a: if aEN- -5  ~ this is true since S + is discrete, and if a~5 ~ this is true by 
right-continuity and the fact that ~ is a limit from the right of S +. Now for t > 0 
and f bounded and continuous on I u d ,  ~ f(a) = finel!m ~ f(i); in either case 

above, it is easy to see that ~f(a)= E {f(J~(z + t))]z < oo}, and this converges to 
f(a) by continuity as t $ 0. Thus N consists of nonbranching points and the theorem 
is proved, q.e.d. 

w 9. The Finite Boundary Case 

If we require that both the entrance and exit boundaries be finite, we get an 
esthetically more pleasing, if mathematically less useful case. The description 
of the boundary is certainly simpler. Let ~o=:~*/R and ~ o = - ~ / R .  Let us 
assume that both the backward and forward Kolmogorov differential equations 
are satisfied and that there are finite sets :~ c ~o and ~ ~ ~o of non-negligible 
points such that 

P {X(~-)e~-Bo} = P {2(~-)e~ -~o} =0. 

If a E M- b~, then A (a) is empty. On the other hand, if a ~ 5 p A(a) cannot be empty. 
An argument based on Lemma 5.1 shows that any atom in A(a) must be reflecting; 
it follows that any two such atoms are equivalent, hence A(a)--b for some be~ 
and by symmetry, A (b)--a. We agree to identify a and b in this case, and with 
this in mind, we have: 

Theorem 9.1. A boundary atom a is reflecting iff it is in both the entrance and 
exit boundaries; if a e ~  ( a ~ ) ,  a is nonreflecting iff there exists an ~ neighbor- 
hood of a and an ~ neighborhood of ~ (.~) which do not intersect. 

Proof The non-intersecting neighborhoods of a and ~ can in fact be taken 
to be of the form {i: Ha(i)> l - e }  and {i: H a ( i ) < l - e  } for some ~>0, since if a 
is non-reflecting, Ha(b)< 1 for each of the finitely many b ~ ,  

w 10. Examples 
Central to our discussion of reflecting boundary atoms is the notion of 

equivalence. Chung [2] has defined a related notion called indistinguishability; 
a and b are indistinguishable in ~ if P,j(t)=Pbj(t) for all t >  0 and jeI .  These two 
notions are the same for reflecting atoms, but it is possible for a reflecting atom 
and a nonreflecting atom to be indistinguishable and impossible for them to be 
equivalent. A more symmetric way of stating the relation is that a and b are 
equivalent iff both P,j(t) = Pbj (t) and ~j (t) =/Sb~ (t) for all t > 0, j e I. 
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The question remains of the existence of equivalent but nonidentical atoms. 
That such atoms exist is a consequence of the construction theorems of Chung 
[-2] and Dynkin [4]; however, explicit examples have not been given; here are 
two to indicate the possibilities. 

Consider Brownian motion Bt on ( -  oo, oo)-  {0}. There are 4 minimal regular 
functions for this space, corresponding to the points + oo, -oo ,  0+  and 0 - .  
The exit boundary for the process has two active points, 0+  and 0 - .  Since the 
first time the process hits 0 is a limit from the right of t for which B ( t - ) =  0 -  
and of t for which B ( t - ) =  0 + ,  0 + and 0 -  are equivalent. This behavior can 
be translated into a Markov chain by using a device of Ito and McKean [8]. 
Let ~0 (t, y) be Brownian local time at y, and set 

~(t)= ~ 2-In' (p (t, 1 ) .  

Then the process X(t)=l/B(z-l(t)) is a Markov chain with two equivalent 
boundary points, + oo and - oo. 

It is even possible to have a countable number of equivalent atoms. The 
process [X(t)l, X as above, is a Markov chain on N + =  {1, 2, ...} with a single 
reflecting atom, +oo. Let P~j(t) and P~"(t) be its transition probabilities and 
minimal transition probabilities, respectively. Define transition probabilities P 
on N + x N + by 

^ m 1 P~p. i~ ~.. j~ (I) = ~ . .  P~j (t) + - ~  [P~j (t) - P,7 (t)] .  

It is straightforward to verify that t 6 is a semigroup, its minimal process has 
transition probabilities Am m P(p,i)(n,j)(t)=6,pPij (t) and has a Martin exit boundary 
N + x {oo}. We claim these points are all equivalent. Let ~ be the first hit of the 
boundary; for any n, t>0 ,  the process has probability 1/2 n of being in {n} x N § 
at time ~ + t. The only boundary point the process can hit from there is (n, oo). 
On the other hand, the projection of the process on 1 x N + is just (1, IX(t)l), and 
the boundary of this process is reflecting. Our process must therefore hit the 
boundary infinitely often in any neighborhood of ~. An application of Lemma 
5.1 shows that the process hits (n, oo) infinitely often in any neighborhood of ~; 
this is true simultaneously for all n. 
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